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Abstract

Purpose of Review: Disparities in obesity rates in the US continue to increase. Here we 

review progress and highlight gaps in understanding disparities in obesity with a focus on 

the Hispanic/Latino population from a systems epidemiology framework. We review seven 

domains: environment, behavior, biomarkers, nutrition, microbiome, genomics, and epigenomics/

transcriptomics. We focus on recent advances that include at least two or more of these domains, 

and then provide a real world example of data collection efforts that reflect these domains.

Recent Findings: Research into DNA methylation related to discrimination and microbiome 

relating to eating behaviors and food content is furthering understanding of why disparities in 

obesity persist. Environmental and neighborhood level research is uncovering the importance of 

exposures such as air and noise pollution and systematic or structural racism for obesity and 

related outcomes through behaviors such as sleep.
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Summary:

Obesity disparities and the biological processes associated with them must be better contextualized 

within the social and political environments that propagate them. One avenue for accomplishing 

this is by modeling relationships between within-body mechanisms and omics and beyond-body 

mechanisms and exposures. However, data integration across the various domains as well as data 

collection are significant challenges for generating a comprehensive systems model for obesity 

disparity.

Keywords

Health disparities; Hispanic/Latino; obesity; systems epidemiology; environmental exposure; data 
integration

Introduction

Rates of obesity and associated outcomes are increasing worldwide, and the World Health 

Organization recognizes obesity as one of the greatest public health challenges of the 21st 

century [1]. In the US, these trends have disproportionately affected underserved populations 

with low socioeconomic status (SES) and diverse race/ethnicity, including Latinos [2]. 

The 2015–2016 National Health and Nutrition Examination Survey estimated that 47% of 

Hispanics were obese, compared to 37.9% of non-Hispanic Whites. While obesity rates have 

remained steady over the past decade for many populations, they are increasing in some 

sub-populations such as Mexican Americans [3]. The Hispanic Community Health Study / 

Study of Latinos (HCHS/SOL) reported a diabetes prevalence of 16.9% that varied among 

ancestry groups and was as high as 18.3% in Mexican Americans, who also had metabolic 

syndrome prevalence of 35.0% [2, 4]. Comparatively, diabetes prevalence is estimated at 

11.3% among all US adults [5].

Obesity, insulin resistance, type 2 diabetes, and metabolic syndrome are complex diseases 

made more so when viewed through the lens of health disparities. Recent developments 

in environmental monitoring, high-throughput omics technologies, behavioral and life 

course monitoring, biomarkers, etc. are expanding our understanding of how the human 

genome and human body fit into a larger system of factors that play a complex role in 

the development of obesity and associated outcomes. These efforts have identified novel 

therapeutic targets such as endocrine disruptors, effects of gut microbiota on obesity, 

epigenetic and transcriptomic regulation of obesity, and larger-scale sociological and built 

environment impacts on obesity. At the same time, increased specialization in each of these 

fields makes devising cumulative measures or systematic models that integrate and span 

these advances all the more challenging. Systems models for obesity are not new in the field 

(for classic examples see the Foresight or Glass and McAtee models [6, 7]). However, where 

models stress integration across levels, published research sees a large disconnect between 

sociological aspects of researched systems that focus on humans as decision making agents 

within a broader socio-political context, and internal pathways that make up the biological 

obesity system. There is a fundamental gap in knowledge about how the various risk factors 

for obesity integrate and interact with one another [8]. When integration does occur, most 
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prominently through gene x environment studies, focus is often placed on two factors in the 

system with little done to integrate the relationship into the larger system.

Narrowing efforts to a single or two related risk factors is a significant problem for 

understanding health disparities. Race and/or ethnicity are not a single covariate to be 

controlled for, but rather a complex set of factors ranging from genetic variation to access 

to care to environmental or political injustice. In other words, we cannot consider race or 

ethnicity as a cause of obesity and must instead look at the number of regulating factors 

that influence risk in sub-populations. To study obesity and related diseases through the 

perspective of health disparities, we must adopt a systems approach that can accommodate 

and integrate many data dimensions and types, assess multi-level effects, incorporate spatial 

and temporal changes, consider synergistic or attenuating effects, and account for socio-

political and environmental context [7, 9]. Multi-level and complex models are better suited 

to arriving at why race and ethnicity matter for obesity disparities.

Here we review progress and highlight gaps in understanding disparities in obesity from a 

systems epidemiology framework drawing on numerous omics, behavioral, environmental, 

and sociological fields. Understanding obesity disparities with a systems approach is 

daunting for several reasons, one of the largest being choosing which of the many risk 

factors of obesity to include. Figure 1 illustrates the risk factors focused on in this review 

in larger bubbles (environment, behavior, biomarkers, nutrition, microbiome, genomics, 

epigenomics/transcriptomics). This is not an exhaustive list, but rather reflects areas where 

recent advances have been made between factors (e.g., linkages between microbiome and 

nutrition, or epigenomics and environment). We then provide a real world example of using 

a systems epidemiology approach for data collection, processing, and analysis of a cohort of 

individuals in a study entitled Nucleotides to Neighborhoods, which focuses on obesity and 

disparities between Hispanic/Latino and non-Hispanic/Latino individuals.

Advances and Gaps for an Obesity Disparities Systems Epidemiology Model

Genomics, Epigenomics, and Transcriptomics—Genetic variants play a role in 

obesity and type 2 diabetes with studies finding Hispanic/Latino specific genetic metabolic 

syndrome components and genetic regulation of weight, sleep duration, and total energy 

expenditure [10, 11]. Assessment of genotypic interactions with nutrients [12], behaviors 

[13••], environment [14•], and the microbiome [15•] shows that these interactions have the 

capability to modify obesity and related outcomes. Research into the interplay between 

lifestyle, environment, microbiome, and genetic factors is limited in Hispanic/Latino 

populations with some focus on hepatic fat and diet [16]. One study has assessed the effects 

of physical activity and sedentary behavior on genetic variants on obesity in Hispanics/

Latinos finding that increased physical activity and reduced sedentary time attenuates 

genetic association with obesity [17••]. A challenge for genomic research of Hispanic/

Latinos is the admixture of the population, which sees a large genetic diversity with 

European, African, and Indigenous American ancestry [18].

Epigenomic mechanisms are of significant interest in obesity pathways because they modify 

gene activity without changing the underlying DNA sequence. Research in this area has 

exploded in recent years, with a large focus on DNA methylation. DNA methylation 
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generally silences gene activity, and can be dynamic or static throughout adult life 

and can be passed on to offspring [19]. Significant research has been conducted on 

changes in DNA methylation in obese individuals and type 2 diabetics [20, 21], with 

some research specifically in Hispanic/Latino cohorts [22–24]. In animals and humans, 

a number of behaviors influence DNA methylation including nutritional changes (high 

fat diet, low protein diet, high nutrient-specific diet), physical activity, stress, smoking/

alcohol consumption, and working habits [25]. Few of these studies specifically examine 

behaviors and methylation as related to racial disparities, however racial discrimination 

has recently emerged as a measure of interest in this realm. In a study of Latina 

mothers, perceived everyday discrimination was significantly associated over time with 

DNA methylation of stress-related genes [26•]. This research could point to a pathway 

between stress, inflammation, and obesity. Psychosocial factors may also play a role at the 

neighborhood level, with limited research into socioeconomic status (SES) showing that 

living in lower SES neighborhoods is associated with greater methylation of stress-response 

and inflammation related genes even after accounting for individual SES [27••].

Other areas of promising research for epigenomic and transcriptomic relationships with 

obesity, behaviors, and environment include chromatin accessibility, histones and histone 

modifications, messenger RNA (mRNA), microRNA (miRNA), and proteomics. External 

stimuli driven by environmental changes can affect histone modifications and chromatin 

accessibility both globally and at individual genomic loci, and these effects can be mediated 

through the activity of transcription factors and DNA binding proteins. Olden et al. dub 

this system a ‘biosensor’ that could potentially trace cumulative environmental exposures 

over the lifecourse, and may be a key in better understanding of ethnic/racial health 

disparities [28]. Relative to DNA methylation, these other ‘omes’ can be a more temporal 

link between environmental changes, genome function and gene expression, representing 

a read-out for rapid changes in environment or behavioral change through the course 

of an intervention. Like DNA methylation, research connecting these epigenomic and 

transcriptomic factors with more than one domain of the model in Figure 1 are sparse, 

especially with neighborhood, socio-cultural, or higher level factors. Future research should 

focus on mechanistic pathways other than stress response such as obesity [29], include 

contexts or expand into neighborhood characteristics such as green space, social cohesion, 

and built food environments, as well as include ethnically diverse cohorts.

Microbiome and Nutrition—Research over the past decade has demonstrated that the 

human microbiome plays a key role in human health and disease [30]. Although many 

recent studies link microbial composition to specific phenotypes, we still lack sufficient 

understanding of how microbial diversity is reflected in various ethnic populations [31], and 

the relative importance of lifestyle, health conditions, and diet in shaping this diversity. In 

relation to obesity, the clearest role the microbiome plays is through the gut and diet [32], 

while an emerging secondary role may be through a gut and physical activity connection 

[33••]. While some studies have shown dramatic changes in the gut microbiome due to 

dietary changes, these changes are short-term upon reversion to the original diet, which 

may explain why dietary intervention is not typically successful in treating obesity [34, 

35]. Long-term diet, unlike short-term diet, has been shown to have an effect on the 
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microbiome that is large compared to other factors even including antibiotic use [36], 

underscoring the importance of adequate nutritional environments to support long-term 

healthy dietary choices. Neighborhood SES was found to be associated with variability of 

microbiome diversity even when accounting for individual behaviors [37], however there 

has been no research of yet exploring relationships between built food environment and 

gut microbiome. Recent research has also demonstrated an association between increased 

exposure to air pollution, gut microbial taxa, and fasting glucose levels in overweight and 

obese adolescents [38•]. Beyond the gut microbiome, the oral microbiome also holds a 

promising avenue for linking microbial communities to inflammatory conditions including 

obesity and diabetes, while also being easier to collect than gut microbial samples. Research 

into ethnic differences in oral microbiome are nascent, although one study has linked lower 

bacterial diversity in the oral microbiome to increased age as well as length of US residency 

and acculturation measures among recent Mexican American immigrants [39•].

Biomarkers—A primary defect associated with obesity is insulin resistance, which is 

increasingly being shown to be an essential biomarker for modeling the systems pathways 

of obesity as well as a potential intervention point and metric for intervention efficacy. 

Recently, a greater focus is being placed on changes that are tissue specific: for example, 

measures of adipokines adiponectin and leptin can be used as biomarkers of adipose tissue 

insulin resistance [40]. Insulin resistance results in impaired insulin action in adipose 

tissue and is thus strongly correlated with decreased adiponectin and increased leptin. 

Leptin resistance is linked to increased appetite and highly correlated with obesity [41]. 

However, the association can change with alterations of diet, nutrition, and exercise; findings 

suggest that DNA methylation around leptin-associated loci resulting from behavioral 

changes constitutes a significant determinant of leptin expression [42]. Environmental 

and pollution related exposures have also been shown to influence insulin resistance, 

pro-inflammatory immune activation, hepatic endoplasmic reticulum stress, and other 

metabolic-related biomarkers, likely through epigenomic processes [43••], however behavior 

as both potentially mediating and moderating of these relationships has not been examined 

sufficiently. Additionally, how disparities in obesity related biomarkers are attributable to 

genetic, behavior, environment, nutrition domain variation is understudied. Likely, these 

disparities are underestimated by the traditionally narrow focus of study population and lack 

of concurrently-measured, intertwining domains.

Behaviors and Environment—Behavior is the primary linking factor between 

environment and biological pathways, and increasingly specific health-related behaviors 

are being incorporated into models of obesity disparity that seek to understand genetic, 

epigenetic/transcriptomic, microbiome, and biomarker processes as seen in previously 

cited literature. In a recent systematic review, researchers found that behaviors including 

physical activity, smoking, alcohol consumption, and dietary patterns contributed to 

the socioeconomic gradient in cardiometabolic disorder inequities with some variation 

in geographies, gender, and age [44]. A newly emerging area for behavioral research 

and obesity disparities is in circadian rhythm, specifically sleep. Multiple social and 

environmental predictors have been found to affect sleep including discrimination, nighttime 

noise, and pollution – all factors that minorities are likely to be more exposed to [45, 46••]. 
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Hispanic/Latinos have been found to have shorter sleep and more sleep disturbed breathing 

than non-Hispanic Whites [47], with associations found between poorer/less sleep insulin 

resistance, hypertension, and obesity [48•–50]. These poorer sleep patterns have been linked 

to perceived social environment/neighborhood safety and higher levels of objective measures 

of traffic-related air pollution [51, 52•].

There is a large body of evidence showing that exposures and features of environments 

influence obesity and related morbidities [53–55]. At the same time, numerous studies have 

demonstrated major environmental disadvantages for Hispanic/Latino neighborhoods that 

can be linked to obesity including disparities in air pollution, water quality, walkability, 

green space, crime, traffic safety, pollution, isolation, and disorder [56–59]. Of recent 

interest is an increase in studies measuring neighborhood-level racial discrimination or 

structural racism and effects on health outcomes [60]. A study looking at racial inequalities 

in SES including poverty, unemployment, and homeownership found that inequality was 

associated with higher obesity rates, while inequalities in median income, college graduates, 

and unemployment were associated with fewer fresh food stores and more fast food 

outlets [61•]. Bailey et al. map out a number of possible pathways between racism 

and ill health including: economic injustice and social deprivation, environmental and 

occupational health inequities, psychosocial trauma, targeted marketing of health-harming 

substances, inadequate health care, state-sanctioned violence and alienation from property 

and traditional lands, political exclusion, maladaptive coping behaviors, and stereotype 

threats [62•]. There is a critical need in epidemiological research attempting to understand 

obesity disparities as a system to incorporate such understandings and measures of systemic 

racism [63].

Data Collection and Integration in Systems Epidemiology

In developing an effective model for a systems approach to understanding obesity disparity, 

there must be consideration of how domains or pieces of the system will be operationalized 

through data collection. Often, epidemiological studies will generate measures of health and 

disease at the level of the individual looking at biological mechanisms in the body, behaviors 

the individual undertakes, and exposures the individual experiences. This partially has to do 

with how environment is defined, however there is also an element of trying to fit courser 

level concepts into an individual-level model [64]. For example, instead of building a model 

that includes regional supplemental nutrition policy and number of times the participant 

uses food stamp benefits, only nutritional metabolomics for an individual are employed in 

an analysis. This process has been named molecularization, or “the social processes and 

transformations through which phenomena (diseases, identities, pollution, food, racial/ethnic 

classifications) are re-defined in terms of their molecular components and described in the 

language of molecular biology” [65]. This is a significant problem for health disparities 

where complex social phenomena and population-level experiences are often fundamentally 

important for situating and understanding a biological pathway [66].

One way of being more representative of behaviors within their contexts is through 

better measurement practices. Definitions of behavior or environmental exposure that lack 

specificity and variability have been tied to contradicting or counterintuitive results, have 
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been shown to underestimate effects, and are questionable in terms of how effectively 

they can measure the target association [67]. Self-reported behavioral data has been 

repeatedly shown to be an inaccurate and unreliable measure of health related behaviors, 

resulting in an inability to evaluate current and changing behaviors, effects of interventions, 

and relationships between behaviors and health outcomes [68]. Ethnic differences in self-

reported data have not always borne out when objective measures are used. For example, 

self-reported leisure time physical activity shows racial disparities [69]. Accelerometers, 

however, have detected fewer differences, not only potentially due to self-report biases, but 

also due to the pre-existing cultural biases in the questions themselves. New accelerometer 

processing methods are providing more informative patterns of behaviors beyond total 

amount exercised such as bouts, or specific behaviors from machine learned models [70]. 

Greater precision of objective measures also means we can discover associations in smaller 

samples [71].

Global Positioning System (GPS) devices can obtain an accurate representations of a 

person’s movements and trajectories by recording latitude and longitude at varying time 

intervals (down to the second) while a person engages in their daily routine, and ascertain if 

an individual is inside or outside [72]. Coupled with Geographic Information Systems (GIS), 

which represent layers of neighborhood and environmental data such as air quality, sidewalk 

density, poverty, and food stores, GPS is able to create representations of individuals’ daily 

exposures to environments based on where somebody is and how much time they spend 

there, as compared to home or neighborhood measures [73, 74]. Accelerometry coupled 

with GPS and GIS data results in dynamic exposure measures that can assess where 

individuals are exposed, for how long, and during what behaviors [73]. While wearing 

such sensors can be intensive for participants, large studies of daily mobility patterns have 

demonstrated that people are largely habitual, and one to two weeks of sensor data can 

account for the vast portion of types of environments that an individual is exposed to [75]. 

Furthermore, as smartphones continue to penetrate the population, eventually we will move 

toward monthly, yearly, and life course metrics of total exposures. Dynamic exposures that 

track an individual’s actual movement and exposure will enhance our ability to accurately 

understand the associations between environments, behaviors, and epigenome/microbiome 

by accurately classifying people’s engagement with environments rather than relying on 

static home/neighborhood associations. Integration of these sensors into epidemiology 

studies is an important step for accurately quantifying behavior and environment.

With the collection of heterogenous data types, studies that include multiple domains must 

decide when data integration should occur: before the modeling process, during intermediate 

steps, or late in the process after modeling each individual component [76]. Data integration 

before a modeling process will inherently need to reduce, simplify, or flatten data to achieve 

a uniform format across all data types. For example, physical activity data might be averaged 

for an individual and combined with a single alpha metric of microbiome. The drawback 

of this approach is that the inherent richness of each data type is significantly reduced. 

Conversely, late-stage integration requires expert knowledge across multiple domains. There 

has been progress in methods for integration of heterogenous omics data [77•, 78]. For 

example, LUCID estimates latent unknown clusters from diverse omics data, accounting 

for differential patterns across data types while jointly estimating subgroups relevant to the 
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outcome of interest [79]. These methods cannot currently include behavioral data generated 

from sensors, daily recalls, or most biomarkers due to mismatches between data dimensions. 

An area of inquiry for this problem may be in computer science with statistical relational 

learning and other forms of artificial intelligence that deal with heterogenous data types.

The Nucleotides to Neighborhoods Study

The Nucleotides to Neighborhoods study (N2N) was a pilot study of 209 individuals 

living in San Diego County. Participants were a subset of a larger cohort study examining 

environmental effects on cancer-related biomarkers [80]. All N2N participants provided 

informed consent, including separate consent for DNA analyses. N2N participants were 

selected based on obesity status and were asked to complete additional data collection 

to fulfill all seven domains of the systems model outlined in Figure 1. Participants from 

the larger cohort were evenly recruited from four different types of census tracts (highly 

walkable, low access to fast food restaurants; high walkable, high fast food; low walkable, 

low fast food; and low walkable, high fast food) to ensure environmental variability in 

home locations of the cohort. The N2N sample follows the distribution of 48, 55, 59, and 

47 participants in each neighborhood type, respectively. N2N participants are on average 

60 years of age, 49% female, 34% Hispanic, 30% lean/normal, 41% overweight, and 29% 

obese. Figure 1 shows measures that participants were asked to contribute, which are briefly 

described here.

Once enrolled in the study, participants were asked to wear an accelerometer on the hip 

and wrist, and a GPS device on a belt with the hip accelerometer for 14 days with a 

minimum of 10 hours of wear time per day. They were asked to complete a sleep log 

daily during their two weeks’ participation. Participants came in for a clinic visit after 

one week, before which they were asked to fast for 12 hours in preparation for a 40mL 

blood draw and urine sample collection. At the visit, blood pressure, height, weight, hip 

and waist circumference were recorded. Plasma and buffy coat from blood drawn into 

EDTA tubes was isolated by centrifugation at 4 degrees C, then aliquoted and stored at 

−80 degrees C. A medical history form including current medication was completed, and 

demographic characteristics were collected via self-report survey. Additional self-report 

surveys assessed health conditions, depressive symptoms, quality of life, sleep quality, and 

neighborhood perceptions. Participants completed two 24-hour dietary assessments (one 

weekend, one weekday). Participants separately consented to participate in the American 

Gut Project (AGP) [81] and were given stool collection kits with detailed instructions. Kits 

were returned to the AGP and participants took an online food frequency questionnaire 

associated with the AGP.

Table 1 illustrates the outcomes obtained from each of the domain measures for the N2N 

study. A significant challenge for the study was to come up with hypotheses that could 

leverage at least two or more domains of data. Examples of the types of questions that 

we are asking with the data set are: 1) does GPS-based environmental exposure to air 

pollution correlate with alpha diversity in the gut microbiome and, if so, are there significant 

differences between Hispanic and non-Hispanics that can be explained by differences in 

exposure levels? 2) does objectively-measured physical activity play a mediating role in the 
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effect of genetic variants on insulin sensitivity? 3) do circadian sleep and eating cycles differ 

between Hispanic and non-Hispanic participants, and if so, are these differences associated 

with biomarkers like inflammation?

Several lessons were learned from the pilot N2N study. As can be expected, data collection 

for a study with this many domains is a significant challenge. Participants that are willing 

to undergo one aspect of data collection might be weary of others. For example, some 

participants willing to give blood during the clinical visit were not willing to have genomic 

testing completed. Ensuring proper data handling and delivery of data from the collection 

team to each necessary lab required significant logistical planning. Data processing required 

six different lab teams. This is an essential factor to consider when planning for budget 

and funding for such projects. These challenges all limited the sample size of the study, 

which for a traditional epidemiological study is considered small. In that regard, being a part 

of an already ongoing and successful cohort study was an essential aspect for successful 

recruitment. This is a model actively utilized in large ethnic cohort studies like HCSC SOL 

and the Multi-Ethnic Study of Atherosclerosis (MESA), both of which have added domains 

such as objectively measured behavior, environment, and epigenetics.

Conclusions

The links between the domains discussed in this review are extensive, and research into their 

role in obesity, diabetes and other complex disease has only begun to scratch the surface. 

Of note is the current dearth of studies that assess these relationships for specific ethnic 

groups, particularly when environmental disparities are so closely tied to ethnic and racial 

disparities. Furthermore, it is not enough to simply put race or ethnicity into modeling 

frameworks. A deeper understanding of why these factors are playing a role in biological 

mechanisms is essential, which can only be accomplished with data collection on a systems 

level that can account for interactions with other biological systems as well as behaviors 

occurring within environmental and political contexts. One of the largest gaps in current 

research is linkages between environmental disparities/associated behaviors (e.g., nutritional 

decisions made in context of food environments), and epigenomic and microbiome pathways 

(e.g., fiber content as important for microbiome diversity). However, progress is being 

made for incorporating measures that model the real world experience of racial and ethnic 

minorities into epidemiological studies such as individual discrimination and structural 

racism. Developing research cohorts and studies that have the necessary data domains for 

studying these complex pathways will remain a challenge from both a funding and logistical 

organizational standpoint. A best path forward option will be expanding data domains in 

existing cohorts.

The specific epigenomic and microbiome factors that affect obesity in Hispanics/Latinos 

are still largely uncharacterized, and the potential reversibility of these changes is largely 

unknown. By conducting research to identify these changes, and more specifically changes 

impacted by behaviors and environments, we can begin to design clinical trials to assess 

how effectively lifestyle or environmental interventions may decrease or reverse obesity. 

Importantly, epigenomic and microbiome pathways that include environments and behaviors 

can provide compelling evidence for supporting both individual and environmental-level 
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strategies for reducing disparities through nutrition, sleep, physical activity, circadian rhythm 

alignment, land use, emissions, transportation, and other environmental public policy. 

Environmental changes especially could have a far-reaching and lasting impact on entire 

populations. They will also aid progress in precision medicine efforts to identify individuals 

at heightened risk who can be targeted for intervention. Being able to identify and model 

these factors would give us a more accurate appraisal of individual disease risk and how to 

more effectively treat obesity and diabetes.
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Figure 1. 
A systems epidemiology approach for understanding obesity disparities including seven 

risk factor domains (environment, behavior, biomarkers, nutrition, microbiome, genomics, 

and epigenomics/transcriptomics). Example measures for these domains are represented in 

smaller bubbles of the same color (e.g., biomarkers are measured through urine, blood, and 

clinical assessments). Additional domains and measures could be built into and/or swapped 

out of the model, as needed for a given study.
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Table 1.

Outcomes measured in the Neighborhoods to Nucleotides sample (n=209) across seven domains.

Domain N2N Measures Outcomes

Genomic SNPs Illumina Infinium CoreExome-24 BeadChip Kits (>500,000 SNPs at single-nucleotide 
resolution), further SNP imputation using 1,000 Genomes Database (UofMichigan). Due 
to small sample size of cohort we used GWAS to identify smaller subsets of SNPs for 
index-based risk scores (e.g., obesity risk).

Epigenomic/
Transcriptomic

DNA methylation Illumina Infinium MethylationEpic BeadChip Kits (>850,000 methylation sites at single-
nucleotide resolution)

mRNA & miRNA Illumina Next Generation Sequencing HiSeq4000

Microbiome Diversity 16S rRNA gene amplicon sequencing for calculating alpha diversity (diversity within each 
sample) such as the 
Shannon index

Dissimilarity Metrics of beta diversity such as UniFrac calculated from the 16S rRNA data

Taxonomy Assignment of each 16S rRNA read to a bacterial taxon, at multiple levels (typically from the 
phylum to the genus)

Nutrition 24 hour recall Nutrition Data Systems for Research 24 hour food recalls (total calories, fats, fiber, number 
of food types e.g. vegetables or fruit)

Food frequency VioScreen food frequency questionnaire (instances of food types eaten over past weeks/
months)

Biomarker Clinical BMI, waist-hip circumference, medications

Urine Metabolomics

Blood Metabolomics, hormone, adipokines, biomarkers of inflammation, glycemic regulation, lipid 
metabolism, liver health

Behavior Accelerometer Physical activity (bouts, total duration, daily patterns), sedentary behavior (bouts, total 
duration, daily patterns), sleep time, sleep quality, machine learned behaviors (biking, 
running, walking, in vehicle)

GPS Time spent indoor/outdoor, dynamic exposure measures to all environmental features (e.g., 
total air pollution participant is exposed to measured by movement)

Self-report Questionnaires on health, physical functioning, sleep, etc.

Environment Pollution and hazards Air pollution, noise pollution, light pollution, water quality

Socio-demographic Diversity, language, crime, poverty, advantage

Built Environment Walkability, recreation, built food environment, transit, road safety, green space

Self-report Feelings of safety, neighborhood cohesion, access to food environment, perceptions of 
walkability
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