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Prof. Richard T. Scalettar

Prof. Dong Yu

Committee in Charge

2021

i



© Davis G. Unruh, 2021. All rights reserved.



Contents

Abstract iv

Acknowledgments viii

Chapter 1. Introduction 1

1.1. Nanoparticle Solids 2

1.2. Silicon Heterojunctions 7

Chapter 2. Nanoparticle Simulation Methods 11

2.1. Hierarchical Nanoparticle Transport Simulator: HINTS 11

Chapter 3. Percolative Charge Transport In Binary Nanocrystal Solids 18

3.1. Overview of Simulation and Results 21

3.2. Discussion and Conclusions 33

Chapter 4. Disordered Mott-Hubbard Physics in Nanoparticle Solids: Transitions Driven by

Disorder, Interactions, and Their Interplay 34

Chapter 5. Structural Characterization of a Polycrystalline Epitaxially-Fused Colloidal

Quantum Dot Superlattice by Electron Tomography 45

5.1. Experimental 47

5.2. Results and Discussion 55

5.3. Conclusion 64

Chapter 6. Hierarchical carrier transport simulator for defected nanoparticle solids 66

6.1. Simulation Methods 68

6.2. Experimental Methods 73

6.3. Results and Discussion 75

ii



6.4. Conclusions 81

Chapter 7. From Femtoseconds to Gigaseconds: The SolDeg Platform for the Performance

Degradation Analysis of Silicon Heterojunction Solar Cells 84

7.1. Introduction 84

7.2. Methods and Results 86

7.3. Experimental Studies of Degradation of a-Si:H/c-Si stacks 104

7.4. Conclusions 107

Chapter 8. Training a Machine-Learning Driven Gaussian Approximation Potential for Si-H

Interactions 110

8.1. Motivation 110

8.2. Technical Details 111

8.3. Fitting a GAP to Si-H 113

8.4. Conclusion 126

Chapter 9. Conclusions 128

9.1. Nanoparticles 128

9.2. Silicon heterojunctions 131

Appendix A. Binary NC Experimental Methods 132

Appendix B. DMFT Nanoparticle Simulation Methods 134

Bibliography 137

iii



Electron Transport and Performance Degradation in Novel Solar Technologies

Abstract

While traditional c-Si solar cells still dominate the photovoltaic market, progress in further

increasing their power conversion efficiencies or otherwise lowering operation costs has been rela-

tively stagnant. As such, photovoltaic research focuses predominantly on novel solar technologies,

also known as emerging solar technologies, each of which has demonstrated pathways toward a

combination of high effiency and low cost which would allow them to supplant c-Si and change the

solar technology landscape.

Two such novel solar technologies are nanoparticle and silicon heterojunction solar cells. The

issues facing the widespread adoption of these two technologies are quite different. In nanoparticle

solar cells, extraction of photogenerated carriers is inhibited by low carrier mobilities. Driving

NP solids toward band-like transport is crucial to preventing electron/hole pairs from recombining

before they can be collected. In contrast, silicon heterojunctions have already demonstrated very

high conversion efficiencies, but exhibit high levels of unexplained performance degradation. De-

termining the degradation pathways and developing strategies for degradation minimization will

be crucial to their widespread adoption.

This dissertation presents theoretical studies of both solar technologies. Beginning with NP

solids, carrier transport studies are carried out in NP solids which examine the underlying physics

governing transport, as well as determining the extent to which defects inhibit extended band-like

transport. Continuing to silicon heterojunctions, comprehensive simulations model defect formation

pathways and measure the corresponding energy barriers, in order to determine which pathways lead

to the observed long-term degradation in these solar cells. The main chapters in this dissertation,

apart from a section describing the NP simulation methods, are discussed briefly below.

First, we simulated electron transport across a binary nanocrystal solid (BNS) of PbSe NCs with

diameters of 6.5nm and 5.1nm. We used our Hierarchical Nanoparticle Transport Simulator HINTS

to model the transport in these BNSs. The mobility exhibits a minimum at a Large-NC-fraction

fLNC = 0.25. The mobility minimum is deep at T = 80K and partially smoothed at T = 300K.

We explain this minimum as follows. As the LNC fraction fLNC starts growing from zero, the few
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LNCs act as traps for the electrons traversing the BNS because their relevant energy level is lower.

Therefore, increasing the fLNC concentration of these traps decreases the mobility. As increasing

fLNC reaches the percolation threshold fLNC=fP , the LNCs form sample-spanning networks that

enable electrons to traverse the entire BNS via these percolating LNC networks. Transport through

the growing percolating LNC networks drives the rapid growth of the mobility as fLNC grows past

fP . Therefore, the electron mobility exhibits a pronounced minimum as a function of fLNC, centered

at fLNC = fP . The position of the mobility minimum shifts to larger LNC fractions as the electron

density increases. We have studied the trends of this mobility minimum with temperature, electron

density, charging energy, ligand length, and disorder. We account for the trends by a “renormalized

trap model”, in which capturing an electron renormalizes a deep LNC trap into a shallow trap or a

kinetic obstacle, depending on the charging energy. We verified this physical picture by constructing

and analyzing heat maps of the mobile electrons in the BNS.

Next, we showed that nanoparticle (NP) solids are an exciting platform to seek new insights

into the disordered Mott-Hubbard physics. We further developed HINTS to build from localized

states to describe the Disorder-localized and Mott-localized phases, and the transitions out of

these localized phases. We also studied the interplay between correlations and disorder in the

corresponding multi-orbital Hubbard model at and away from integer filling by Dynamical Mean

Field Theory. This approach is complementary to HINTS, as it builds from the metallic phase

of the NP solid. The mobility scenarios and phase diagrams produced by the two methods are

strikingly similar, and account for the mobilities measured in NP solids.

Third, we analyzed the 3D structure of a 120×38 nm disc-shaped region of a PbSe QD epi-SL

using full-tilt high-angle annular dark-field electron tomography. The high spatial resolution of the

tomographic reconstruction (0.65 nm) enables determination of the center-of-mass coordinates of

all 1,846 QDs in the sample as well as the size and shape of the thousands of epitaxial connec-

tions (necks) between the QDs. The tomogram reveals the detailed crystallography and internal

positional disorder of the three SL grains that constitute this sample. A map of the neck network

is used to quantify relationships between neck number (the number of necks each QD possesses),

average neck diameter, QD location in the film, and the nearest neighbor inter-QD distance and
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distance distribution. We found a strong positive correlation between neck number and local spa-

tial order, suggesting that future improvements in neck connectivity are likely to simultaneously

enhance the overall structural perfection of the epi-SLs. HINTS was employed to estimate the

electron mobility of the tomography sample and assess the impact of grain boundaries on charge

transport. The electron tomography study established a baseline for the quantitative statistical

analysis of structural defects in 3D QD epi-SLs.

Fourth, we developed TRIDENS: the Transport in Defected Nanoparticle Solids Simulator,

that adds three more hierarchical layers to our HINTS code for nanoparticle solar cells. In TRI-

DENS, we first introduced planar defects, such as twin planes and grain boundaries into individual

NP superlattices (SLs) that comprised the order of 103 NPs. Then we used HINTS to simulate

the transport across tens of thousands of defected NP SLs, and constructed the distribution of the

NP SL mobilities with planar defects. Second, the defected NP SLs were assembled into a resistor

network with more than 104 NP SLs, thus representing about 107 individual NPs. Finally, the

TRIDENS results were analyzed by finite size scaling to explore whether the percolation transi-

tion, separating the phase where the low mobility defected NP SLs percolate from the phase where

the high mobility undefected NP SLs percolate, drives a low-mobility-to-high-mobility transport

crossover that can be extrapolated to genuinely macroscopic length scales. For the theoretical de-

scription, we adapted the Efros-Shklovskii bimodal mobility distribution percolation model. We

demonstrated that the ES bimodal theory’s two-variable scaling function is an effective tool to

quantitatively characterize this low-mobility-to-high-mobility transport crossover.

All four of these NP projects provided crucial insight into our understanding of transport

mechanisms in NP solids, and the crucial role that defects play. Collectively this work is important

for developing strategies for driving NP solids into the metallic regime and band-like transport.

The rest of the dissertation switches focuses to silicon heterojunction solar cells, which exhibit

notable performance degradation. While the exact defect formation pathways are unknown, all

degradation pathways can be modeled by electronic defects getting generated by thermal activation

across energy barriers over time. To analyze the physics of this degradation, we developed the

SolDeg platform to simulate the dynamics of electronic defect generation. First, femtosecond
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molecular dynamics simulations were performed to create a-Si/c-Si stacks, using the machine-

learning-based Gaussian approximation potential. Second, we created shocked clusters by a cluster

blaster. Third, the shocked clusters were analyzed to identify which of them supported electronic

defects. Fourth, the distributions of energy barriers that control the generation of these electronic

defects were determined. Fifth, an accelerated Monte Carlo method was developed to simulate the

thermally activated time dependent defect generation across the barriers. – Our main conclusions

are as follows. (1) The degradation of a-Si/c-Si heterojunction solar cells via defect generation

is controlled by a broad distribution of energy barriers. (2) We developed the SolDeg platform

to track the microscopic dynamics of defect generation across this wide barrier distribution, and

determined the time dependent defect density N(t) from femtoseconds to gigaseconds, over 24

orders of magnitude in time, achieved by connecting the results of the femtosecond molecular

dynamics simulations to the long time scale kinetic simulations. (3) We have shown that a stretched

exponential analytical form can successfully describe the defect generation N(t) over at least ten

orders of magnitude in time. (4) We found that in relative terms the open circuit voltage (Voc)

degrades at a rate of 0.2%/year over the first year, slowing with advancing time. (5) We developed

the Time Correspondence Curve to calibrate and validate the accelerated testing of solar cells. We

found a compellingly simple scaling relationship between accelerated and normal times taccelerated ∝

t0.85
normal. (6) We ourselves carried out experimental studies of defect generation in a-Si:H/c-Si stacks.

We found a relatively high degradation rate at early times, that slowed considerably at longer time

scales.

Finally, we developed a Si-H Gaussian approximation potential in order to add H to our sim-

ulations of degradation of silicon heterojunctions. The Si-H GAP is able to closely match DFT

measurements of microscopic quantities such as energies, forces and virial stresses, and is also able

to reproduce structural characteristics such as partial pair correlation functions and the vibrational

spectra. Reference structural data taken from Tersoff MD calculations highlights the improvement

that is gained by adopting the non-parameterized model and more accurately matching the target

potential energy surface. The Si-H GAP is more accurate than any interatomic potential which

has come before it, and will be readily usable for the next phase of the project.
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CHAPTER 1

Introduction

Novel solar technologies, or emerging photovoltaics (PV), are technologies which have the po-

tential to disrupt c-Si as the primary PV application platform. Typically, such technologies have

demonstrated either a capacity for growth in their solar conversion efficiency, or already have high

conversion efficiencies but struggle with other issues such as degradation. This dissertation will

consider two such technologies: silicon heterojunction (HIT) solar cells, and nanoparticle solar

cells. These technologies are interesting for separate reasons. Silicon heterojunction solar cells have

now demonstrated higher efficiencies than c-Si solar cells, but still need to overcome issues with

long-term open circuit voltage (VOC) degradation before they can widely penetrate the market [2].

Figure 1.1. NREL chart of the best research-cell efficiencies [1]. Silicon hetero-
junction solar cell efficiency is displayed with blue circles, and nanoparticle solar cell
efficiency is displayed with hollow orange diamonds.
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Meanwhile, nanoparticle solar cells have demonstrated one of the highest growth rates year-over-

year in their efficiency, but have not yet reached the efficiency level of c-Si. See Figure 1.1 for a

visualization of the annual growth in peak efficiency of each widely studied solar technology. In the

rest of this chapter, the interesting physics and problems in each of the two above PV technologies

will be described in detail.

1.1. Nanoparticle Solids

Colloidal semiconductor nanoparticles (NPs) are singularly promising nanoscale building blocks

for fabricating mesoscale materials that exhibit emergent collective properties. NPs are particles

which typically contain between 100 and 10000 atoms, are between 1 and 100 nm in size. While

NPs can be synthesized using a variety of methods, colloidal NPs are synthesized from solution in a

two-stage process: rapid nanocrystal nucleation followed by slow growth in solution [3]. The most

common nucleation technique is the hot injection method, where a precursor is rapidly injected

into a hot coordinating solvent. The precursor contain organic ligands which bind to the surface

of the nucleating NPs, stabilizing the growth and compensating for the large surface-to-volume

ratio. Once the desired mean NP diameter is reached, the process is terminated by injecting a

stabilizing chemical solution [3, 4]. After this process, the individual NPs consist of an inorganic

semiconductor core surrounded by a surface-passivating layer of organic ligand molecules, see for

instance Figure 1.2(a). Using different variations of the synthesis process, other various precise

shapes can also be achieved, such as rods and disks [5]. See Figure 1.2(b) for a visualization of how

these different shapes form. The focus of this dissertation is on spherical nanoparticles, also known

as quantum dots, which are the most common NP shape.

NPs have high scientific interest because they are well-defined building blocks that can be syn-

thesized with excellent control of composition, size, and shape. In NP solids, electron wavefunctions

are localized on the individual NPs. This “quantum confinement” makes the electronic parameters

such as the band gap tunable with the NP diameter, and the energetics and the charge transport in

NP solids can be tuned by changing the NP size, size distribution, shape, inter-NP spacing, spatial

ordering, surface chemistry and defects, and the properties of the matrix between the NPs. There
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is a growing interest to use NPs for numerous optoelectronic applications [7, 8], including third

generation solar cells [9,10] light emitting diodes [11], and field effect transistors (FET) [12,13].

NP solids are especially interesting for third generation solar cell concepts because not only does

their tunable band gap allow for improved power conversion efficiency, but more importantly NP

solids exhibit novel solar energy conversion paradigms which could lead to solar cell efficiencies which

surpass the Shockley-Queisser limit of 33%, the maximum theoretical efficiency of a conventional

single junction bulk solar cell [14]. The Shockley-Queisser limit emerges from two main factors:

incoming photons with energies below the band gap cannot be absorbed, and incoming photons with

energies well above the band gap create electron-hole pairs which rapidly thermalize by emitting

phonons, heating the solar cell and wasting the excess above-band-gap energy. Solutions to these

problems are respectively called up-conversion and down-conversion paradigms [15].

One such down-conversion paradigm is multiple exciton generation (MEG), in which a high-

energy incoming photon excites a high-energy exciton, which then decays into multiple lower-energy

excitons [9, 17, 18, 19, 20]. MEG is a pathway which is present in bulk semiconductors, but has

very low efficiency [16]. In contrast, in NPs it has been shown that quantum confinement enhances

the effective Coulomb interaction, decreasing the electronic screening, enabling the possibility of

Figure 1.2. (a) A visualization of a spherical PbS NP coated in an organic ligand
layer [6]. (b) Illustration of shape control of nanoparticles through selective organic
ligand adhesion to particular crystal facets, slowing the growth of that side relative
to others and leading to the formation of rod- or disk-shaped nanoparticles [5].
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Figure 1.3. MEG efficiencies of PbSe NPs (blue and green symbols) and bulk PbSe
films (red solid triangles) as a function of ~ω/Eg. Taken from Ref. 16.

an enhanced MEG efficiency. Early work by the Klimov group showed that a strong MEG can

be observed in PbSe NP solids [21]. This was corroborated by later groups, who showed that in

PbSe NPs MEG can enhance the external quantum efficiency above 100% [22]. Strong MEG is

not unique to PbSe NPs, it has also been observed in numerous other NP systems, including PbS,

CdSe, InP, Ge, and Si [17,18,20,23,24].

A leading up-conversion paradigm is the absorption of sub-band gap photons by an intermediate

band located in mid-gap region of the absorption layer. It has been observed that NP solar cells

are an ideal platform for implementing this paradigm, complementary to MEG, as the formation

of mini-bands in NPs embedded in multilayer heterostructures can separate one or more intragap

states from the valence and conduction bands [25,26]. In principle, intermediate band solar cells

can deliver up to 47% efficiency under the AM1.5 spectrum. Utilizing both of the described down-

conversion and up-conversion concepts, NP solar cells have been developed with impressive 13-18%

power conversion efficiencies [27,28,29,30].

One of the factors limiting the utility of NP-based solar cells is the relatively high energetic

and spatial disorder of NP solids. This disorder causes decoherence of the electronic wave functions

between NCs and inhibits the emergence of new collective mesoscale behavior, resulting instead
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Figure 1.4. Illustration of an intermediate band formed in the band structure of
CdSe NPs. Taken from Ref. 25.

.

in weakly-coupled NP films with slow hopping transport. These factors, weak coupling and slow

transport, are the primary agents hindering the realization of high-performance NP optoelectronics

[31, 32, 33]. These factors used to limit the hopping mobility in NP solids into the 10−4 − 10−1

cm2/Vs range. These mobilities are typically measured in FET arrangements. This is orders of

mangitude below the mobilities that would be acceptable for electronic applications. Therefore,

increasing the mobility and transport in NP solids is one of the central challenges on the way to

realize the promise of NP solids.

Various experimental groups managed to boost the mobility by enhancing the inter-NP tran-

sition rate with a variety of methods, including: ligand engineering [34, 35, 36], band-alignment

engineering [37,38], chemical-doping [39,40], photo-doping [41], metal-NP substitution [42], epi-

taxial attachment of NPs [33, 43], and atomic layer deposition methods [44]. Encouragingly,

these efforts recently translated into notable progress, as NP solids were reported to exhibit

band-like, temperature-insensitive mobilities, with values exceeding 10 cm2/Vs at room temper-

atures [40, 45, 46]. It is important to note that some experiments reported data that can be

interpreted as evidence for band-like transport. One of these is the relative temperature indepen-

dence of the observed mobilities, in contrast to hopping insulators where an activated temperature
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dependence is expected. However, the absolute values of the mobilities remain relatively low com-

pared to most metals, and this makes conservative commentators stop short of identifying this

transport as metallic [40,45].

On the theoretical front, there have been efforts from several groups to understand electronic

transport in NP films and solids. Density functional theory (DFT)-based ab initio calculations of

the energy levels of a single NP alone are already limited to only hundreds of atoms for higher-

reliability methods, and a few thousands for more approximate methods by prohibitive CPU times.

These translate to diameters less than 2-3 nm, whereas experimental NP diameters often exceed 5-6

nm. Next, the accurate computation of the NP-NP transition rates would require the simulation of

two NPs. And even if this calculation is completed, it does not address that the NP-NP transport

is not metallic but insulating; the disorder of the parameters from NP to NP; and finally the

defects of the NP solids. In total, ab initio descriptions alone are very far from being capable

of describing transport in NP solids. Clearly, there is a pressing need for developing mesoscopic

transport simulations that somehow integrate ab initio calculations.

Shklovskii et al. have developed transport calculations for a NP array in a FET geometry,

where they focused on the effects of the Coulomb interaction [47]. The interplay of transport and

Coulomb interactions was studied in Refs. 47 and 48, albeit on very small samples. Over the

last few years, our group developed the Hierarchical Nanoparticle Transport Simulator (HINTS)

platform that starts with an ab initio calculation of the energetics of individual nanoparticles, then

forms a NP solid of several hundred NPs, and finally simulates transport across this NP solid by a

Kinetic Monte Carlo method [49,50]. HINTS can simulate 500-2,000 nanoparticles. A reassuring

validation of HINTS emerged from simulating the dependence of the mobility of PbSe NP layers as

a function of the NP diameter. The results in [49,50] closely tracked the experimental results of

Liu et al., who studied the electron mobility of PbSe layers in a FET geometry [31]. More recently,

we studied commensuration effects in bilayer NP solids [51].

The details of HINTS will be discussed in Chapter 2, and four further applications of HINTS

to study various transport problems in NP solids will be presented in Chapters 3-6.
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1.2. Silicon Heterojunctions

The world PV market is dominated by c-Si solar cells, with their estimated market share

between 90 and 95% [52]. This can be attributed to a few reasons. c-Si has long stability, is

non-toxic and abundant, has high power conversion efficiency (PCE), and the widespread use of

c-Si in the microelectronics industry has lead to well-developed, scaled processing techniques [53].

These factors give c-Si a large edge over other semiconductor materials for PV applications. A key

focus of current c-Si technological development is cost reduction, as c-Si accounts for 40-50% of the

cost of a finished PV module [54]. A key pathway toward cost reduction is increasing the PCE,

which would lower the levelized cost of electricity (LCOE) of c-Si solar cells.

The main limiting factor in further increasing the PCE in c-Si solar cells is unwanted carrier

recombination. In general, solar cells generate electron-hole pairs via absorption of solar photons.

This process creates excess minority carriers, which then diffuse across the built-in electric field, and

make their way to electrical contacts where ideally they are efficiently collected [55]. Two primary

sources of unwanted recombination interfere with this process. Surface recombination, which is

especially important in thin film devices, and recombination at the metallic contacts. The former

source of recombination has been largely eliminated by the introduction of surface passivation

layers. However, the latter source of recombination remains an issue in traditional c-Si solar cells,

and conventional methods involve a reduction in the capacity to eliminate surface recombination.

Beginning in the late 1980s, a more elegant solution began to be pursued. Rather than dealing

separately with the passivation of the surface, and the elimination of unwanted recombination at

the contacts, a single passivating contact layer can be introduced which minimizes both of these

issues [54]. This is achieved by inserting a thin passivating semiconductor layer with a wider

bandgap than c-Si, which separates the highly recombinant contacts from the c-Si surface. Charge

moves through this buffer layer simultaneously slowly enough that a differential voltage can be

built up, but fast enough that recombination prior to carrier collection at the contact is heavily

reduced [53]. This buffer layer has been described as a semi-permeable membrane for carrier

extraction [54].

Silicon heterojunction (SHJ) solar cells use hydrogenated amorphous silicon as their buffer

layer. In a standard SHJ architecture, seen in Figure 1.5, c-Si is the primary absorber layer, and
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Figure 1.5. Visualization of a basic SHJ solar cell, including the band diagram.
Taken from Ref. 53.

deposited a-Si:H of both n- and p-type forms a passivating contact layer on both sides. The appeal

of using a-Si:H for this purpose lies in its slightly wider bandgap (compared to c-Si), the ease of

doping, excellent passivation qualities, and low temperature processing [53,54].

SHJ solar cells have world record efficiencies approaching 27%, due to the excellent surface

passivation by their amorphous Silicon (a-Si) layer that leads to low surface recombination velocities

and high open circuit voltages VOC . Driven by open circuit voltages well above 700 mV, the fill

factor (FF) in SHJs can reach 85%, the highest of any silicon solar cell to date [56]. In spite

of the impressive efficiency records, SHJ cells have not yet been widely adopted by the market

because of various perceived challenges. Several of these challenges, including the cost of n-type

silicon wafers, the low temperature deposition of Ag leads, and the higher capital expense costs,

are getting rapidly resolved, making SHJ technology competitive. It has been estimated by ITRPV

(the International Technology Roadmap for Photovoltaic) that the market share of SHJ cells will

be 10% by 2025, and 15% by 2031 [57], see Figure 1.6.

One of the remaining widely held reservations concerning the adoption of SHJ cells is that they

may exhibit accelerated performance degradation, possibly related to their a-Si:H layer. Traditional

crystalline Si (c-Si) modules typically exhibit about a 0.5%/yr efficiency degradation, primarily

via their short circuit current Isc and the fill factor FF, typically attributed to external factors,

such as moisture ingress and increased contact resistance [58]. In contrast, in 2018 two papers

reported studies of the degradation of fielded SHJ modules over 5-10 years [59,60]. They reported

degradation rates close to 1%/yr, about twice the rate of traditional cells. These papers pointed
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Figure 1.6. The 2021 ITRPV roadmap of predicted market share of the most
prominent solar cell technologies [57].

to a new degradation channel, the decay of VOC, at a rate of about 0.5%/yr. The decay of VOC

suggests that the degradation is possibly due to internal factors, increasing recombination either

at the a-Si/c-Si interface, or in the a-Si layer. Such increased recombination is typically caused by

the increase of the electronic defect density.

These initial reports on fielded panels were followed up by in-laboratory analysis. The Bertoni

group has studied the surface recombination velocity (SRV) at the a-Si/c-Si interface in HJ stacks.

By applying a model for the recombination at the a-Si/c-Si interface to their temperature- and

injection-dependent SRV data, they analyzed the degradation of the carrier lifetime and were able

to attribute it to a loss of chemical passivation [61]. More recently, Holovsky et al. investigated

ultrathin layers of hydrogenated amorphous silicon (a-Si:H), passivating the surface of crystalline

silicon (c-Si) [62]. These authors applied highly sensitive attenuated total reflectance Fourier-

transform infrared spectroscopy, combined with carrier lifetime measurements. They manipulated

the a-Si/c-Si interface by applying different surface, annealing, and aging treatments. Electronic

interface properties were discussed from the perspective of hydrogen mono-layer passivation of the
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c-Si surface and from the perspective of a-Si:H bulk properties. They concluded that both models

have severe limitations and called for a better physical model of the interface [62].

Understanding the degradation of the passivated c-Si surface is important not only for under-

standing a-Si:H/c-Si heterojunction solar cells. The PV industry roadmap shows that among newly

installed modules, the fraction of advanced Passivated Emitter/Rear Contact (PERC) modules will

rapidly rise above 90% in the next 3 years. One of the advanced features of these PERC cells is the

improved interface passivation with the application of elevated levels of hydrogen. However, the

increased efficiency was accompanied by notable levels of degradation [63,64,65]. By experiments

and by including all three charge states of hydrogen in their modeling, the authors speculated that

the PERC cell degradation both in the dark and under illumination could be explained by the

migration of and interaction between hydrogen ions in different charge states.

To summarize, the accelerated degradation of VOC slows the market acceptance of the world-

efficiency-record holder SHJ modules, and impacts the introduction of the advanced PERC cells,

thereby impacting the entire PV industry roadmap. Therefore, analyzing and mitigating this

degradation process is of crucial importance.

In chapter 7, the simulation platform which we have established to simulate and study the

formation of interfacial defects in silicon heterojunctions, SolDeg, will be discussed for the case

where hydrogen is absent. The inclusion of hydrogen is a crucial step in comprehensively simulating

degradation pathways in silicon heterojunction solar cells. In chapter 8, the development of a Si-H

interatomic potential for use with SolDeg will be presented in detail.
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CHAPTER 2

Nanoparticle Simulation Methods

To study electron transport in disordered nanoparticle solids, our group has developed a ki-

netic Monte Carlo (KMC) platform termed the Hierarchical Nanoparticle Transport Simulator,

or HINTS. This platform does not take a complete ab-initio band structure approach to modeling

the electron transport. While such an approach would be the most accurate, the computational

expense is unfeasibly large due to the highly varied length, energy and time scales involved.

Adopting a more computable transport model, HINTS simulates electron transport using a

multi-scale hierarchical method. The broad layers of this method are: (a) building a microscopic

foundation from ab-initio descriptions of the individual nanoparticles themselves; (b) modeling

electron transport between the nanoparticles on the length scale of a few nanometers; (c) describing

mesoscopic transport across the entire disordered NP solid on the length scale of hundreds to

thousands of nanometers. This approach, which characterizes electron transport as being hopping-

driven, is quite suitable for the disorded systems that we consider, where disorder would have to

be significantly decreased for band-like transport to occur. In the instances where we have needed

to approach disorder levels where band-like transport can take place, our model is capable of being

extended with approximations of metallic transport channels, and we have also supplemented the

HINTS results with other simulation methods. These cases will be described in the appropriate

thesis chapters.

In the subsequent sections of this chapter, the underlying features of the HINTS platform will

be discussed in detail.

2.1. Hierarchical Nanoparticle Transport Simulator: HINTS

2.1.1. Microscopic Foundation: Modeling the Electronic NP Structure. The HOMO

and LUMO band energies of the NPs are calculated using the k · p method of Kang & Wise [66].
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We apply a rigid shift to align the infinite diameter limit of the conduction band edge with the

bulk work function of PbSe. An illustration of this can be seen in Figure 3.1, in Chapter 3.

On-site Coulombic repulsion EC , also referred to as the on-site charging energy, is the energy

cost that needs to be paid to load each electron onto a given nanoparticle. The total charging

energy accounting is defined by:

(2.1) EC,total = n(Σ0 +
(n− 1)

2
Σ).

Here, n is the number of electrons on the NP after the electron is added. Σ0 is the total electrostatic

energy cost of loading an electron onto a neutral NP, while Σ is the energy cost of the Coulomb

repulsion with the (n-1) electrons already on the NP.

This self-charging energy can be calculated by a variety of methods, including the semi-empirical

pseudopotential configuration interaction method of Zunger and coworkers and the single NP

empirical-perturbative hybrid calculations of Delerue [67, 68]. In this paper we report results

with the latter approach. In this approach:

(2.2) Σ0 =
e2

8πε0R
(

1

εsolid
− 1

εNP
) + 0.47

e2

4πε0εNPR
(
εNP − εsolid

εNP + εsolid
)

and

(2.3) Σ =
q2

4πε0R
(

1

εsolid
+ 0.79

1

εNP
)

For the dielectric constant inside the NP, we assume that it will be the bulk high frequency di-

electric constant of PbSe, taken to be εNP =22.0. To model the dielectric constant of the medium

surrounding the NP, we account for both the organic ligand shell of the NP as well as the presence of

neighboring NPs. We assume that the ligands themselves have a dielectric constant of εligand =2.0.

The dielectric constant of the entire solid is then calculated using the Maxwell-Garnett (MG)

effective medium approximation:

(2.4) εsolid = εligand
εNP(1 + κf)− εligand(κf − κ)

εligand(κ+ f) + εNP(1− f)

where κ is 2 for spherical NPs, and f is the filling factor.
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Figure 2.1. Illustration of a mobile electron hopping from NPi to NPj .

2.1.2. Inter-NP Electron Transport. HINTS describes electron transport in disordered

nanoparticle solids as being characterized by decoherent hopping. In this paradigm, illustrated in

Figure 2.1, electrons are modeled as transitioning from nanoparticle to nanoparticle by hopping

over the intermediary organic ligand barrier, absorbing or releasing phonons in order to match en-

ergy levels between the initial and final NPs. This NP-NP hopping can be either nearest neighbor

or variable range hopping, and the hopping mechanism is commonly described either as Miller-

Abrahams phonon-assisted hopping, or as a Marcus process where the electron transition involves

an elastic reorganization of the NPs. All possible combinations of these hopping range and hopping

mechanisms can be considered, including the intriguing case of variable range hopping governed

by Marcus theory transitions [69]. We have adopted Miller-Abrahams phonon-assisted nearest-

neighbor hopping as our framework for calculating the inter-NP electron transition rates. This

choice was informed by experiments, which commonly report Miller-Abrahams activated temper-

ature dependence near room temperature [70]. Under Miller-Abrahams, the transition rates are

given by:

(2.5) Γi→j = νgijβij exp

{
(
−∆Eij
kbT

)

}
where the attempt frequency ν is chosen to be 1012 s−1 to match experimental data, gij is the

product of the band occupation on NPi and the unoccupied band states on NPj , determined by

the NP band degeneracy, and βij is the tunneling amplitude. The energy difference between the

initial and final configurations ∆Eij is:
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(2.6) ∆Eij = ∆Espij + ∆EFij + ∆ECij

where ∆Espij is the difference in single-particle band energies; ∆ECij is the difference in charging

energies; and ∆EFij is the difference of the potential energy from the external electric field, ∆EFij =

q VLz (zj − zi), where Lz is the entire length of the sample in the ẑ direction, and (zj − zi) is the z

distance between the two NPs. This external electric field is applied in order to induce electron

motion and more easily measure the mobility. Care is taken to make sure that the applied voltage

is low enough that the solids remain in the linear regime of the I-V curve.

Finally, βij is calculated using the WKB approximation as:

(2.7) βij = exp

{
(−2∆x

√
2m∗(Evac − Eij)

~2
)

}
.

Here ∆x is the NP-NP surface-surface separation distance. m∗ is the effective mass of the electrons

in the tunneling medium, approximated as .05me, the effective mass of electrons in bulk PbSe.

Evac is the vacuum energy level, set to be zero as all other energy levels are defined relative to the

vacuum. Eij is the tunneling energy, taken to be the average of the initial and final states of the

hopping transition: Eij = (Ei + Ej)/2, where Ei is the energy level of NPi. This is the approach

of Chandler & Nelson [48].

2.1.3. Mesoscopic Transport.

2.1.3.1. Kinetic Monte Carlo Framework. Monte Carlo (MC) algorithms are a class of numer-

ical algorithms which incorporate random numbers in attempts to accurately simulate real-world

problems. Broadly, this is implemented by calculating the probability of specific events, and then

executing them if a random number between 0 and 1 falls in that specified range.

A kinetic Monte Carlo algorithm is a specific MC which seeks to accurately simulate the evo-

lution in time of physical systems. It does so by propagating the physical system forwards step by

step, executing a single event and evolving time accordingly at every step. In this manner, KMC

simulations mimic explicitly the evolution of real-world systems.

14



Our kinetic Monte Carlo simulator is implemented according to the BKL algorithm [71]. At

each step, the KMC tabulates the probabilities of all possible events occurring, and then chooses

which one to execute by choosing a random number r1 between 0 and 1. Time is then evolved by

choosing another random number r2 (also between 0 and 1). The specifics are as follows.

Once the simulation is initialized (and all charges have been placed at random into the network),

the time-evolution starts by determining the transition rates Γ of all possible events, which will be

locally updated after each algorithm step. In each step, the event j is executed using the random

number r1 for which the following equation is satisfied:

(2.8)

j−1∑
i=1

Γi < r1Γsum <

j∑
i=1

Γi

where

(2.9) Γsum =

N∑
i=1

Γi.

After this execution, time is evolved according to the second random number, r2:

(2.10) ∆t = − ln r2∑
ij Γj→i

Finally, the list of all possible events is updated to reflect the current state of the system, and

the rate table is updated accordingly.

Our simulations typically run for 500,000 events, well into the steady state. Data is only

collected after the transients have dissipated.

Mobility is measured in our simulation as:

(2.11) µ =
(harvested charge) ∗ L

time ∗N ∗ Fext
.

Here L the length of the simulation box, N the total number of carriers, and Fext = eV/L. The

harvested charge is the total charge of the electrons which have reached the drain electrode. Our

simulations use periodic boundary conditions, so these electrons will pass through the drain elec-

trode to the source electrode to be reintroduced to the sample. Any electron that travels in the

opposite direction gives a negative addition to the current.
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Conductivity can be taken directly from mobility. The classical relation is:

(2.12) σ = neµ

where n is the volumetric electron density N/V .

2.1.3.2. Simulation Samples. Several different classes of NP solids are considered in this thesis.

Chapter 3 considers disordered close-packed binary NP solids, which exhibit some form of lattice

periodicity when one NP species dominates the binary system, but exhibit high levels of disorder

when the two NP species are present in more equal proportions. Chapters 4, 5 and 6 all consider NP

superlattices, where the NPs live on a periodic ordered lattice of either cubic or triclinic geometry,

representative of the corresponding lab-grown structures. Chapter 5 additionally considers location

disorder, where the NPs are shifted from their ideal lattice sites due to epitaxial fusion (or “necking”)

with neighboring NPs. Chapter 6 additionally considers the effect of extended defects, where the

NP superlattice is disrupted by either a grain boundary, where on either side of the boundary the

NP superlattice orientation can be entirely different, or a twin plane, where the NP superlattice is

mirrored across the boundary plane.

Regardless of the class of NP solid considered, all NP samples used for our simulations consist

of approximately 800 NPs arranged in a thin film geometry, for instance 20x2x20 (x, y, z) nanopar-

ticles. This is appropriate for field-effect transistor (FET) NP solids where transport primarily

occurs in the top few layers, with small penetration depths.

Each NP’s diameter has a standard deviation σ, which can be either taken as the fixed value,

or as a percentage of the diameter. A fixed diameter disorder has been shown to be appropriate

for some corresponding experiments [31], while a percentage-based diameter disorder may be more

suitable for the many experimental realizations of NP solids which exhibit larger size dispersions

when synthesizing larger NPs. The mean inter-NP distance is taken as twice the average ligand

length in the system, with variation due to the aforementioned size disorder. The ligand length is a

tunable parameter, which is typically taken to be 0.5 nm to correspond to EDT (1,2-Ethanedithiol),

which capped the nanoparticles in most experiments which do not include necking [31].

2.1.3.3. Additional Simulation Details. The NP solids are filled with mobile carriers at the start

of each simulation by adding mobile carriers to individual NPs at random until a predefined electron
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filling n, or e−/NP, is reached. This electron filling level can either be independently chosen, or

emerge from the choice of volumetric electron density, e.g. e−/unit volume.

To get reliable statistics, each HINTS calculation is averaged over simulations performed on

100 or more NP solids. Calculation error bars correspond to the standard deviation of the mean.

We found that in many NP solids the disorder of nanoparticle energies does not average exactly

to zero, creating an internal voltage bias which can disrupt our simulations. To remove this, on

each NP solid the voltage bias is applied both in the forward and reverse transport directions (2

different simulation runs), and the resulting current is pairwise averaged.
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CHAPTER 3

Percolative Charge Transport In Binary Nanocrystal Solids

This work appeared as Physical Review B 103, 195303 (2021).

Colloidal semiconductor nanocrystals (NCs) are exciting nanoscale building blocks for fabricat-

ing mesoscale materials that exhibit emergent collective properties. NCs are well-defined building

blocks that can be synthesized with excellent control of composition, size, and shape. The energet-

ics and the charge transport in NC solids can be tuned by changing the NC size, size distribution,

shape, inter-NC spacing, spatial ordering, surface chemistry and defects, and the properties of

the matrix between the NCs. This remarkable tunability makes NC solids promising promising

platforms for optoelectronic applications [7, 8], including third generation solar cells [9, 10], light

emitting diodes [11], and field effect transistors (FETs) [12,13]. NC solids are especially interesting

for solar cell applications because the band gap can be tuned by changing the NC size in order to

improve device power conversion efficiency. Solar cell efficiency can also be improved by leveraging

quantum confinement to open new energy conversion channels such as the down-converting car-

rier multiplication (CM), in which more than one electron-hole pairs are generated per absorbed

photon [9,17,18,19,20]. CM has the potential to boost solar cell efficiency to 44%, well beyond

the Shockley-Queisser limit of 33% [14]. Very recently, we have advocated for the formation of

mini-bands in NC solar cells to implement the complementary, up-converting intermediate band

solar cell paradigm [25]. In principle, intermediate band solar cells can deliver up to 47% efficiency

at one sun illumination.

One of the factors limiting the utility of NC-based optoelectronics is the relatively high energetic

and spatial disorder of NC solids. This disorder causes decoherence of the electronic wave functions

between NCs and inhibits the emergence of new collective mesoscale behavior, resulting instead

in weakly-coupled NC films with slow hopping transport. These factors, weak coupling and slow

transport are the primary agents hindering the realization of high-performance NC optoelectronics

[31, 32, 33]. These factors used to limit the hopping mobility in NC solids into the 10−4 − 10−1
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cm2/Vs range. Recently, new reasons for optimism emerged as various groups managed to boost

the mobility by increasing the inter-NC charge transfer rate with a variety of methods, including

ligand engineering [34,35,36], band alignment engineering [37], chemical doping [39,40], photo-

doping [41], metal-NC substitution [42], epitaxial attachment of NCs [33, 43], and atomic layer

deposition (ALD) infilling [44]. In some cases, these efforts managed to reach mobilities exceeding

10 cm2/Vs [46].

To increase the mobility even further, a deeper understanding of the role of disorder is essential.

A particularly promising testing platform is the class of binary nanocrystal solids (BNSs), which are

crystalline solids composed of two different types of NCs. These metamaterials can be formed from

NCs of different composition and/or size [7, 33, 72, 73, 74, 75]. The Murray group demonstrated

the possibility of fabricating such binary nanocrystal solids as large area monolayer and bilayer

structures [73]. Later, they were able to perform an in situ ligand exchange, producing ultrafast

directional carrier transfer on the timescale of 1 ps [74]. They were also able to increase the

conductivity by more than three orders of magnitude by substituting an increasing fraction of

PbS NCs with Ag or Au NCs [42]. The Alivisatos group focused on the percolation aspects of

the electron transport, and beautifully imaged charge percolation pathways [72]. Whitham et al.

devised ingenious ways to extract the localization length of the electrons in a type of percolative

NC systems to further characterize transport [33].

Theoretical efforts have kept pace with these promising experimental developments only par-

tially. A pioneering study of charge transport in NC arrays was performed by Chandler and

Nelson [48]. They modeled the electronic structure of individual NCs using the k · p method, then

performed Monte Carlo transport studies on small samples of 2x2x3 and 3x3x4 NCs. In the case

of low charging energy, metal-insulator transitions were observed at electron occupation levels 〈n〉

that corresponded to the complete filling of an s, p, or d shell. When the charging energy became

comparable to the level broadening, additional minima appeared in the conductance at every inte-

ger value of 〈n〉〉 as a result of electron-electron repulsion. The charge transport properties of NCs

embedded in a matrix were explored by others using a kinetic Monte Carlo (KMC) method [76,77].

Although these papers developed an advanced method that was capable of handling the long-range

Coulomb interactions, the small system sizes limited the definitiveness of their conclusions.
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Our first contribution to this field was to develop the kinetic Monte Carlo platform HINTS –

the Hierarchical Nanoparticle Transport Simulator – to compute the electron and hole mobilities

as a function of the NC diameter [49]. We found that the mobility exhibited a maximum or

plateau as a function of the NC diameter (depending on the type of disorder). This finding was in

agreement with corresponding experiments [78, 79]. Since then, we extended HINTS to describe

the metal-insulator transition in NC solids and proposed a quantum percolation model to explain

the unique criticality observed [50, see also 80]. Very recently, we demonstrated that NC solids

are an excellent platform to study Mott-Hubbard phenomena, as they exhibit transport transitions

driven by interactions, by disorder, and by their interplay [81].

In this paper, we adapt and apply our hierarchical transport simulator HINTS [49,50] to study

charge transport in binary nanocrystal solids (BNSs) consisting of PbSe NCs of two different sizes.

Our simulation results are motivated by early stage efforts to measure the transport of such binary

NC films fabricated with layer-by-layer dip coating of colloidal mixtures. Our main results include

the following. First, our HINTS simulations of the mobility of field-effect transistors made from

PbSe NCs with a mixture of 6.5 nm diameter large NCs (LNCs), and 5.1 nm diameter small NCs

(SNCs) showed a deep minimum at a fraction of the LNCs, fLNC = 0.25. The minimum persists

up to temperatures where kT becomes comparable to the difference of the conduction band edge

energies of the LNCs and SNCs. We developed a percolative theory to explain this deep mobility

minimum. We propose that at low fLNC, the LNCs form traps and thus suppress the mobility.

With increasing fLNC, these LNC traps coalesce into a percolative transport pathway at fLNC =

fP. fLNC increasing beyond fP opens a new transport channel: the electrons propagating through

the percolating LNCs. This new channel starts boosting transport with increasing fLNC, thereby

explaining the mobility minimum. Second, we analyzed the impact of NC site energy disorder,

carrier density, charging energy, and ligand length on the transport. We developed an electron-

occupation-induced trap renormalization model that accounted for the dependence of the mobility

on these four parameters. Finally, we validated our percolative theory of LNC traps transforming

into percolative transport pathways as a function of fLNC by constructing and analyzing heat maps

of the carrier residence times.
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3.1. Overview of Simulation and Results

For this work, we extended and adapted the HINTS platform as outlined in chapter 2 to describe

transport in binary NC solids. The specifics are highlighted here.

(1) We used the event-driven molecular dynamics code PackLSD [82] to generate a random-

packed, jammed NC solid for the simulation. The NC solids typically included many hundred

NCs with a form factor of 10x10x1, inspired by the experimental geometry of 2D FET channels.

For example, a monodisperse sample containing 400 NCs was packed into a simulation volume

with the approximate spatial extent of 16x16x1.6 NC diameters. It is noted here that due to the

form factor of these NC solids, short range processes can have 3D character, phenomena driven

by long range correlations, such as phase transitions, are effectively 2D. For the binary NC solids,

the diameters of the small NCs (SNCs) and large NCs (LNCs) were selected from corresponding

Gaussian distributions, with widths σSNC and σLNC, and then jam-packed to form the binary NC

solid BNS. We note that experimentally the amount of disorder in the NC solid can be tuned, from

an approximately ordered solid to a more disordered solid, with some degree of glassiness.

(2) Next, the energy parameters of the Hamiltonian of each NC were established as follows.

We used the photoelectron spectroscopy results of Jasieniak et al. [83] modified by the method of

Miller et al. [84] to estimate the energies of the valence band maximum (EVBM) and conduction

band minimum (ECBM) of PbSe NCs as a function of NC diameter. These energies are modified, or

tuned, from their bulk values by “quantum confinement”, the fact that the electron wavefunctions

are localized on the NCs. The values are plotted in Figure 1. Photoelectron spectroscopy provides

a direct measurement of EVBM, from which ECBM can be estimated by adding the NC band gap.

Following Jasieniak et al., we show limiting values of ECBM obtained using the experimentally-

determined optical band gap (ECBM,optical) and a calculated upper estimate of the electronic band

gap, which includes Coulomb and polarization energies (ECBM,max), yielding a range of ECBM values

for each NC size (green band in Fig. 3.1). Clearly, ECBM exhibits a much larger change with NC

size than does EVBM. For example, 75-85% of the difference in band gap for 5.1 nm and 6.5 nm

NCs is due to the change in ECBM, with the exact value depending on the true electronic band gap

of the PbSe NC. Building on these experimental findings, for our HINTS simulations we used the
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Figure 3.1. Absolute conduction and valence band edge energies (ECBM and
EVBM) of PbSe NCs as a function of NC diameter. EVBM was measured by photo-
electron spectroscopy [83,84]. ECBM has a range of values (green band) bracketed
by ECBM,optical (from the measured optical band gap) and ECBM,max (from a DFT-
calculated upper estimate of the electronic band gap). Also shown are the ECBM

and EVBM curves calculated from k · p theory (dashed lines, ref. 66), rigidly shifted
along the ordinate to match the experimental data at large NC size. The latter
ECBM curve is used to parameterize our transport model. Contribution to this
Figure by Matt Law is gratefully acknowledged.

ECBM curve from the k · p calculations of Kang and Wise (dashed line in Fig. 3.1) [66], which is

well-validated by its dependence on the NC size closely tracking the experimental ECBM,max values.

(3) We simulated the transport across the BNS using the extended kinetic Monte Carlo method

with activated hopping transitions between nearest-neighbor NCs, as outlined in chapter 2. Elec-

trons were added to the BNS at random with a specified average electron density (e/NC). Then

the electrons were allowed to relax to favorable energy configurations. Transport was simulated

by applying an electric field and measuring the responsive current. The overall NC-NC hopping

attempt rate prefactor was selected such that the simulated mobilities were consistent with pub-

lished experimental values [78]. We systematically explored wide ranges of temperature, disorder,

electron density, and Coulomb interaction. The mobilities were determined by simulating at least

40 samples, and often more than 100 samples, at each set of parameters and then averaging the

results. Since each mobility was determined from a dynamic flow of hundreds of electrons over
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Figure 3.2. (a) Schematic representation of a binary NC solid containing (top) a
small fraction of LNCs and (bottom) a larger fraction of LNCs. When fLNC < fP,
the LNCs act as isolated carrier traps, impeding transport. When fLNC > fP, the
LNCs form contiguous low-energy transport pathways that facilitate transport. b-c:
Colorized SEM images of a monolayer of a binary NC solid made from 6.5 nm and
5.1 nm PbSe NCs with (b) fLNC = 0.12 (< fP) and (c) fLNC = 0.31 (> fP). The
LNCs are shaded orange. LNC percolation pathways are evident in the latter image.
The NCs are capped by oleate ligands (prior to exchange with EDT). Scale bars are
50 nm. SEM image is courtesy of Matt Law, UC Irvine.

105-106 time steps, we achieved a remarkably good self-averaging with small error bars even with

this moderate number of samples.

Next, we describe the experimental motivation for our work, the main simulation results ob-

tained using HINTS, and the physical picture emerging from the simulations.

Fig. 3.2a illustrates charge transport in a binary PbSe NC solid. Quantum confinement modifies

the 1Se-1Sh band gaps of the LNCs to be smaller than those of the SNCs, and the 1Se energies (i.e.

ECBM) of the LNCs lower than those of the SNCs. Therefore, in a binary NC solid with a small

fLNC fraction, the LNCs act as traps for the mobile electrons. (Fig. 3.2a, top). Accordingly, as

fLNC is increased from small values, the increasing trap density causes a monotonic decrease of the

carrier mobility.

Increasing fLNC first enables the LNCs to form clusters, and then increases the size of the LNC

clusters in the BNS. Once fLNC exceeds the percolation threshold fP, the LNC clusters interconnect

to form contiguous percolation networks that span the entire BNS. These LNC percolation networks

open new transport channels: low-energy, low-disorder and thus high-mobility transport pathways
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(Fig. 3.2a, bottom). As fLNC → 1, the percolation networks densify and the mobility steadily

increases toward its value in a monodisperse NC solid, formed only from LNCs.

Figs. 2b-2c compare scanning electron microscopic images of monolayer-thick films of oleate-

capped 6.5 nm and 5.1 nm PbSe NCs having fLNC fractions below and above fP. For fLNC = 0.31

(> fP), the LNCs (colored orange) visibly form essentially sample-spanning clusters. These images

show that the LNCs are well mixed in the SNC films and have no tendency to phase separate into

pure LNC domains.

Before proceeding, a word about the experimental systems. The binary NC films were made by

layer-by-layer dip coating of colloidal mixtures of 6.5 nm and 5.1 nm PbSe NCs. The NCs were syn-

thesized by the hot injection method. Colloidal solutions of different LNC number fraction (fLNC)

were prepared in hexane, dip coated onto prepatterned field-effect transistor (FET) substrates using

ligand exchange with 1,2-ethanedithiol (EDT), and then infilled and overcoated with amorphous

alumina using low-temperature atomic layer deposition (ALD), yielding transistors with dominant

n-channel (electron) transport, excellent stability, and greatly-reduced I-V hysteresis compared to

EDT-treated NC FETs before ALD infilling [85]. The fLNC values of the resulting films were con-

firmed by analyzing SEM images of the first NC monolayer in the FET channel (like those in Figs.

2b-2c). The experimental methods are described in further details in Appendix A. We continue

with presenting the results of our simulations.

Figure 3.3. Simulated electron mobility versus fLNC for 6.5 nm and 5.1 nm PbSe
NCs. ∆ECBM = 60 meV; with a diameter disorder of σLNC = 0.325 nm and σSNC =
0.046 nm; and electron density n = 0.25 e/NC.
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3.1.1. Mobility as a function of LNC fraction fLNC. Fig. 3.3 presents the HINTS-

simulated mobility of a PbSe BNS with NC diameters of 6.5 nm and 5.1 nm at T = 80K and 300K.

The corresponding difference of the SNC and LNC conduction band energy minima was taken from

Fig. 3.1 as ∆ECBM = 60 meV; for other parameters see the Supplemental Material. The simulated

mobility curve at T = 80K shows a deep mobility minimum at fLNC = 0.25. Interpreting fLNC of

this minimum as approximately equal to fP, the geometric percolation fraction is consistent with

the prediction of fP = 0.24 of bond percolation theory [86], as well as with the percolation onset of

fP = 0.22, observed in our recent calculations of NC films [50]. The precise relationship between

the position of the mobility minimum and fP is impacted by the NC packing and the electron

density, as discussed below.

Another feature is that the mobility of the monodisperse solid of LNCs (fLNC = 1.0) is smaller

than, or equal to, the mobility of the monodisperse solid of SNCs (fLNC = 0). This feature seems

to contrast to previous reports [31,49] that electron mobility increases with NC size. However, in

our simulations, the LNCs have a larger size disorder than the SNCs, large enough to offset the

expected gain in mobility from an increasing NC diameter.

The key message of this simulation is the emergence of a mobility minimum as a function of

fLNC around fLNC=fP, which is sharp and deep at low temperatures, and partially smoothed at

higher temperatures. As mentioned earlier, we developed a percolative theory to explain this deep

mobility minimum. We propose that as the lower-energy LNCs are introduced into the higher-

energy SNC matrix at low fLNC, the LNCs form traps and thus suppress the electron mobility.

With increasing fLNC, these LNC traps coalesce into a percolative transport pathway at fLNC =

fP. Once fLNC increases beyond fP, the electrons can propagate through this percolating network

of LNCs, thus opening up a new transport pathway. As fLNC grows past fP → 1, the percolating

networks densify and the mobility steadily increases toward its value in a monodisperse NC solid,

formed only from LNCs. The opening of this new percolating LNC transport channel at fLNC =

fP, and its subsequent broadening as fLNC grows past fP explains the mobility minimum.

3.1.2. Mobility as a function of temperature T . The mobility minimum is considerably

smoothed out as the temperature is raised from T=80K to T=300K. The mobility at the minimum

rises by a bit more than three orders of magnitude. The ratio of the mobilities at the minimum for
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Figure 3.4. Impact of electron density when EC < ∆. (a) Energy levels
of the initial state and the final state of an electron hopping from an SNC on an
unoccupied trap of an LNC. (b) Energy levels of the initial state and the final
state of an electron hopping from an SNC on a singly occupied trap of an LNC.
The unchanging energy of the electron already on the LNC is not shown expressly
for clarity. The dashed level shows the energy without the charging energy EC for
reference. (c) Mobility vs. fLNC for electron densities from 0.05 e/NC to 0.5 e/NC
at T = 80K, with σSNC = 0.01 nm and σLNC = 0.08 nm for EC < ∆. The mobility
at zero LNC concentration is higher than in Fig. 3.3, because the disorder of the
SNC diameters, σSNC, is four times smaller than in Fig. 3.3.

the two temperatures is consistent with an estimate based on an activated transport across a gap

of ∆ECBM = 60 meV. Of course, the precise value of the mobility is further impacted by fLNC, and

the electron density as well.

We add that more complex behaviors can emerge as a function of temperature. The depth of

the mobility minimum is controlled by the fLNC fraction of the LNCs in the BNS and the thermal

activation factor exp{(−∆/kBT )}, corresponding to an electron hopping from an LNC “trap” to

an SNC. In a first approximation, the ∆ energy barrier faced by an electron in an LNC trap can

be identified with ∆ECBM. However, for traps that are already occupied, the trap energy ∆ is

renormalized to the smaller value of ∆r = ∆ECBM − EC , as long as ∆ECBM > EC. Next, it is

recalled that Kang et al. reported that some experiments can be explained by assuming that the

charging energy EC depends on the temperature to a substantial degree: EC = EC(T ) [87]. In

their work, Kang et al. reported a 40-70% increase of EC(T ) as the temperature was raised from
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Figure 3.5. Impact of electron density when EC > ∆. (a) Energy levels
of the initial state and the final state of an electron hopping from an SNC on an
unoccupied trap of an LNC. (b) Energy levels of the initial state and the final
state of an electron hopping from an SNC on a singly occupied trap of an LNC. The
starting energy of the electron already on the LNC is not shown expressly for clarity.
The dashed level shows the energy without the charging energy Ec for reference. (c)
Mobility vs. fLNC for electron densities from 0.05 e/NC to 0.5 e/NC at T = 80K,
with σSNC = 0.01 nm and σLNC = 0.08 nm for EC > ∆.

T = 20K to 80K. A charging energy EC(T ) that increases with temperature creates a renormalized

trap energy ∆r(T ) that decreases with increasing temperature. This mechanism can explain a

smoothing of the mobility minimum with the temperature that is faster than a smoothing driven

by temperature-independent energy parameters alone.

Remarkably, the opposite scenario can arise as well. If ∆ECBM � EC , then several electrons

can occupy each trap. This creates effective traps whose energy spectrum is a ladder with EC

level spacing, and thus EC plays the role of the renormalized trap energy ∆r = EC(T ). In this

parameter range, a Kang-type temperature-dependent charging energy creates a renormalized gap

∆r(T ) that increases with increasing temperature, making the high temperature mobility minimum

deeper than the one corresponding to temperature-independent parameters.

The above considerations motivate us to investigate the behavior of the BNS mobility in different

parameter ranges, and to use our interaction-renormalized trap model to analyze and interpret our

results. This is what we do in the rest of this paper.
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3.1.3. Mobility as a function of electron density n and charging energy EC. The

electrostatic effects of adding electrons to a NC are taken into account following the work of

Delerue [88, 89]. When an electron is added to a neutral NC at the bottom of the conduction

band, the ECBM energy is increased by the one-electron self-energy, Σ, arising from the charging

of the NC, also including the effect of the NC’s polarizable host. When a second electron is added,

the screened repulsion between the two electrons costs an additional charging energy EC (denoted

as U by Delerue). When the KMC step of HINTS evaluates the probability of a jump from one NC

to another NC, the difference between the total initial energy and total final energy is calculated,

including these electrostatic energies. The details of the HINTS code are described in chapter 2.

When a LNC is unoccupied within a SNC matrix, it is a trap with a depth for an electron. ∆ is

given by the difference of the CBM energies of the LNC and the SNC, ∆ECBM, plus the difference

of the self-energies ΣLNC−ΣSNC: ∆ = ∆ECBM+(ΣLNC−ΣSNC). When the trap is already occupied

by an electron, the trap energy ∆ gets renormalized by the charging energy EC to ∆r = ∆ − EC.

For EC < ∆, this renormalization transforms the deep traps into shallow traps, making them much

less efficient in hindering transport. For EC > ∆, this renormalization transforms the LNCs from

negative-energy traps into positive-energy obstacles.

We explore the effects of varying the charging energy by simulations using EC,LNC = EC,SNC =

EC = 35, and EC,LNC = EC,SNC = EC = 125meV, in order to explore both relevant regimes of

EC < ∆, and EC > ∆. The effects of the charging energy EC are closely interdependent with

that of the electron density n. We therefore explored the average electron density n sweeping

across n = 0 − 0.5 e/NC, because most density-dependent phenomena are cyclic with a n period

of 1. Therefore, in the complementary range of n = 0.5− 1.0 e/NC, the mobility’s behavior is the

approximate mirror image across n = 0.5, and for n > 1, the entire cycle repeats.

Figs. 3.4 and 3.5 show simulation results for small and large Ec. In both cases, the mobility

minimum gets shifted to larger fLNC concentrations as the electron density n grows. The primary

reason for this is trap renormalization by electron occupancy. As the electrons are introduced into

the sample, they fill up the LNC traps, renormalizing them into shallower traps, or possibly into

obstacles. For n < fLNC, this reduces the number of deep, unrenormalized traps, which are the

primarily suppressants of the mobility. As the electron density exceeds the LNC density, n > fLNC,

28



a trapped electron population equal to the number of LNCs dynamically renormalizes essentially

all deep trap LNCs into shallow traps. This leaves the non-trapped excess (n− fLNC) electrons to

move across the BNS that has the same trap density, but which are now renormalized into shallow

traps. – In reverse, the (n − fLNC) density of non-trapped electrons decreases as fLNC increases,

thereby decreasing the mobility. Once fLNC exceeds n, the mobility keeps decreasing with fLNC

until the unrenormalized deep traps percolate. The percolation of the unfilled/unrenormalized deep

traps is only reached at fLNC concentrations that exceed fP by a quantity set by n. This explains

the mobility minimum moving to higher fLNC concentrations with increasing n.

Fig. 3.4 shows that when EC is small (35 meV), and thus EC < ∆, increasing n shifts the

mobility minimum to higher fLNC, as well as makes the minima shallower. Fig. 3.5 shows that

when EC is large, EC > ∆, increasing n again shifts the mobility minimum to higher fLNC, but

without changing its depth. In the case of Fig. 3.4, LNCs with one trapped electron remain

energetically capable of trapping additional electrons, as renormalized shallow traps ∆r. In this

situation, increasing n fills an increasing fraction of the LNCs with electrons, thereby decreasing

the average trap energy in the NC film and thus resulting in a shallower and shallower mobility

minimum. In addition, shallow traps next to deep traps make it easier for the trapped electrons to

escape from the deep traps via a two-step process, thus further reducing the depth of the mobility

minimum.

Fig. 3.5 shows that for large EC (125 meV), since EC > ∆, the LNCs that have trapped one

electron become energetically incapable of trapping an additional electron, and are thus transformed

into kinetic obstacles against transport. Therefore, each singly-occupied LNC becomes a lost trap,

so increasing n again shifts the mobility minimum to higher fLNC, but the average trap energy

remains unchanged, and thus the depth of the minimum remains unchanged too, as shown in Fig.

3.5. In addition, increasing n increases the mobility at low fLNC values.

3.1.4. Mobility as a function of size disorder. We briefly explored the effect of LNC size

poly-dispersity on transport. Fig. 3.6 compares mobilities for LNC polydispersities of ΣLNC = 0.08

nm and 0.16 nm. We find that such an increase in polydispersity decreases the depth of the

mobility minimum without changing its position. The site energy disorder, induced by the LNC

polydispersity, has competing effects. Increasing disorder tends to decrease the mobility on the
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Figure 3.6. Mobility vs. fLNC for an LNC size polydispersity of σLNC = 0.08 nm
and σLNC = 0.16 nm. Electron density = 0.25 e/NC; T = 80K; SNC polydispersity
σSNC = 0.01 nm; EC = 35 meV.

LNC network itself. However, this same increased variation of the site energies makes some of the

LNCs into shallower traps, enhancing the mobility. In the present case, the latter of the two effects

seems to be more impactful.

For completeness, we also explored the effect of size polydispersity, or simply size disorder, on

transport in a NC solid with NC diameters distributed according to a single Gaussian centered on

a mean of 3.5 nm. Fig. 3.7 shows the mobility as the size disorder is increased at two different

temperatures, T = 80K and T = 300K. Without the competing effects described above in the

context of BNSs, in polydisperse NC solids with a Gaussian size distribution increasing disorder

simply supresses the mobility, and drives the NC solid further into a disorder-localized phase.

3.1.5. Mobility as a function of ligand length. We simulated transport for ligand lengths

of 0.6 nm and 0.8 nm, resulting in NC-NC separations of 1.2 nm and 1.6 nm respectively. The

larger inter-NC spacing reduces the entire mobility curve by a multiplicative factor, the ratio of the

tunneling factors that depend on the ligand length exponentially. Varying the ligand length did

not change the depth or position of the mobility minimum.

3.1.6. Transport Heat Maps. We visualized the transport through the percolating network

by building heat maps that show the time-integrated electron occupancy for each NC during the

simulation. At periodic instants we recorded the location of each electron, and overlaid all these

images. Thus, an NC appearing darker indicates more electrons spending longer times on that NC.
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Figure 3.7. Mobility vs. NC size polydispersity σ, at T = 80K and T = 300K.
Monodisperse NC solids with mean diameter = 3.5 nm; electron density = 0.25
e/NC.

Figs. 8-9 show heat maps for several different fLNC values, with an electron density equal to 0.25

e/NC in a BNS with EC < ∆. At fLNC=0, the sample consists only of SNCs: the heat map is very

homogeneous, and the mobility is high. At fLNC=0.05, the LNCs act as isolated traps, but most

electrons can avoid the sparse traps and propagate via the SNC matrix. For fLNC=0.10, the LNC

traps start to capture a substantial fraction of the propagating electrons. For fLNC=0.15, most the

electrons spend most of their time captured in the LNC traps. These traps are isolated, or form

small clusters. At fLNC=0.20, the LNC clusters nearly interconnect. The mobility decreases in the

entire range of LNC concentrations from fLNC=0 to fLNC=0.20.

At fLNC = 0.30, the first sample-spanning LNC clusters appeared. The formation of these

percolation networks causes the mobility to begin increasing. At fLNC = 0.40, the percolation

networks densify, greatly helping the mobility to recover. Finally, at fLNC=1.00, the occupancy

heat map becomes quite homogeneous, comparable to the map at fLNC = 0. These images give a

clear visual support to the physical picture developed above: as fLNC starts to increase from zero,

the LNCs serve as traps and thus suppress the mobility. When the LNCs percolate, then the traps

suddenly form new transport channels and start increasing the mobility. Therefore, the mobility

forms a minimum at the percolation threshold fP, modified by the electron density n. As fLNC

grows towards fLNC = 1.00, the transport can again flow through the entire NC matrix.
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Figure 3.8. Electron occupancy heat maps for a typical BNS for different values of
fLNC. Shading indicates the time-integrated probability of each NC being occupied
by electrons.

Figure 3.9. Temperature dependence of the electron occupancy maps for a typical
BNS at (a) T = 80K and (b) T = 300K.

Fig. 3.9 shows the effect of temperature on the heat maps of a typical BNS. Electron transport

pathways are dominated by the deep traps at T = 80K, giving rise to a very uneven heat map. At

T = 300K, thermal energy is reasonably effective at freeing the trapped electrons, so the electron

transport is more homogeneous throughout the sample. This translates to a higher mobility at

higher temperatures, which is consistent with the smoothing out of the mobility minimum at

T = 300K, reported above in Fig. 3.3.
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3.2. Discussion and Conclusions

We simulated and fabricated field-effect transistors (FETs) made from a mixture of PbSe NCs

with diameters of 6.5 nm and 5.1 nm, thereby forming a binary nanocrystal solid (BNS). We used

our Hierarchical Nanoparticle Transport Simulator to model the transport in these BNSs, and

study the impact of several factors on this transport. The BNS mobility exhibited a minimum at

a large-NC-fraction fLNC = 0.25=0.25. The mobility minimum was deep at T = 80K and partially

smoothed at T = 300K. We developed the following physical picture to account for this behavior.

As the LNC fraction fLNC within the SNC matrix starts growing from zero, the few LNCs act as

deep traps for the electrons traversing the SNC matrix. Increasing the fLNC concentration of these

traps decreases the mobility. As the increasing fLNC reaches the percolation threshold fLNC=fP,

the LNCs form sample-spanning networks that enable electrons to traverse the entire BNS via

low-energy, low disorder LNC pathways. The opening of the new transport channel through these

percolating LNC pathways leads to the recovery of the mobility as fLNC grows past fP. Therefore,

the electron mobility exhibits a pronounced minimum as a function of fLNC at fLNC=fP. We have

studied the effect of temperature, electron density, charging energy, ligand length, and disorder on

the mobility minimum. To account for all trends, we have proposed that capturing an electron

renormalizes a deep trap LNCs into either a shallow trap or a kinetic obstacle, depending on the

value of the charging energy EC relative to the NC energy difference ∆. A central prediction of this

model is that the position of the mobility minimum shifts to a larger LNC fraction fLNC > fP as the

electron density increases, but its depth is modified differently depending on whether EC < ∆, or

EC > ∆. Finally, we verified our expectations and physical picture by constructing and analyzing

heat maps of the mobile electrons in the simulated BNS.
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CHAPTER 4

Disordered Mott-Hubbard Physics in Nanoparticle Solids:

Transitions Driven by Disorder, Interactions, and Their Interplay

This work appeared as Nano Letters 20, 8569–8575 (2020).

Quantum Confined localization drives NP solids insulating, hindering charge transport and

thus their utility. Therefore, driving NP solids from their insulating phase across a Metal-Insulator

Transition (MIT) into a conducting, metallic phase is a top priority to boost their utility. Recent

experimental attempts to cross the MIT included atomic layer deposition (ALD), [44] substitutional

percolation, [42] chemical doping, [39,40] and photodoping [41]. ALD infilling with metal oxides

already enhanced mobilities above 7 cm2/Vs [44]. Whether these enhanced-mobility NP solids

support coherent metallic transport is still debated. Building on these advances, NP solar cells

were developed with impressive 13-16% power conversion efficiencies [27,28,29].

There is a vast literature on the theory of the disorder-driven, ”Anderson”-type MIT of non-

interacting electrons [90]. The disorder of the site energies breaks up the site-to-site phase coherence

of the originally extended wavefunctions, thereby localizing the electrons. Introducing interactions

into Anderson localizaton makes the physical scenarios more complex, as revealed by scaling meth-

ods [91, 92, 93]. Implications for transport were studied, e.g., via the concept of the ”Coulomb

blockade/gap”, the energy cost of the attraction between the moving electron and the hole it leaves

behind, thus suppressing transport at all fillings [94]. These ideas were adapted to NP solids e.g.

in Ref. 39. Transport has been described as nearest neighbor hopping at high T [70,95], and as

Efros-Shklovskii (ES) variable range hopping at low T [96].

Interactions are especially important at commensurate fillings. An electron already on an NP

blocks the transport of additional electrons through that same NP because of the Coulomb cost

of double occupancy. This was referred to as a Mott-gap, or Coulomb blockade. This blockade

fully blocks transport only at integer fillings [47, 48, 51]. In recent years, the analysis of the
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interplay of disorder and interactions was re-energized by adaptating the Dynamical Mean Field

Theory (DMFT) for analogous Hubbard models [97,98,99]. A surprising prediction of DMFT was

that at n=1, at intermediate repulsion, increasing disorder first dissolved the Mott-localized phase

into a metal, which then transformed into a Anderson-localized phase only at a higher disorder.

Accordingly, the gap of the Mott-localized phase did not persist into the Anderson-localized phase

with increasing disorder [98,99]. Fillings n 6= 1 were not yet investigated with DMFT.

Remarkably, despite all this progress, profound unmet needs remain. (1) In spite of inviting

analogies, the vast amount of knowledge developed for the disordered Mott-Hubbard physics has not

yet been adapted for NP solids, beyond some early suggestions [100,101,102,103,104,105]. For

example, even though the mobility of some NP solids exhibits maxima and minima as the filling

is tuned, these features were not attributed to Mott-Hubbard commensuration [87]. Adapting

Hubbard-based knowledge to nanomaterials could inspire new pathways to improve the transport

properties of NP solids. In reverse, articulating these connections could make nanoparticle solids a

rich and well-controlled testing ground for Hubbard-based research.

(2) We are not aware of a theory of the MIT that starts from the insulating phase either in

NP solids, or in the Mott-Hubbard field. Notably, both the scaling and the DMFT techniques

are built with extended wave functions, and thus indicate Anderson/disorder localization only as

the boundary where their applicability breaks down. Therefore, they are ill-suited to describe

the Disorder-localized phase itself. Thus, developing a theory of the MIT out of the insulating

phase would complement the MIT theories from the metallic phase, thus creating a comprehensive

characterization of the MIT.

In response to these needs, here are the main messages of our paper. (1) We advocate that

adapting disordered Mott-Hubbard ideas for NP solids, and viewing NP solids as well-controlled

experimental platforms for Mott-Hubbard models, provides extensive benefits for both fields. (2)

To start this adaptation, we developed a Hierarchical Nanoparticle Transport Simulator to reach

the MIT from the localized phase; and we analyzed a multi-orbital Hubbard model with DMFT

to reach the MIT from the delocalized phase. Using the combination of these complementary

methods we determined the comprehensive phase diagram of Nanoparticle solids that consists of two

distinct localized phases defining two distinct MITs, which can be crossed by tuning various control

35



parameters. (3) Tuning the filling n towards integer values drives a Disorder-localized–to–Mott-

localized transition. (4) For n=1 and large interactions, decreasing disorder drives a direct Disorder-

localized–to–Mott-localized transition without an intervening metallic phase, characterized by a

persistent gap. (5) For n 6= 1, decreasing disorder drives a Disorder-localized–to–Metal, Anderson-

like MIT. (6) The DMFT-determined filling-dependence of the mobility at low disorder shows

striking similarities to that at high disorder, demonstrating the internal consistence of our analysis.

The HINTS method: Our HIerarchical Nanoparticle Transport Simulator HINTS is a ki-

netic Monte Carlo transport simulator that is extended by an additional metallic transport channel.

This extension makes HINTS capable of reaching the MIT from the insulating phase. In an intro-

ductory analysis at generic fillings, we reported reaching the MIT and interpreted it as a Quantum

Percolation Transition [50]. However, we did not connect this MIT to Mott-Hubbard phenom-

ena, did not consider its interplay with Anderson localization, and did not analyze the model at

commensurate fillings.

In our extended HINTS, modified from chapter 2, the NP-NP transition rates are either Miller-

Abrahams phonon-assisted hoppings, or non-activated metallic transitions, depending on whether

the energy difference between the initial and final states was larger or smaller than a hybridization

energy:

(4.1) Γi→j =


νgijβij exp

{
(
−∆Eij
kbT

)
}

if ∆Eij >= EH

νgijβij if ∆Eij < EH

The hybridization energy EH depends on the electron wavefunction overlap between NPs i

and j, and for simplicity is taken to be approximately equal to the half bandwidth 2t, where t is

calculated by mapping our tunneling probabilities to Fermi’s golden rule. The attempt frequency

ν is chosen to be 1012 s−1 to match experimental data, gij is the product of the initial density of

states on NPi and the final density of states on NPj , and βij is the WKB tunneling amplitude.

The hybridization energy EH is determined by the overlap of the electron wavefunctions of NPs i

and j.
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See Chapter 2 for the full details of the HINTS method. We move to presenting the results of

the HINTS simulations.

Figure 4.1. Conductivity v. NP diameter. HINTS simulations of PbSe NPs over-
laid with exp. data. Volumetric electron density .0016 e/nm3, ligand length 0.5 nm,
T = 200K.

Disorder-localized–to–Mott-localized transition with a scan of the filling n: Experi-

mentally, the electron/NP filling n can be scanned by increasing the average NP diameter at a fixed

volumetric charge density. Two experimental groups measured the dependence of the mobility on

the NP diameter in NP-FETs, and reported an initial rise followed by a maximum [31,87].

We now use HINTS to compute the conductivity of PbSe NP solids as a function of NP diameter

d. Fig. 4.1 shows the HINTS-computed conductivities with increasing d for two representations of

the disorder: fixed diameter disorder of ±0.3 nm, and variable diameter disorder of ±5%. These

results are overlaid on the experimental data of Kang et al [87]. The HINTS conductivities and

the Kang et al. data exhibit remarkable agreement.

The broad rising trend of the mobility/conductivity is driven by two factors: (i) larger d

means that the electrons can traverse a fixed length by fewer hops; and (ii) since the electron

energy-diameter relationship flattens with increasing d, the energy disorder induced by the diameter

disorder decreases with increasing d.

The Kang experiments and our simulations both display a non-monotonic pattern overlaid

on this broad rising trend. Conspicuously, the conductivity maximum at d=6 nm is observed to
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be only the beginning of a maximum-minimum-resumed rise pattern, centered on n = 1. The

utility of adapting Mott-Hubbard ideas to analyze NP solids is compellingly demonstrated here by

recognizing that such a conductivity minimum also arises when n is scanned across n = 1 in the

repulsive Hubbard model, as the Coulomb repulsion opens a Mott gap at n = 1, and thus suppresses

transport through the occupied NPs. For context, we mention that earlier experiments [31] reported

only a mobility maximum/ plateau, which we reproduced by simulation [49]. However, neither

works observed the maximum-minimum pattern, and correspondingly did not recognize that Mott-

Hubbard commensuration physics drives all these phenomena.

Changing d also varies site energies and hopping rates, and thus convolutes the transition into

the Mott-localized phase with other trends. Therefore, next we isolate the mobility’s dependence

on n in fixed diameter NP solids. Experimentally this can be achieved by varying the FET gate

voltage applied to a NP solid.

Figure 4.2. Electron mobility as a function of carrier filling in the disorder-
localized Phase of PbSe NPs with diameters of 6.6 ± 0.3 nm. T = 80K. Average
charging energy Ec = 100meV, average hopping energy t = 7meV.

Fig. 4.2 shows the HINTS-simulated mobility of a PbSe NP solid as n is varied. Visibly, the

mobility exhibits minima at integer fillings, accompanied by maxima close to half-integer fillings,

just as with increasing d. These features are much more pronounced than in Fig. 4.1.

The temperature dependence of the mobility/conductivity is activated for all fillings in Figs. 4.1

and 4.2, having a smaller, disorder-induced gap away from n = 1, that is boosted by the Coulomb
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blockade to a larger gap at n = 1. Thus, scanning with n through n = 1 crosses from a Disorder-

localized phase into a Mott-localized phase, and then back to a Disorder-localized phase for n > 1,

as expected from adapting the Hubbard model for these NP solids. And in reverse, the fact that

the experimental data and our simulations show such a remarkable correspondences is compelling

evidence that NP solids are well-controlled and tunable experimental realizations of the disordered

Hubbard model.

Experimentally, such filling-driven Disorder-localized–to–Mott-localized phase transitions have

been reported in Si quantum dot arrays, where the gate voltage was used to tune the filling [102],

and in InAs quantum dot solids [106].

Mott-localized–to–Disorder-localized transition with a scan of disorder W at n=1:

Next, we explore the robustness of the Mott-localized phase as the disorder W/2t is varied at

fillings around n = 1. Here the Hubbard t kinetic energy was determined by mapping our tunneling

probabilities to Fermi’s golden rule. W was determined from the sum of the disorder of the band

and charging energies. We conduct this study on PbSe NP solids with a mean diameter of 6.5 nm

by scanning the diameter dispersity up to 10%.

Fig. 4.3 shows the dependence of the activation energy/ gap ∆ on the disorder W/2t at n=1

(scan 3a), and at n = 1+δ where δ = 0.001 (scan 3b). At n=1 and small disorder the gap ∆ is Mott-

like, as its value is set by the charging energy Ec: ∆/Ec ≈ 1. This Mott gap suppresses transport,

and creates a Mott-localized phase. With increasing disorder, the gap ∆ gets renormalized to a

lower value ∆(W ). The physics of this lower gap region is clarified by scan 3b of ∆(W ) at the

filling n = 1 + δ. The gap ∆(W ) is the same for n = 1 and n = 1 + δ above a critical value

Wc(Mott)/2t ≈ 3.5. This insensitivity of the gap to the charging energy and to commensuration

identifies this phase as a Disorder-localized phase, into which the Mott-localized phase of n=1

transitions as W exceeds Wc(Mott). Clearly, the transition at n = 1 across Wc(Mott) is direct,

in the sense of having a persistent gap across the transition and no intervening gapless metallic

phase. An analogous direct Mott-to-Anderson transition was reported by DMFT studies with a

disorder scan in the Hubbard model at n=1 at around Wc(Mott) = 3, in good agrement with our

result. Both studies worked in the U/t = 10 − 14 range. [98] It is noteworthy that the gap is
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relatively insensive to W in the Disorder-localized phase. This is explained by the charging energy

Ec screening the disorder W .

Figure 4.3. The disorder dependent gap ∆ (W) for PbSe NPs: (a) n = 1; (b)
n = 1 + δ. Wc(Mott)/2t ≈ 3.5; Wc(MIT )/2t ≈ 1.5.

Beyond the remarkable disorder driven Mott-localized–to–Disorder-localized transition at n=1,

scan 3b also reveals that as the disorder W is reduced at n = 1 + δ, the gap shrinks to zero at

Wc(MIT )/2t ≈ 1.5. The vanishing of the gap indicates the disorder below which the wavefunctions

become delocalized again. In this regime, the phases of the wafunctions become important, and the

metallicity of transport is restored. HINTS does not track the phases of the electron wavefunctions,

and thus can describe the transport with decreasing disorder only down to W = Wc(MIT ), but

cannot enter the metallic phase itself. We identify Wc(MIT ) as indicating a Disorder-localized–

to–Metal Transition, taking place at n 6= 1. This MIT at Wc(MIT ) at n = 1 + δ is disorder-driven,

and is therefore distinct from the interaction-driven Mott transition at W = Wc(Mott) at n = 1.

For context, we comment on the expectation that all electronic states are localized in 2D.

This expectation, however, was demonstrated only in non-interacting systems. [90]. In interacting

systems, the complex interplay of interactions and disorder has been shown to drive Metal-Insulator

delocalization transitions starting from the extended phase even in 2D. [93,107,108] Our results,

building from the insulating phase, are consistent with and complement these claims.

These results have direct experimental relevance for NP solids beyond just PbSe NPs. Ref. 40

developed strategies to cross the MIT and induce band-like transport with the high mobility of 27

cm2/Vs in CdSe NP FETs by increasing the kinetic energy t and decreasing the disorder W . Ref.
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40 increased the wavefunction overlap, and thus t, by switching to the compact ligand thiocynate,

and by annealing at the elevated temperatures of T=200C-250C. They eventually reached values

of t = 6 − 8meV. They also reduced W by doping the CdSe NP FETs with Indium that filled

up traps and thus reduced the trap-related disorder, eventually giving rise to an effective gap of

∆ = 6− 7meV .

Our simulations provide a firm foundation for these strategies. To establish a quantitative

correspondence, one would need to redo our PbSe simulation for CdSe NP solids to determine the

additional disorder from polydispersity. Without the benefit of this calculation, we only make the

qualitative observation that the W/2t ratio where Ref. 40 reports an MIT is of the order 1, and

thus consistent with our Wc(MIT )/2t = 1.5.

An additional strategy emerges from our simulations: the reduction of the charging energy Ec.

We showed that Ec sets the Mott gap and screens the gap in the Disorder-localized phase, thus

reducing Ec is yet another strategy to cross the MIT in NP solids.

Disordered-metal–to–Mott-localized transition as a function of n: We already es-

tablished that the physics of NP solids is analogous to a disordered Hubbard model whose sites

represent the individual NPs. We take into account the 8-fold degeneracy of the electronic states

of the PbSe NPs [109] by adopting a four orbital (labeled by a, b = 1, 2, 3, 4) Hubbard model with

diagonal disorder [110]. The Hamiltonian reads:

(4.2) H =
∑
〈i,j〉,a,σ

tijd
†
i,a,σdj,a,σ +

∑
i,a,σ

(wi − µ)ni,a,σ +
∑
a

Una,↑na,↓ +
∑

a6=b,σ,σ′
Una,σnb,σ′ .

Here 〈i, j〉 label nearest neighbor sites, ni,a,σ = d†i,a,σdi,a,σ is the density of electrons of spin σ

in orbital a on site i, µ is the chemical potential, tij is the nearest neighbor hopping, and U is

the Coulomb repulsion. The disorder is introduced through the random site potential energy wi,

independent of orbital and spin index. For further details, see Appendix A.

The NP solid is on a regular lattice to start from a bona fide metallic state. We explore

the combined effect of Coulomb repulsion and site energy disorder. We simulate PbSe NPs by

associating the on-site Hubbard repulsion U with the NP charging energy by taking U = Ec = 100

meV, and the kinetic term with the NP-NP hopping amplitude of t = 7 meV, making U/2t = 7.
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These parameters match those of Fig. 2, and thus our Hubbard model is to be viewed as a

quantitative modeling of the PbSe NP solid.

Since t/U << 1, the Hubbard model is in strong coupling. Therefore, we adopt the Dynamical

Mean Field Theory (DMFT), extended to include disorder effects [97,98,99,111].

The DMFT approach maps the original lattice model onto an auxiliary quantum impurity

model supplemented with a self-consistency condition. The quantum impurity problem is then

tackled by numerical simulations that we performed using the continuous-time quantum Monte

Carlo (CTQMC) method [112,113], described in Ref.114. That method samples a diagrammatic

expansion of the partition function in powers of the impurity-bath hybridization. For simplicity,

for the non-interacting electrons we adopt a semi-circular density of states (DOS) of bandwidth 4t,

since single-site DMFT is not sensitive to the shape of the non-interacting DOS. DMFT is exact in

infinite dimensions, and it has been shown to remain a good approximation for lower dimensional

systems whose physics is local, as is the case for the present Mott system. The disorder is introduced

through a random site energy with a uniform distribution in the interval [−W,W ] (see Appendix

A for details).

Figure 4.4. Mobility and chemical potential µ as filling scans from the Metallic
Phase through the Mott gap.

Fig. 4.4 shows the electron mobility and the chemical potential µ of this Hubbard model as a

function of the filling n for the clean and disordered cases, at T/t=0.02. In the clean case, µ shows

a jump at n = 1: this indicates the emergence of a Mott gap that localizes the electrons [110]. This

is a remarkable result, as our DMFT technique finds this Mott-localized phase at the band filling
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of 1/8, whereas band structure calculations for PbSe, or traditional Hubbard mean-field theories

would not find such a Mott insulator below the customary band filling of 1/2. So, our DMFT work

establishes PbSe as a Mott system, where correlation effects play out in 4-fold degenerate orbitals.

At finite temperatures, this Mott gap makes the mobility exhibit a minimum as the filling

crosses n=1. Clearly, DMFT established that the Mott gap/Coulomb blockade also suppresses the

mobility in the metallic phase when the filling is scanned across n = 1, just like in the insulating

phase (cf. Fig. 4.2).

A main result of the DMFT study is that the clean trends persist even for a substantial disorder

W/2t = 1. Indeed, the Mott gap (jump of µ) at n = 1 only decreases by a small amount and remains

robust. This is reasonable since W/2t = 1 << Wc(Mott)/2t = 3.5. At the same time, the mobility

away from n = 1 is reduced much more notably because the W/2t = 1 disorder is relatively closer

to the off-commensuration MIT at Wc(MIT )/2t = 1.5. Finally, Fig. 4.4 shows that the relative

reduction of the mobility by the disorder is strongest at small n. This makes physical sense, since

at small n the Fermi energy becomes comparable to the disorder, and thus the relative importance

of the disorder grows. To our knowledge, the present DMFT study is the first one done for a

multi-orbital model with disorder as a function of electron filling.

Figure 4.5. Qualitative phase diagram of NP solids in the (disorder W –filling n)
space, for U >> W . The red dashed lines report the scans in the correspondingly
labeled figures.
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The here-used coherent potential CPA-DMFT method does not capture Anderson localization.

While “typical medium” DMFT theories were proposed to capture a Mott-Anderson transition,

this issue remains debated [115,116,117,118,119,120,121,122].

Conclusions: We now bring together all the scans of our complementary HINTS and DMFT

work and construct the phase diagram of PbSe NP solids on the filling–disorder plane, shown in Fig.

4.5. We distinguished a Disorder-driven MIT at n 6= 1, and an Interaction-driven MIT at n = 1.

In particular, at n = 1, HINTS showed that at large interactions the Mott-localized–to–Disorder-

localized transition occurs with a persistent gap. We complemented the studies building from the

localized phases with studies building from the extended phase. Reassuringly, the complementary

studies produced the same qualitative scenarios, as illustrated by the strikingly similar behavior of

the mobility in Figs. 4.2 and 4.4.

The totality of our studies demonstrated that adapting the vast body of knowledge developed

for the disordered Mott-Hubbard model for NP solids can and will produce many new insights into

the physics of NP solids, and thus can be used to develop strategies to improve their optoelectronic

properties.
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CHAPTER 5

Structural Characterization of a Polycrystalline Epitaxially-Fused

Colloidal Quantum Dot Superlattice by Electron Tomography

This work appeared as Journal of Materials Chemistry A 8, 18254 (2020).

While improvements in colloidal semiconductor quantum dot (QD) processing, electronic per-

formance and stability are ongoing, as discussed in prior chapters the use of QDs in many optoelec-

tronic devices is limited by poor charge transport relative to bulk semiconductors. Poor transport

is in part caused by energetic disorder arising from variations in QD size, spacing and other types of

spatial disorder [31,33,123]. Epitaxially-fused PbX (X = Se, S) QD superlattices (epi-SLs) consist

of PbX QDs that are arranged in a periodic lattice and epitaxially interconnected (necked or par-

tially fused) to form a porous single crystal of “confined-but-connected” QDs. Epi-SLs promise to

combine the tunable optical properties and processability of QDs with the high-efficiency band-like

transport of bulk semiconductors [124]. However, charge transport studies have so far failed to

demonstrate band-like transport in epi-SLs, probably because structural defects from the atomic

scale to the mesoscale disrupt the SL periodicity and localize charge carriers [106,125].

Making PbX QD epi-SLs with larger lateral grain sizes is important for reducing the density

of inter-grain structural defects (e.g., grain boundaries, amorphous regions, and voids), but it is

the several types of intra-grain defects that conspire to degrade spatial order within the grains,

destroy mini-bands, and prevent the emergence of delocalized states [33, 106, 123]. Intra-grain

defects include variations in QD and neck size and shape, missing necks, missing QDs (vacancies),

misaligned QDs (edge dislocations, screws dislocations, and zig-zag jitter), larger-scale wave-like

oscillations in QD position that result from flow of the QD film on the liquid surface (meander), and

variations in the surface coverage of ligands, ions, and traps, all of which will scatter carriers and

disrupt SL periodicity to some degree. Most of these defects have been observed in 2D epi-SLs (QD

monolayers), which are readily imaged by conventional transmission electron microscopy (TEM)
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and scanning transmission electron microscopy (STEM) [33,46,125,126,127,128,129,130,131,

132, 133, 134, 135]. Transport measurements of 2D epi-SLs show that carriers are localized, and

several groups have proposed that missing necks are a primary cause of carrier localization in these

materials [33,46]. Furthermore, the electronic coupling of necked QDs is expected to be sensitive

to neck polydispersity (length, width, atomic coherence, and faceting) and the number of nearest

neighbor QDs [33].

While 2D epi-SLs can be structurally characterized using traditional electron microscopy, imag-

ing the internal details of 3D epi-SLs is more challenging [43, 130, 136, 137]. Neck connectivity

and projected neck size in 2D epi-SLs have been directly imaged by (S)TEM [33,46,134], and the

three-dimensional structure of these necks was deduced from single images by high-angle annular

dark-field (HAADF) STEM atom counting reconstruction [130]. To date, structural character-

ization of 3D epi-SLs has been almost exclusively limited to X-ray scattering and conventional

electron microscopy imaging/diffraction methods [4, 43, 125, 138], neither of which can visualize

the intra-grain neck network or internal structural defects that are so important for understanding

carrier delocalization in these materials. Electron tomography (ET) is a suitable tool for the near-

atomistic structural characterization of 3D epi-SLs. The Vanmaekelbergh group has previously

used ET to establish the basic unit cell of non-fused 3D binary [139, 140] and ternary [141] QD

SLs, 2D honeycomb epi-SLs [128], and thin multilayer honeycomb epi-SLs [142]. Savitzky et al.

reported a tomogram of a fused 3D PbS QD SL made at high pressure, but no assessment of necks

or structural defects was presented [143].

Here we present an in-depth and quantitative structural analysis of a 3D PbSe QD epi-SL

using electron tomography. We show that with a full-tilt HAADF ET reconstruction of a disc-

shaped epi-SL film (120 nm in diameter × 38 nm tall), we are able to achieve sufficient spatial

resolution (0.65 nm) to determine the position of all 1,846 QDs and the size and shape of all necks

in the sample. From the center-of-mass coordinates of the QDs, we find that the sample consists

of three SL grains and assign the unit cell and in-plane crystallographic orientation of each grain

as well as the 3D structure of the grain boundaries. The epi-SL grains have a distorted simple

cubic structure with lattice parameters in agreement with our previous results [4]. Maps of the

neck locations and diameters reveal that the sample has an average of 3.7 necks per QD (giving
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an overall network connectivity of 72%) and an average neck diameter of 4.1 nm (64% of the QD

diameter). The three grains show similar distributions of neck number (necks per QD) but very

different distributions of average neck diameter, reflecting significant inhomogeneity between the

adjacent grains. We discover a weak positive correlation between neck number and diameter and a

strong negative correlation between neck number and both the average and standard deviation of the

nearest neighbor QD distance, indicating that QDs with more necks tend to have more ordered local

environments. Kinetic Monte Carlo charge transport simulations show that the SL grain boundaries

have little impact on carrier mobility because the three grains are interconnected by many necked

QDs. The detailed and comprehensive understanding of various structural features gained from

our statistical analysis of this relatively disordered polycrystalline sample can potentially inspire

synthesis of 3D PbX QD epi-SLs of better structural perfection for realizing delocalized charge

transport.

Note: supporting information for this chapter is available at [80]. Figure references in this

chapter whose labels begin with an S refer to figures found in the supporting information.

5.1. Experimental

5.1.1. Materials. Lead oxide (PbO, 99,999%), Lead iodide (PbI2, 99.9985%, purchased from

Alfa Aesar), oleic acid (OA, technical grade, 90%), diphenylphosphine (DPP, 98%), 1-octadecene

(ODE, 90%), ethanol (99.5%, anhydrous), ethylene glycol (EG, 99.8%, anhydrous), acetonitrile

(99.99%, anhydrous), hexanes (≥99%, anhydrous), toluene (99.8%, anhydrous), (3-mercaptopropyl)

trimethoxysilane (3-MPTMS, 95%), and N,N-dimethylformamide (DMF, 99.8%, anhydrous) were

purchased from Sigma Aldrich and used as received. Trioctylphosphine (TOP, technical grade,

>90%) and selenium (99.99%) were acquired from Fluka and mixed for 24 hours to form a 1 M

TOP-Se stock solution. Ethylenediamine (EDA, >98.0%, anhydrous) was purchased from TCI and

mixed with acetonitrile in a 1:1 volume ratio to make a 7.5 M EDA stock solution.

5.1.2. Quantum Dot Sythesis. PbSe QDs were synthesized and purified using standard

air-free techniques. PbO (1.50 g), OA (5.00 g), and ODE (10.00 g) were mixed and degassed in

a three-neck round-bottom flask at room temperature. The mixture was heated to 120 ◦C under

vacuum to form dissolved Pb(OA)2 and dry the solution. After 1 hour at 120 ◦C, the Pb(OA)2
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Figure 5.1. Fabrication of the PbSe QD epi-superlattice tomography sample. (a)
Sample fabrication. (b) Plan-view and cross-section SEM images of a different region
of the epi-SL film. The film is a polycrystalline SL with SL grains of two different
in-plane orientations, previously assigned to the (100)SL and (011̄)SL projections of
a distorted simple cubic SL. [4] Most of the SL grains in this image have a (100)SL

orientation. The dashed yellow line encircles a (011̄)SL-oriented grain. Scale bars
are 100 nm. (c) HAADF-STEM image of the needle-shaped tomography sample
with disc-shaped epi-SL layer and all layers labeled. Scale bar is 50 nm.

solution was heated to 180 ◦C under argon flow and 9.5 mL of a 1 M solution of TOP-Se containing

200 µL of DPP was rapidly injected into this hot solution. An immediate darkening of the solution

was observed, and the QDs were grown for 105 seconds at ∼160 ◦C. The reaction was quenched

with a liquid nitrogen bath and injection of 10 mL of anhydrous hexanes. QD purification and SL

fabrication were performed in glove boxes with <0.5 ppm O2 content. The QDs were purified by

two rounds of precipitation/redispersion using ethanol/hexane and stored as a powder in the glove

box.
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5.1.3. Substrate preparation. A single-side polished Si substrate was cleaned using 10 min-

utes of sonication in acetone, Millipore water, and then isopropanol, followed by drying in a stream

of flowing air. The cleaned substrate was immersed in a 100 mM solution of 3-MTPMS in toluene

for 1 hour to functionalize its native SiOx surface for improved epi-SL adhesion, then rinsed with

neat toluene and dried in flowing air.

5.1.4. Superlattice fabrication. An oleate-capped superlattice was prepared in the glovebox

by drop casting 70 µL of a 4 g/L dispersion of PbSe QDs in hexanes onto 6 mL of ethylene glycol

(EG) in a Teflon well (3.5 × 5 × 1 cm). After depositing the QD solution, the well was immediately

covered with a glass slide. The hexane evaporated over 30 minutes, resulting in a smooth, dry QD

film floating on the EG surface. The glass slide was then removed and 0.1 mL of a 7.5 M solution of

ethylenediamine in acetonitrile was slowly injected (5-10 sec) into the EG under the QD film using

a 500 µL Hamilton syringe. After 30 seconds of exposure to EDA, the resulting epi-SL film was

stamp transferred to the Si substrate using a vacuum wand, rinsed vigorously with acetonitrile and

dried under flowing N2. The epi-SL film was then immediately immersed in a 10 mM solution of

PbI2 in DMF for 5 minutes, rinsed thoroughly with acetonitrile and dried under flowing N2. This

procedure is nearly identical to the one used in our previous report [4] and yields epi-SL films with

similar SL unit cell, grain size, and homogeneity, including degree of QD necking, coverage of the

substrate, and density of cracks. However, the film for this tomography study is somewhat thinner

( 40 nm vs. 50-80 nm) and have a higher density of intra-grain extended defects (e.g., partial twins)

because it was prepared in a glove box with a higher O2 concentration (5 ppm vs. <0.1 ppm).

5.1.5. Basic characterization. Optical absorbance measurements of QDs dispersed in TCE

were performed with a PerkinElmer Lambda 950 spectrophotometer. Neat TCE served as the

background for the solution measurements. Scanning electron microscopy was performed on both

an FEI Magellan 400L XHR SEM operating at 10 kV and 25-50 pA and a JEOL JEM-2800 TEM

(with a secondary electron detector) operated in STEM mode with a 1.0 nm probe size.

5.1.6. Grazing incidence small-angle X-ray scattering. GISAXS measurements were

performed on Beamline 7.3.3 of the Advanced Light source (ALS) at Lawrence Berkeley National

Laboratory using 10 keV monochromatic X-rays (λ = 1.24 Å) with an energy bandwidth of 1%.
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For GISAXS measurements, SL films were prepared on Si substrates and transported with the QD

suspensions to the ALS under nitrogen to minimize air exposure prior to measurement. However,

measurements were performed in air. A Dectris Pilatus 2M detector with a pixel size of 0.172 ×

0.172 mm and 1475 × 1679 pixels was used to record the 2D scattering patterns. A silver behenate

standard was used to determine the sample-to-detector distance and beam center. Exposure times

ranged from 0.2 to 30 s. The grazing angle of incidence was varied from 0.2◦ to 0.3◦. Manual

pattern fitting was performed using the IndexGIXS software package provided by Detlef Smilgies

of the Cornell High Energy Synchrotron Source. The critical angles of the films were fit empirically

(0.195◦ for the oleate-capped SLs and 0.21◦ for the epi-SLs) to capture the breadth of the Yoneda

band.

5.1.7. Tomography needle sample preparation. An area of the epi-SL film suitable for

FIB milling was located by SEM and tagged with a Pt fiducial marker deposited by electron-beam

induced deposition (EBID) in an FEI Quanta 3D FEG DualBeam microscope. The sample was

then coated with 50 nm of carbon using the pulse plasma mode of a Leica ACE200 evaporator and

returned to the DualBeam for FIB milling, lift-out, and final needle preparation. Prior to milling,

a ∼200 nm Pt capping layer was deposited onto the carbon-coated sample by EBID, followed by

an additional ∼2000 nm of Pt deposited by ion beam induced deposition (IBID). The carbon layer

serves primarily to enhance STEM imaging contrast by separating the epi-SL layer from the high-Z

protective Pt capping layer. The area of interest was then FIB milled into a wedge shape (10 µm

× 6 µm × 2 µm), lifted-out with an OmniProbe 400 nanomanipulator, ion welded to the tip of a

sample holder for needle tomography samples (Single Point Tip, Hummingbird Scientific), and FIB

milled again into a ∼130 nm diameter needle (Fig. S2). Milling was performed in several stages.

The wedge was first milled into a pillar shape (1 µm diameter) using a 0.3 nA ion beam at 30 keV

accelerating voltage, then thinned to a ∼200 nm diameter needle using 50 pA at 16 keV. Finally,

a 5 minute ion beam shower (25 pA at 5 keV) was employed to sharpen the needle to ∼130 nm

and remove surface damage. The finished needle contained a disc-shaped epi-SL layer (38 nm tall

× 128 nm in diameter) for tomographic analysis.
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5.1.8. HAADF-STEM Electron Tomography. The needle sample was mounted on the

rotation axis of a Hummingbird Scientific single-tilt tomography holder (1000 Series) and imaged

in a double aberration corrected JEOL JEM-ARM 300F TEM operated at 300 keV in STEM mode

(∼25 mrad semi-convergence angle). Two series of images were acquired, with HAADF and bright-

field data recorded simultaneously (2k × 2k images) at each tilt angle. The first series consisted of

145 HAADF images spanning tilt angles over -78 to 67 degrees in 1 degree steps. The sample was

then removed from the microscope, manually rotated on the sample holder by 86 degrees, and re-

imaged from -68 to 78 degrees in 2 degree steps (resulting in 73 additional images). All 2D and 3D

image processing was conducted in MATLAB unless otherwise noted. The two tilt-series were then

merged using cross-correlation comparison (Fig. S4). The merged tilt-series include 181 images

covering tilt angles from 0◦ to 226◦. The image stack was then aligned vertically (along the rotation

axis) by iteratively shifting the images to maximize the value of the 2D normalized cross-correlation

function between adjacent images in the stack. Pixels outside of the epi-SL film were excluded from

this cross-correlation calculation in order to maximize the quality of the vertical image alignment.

Horizontal alignment of the images (normal to the rotation axis) was accomplished by converting

each image to a 1D intensity profile and shifting the images to maximize the match between the

1D curves. The aligned image stack was then processed through two iterations of a Wiener image

filter to remove noise. Tomographic reconstruction was carried out on the aligned and de-noised

tilt-series using 200 iterations of the simultaneous iterative reconstruction technique (SIRT) in the

ASTRA toolbox [144,145]. The raw reconstructed volume consisted of 2048 × 2048 × 700 voxels

with edge lengths of 1 Å. The spatial resolution of this reconstruction was evaluated by the Fourier

shell correlation (FSC) method to be 6.5 Å (Fig. S5).

The raw reconstruction was processed in two different ways. For analysis of the QD necks, the

reconstruction was simply smoothed by a nonlinear anisotropic diffusion filter. Image processing

for analysis of the QD positions was more involved. The raw tomogram was first filtered with

a morphological 3D top-hat filter to minimize reconstruction intensity attenuation and enhance

contrast. A top-hat filter was used to retain edge contrast instead of the more common Fourier filter

[146] because Fourier filtering would erroneously remove necks between QDs and other important

structural features present in the raw tomogram. To better emphasize the QD positions, the filtered
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tomogram was convolved with a spherical 6.0 nm diameter QD kernel with a homogeneous intensity

profile to obtain a 3D map of normalized cross-correlation (NCC) coefficients indicating the center

of mass of each QD in the sample. Use of the 6.0 nm QD template is justified by the analysis of

the average QD size and polydispersity from conventional dark-field STEM images (pixel size of 0.2

nm) of a different area of the same sample (Fig. S6). Prior to data analysis, the outer 6 nm of the

cylinder-shaped tomogram was digitally removed to exclude QDs near the surface of the sample

that were potentially deformed by the FIB milling process. To automate the measurement of neck

dimensions, a script was written that defines a plane normal to each inter-QD axis and slides this

plane along the axis to locate the minimum neck area. The neck diameter was then determined as

the diameter of a circle of the same area.

5.1.9. Mobility Simulation. Mobility simulations were performed by again utilizing the Hi-

erarchical Nanoparticle Transport Simulator (HINTS) kinetic Monte Carlo code presented in chap-

ter 2. In this chapter, the HINTS code is expanded by the inclusion of an additional QD-to-QD

transition mechanism: tunneling through the neck of epitaxially-fused QDs. In this new version

of the code, after the energetics of the individual QDs are computed by ab initio methods, the

QD-to-QD transitions of the charges are described by the following two mechanisms:

(1) Miller-Abrahams single phonon-assisted hopping between nearest neighbor QDs, as de-

scribed in Chapter 2.

(2) Tunneling through the neck of epitaxially-fused QDs:

(5.1) Γi→j =


2π
~ |t|

2gij exp
(
−∆Eij

kbT

)
if ∆Eij > OE,

2π
~ |t|

2gij if ∆Eij ≤ OE

where |t| is the QD-QD tunneling matrix element, and OE is an overlap energy. This transition

channel represents that when a neck is formed between two QDs, their electronic states overlap and

therefore hybridize. This hybridization induces a perturbation of the energy levels of the individual

QDs, which we model by an overlap energy OE that is proportional to the neck diameter. The

electronic states of those pairs of QDs whose energy level difference is less than OE: ∆Eij ≤ OE,

hybridize to such a degree that they support a metallic QDi-to-QDj transition instead of a hopping
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one, paving the way toward the formation of a mini-band. The tunneling matrix element |t|

depends on the wavefunction overlap between the necked QDs. For its calculation, we adopt the

approximation of Fu et al.: [147]

(5.2) |t| = 9~2nρ3

m∗d2

where n is the average electron volume density of the two quantum dots, ρ is the neck radius, m∗

is the effective electron mass, and d is the average QD diamter. HINTS simulates nearest neighbor

transitions and interactions; it does not include transitions to and interaction with farther neighbors.

On the next HINTS modeling layer, a QD epi-SL, is constructed. Simulations were performed

on three types of epi-SL samples. First, the replica of the tomography sample was generated using

the experimentally determined center-of-mass coordinates, QD diameters, and neck map of all three

SL grains. Since the circular shape and uneven periphery of the tomography sample would make

it harder to set up controlled transport simulations, QDs at the periphery of the sample were

removed to reduce the simulation volume to the well-defined central cuboid of the tomography

sample. To develop a comparative analysis of the transport of this tomography sample, we next

generated two ensembles of over a thousand samples each to form a comparison basis. The first

ensemble consisted of monocrystalline epi-SLs with the lattice parameters and neck statistics of

grain I of the tomogram. The second ensemble consisted of bicrystalline epi-SLs with the same

lattice parameters and neck statistics of grain I, but bisected by a plane of missing necks normal

to the transport direction to create a necking grain boundary. The QDs in the latter two types of

samples were assigned a diameter and lattice displacement vector according to the experimentally-

determined Gaussian distributions.

Electron transport was simulated by first randomly placing electrons on QDs to fill the samples

with a predetermined density of electrons. Based on work in previous chapters, we chose the electron

density to be 0.5 electrons per QD, remaining far from commensuration to avoid Coulomb blockade

effects [81]. A small voltage of 1 mV was then applied across electrical contacts on opposite sides

of each sample to induce electron transport. Periodic boundary conditions were used. Throughout

the simulation, we checked and ensured that the current-voltage characteristic stayed in the linear

regime. The transport across every sample in both ensembles was simulated.
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Figure 5.2. The epi-SL tomogram and QD positions. (a) Top, (b) bottom, (c)
cross-section, and (d) perspective views of the tomogram of the epi-SL film. The
color scale denotes the normalized electron density in units of e−/nm3. Dashed lines
represent grain boundaries between the three SL grains (labeled grain I, II, and III).
The scale bar is 40 nm. (e) Perspective image of the center of mass coordinates of
all QDs in the sample. Each QD is represented by a sphere with a diameter of 1 nm
(for ease of viewing). The QDs are color coded according to their location in grain
I (blue), grain II (green), or grain III (red). The scale bar is 20 nm. (f) Exploded
view of the seven QD layers of the sample to illustrate the internal structure of the
epi-SL film. Each QD is represented by a 6 nm diameter sphere (Fig. S6). Layer 1
(L1) is the top layer of the originally floating film (at the QD/gas interface), while
layer 7 (L7) is the bottom layer of the film (at the liquid/QD interface). The QDs
are color coded according to panel e. (f-g) Representative monolayers in grain I
seperated along direction x and y, representing SL lattice planes of (f)(100)SL and
(g)(010)SL.
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Figure 5.3. Analysis of the QD necks. (a) A slice of the tomogram through the
middle of L4, showing in-plane necks between the QDs. (b) Heat map of the total
number of necks for each QD in L4. The color scale is labeled. (c) Heat map of the
average neck diamer for each QD in L4, including both in-plane and out-of-plane
necks. The color scale is labeled. (d) Magnified isosurface views of two regions of the
sample to illustrate typical neck polydispersity (narrow, wide, and missing necks)
and a highly-fused pair of QDs (inset). The green dots denote the CoM of each
QD. (e) Histograms of neck number for all QDs in grain I, II and III (inclusive of
L1-7, not just L4). The solid curves are fitted beta distributions. (f) Corresponding
histograms of average neck diameter. Fitting beta distributions are shown as solid
curves. See Fig. S15 for histograms of the diameter of every neck in each grain.

Table 5.1. Lattice constants of SL grains I and II as determined from statistical
analysis of the tomogram. GISAXS data is from refrence 31.

Grain a/nm b/nm c/nm α β γ
I 6.4±0.6 6.4±0.6 5.9±0.7 102±8◦ 95±7◦ 96±7◦

II 6.3±0.6 6.5±0.6 6.2±0.7 103±9◦ 107±5◦ 97±7◦

GISAXS 6.6 ± 0.2 99 ± 2◦

5.2. Results and Discussion

5.2.1. SL Unit Cell and Disorder. Oleate-capped PbSe QDs with a diameter of 6.4 ± 0.3

nm were used to fabricate a 3D polycrystalline epi-SL film via self-assembly and ligand exchange55



Figure 5.4. Correlation of neck number with nearest neighbor QD positional dis-
order. (a) Histograms of NN distance (dNN) at each neck number for all of the
QDs in grains I and II. Overlaid red curves are Gaussian fits. (b) Plot of the av-
erage NN distance (d̄NN) versus neck number. (c) Plot of the standard deviation
of the NN distance (σd) and the normalized standard deviation of the NN distance
(σ̄d = σd/d̄NN) versus neck number. σ̄d is a measure of the local disorder that is
independent of differences in unit cell size.

on a liquid ethylene glycol substrate (Fig. 5.1a and Methods) [125,126,148,149]. After triggering

epitaxial fusion of the QDs with EDA, the epi-SL film was stamped onto a silicon substrate,

immersed in a solution of PbI2 to remove additional oleate ligands, and milled by focused ion beam
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(FIB) into a 128 nm diameter disc embedded in a nanoscale needle for full-tilt electron tomography

studies (Fig. 5.1a). Scanning electron microscopy (SEM) images of the epi-SL film and the finished

tomography needle are presented in Fig. 5.1b and 5.1c, respectively. An optical extinction spectrum

of the QDs in solution and additional details about the preparation of the tomography sample are

provided in the Supporting Information (Figs. S1-S2).

We acquired a ±113◦ single-axis tilt-series of 181 images of the sample using high-angle annular

dark-field scanning transmission electron microscopy (HAADF-STEM) in a double aberration-

corrected microscope (see Methods and Figs. S3-S4). Tomographic reconstruction of the sample

was accomplished using the SIRT algorithm after careful image alignment and noise filtering. The

final tomogram (Fig. 5.2a and Movie S1) has a spatial resolution of 6.5 Å (∼1 unit cell of PbSe) as

determined by the Fourier shell correlation (FSC) method (Fig. S5). This resolution is sufficient

to unambiguously identify the center of mass (CoM) coordinates of all 1,846 QDs in the sample

volume, as illustrated in Fig. 5.2e and f.

The CoM data were used to determine the size, shape, crystallographic orientation, and lattice

parameters of the constituent SL grains as well as the presence of inter-grain defects (grain bound-

aries, amorphous domains, voids) and intra-grain defects. Visual inspection of Fig. 5.2 shows that

the sample is seven QD layers thick and consists of three cylindrical sector-shaped (pie slice) SL

grains that meet at a grain boundary triple junction near the center of the tomogram (dashed lines

in Fig. 5.2a-d). While it is possible to assign the SL grain crystallography a priori from the CoM

coordinates, we utilized the known unit cell of similarly-prepared PbSe QD epi-SLs [4] (distorted

simple cubic with a = 6.6 ± 0.2 nm and α = 99 ± 2◦; Fig. S7) to help interpret the tomogram.

Grain I has a square-like lattice of QDs in each QD layer parallel to the substrate, so it is assigned

as a (100)SL-oriented SL grain, which is the most common grain orientation in this sample (see

Fig. 1b). Grains II and III have 1D chains of QDs in each layer parallel to the substrate, with

an average QD spacing of a along the chains and approximately
√

2a between the chains. This

arrangement is consistent with the (011̄)SL projection of the distorted simple cubic SL unit cell,

so grains II and III are assigned as (011̄)SL-oriented SL grains (again, see Fig. 5.1b). Grains II

and III intersect at a planar coherent twin boundary indexed as 39◦[001],(010) (most easily seen in

Fig. 5.2a-b). Between grains I and II, it is harder to define a grain boundary inferface as we observe
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in Fig. 5.2c a relatively smooth change in the [001]SL lattice vector from grain II on the left side to

grain I on the right side. A possible mechanism for such an inter-grain orientational transition is

proposed in Fig. S8 involving a small rotation and a subsequent glide of the (100)SL plane. Grains

I and III meet at a highly-corrugated boundary. All three grain boundaries are normal or nearly

normal to the substrate and span the entire thickness of the QD film. SEM images of similar grain

boundaries are presented in Fig. S9. In Fig. 5.2g and h, we show representative separated layers

in grain I along two other SL lattice vectors showing QD vacancies from different perspectives.

The randomness in the QD positional order is shown to occur in all directions. We also note that

there is no significant difference in the vacancy rate for layers normal to different lattice vectors.

Several slice views of the tomogram taken at different angles are shown in Fig. S10 emphasizing

the orientational differences between SL unit cells of grain I and II and also how the lateral and

vertical monolayers are connected through necks. See Movies S2 and S3 for additional continuous

slices of this sample.

We determined the lattice parameters of grains I and II by compiling nearest-neighbor QD

distances and bond angles from the CoM data (see Fig. S11 for labeling conventions). Grain III

was excluded from this analysis due to its poor spatial order. Histograms of the QD distances and

angles (Figs. S12-S13) show Gaussian distributions with average and standard deviation values

summarized in Table 1. The lattice constants of grains I and II are in good agreement with the

unit cell parameters of similar epi-SL films derived from ensemble GISAXS measurements [4], so

we conclude that these epi-SLs have essentially the same crystal structure, validating the recent

GISAXS results. However, grains I and II also exhibit broad distributions of distances and angles

indicative of a relatively large amount of positional disorder, as is apparent from Fig. 5.2. The

spatial order of this sample is likely limited by the structural disorder of the original oleate-capped

SL, the presence of several nearby grain boundaries, variability in QD neck number and diameter

(vide infra), and (possibly) mechanical strain caused by sample preparation. Two additional aspects

of the data are noteworthy. First, while grains I and II have very similar triclinic unit cells, they

differ slightly in their β angle (Table 1). Such grain-to-grain variability is expected in polycrystalline

SLs due to local differences in grain nucleation and growth, especially when the SL grains are small

and experience non-uniform stress. Electron tomography is one of the few techniques capable
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of detecting such minute structural differences between individual QD SL grains. Second, grain

I is slightly compressed along the film normal with a smaller average lattice spacing in the c

direction shown in Table 1. This is commonly seen for nanocrystal films prepared by solvent

evaporation [150,151,152,153].

5.2.2. Characterization of Neck Disorder. In addition to the positions of the QDs, the

tomogram provides rich information about the crystalline connections (necks) between the QDs.

Previous TEM studies have shown that the QDs in these SLs are epitaxially fused across their {100}

facets [43,130,135,138,154,155]. The epitaxial necks likely dictate the strength and uniformity

of electronic coupling within the epi-SLs [31], so mapping the location and size of the necks is

essential for understanding and optimizing the electronic properties of these materials. Electron

tomography can directly visualize the necks and map the 3D neck network inside each SL grain.

Fig. 5.3a shows a slice of the tomogram through the middle of L4 with the necks between the

QDs clearly visible. We implemented an automated program to measure the cross-sectional area

of every neck in the sample and assign each an effective diameter (Fig. S14). In our approach,

any connection with an area smaller than the tomogram spatial resolution (0.43 nm2, or about one

PbSe unit cell) was considered to be absent (a “missing neck”). An example of a missing neck is

shown in Fig. 5.3d.

Heat maps of the average neck diameter and the total number of necks for each QD in L4 are

presented in Fig. 5.3b-c. Maps for all seven layers of the sample are compiled in Figs. S16 and S17.

The 1,846 QDs in the sample have a maximum of 4,865 possible epitaxial necks (considering the six

{100} facets of each QD and sample edge effects, vacancies, and voids). We observe a total of 3,471

necks, giving an overall network connectivity of 72%, well above the bond percolation threshold (pc)

of 25% for simple cubic lattices [156]. This estimate of neck connectivity is conservative because,

as mentioned above, any neck smaller than the tomogram resolution (≤3 Pb atoms wide) is not

counted by our algorithm. Overall, the average number of necks per QD is 3.7 and the average

neck diameter is 4.1 nm (64% of the QD diameter). Table 2 summarizes the neck statistics for the

sample.

Figs. 5.3e and f show histograms of neck number and diameter for the three epi-SL grains in

this sample. The neck number for all three grains follows a beta distribution (solid curves) with a
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peak at 3.5-4 necks per QD. Grain I has the largest fraction of QDs with high connectivity (five

and six necks), while grain II has the largest fraction of QDs with intermediate connectivity (four

necks) and the smallest fraction of QDs with low connectivity (three or fewer necks). Overall,

grains I and II are quite similar with respect to neck number. In contrast, grain III has much

poorer neck connectivity than grains I and II, with the smallest fraction of high-connectivity QDs

and the largest fraction of low-connectivity QDs. Grain III is also dominated by QDs with very

large neck diameters (see the J-shaped distribution in Fig. 5.3f). The low neck number and large

fraction of heavily-fused QDs contribute to the poor spatial order of grain III. The average neck

diameters of grains I and II also follow a beta distribution and are similarly polydisperse. These

two beta distributions (grain I: α = 2.90, β = 2.25; grain II: α = 2.10, β = 3.18) are approximately

mirror images of each other (Fig. 5.3f). Grain I has a larger fraction of thicker necks (>4 nm)

while grain II has a larger fraction of thinner necks (<4 nm). The reason for these differences in

neck diameter and number in adjacent epi-SL grains is unclear, but probably related to variability

in the spatial order of the parent oleate-capped SL and the kinetics of the epi-SL phase transition.

We attempted to determine a correlation between neck number and diameter to measure whether

the number of necks on each QD determined the neck thickness. Supporting Information Fig. S18a

shows this correlation for the full sample and for each of the grains, indicating little correlation

between the number of necks and the neck thickness for each QD, but also clearly showing that

the average neck thickness is consistent throughout the grain regardless of the number of necks.

Understanding the origin of such differences between grains will require systematic study of many

tomograms to establish statistical relationships.

We also investigated whether there are trends in the necking that depend on the position of the

layer within the SL. Fig. S18b-c plot the average neck number and diameter for each of the seven

QD layers of the film. We find that the neck number is essentially constant in the middle five QD

layers of grains I and II, while the neck number is significantly lower in grain III. However, there

is a reduced neck number in L1 (the top of the film) for grains I-III and L7 (the bottom of the

film) for grain II and III, despite taking into account edge effects. We conclude that the top and

bottom monolayers of the epi-SL tend to have fewer necks per QD. For all three grains, the neck

diameter is smaller in L1 and L7 and increases in the middle of the film (Fig. 5.4c). Interestingly,
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Table 5.2. Neck statistics.

Parameter Grain I Grain II Grain III Total
number of QDs 903 389 554 1846

QD number density (×1018 cm−3) 3.9 3.7 3.5 3.7(3.5∗)
space filling fraction 0.53 0.51 0.48 0.51

possible necks 2343 1028 1494 4865
observed necks 1760 774 959 3493

connectivity 75% 75% 64% 72%
average number of necks 3.8 4.0 3.4 3.7

average neck diameter(nm) 4.0 3.5 5.0 4.1
* from reference 31.

while neck number and neck thickness are not in general correlated, the number and thickness of

necks is lower at the QD/liquid and QD/gas interfaces, which suggests that out-of-plane forces from

adjacent layers are important for necking formation and order. One might also expect to observe a

monotonic decrease in neck number and diameter along the film normal due to ligand (glycoxide and

oleate) concentration gradients since the ligands diffuse into the SL from the QD/liquid interface.

Our neck diameter profile suggests that no such concentration gradients exist in this sample, in

agreement with recent infrared spectroscopy measurements showing homogeneous ligand exchange

in films of similar thickness [4].

We also explored the relationship between neck number and the local spatial order of the epi-SL.

In the ideal averaged epi-SL unit cell (Fig. S7), each QD is necked to six nearest neighbors (NNs)

located at a common center-to-center distance and fixed lattice angles. In contrast, QDs in real

epi-SLs have distributions of neck number, NN distance, and lattice angles. These distributions

provide a measure of the local (nanoscale) spatial disorder of the QD array. We reasoned that the

distribution of NN distances and lattice angles should depend strongly on neck number because

necks can form over only a narrow range of QD positions. Thus, QDs with high (low) connectivity

should have more (less) ordered local environments. To assess the impact of neck number on local

spatial order, we compiled histograms of the nearest neighbor distance (dNN) as a function of neck

number for all of the QDs in grains I and II (Fig. 5.4a). Grain III was again excluded from analysis

due to its poor order. We find that as neck number increases, the average NN distance (d̄NN) and

standard deviation of the distance (σd) decrease in a linear fashion. As Fig. 5.4b and c shows,
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Figure 5.5. Transport simulation results. (a-c) Perspective views of the three
types of simulated samples. (a) The tomography sample (trimmed from a disc into
a cuboid). Grains I, II, and III are labeled. (b) A monocrystalline epi-SL. (c) A
bicrystalline epi-SL. The monocrystalline and bicrystalline epi-SLs were generated
using the lattice parameters, QD size distribution, QD positional disorder and neck
statistics of grain I. The bicrystalline samples are bisected by a plane of missing
necks (a necking grain boundary), which limits transport across this plane to hop-
ping. Virtual electrical contacts are placed at the left and right sides of each sample.
All simulation boxes are approximately 92×92×39 nm. (d) Comparison of the calcu-
lated electron mobility of the tomography sample (dashed red line), monocrystalline
epi-SLs (blue bars) and bicrystalline epi-SLs (gray bars). The horizontal error bar
represents the error in the mobility estimate for the tomography sample. Overlaid
black curves are Gaussian fits of the histograms. The mobility for the monocrys-
talline and bicrystalline samples is 4.25 ± 1.25 cm2/Vs and 3.28 ± 0.8 cm2/Vs,
respectively.

dNN decreases from ∼7.2 nm for QDs with one neck to ∼6.0 nm for QDs with six necks, while

σd decreases from 1.1 nm to 0.5 nm (a 55% reduction). Although this simple metric is limited

to NNs and neglects the propagation of disorder across longer length scales [43], it demonstrates

the importance of neck connectivity to the structural order of QD epi-SLs: high neck number is

associated with high local spatial order. Future tomograms of more perfect monocrystalline samples

62



will be used to map, understand, and ultimately minimize the multiscale spatial disorder of these

QD solids.

5.2.3. Charge Transport Simulation. Charge transport in the epi-SL tomography sample

was simulated with the HINTS code. As described in the Methods section, the simulated tomog-

raphy sample was generated using the QD CoM coordinates and neck network of the experimental

tomogram and trimmed into a cuboid shape with electrodes on opposite faces (Fig. 5.5a). In this

geometry, electrons must cross the grain boundary between grains I and II, or I and III, to traverse

the sample. The tomogram shows that grains I, II, and III are connected by many necks across

these grain boundaries. The mobility of the tomography sample was found to be ∼4.6 cm2/Vs

(Fig. 5.5d).

To probe the relative importance of the necking versus the conventional SL grain boundaries,

and the disorder for the electron transport across the tomography sample, mobility simulations

were also performed on the two ensembles of its monocrystalline and bicrystalline analogues. First,

we compared the mobility of the tomography sample to that of the ensemble of monocrystalline

(single-grain) epi-SLs with the same lattice parameters and neck statistics as grain I (Fig. 5.5b).

Relative to the monocrystalline samples, the tomography sample has three grains separated by SL

grain boundaries, but these grain boundaries are bridged by a large number of inter-QD necks. In

spite of these differences, the mobility of the tomography sample remains typical of the mobility

distribution of the ensemble of monocrystalline epi-SLs, as shown in the upper panel of Fig. 5.5d.

Next, we also calculated the carrier mobilities of the ensemble of bicrystalline (double-grain) epi-

SLs, generated by removing a bisecting plane of necks from the monocrystalline samples (Fig. 5.5c).

Electrons can move across this “necking grain boundary” only by hopping, which is significantly

slower than direct tunneling through necks. We find that the computed average mobility decreases

by ∼25% as a consequence of splitting the neck network in two (lower panel of Fig. 5.5d). The

introduction of the necking grain boundary makes the mobility of the tomography sample largely

inconsistent with the bicrystalline mobility distribution.

The most natural explanation of these results is that the mobility in these strongly disordered

epi-SLs is primarily determined by transport across the inter-QD neck network, while SL grain
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boundaries impact the mobility only to a limited degree as long as inter-QD necks continue to con-

nect the SL grains across the SL grain boundary with a reasonable density. The tomography sample

falls into this category: this explains why its mobity is consistent with the mobility distribution of

the monocrystalline samples. In contrast, when a sample is bisected with a neck grain boundary, so

that the two grains cease to be connected by inter-QD necks, electrons are forced to thermally hop

across no-neck boundaries rather than tunnel through necks, thereby reducing the mobility by a

substantial amount. Our analysis suggests that the formation of necks between QDs across conven-

tional SL grain boundaries is an efficient way to substantially increase carrier transport across those

grain boundaries. Strategies to enhance the mobility in SLs were already discussed in earlier works,

wherein the importance of reducing the disorder of SLs to form mini-bands was emphasized [44]. A

key message of the present paper is that the mobility of QD SLs can also be substantially improved

by forming sample-spanning neck networks. In a single-grain sample, charge transport should be

improved by regulating intra-grain necking conditions such as decreasing neck size dispersity and

increasing connectivity. This is particularly true for QD SL based photovoltaics, where the charge

carriers are collected along the through-plane (film normal) direction of the multilayer instead of

in-plane direction. We did observe a higher through-plane connectivity of QDs in Grain I that

might suggest anisotropic necking conditions in a 3D epi-SL film. However, further investigations

should be conducted to look into the effect of the degree of anisotropy of connectivity on the mo-

bility, and will more rely on structural statistics from single-grain tomography samples, which is

beyond the scope of this paper.

5.3. Conclusion

We analyzed a full-tilt electron tomographic reconstruction of a disc-shaped region of a 3D

epitaxially-connected PbSe QD SL film. This tomogram provides (i) sufficiently high spatial reso-

lution (0.65 nm) to accurately determine the position and size/shape of the QDs and their necks

and (ii) sufficiently large volume (4.3 × 105 nm3) to enable meaningful statistical analysis of struc-

tural disorder in the sample. We showed that the sample consists of three SL grains and assigned

the unit cell and in-plane crystallographic orientation of each grain as well as the structure of the

three grain boundaries. Maps of the neck locations and diameters revealed that the sample has an
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average of 3.7 necks per QD (overall network connectivity of 72%) and an average neck diameter

of 4.1 nm (64% of the QD diameter). In testing correlations between neck number, neck diameter,

inter-QD distance, and QD location in the film, we discovered a strong association between neck

number and both the average and standard deviation of the nearest neighbor QD distance, demon-

strating that QDs with more necks tend to have more ordered local environments. Achieving more

complete, uniform necking will require fabrication of more perfect oleate-capped SLs and greater

control of the kinetics of the phase transition from the oleate-capped SL to the epi-SL.

We also simulated the combined nearest-neighbor hopping/tunneling transport in this SL film.

Simulations of monocrystalline and bicrystalline analogues showed that SL grain boundaries have

limited impact on the electron mobility as long as the grains remain interconnected by necked QDs

that form percolating neck networks. An encouraging message of this result is that high mobilities

can still be achieved in QD SLs even if they have a high density of grain boundaries, and thus small

grain sizes, by increasing the QD attachment density, or neck connectivity, across the SL grain

boundaries. To complete the picture, it is natural to expect that once the neck networks connect

most of the QDs of the epi-SL to the point that carriers delocalize into mini-bands, further mobility

enhancements can be achieved by reducing the density of conventional SL grain boundaries as well.

Our study sets a baseline for the quantitative structural characterization of 3D QD epi-SLs.

Looking forward, electron tomography will likely be an important tool for elucidating process-

ing/structure/property relationships and guiding the fabrication of increasingly perfect 3D epi-SLs.

Higher-quality epi-SLs will in turn encourage more in-depth analysis of the tomograms, particularly

with regard to disorder across length scales longer than those emphasized in this paper [43]. Finally,

we note that improving the tomogram resolution by a factor of two would allow visualization of QD

facets and atomic-scale defects such as edge dislocations [157], thereby providing a comprehensive

near-atomistic picture of the 3D structure of these mesoscale QD films.
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CHAPTER 6

Hierarchical carrier transport simulator for defected nanoparticle

solids

This work appeared as Scientific Reports 11, 7458 (2021).

As described in previous chapters, various experimental groups have managed to boost the

mobility in NP solids by enhancing the inter-NP transition rate with a variety of methods, including:

ligand engineering [34,35,36], band-alignment engineering [37,38], chemical-doping [39,40], photo-

doping [41], metal-NP substitution [42], epitaxial attachment of NPs [33, 43], and atomic layer

deposition methods [44]. Encouragingly, these efforts recently translated into notable progress,

as NP solids were reported to exhibit band-like, temperature-insensitive mobilities, with values

exceeding 10 cm2/Vs at room temperatures [40,45]. It is important to note that some experiments

reported data that can be interpreted as evidence for band-like transport. One of these is the relative

temperature independence of the observed mobilities, in contrast to hopping insulators where an

activated temperature dependence is expected. However, the absolute values of the mobilities

remain relatively low compared to most metals, and this makes conservative commentators stop

short of identifying this transport as metallic [40,45].

On the theoretical front, there have been efforts from several groups to understand electronic

transport in NP films and solids. Density functional theory (DFT)-based ab initio calculations of

the energy levels of a single NP alone are already limited to only hundreds of atoms for higher-

reliability methods, and a few thousands for more approximate methods by prohibitive CPU times.

These translate to diameters less than 2-3 nm, whereas experimental NP diameters often exceed 5-6

nm. Next, the accurate computation of the NP-NP transition rates would require the simulation of

two NPs. And even if this calculation is completed, it does not address that the NP-NP transport

is not metallic but insulating; the disorder of the parameters from NP to NP; and finally the

defects of the NP solids. In total, ab initio descriptions alone are very far from being capable
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of describing transport in NP solids. Cleary, there is a pressing need for developing mesoscopic

transport simulations that somehow integrate ab initio calculations.

Shklovskii et al. have developed transport calculations for a NP array in a FET geometry,

where they focused on the effects of the Coulomb interaction [47]. The interplay of transport and

Coulomb interactions was studied in Refs. 47 and 48, albeit on very small samples. Over the

last few years, our group developed the Hierarchical Nanoparticle Transport Simulator (HINTS)

platform that starts with an ab initio calculation of the energetics of individual nanoparticles, then

forms a NP solid of several hundred NPs, and finally simulates transport across this NP solid by

a kinetic Monte Carlo method [49, 50], described in Chapter 2. HINTS can simulate 500-2,000

nanoparticles. A reassuring validation of HINTS emerged from simulating the dependence of the

mobility of PbSe NP layers as a function of the NP diameter. The results in [49,50] closely tracked

the experimental results of Liu et al., who studied the electron mobility of PbSe layers in a FET

geometry [31]. More recently, we studied commensuration effects in bilayer NP solids [51].

However, these theoretical efforts only considered NP solids with homogeneous disorder: the

NPs were arranged either in a close-packed glassy/jammed structure, or on an ordered superlattice

(SL) with disorder only in the NP size. In contrast, representative scanning electron microscope

(SEM) images, like in Fig. 6.1, taken of NP solids with millions of NPs, conspicuously reveal that

typical NP solids are also characterized by disorder on much larger length scales. These defects,

often on the µm length scale, have sizes well beyond the capabilities of any published technique,

including HINTS. Therefore, there is a need for transport simulation methods that are capable of

capturing meso- and macro-scale defects and their effect on transport.

We performed one step in this direction previously by extending our HINTS method to include

percolative effects into homogeneously disordered NP solids [50]. This simulation captured physics

on the longer length scales of percolative clusters. Our main message was that a metal-insulator

transition (MIT) occurs when a percolating path of metallic-connected NPs develops across the

entire sample. We described this MIT as a Quantum Percolation Transition. However, this work

still did not incorporate planar defects.
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Figure 6.1. Common planar defects in PbSe nanoparticle superlattices. (a) Grain
map of a typical region of an PbSe NP superlattice film showing the location of
several types of planar defects. Blue, yellow, and red lines denote wide-angle grain
boundaries, twin planes, and more complex, unclassified planar defects and defect
clusters, respectively. The image is a montage of fifteen low-magnification, high-
resolution SEM images. Voids, step edges, vacancies, and other types of non-planar
defects are also visible in the montage. (b) Higher-magnification secondary electron
image of a bicrystalline region of an epi-SL film with two (100)SL-oriented SL grains
meeting at a twin plane. (c) Image of another region of the same epi-SL film showing
multiple grain boundaries between (100)SL- and (01̄1)SL-oriented grains, as well as
several other planar defects.

6.1. Simulation Methods

To answer the above needs, in this paper we report our work that boosted the capability of our

HINTS platform by introducing additional hierarchical layers to capture the effect of planar defects
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on the transport in NP solids. First, we used HINTS to individually model a NP superlattice

(SL) with one planar defect that was either a generic grain boundary or a twin plane. Second, we

simulated transport across a large number of such single-defect SLs, and determined the distribution

of the mobilities of the single-grain-boundary NP SLs and that of the single twin-plane NP SLs.

We also determined the distribution of the mobilities of undefected NP SLs with only homogeneous

NP disorder. Third, to reach a simulation scale approaching the scale of the NP solids in the

experiments, we built a resistor network where the individual resistor values were taken from the

three mobility distributions with predetermined probabilities. Motivated by our previous work [50],

we determined the resistance of the entire resistor network by changing the fraction of undefected

NP SLs within the network. Finally, we analyzed our results by a finite size scaling method.

We call this boosted HINTS platform TRIDENS: the TRansport In DEfected Nanoparticle

Solid Simulator. With TRIDENS, we are capable of capturing the physics from atomistic length

scales up to the scale of NP solids in the experiments by integrating the simulations on several hi-

erarchical layers. The complete hierarchical structure of TRIDENS, beyond the underlying HINTS

platform, is presented below. The focus of this work was PbSe NPs because they are of consid-

erable interest for solar applications due to their large Bohr exciton radius and small direct bulk

bandgap [158], and exhibit the possibly game-changing multiple-exciton generation (MEG) [21].

For these reasons, PbSe NPs are often thought to have strong promise for solar applications.

(1) To reach the length scale of hundreds of nanometers, we generated triclinic NP superlattices,

of PbSe NPs with a 20x20x2 geometry, inspired by the 2D channel geometries of FETs used in

transport experiments [4]. The triclinic unit cell was described with lattice constants a1 = a2 = a3

= 6.9 nm and angles α = β = γ = 99◦. The average NP diameter was 6.0 nm. Size and location

disorder were introduced by assigning the NPs a diameter and lattice displacement vector according

to Gaussian distributions of widths σ(diameter) = 0.4 nm and σ(location) = 0.3 nm respectively.

See Fig. 6.2a for an example of one of these SLs. In our undefected SLs, these parameters yield a

〈βij〉 ' 0.015± .02.

Layers (1) is still part of the main HINTS platform. HINTS is suitable for capturing the effects

of homogeneous disorder, i.e. disorder associated with the size and location of the NPs that varies

from site to site of the NP superlattice, but does not involve planar defects. Next, we describe the
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Figure 6.2. Top down views of the three types of the simulated NP SLs: (a) An
undefected NP SL, characterized by the NPs having only size and location disorder;
(b) A NP SL, containing a twin plane, as denoted by the dashed line, also with NP
size and location disorder; and (c) An NP SL, containing a grain boundary, also with
NP size and location disorder. NP color corresponds to NP diameter, as indicated
in the colorbar on the left.

additional layers of the TRIDENS that enable us to access length scales well beyond the reach of

HINTS.

(2) As a first step, we introduced a single planar defect into each generated NP superlattice (SL).

We carefully analyzed SEM images of NP solids with millions of NPs of the type of Fig.6.1, and

determined the predominant types of defects and their statistics, such as the lengths and densities

of the planar defects. Based on the SEM image analysis, the most relevant and oft-occurring planar

defects were twin planes and grain boundaries.

(a) Twin planes: the NP superlattice is mirrored across a boundary plane, creating two crys-

tallites, or grains, which have reflected in-plane unit cells. Twinned grains can also be related by

a 180◦ rotation normal to the twin plane. The twin plane is always parallel to a possible crystal

face (but not any planes of complete symmetry, e.g. it is distinct from all space group symmetries),

and thus requires the two grains to share some NP lattice sites along the boundary plane. See

Fig. 6.1b and Fig. 6.2b. The high symmetry nature of twin planes makes them a low disorder

defect, compared to the more highly disordered grain boundaries discussed below. In our generated

samples the twin planes were created in a (100) in-plane oriented SL, and the orientation of the

twin plane itself was randomly selected on a sample-by-sample basis from all possible crystal planes

which would span the entire NP simulation SL in the x-direction (in order to bisect the SL). As an

example, one such boundary orientation is that of a (012̄)/(021̄) twin boundary, where (012̄) is the
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orientiation of the boundary plane in grain 1, and (021̄) is the orientiation of the boundary plane

in the mirrored grain 2.

(b) Grain boundaries: the NP superlattice is again fractured by a boundary plane. However,

unlike with twin planes, the superlattice is not mirrored across the boundary plane. There are two

main types of grain boundaries. 1) Tilt grain boundaries, where the in-plane SL orientation is the

same in the two grains, but they are spatially rotated in-plane relative to each other. The angle

of rotation can be divided into “low angle” and “high angle” regimes, where the higher the angle

of rotation, the more disordered the grain boundary (with large areas of poor fit). 2) Twist grain

boundaries, where the in-plane superlattice orientations of the two grains are different (rotation

occurs along an axis perpendicular to the boundary plane). Such grain boundaries will result in

two crystallites/grains with different in-plane superlattice orientations (e.g. a boundary between a

(100)SL in-plane orientation and a (101)SL in-plane orientation).

In our generated samples, we simulated grain boundaries with a combination of tilt and twist

mismatching. Specifically, the boundary plane separated grains of (100)SL in-plane orientation and

(011̄)SL in-plane orientation respectively, with the relative in-plane spatial orientation of the two

grains depending on the angle of the boundary plane (chosen at random on a sample-by-sample

basis). The boundary plane was always limited to angles which would span the entire NP simulation

SL in the x-direction (in order to bisect the SL). This results in grain boundaries which are much

more extensively disordered than twin planes, particularly when the boundary plane results in a

high-tilt grain boundary. See Fig. 6.1c and Fig. 6.2c. Hereafter, we will refer to our specific

combination of boundary mismatching as simply a “grain boundary”.

In total, we generated 30,000 NP superlattices, containing either one or two grains, where

we varied the disorder of the NP diameters (see color code in Fig. 6.2), the on-site NP location

disorder, and the orientation of the planar defects as viewed out-of-plane. Of these 30,000 NP SLs,

10,000 NP SLs had no planar defects, the next 10,000 NP SLs contained one twin plane, and the

last 10,000 NP SLs contained a grain boundary.

Fig. 6.1 shows other types of defects as well. We determined that point vacancies have minimal

effect on the mobilities in the insulating phase. One can also see tears/rips/voids/cracks in the

SEM image. NP superlattice fabrication technologies will be ready for technical application when
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they can minimize or eliminate such disruptive tears. For these reasons, we did not model either

of these defects.

(3) Next, we determined the electron mobility across each of the 3x10,000 defected NP SLs.

To do this, each NP SL was populated with electrons, randomly placing them on NPs, using

the Mersenne Twister, until a predetermined electron density was reached. The chance of an

electron being placed on any particular NP was uniform, independent of electron occupation and

NP parameters. Data was only taken well after the system achieved equilibrium. A small voltage

was applied across the sample to induce transport in the linear I-V regime, with periodic boundary

conditions. Finally, the electron transport was simulated by evolving time via a kinetic Monte

Carlo (KMC) algorithm. The so-determined mobilities of the 3x10,000 NP SLs were used to create

the mobility distributions for the homogeneously disordered NP SLs, the twin-plane-supporting NP

SLs, and the grain-boundary-supporting NP SLs. The first class of NP SLs will also be referred to

as “undefected NP SLs”, the latter two classes as “defected NP SLs”.

(4) To simulate NP solids on mesoscopic length scales of the order of 10 µm or longer, we

generated a classical resistor network, with resistors chosen at random from the distributions deter-

mined in step 6. Which distribution the resistors were chosen from was also randomly determined,

according to a parameter that describes the fraction of defected resistors. Random numbers were

generated using standard numpy libraries. Each resistor represents an NP SL with an L = 20

length planar defect. One notes that in Fig.6.1 many of the planar defects are considerably longer

than L = 20. Representing planar defects with longer lengths is possible in TRIDENS by placing

defected NP SLs correlated along the lines of the network. Such longer range defect-correlations

were not pursued in the present work, but will be included in future work.

With these preparations, the mobility of the overall NP solid was determined by treating this

NP SL network as a resistor network. We used the Laplacian method of F. Y. Wu et al. to calculate

the overall resistance across the entire network [159]. The electrodes were modeled as equipotential

metallic strips spanning the entire length of the sample edge, thus making them equivalent to a

single node on a resistor network. These electrodes were coupled to the sample by contact resistors

that were chosen according to the same rules as the bulk resistors.
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(5) Having determined the overall mobility of the network of defected NP SLs, we adapted

finite size scaling methods to analyze whether this resistor network model built from defected NP

SLs had a phase transition, or a crossover, and if so, what are the properties of this transition. To

this end, we repeated step (4) for resistor networks of various sizes, including 32x32, 64x64, and

128x128. As detailed below, our finite size scaling found a percolation transition that separates

a low mobility insulator from a high mobility insulator. We used finite size scaling to determine

the critical properties of this transition, including the critical point, the critical exponents and the

universal scaling function.

6.2. Experimental Methods

6.2.1. Materials: Lead oxide (PbO, 99.999%), oleic acid (OA, technical grade, 90%), diphenylphos-

phine (DPP, 98%), 1-octadecene (ODE, 90%), ethylene glycol (EG, 99.8%, anhydrous), acetonitrile

(99.99%, anhydrous), hexanes (≥99%, anhydrous), toluene (99.8%, anhydrous), and (3 - mercap-

topropyl) trimethoxysilane (3-MPTMS, 95%) were purchased from Sigma Aldrich and used as

received. Trioctylphosphine (TOP, technical grade, >90%) and selenium (99.99%) were acquired

from Fluka and mixed for 24 hours to form a 1 M TOP-Se stock solution. Ethylenediamine (EDA,

>98.0%, anhydrous) was purchased from TCI and mixed with acetonitrile in a 1:1 volume ratio to

make a 7.5 M EDA stock solution, this is a slight modification to a published procedure [4].

6.2.2. Quantum Dot Synthesis: In this experimental section we adopt the alternative ter-

minology of “quantum dots” to refer to the nanoparticles, to accommodate alternative terminologies

preferred by different communities. PbSe QDs were synthesized and purified air-free using a slight

modification of a published procedure [4]. Briefly, PbO (1.50 g), OA (5.00 g), and ODE (10.00 g)

were mixed and degassed in a three-neck round-bottom flask at room temperature. The mixture

was heated to 120 C under vacuum to form dissolved Pb(OA)2 and dry the solution. After 1 hour

at 120 C, the Pb(OA)2 solution was heated to 180 C under argon flow and 9.5 mL of a 1 M solution

of TOP-Se containing 200 µL of DPP was rapidly injected into this hot solution. An immediate

darkening of the solution was observed, and the QDs were grown for 105 seconds at ∼160 C. The

reaction was quenched with a liquid nitrogen bath and injection of 10 mL of anhydrous hexanes.

QD purification and SL fabrication were performed in glove boxes with <0.5 ppm O2 content. The
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QDs were purified by two rounds of precipitation/redispersion using acetonitrile/toluene and stored

as a powder in the glove box.

6.2.3. Substrate preparation: Following and slightly modifying the procedure seen in Ref.

4, a single-side polished Si substrate was cleaned using 10 minutes of sonication in acetone, Millipore

water, and then isopropanol, followed by drying in a stream of flowing air. The cleaned substrate

was immersed in a 100 mM solution of 3-MTPMS in toluene for 1 hour to functionalize its native

SiOx surface for improved QD film adhesion, then rinsed with neat toluene and dried in flowing

air.

6.2.4. Superlattice fabrication, electron microscopy imaging: Quantum dot superlat-

tice films were fabricated and imaged using (modified) published procedures [4]. An oleate-capped

superlattice was prepared in a glovebox (<2 ppm O2) by drop casting 60 µL of 20 g/L dispersion

of PbSe QDs in hexanes onto 7 mL of ethylene glycol (EG) in a Teflon well (3.5 x 5 x 1 cm). After

depositing the QD solution, the well was immediately covered with a glass lid. The hexane evapo-

rated over 30 minutes, resulting in a smooth, dry QD film floating on the EG surface. The glass lid

was then removed and 0.1 mL of a 7.5 M solution of EDA in acetonitrile was slowly injected (5-10

sec) into the EG under the QD film using a 1 mL syringe. After 30 seconds of exposure to EDA,

the resulting epi-SL film was stamp transferred to the Si substrate using a vacuum wand, rinsed

vigorously with acetonitrile, and dried under flowing N2.

Scanning electron microscopy (SEM) imaging was performed on an FEI Magellan 400 XHR

SEM operating at 10 kV. Grain maps were produced by stitching together fifteen 6,144 x 4,415

pixel images acquired at 50,000x magnification, providing the ability to resolve individual QDs in

the sample. Image stitching was performed in Adobe Photoshop. Grain boundaries, twin planes,

and other planar defects were then located by eye and drawn in manually.

Superlattice samples for TEM analysis were prepared by stamping QD films from the EG surface

onto holey carbon TEM grids without a carbon film coating. The use of TEM grids free of a carbon

film was critical for high-quality secondary electron imaging (SEI) in the TEM. SE imaging was

performed on a JEOL JEM-2800 TEM operating at 200 kV using a probe size of 1.0 nm.
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6.3. Results and Discussion

6.3.1. TRIDENS simulations: We laid the foundation of our simulation by carrying out

the standard HINTS study steps, including step (1) above. To carry out step (2), we generated

3x10,000 defected NP SLs by starting with homogeneously disordered but undefected 20x20x2 NP

SLs whose shape broadly corresponded to FET geometries, and then inserted a twin plane planar

defect into 10,000 NP SLs, and a grain boundary planar defect into another 10,000 NP SLs. The

latter sometimes involved removing a few NPs to keep the shape of the NP SLs largely unchanged.

Next, we executed step (3) by determining the mobility distribution of the defected NP SLs. The

mobility distribution for the homogeneously-disordered, undefected NP SLs is shown in Fig.6.3a.

The mobility distribution of the twin-plane NP SLs is shown in Fig.6.3b. Finally, the mobility

distribution of the grain-boundary NP SLs is shown in Fig.6.3c. All three distributions were

approximately normal, and could be well characterized by a mean and a standard deviation. The

mobility of the undefected NP SLs was 0.42 ± 0.1 cm2/Vs, the mobility of the NP SLs containing

twin planes was 0.16 ± 0.06 cm2/Vs, and the mobility of the NP SLs containing grain boundaries

was 0.09 ± 0.05 cm2/Vs, as shown.

We then performed step (4) by assembling a resistive network whose individual links had mo-

bilities selected from the above determined mobility distributions. To identify the paradigmatic

aspects of the behavior of the mobility of the NP solid, we selected the links from the highest

mobility undefected NP SL distribution with a probability p, and from the lowest mobility grain

boundary NP SL distribution with a probability (1 − p). We used this p, the fraction of the high

mobility undefected NP SLs/links as the control parameter of our study. Initially we expected that

when the probability (1−p) of the low mobility defected NP SLs becomes small, then the electrons

will be able to “flow around” the low mobility links through the high mobility links. Put differently,

the high mobility links will be able to approximately short out the low mobility links. Had this

expectation been true, then the mobility of the NP solid should have exhibited a saturation as p

approached 1.

Fig.6.4 shows the evolution of the mobility of NP solids with p. Visibly, our initial expectation

was not confirmed as the mobility did not show a saturation as the fraction p of the undefected NP

SLs approached 1.0. The high mobility links did not “short out” the low mobility links. A possible
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Figure 6.3. Mobility distributions of the 3 types of NP SLs: (a) Undefected NP
SLs, the NPs having size and location disorder; (b) NP SLs, each containing a twin
plane, also with NP size and location disorder; (c) NP SLs, each containing a grain
boundary, also with NP size and location disorder. Displayed in each panel is the
average mobility and standard deviation of Gaussians fitted to the distributions. All
simulations were performed at a temperature of T = 300K.

explanation is that the mobilities of the different NP SLs were not different enough for such a short-

out. We checked the robustness of this result, and found the same characteristic non-saturating

shape in other 2D geometries, as well as in 3D bulk networks.
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Figure 6.4. Mobility of a 32x32 resistor network whose resistors/links are chosen
from two distributions, the low mobility grain boundary NP SLs mobility distribu-
tion and the high mobility undefected NP SLs mobility distribution. The fraction
p of the high mobility NP SLs sweeps the 0 to 1 region. The error bars are smaller
than the data points.

6.3.2. Bimodal percolation transition: Next, we investigated whether there is a percola-

tive critical behavior as the p fraction of high mobility links is varied. The simple case of a resistor

network, where the links either have a finite (electronic) mobility µ with probability p, or a non-

conductive zero mobility with probability (1− p), has been extensively analyzed. The conductivity

of such a resistor network exhibits a critical behavior across the percolation critical point pc with

a power law dependence µ ∝ (p− pc)t, where the critical exponent t > 1 is universal, and pc is the

percolation threshold.

Remarkably, the closely related bimodal problem of the links of a network having a high con-

ductivity σ(high) with probability p, or a low but finite conductivity σ(low) with probability (1−p)

has been rarely analyzed. Efros and Shklovskii (ES) established the broad framework for the anal-

ysis, when they made the analogy between this bimodal distribution problem and the problem of

how the critical behavior of a spin system gets modified by the presence of a symmetry breaking

magnetic field [96]. They hypothesized a power law critical behavior for the network conductivity,
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where the universal scaling function at the critical point p = pc is anchored by the ratio of the

high and low conductivities. However, they did not determine either the critical exponents, or the

universal scaling function.

6.3.3. Finite size scaling: Next, we attempt to adapt the ES bimodal framework to describe

our TRIDENS-simulated results. The finite size L of the simulated samples makes it necessary to

analyze the results by finite size scaling. Normally this is handled by the introduction of a scaling

function with a single variable: the ratio of the sample size L to the correlation length ξ = ξ0P
−ν ,

where P = |p−pc|
pc that smoothes over the non-analytic critical behavior.

However, for the present, bimodal mobility distribution problem ES argued that the ratio of

conductivities plays the role similar to an external magnetic field in a critical magnetic system:

σlow
σhigh

= h, and already smoothes over the critical behavior. Therefore, the model needs to be

analyzed by a two variable finite size scaling form, where the ratio L/ξ is a second factor that

smoothes the critical behavior:

(6.1) µ(P,L, h) = P−αµ(hP−∆, LP ν)

where µ(x, y) is the universal finite size scaling function, and α, ν and ∆ are critical exponents.

The analysis is more tractable if the singular P dependence is absorbed by factoring out hP−
α
∆

from µ, leaving us with:

(6.2) µ(P,L, h) = h−α/∆µ′(hP−∆, LP ν)

Since µ′(x, y) is a two-variable function, the full testing of the finite size scaling hypothesis

would require a quite extensive computational effort. Therefore, we narrowed our analysis of the

finite size scaling assumption to the first variable, hP−∆, while keeping the second variable, LP ν ,

constant. As the lattice sizes were varied from L = 32 to L = 128, keeping LP ν constant required

the appropriate modification of P . We then chose the h values so that the critical regime on either

side of the critical point pc was well sampled.
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Figure 6.5. Scaled data of µhα/∆ vs. h−1P∆ for 3 different lattice sizes. The
product LP ν is held constant.

Fig. 6.5 shows the scaled mobility hα/∆ as a function of h−1P∆ for a fixed value of LP ν , for

three lattice sizes, varying from L = 32 to L = 128. Reassuringly, we were able to achieve very

good data collapse within the (−0.1, 0.1) critical regime around the critical point at P = 0, which

remained acceptable out to (−0.2, 0.2). Using the literature values of ν = 4
3 and pc = 0.5, the best

collapse was reached with exponents α = −0.99± .02 and ∆ = 2.02± .02.

The success of the finite size scaling shows that the Efros Shklovskii analogy to critical spin

systems in an external magnetic field is indeed appropriate for this bimodal percolation problem:

as the fraction p of the high mobility undefected NP SLs increases, one can think of the evolution of

the overall mobility as a modified percolation transition, rounded by the finiteness of the mobility

of the low mobility NP SLs. As far as the authors know, this is the first report of the critical

exponents and the universal scaling function of the bimodal distribution resistor network problem.

The following points are worth making. Fig. 6.5 shows that the overall network electron

mobility, or conductivity, displays a marked transition from a low mobility insulator behavior when

the high mobility NP SLs do not percolate yet, to a high mobility insulator behavior once the

high mobility NP SLs percolated. Of course, both of these regimes are insulators, so while the
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geometry of the NP solid undergoes a genuine percolation transition, the conductive properties

exhibit only a low mobility insulator-to-high mobility insulator transport crossover, not a genuine

phase transition.

We have studied a version of this problem recently on the level of our HINTS code [50], where

the NPs were connected with either low mobility activated insulating links, or high mobility, non-

activated metallic links. In that version of the problem, the underlying percolation transition

of the metallic links of the NP solid drove a genuine metal-insulator-transition (MIT), as the

percolation of the metallic links created a genuine metallic phase. We conceptualized that MIT as

a Quantum Percolation Transition, and adapted the ES bimodal mobility distribution percolation

model for its description, as at any fixed temperature that version of the problem also consisted

of a bimodal mobility distribution with low mobility links and high mobility links. Whether the

high mobility phase is a metal or a high mobility insulator can be identified from the temperature

dependence of its conductivity. In the absence of the present detailed finite-size scaling study, in

Ref. [50] we developed a simple, mean-field model form for the scaling function that described the

mobility’s evolution from the low mobility insulator to the high mobility metal. With the notation

of the present paper, the mean field exponents were α = −1 and ∆ = 1. This enabled us to

create the dynamical phase diagram of the model on the electron filling – disorder plane, where

the MIT separated the insulating phase with activated conductivity from the metallic phase with

non-activated conductivity.

The present bimodal TRIDENS study scales up our previous bimodal HINTS work to much

larger length scales. The key distinction is that the building blocks of the HINTS network were

the individual NPs, whereas in TRIDENS the building blocks are the NP SLs with around a

thousand NPs (in the present work, with 800 NPs). Further, in HINTS the origin of the bimodal

mobility distribution was the presence or absence of metallic links between individual NPs, whereas

here the origin of the bimodal mobility distribution is the presence or absence of an planar defect

across the individual NP SLs. Obviously, the HINTS transport modeling that tracks individual

electrons transitiong between individual NPs is more detailed than the resistor network of the

present TRIDENS work. Nevertheless, since the building blocks of both the bimodal HINTS and

the bimodal TRIDENS are low mobility links and high mobility links, we expected that the same
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ES bimodal percolation model with the same universal scaling function and exponents will capture

the critical behavior of the bimodal TRIDENS results. The success of the data collapse with the

ES finite size scaling form validated this expectation. While, of course several different analytic

forms can be fitted to the universal scaling function that emerged in Fig. 6.5, nevertheless it was

reassuring that in particular the mean-field function of the bimodal HINTS study:

(6.3) µ′(hP−∆, LP ν →∞) = 1/(1 + P/h)

was also consistent with it. Further, the α = −0.99 exponent of the TRIDENS scaling is approx-

imately equal to the α = −1 mean field value within the margin of error. We noted that there was a

difference regarding the ∆ exponent: TRIDENS gave a ∆ = 2.02, whereas in the mean field theory

∆ = 1. However, such differences occur typically between mean-field and numerically determined

exponents. All in all, the substantial correspondence between our HINTS and TRIDENS works

demonstrated that the ES bimodal percolation model is a good, quantitative description of how the

underlying percolation transition of the NP solid drives a low-mobility insulator-to-high-mobility

insulator transport crossover.

For completeness we mention that we implemented TRIDENS with randomly selecting high or

low mobility NP SLs for the links. This corresponds to planar defects with a length of tens of NPs.

However, the sample in Fig.6.1 has many defects that are much longer. Such long defects can be

modelled by selecting defected SLs along lines of links in TRIDENS, in a correlated manner. Such

correlated TRIDENS models will be pursued in a future work.

6.4. Conclusions

Transport in nanoparticle solids must be simulated on extremely large length scales, corre-

sponding to millions of NPs, because NP solids exhibit spatial structures on several length scales,

from the subtleties of individual NPs through the sensitive modeling of inter-NP transitions and

through transport across homogeneously disordered SLs all the way to transport in NP SLs with

large planar defects. Single-level computational methods are manifestly unable to span these length
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scales. This is why in our previous work we developed the multi-level HINTS method that was ca-

pable of simulating transport across NP solids with up to a thousand NPs. However, even HINTS

is unable to capture the effect of planar defects on transport in NP solids of the size of tens of

microns.

In this paper, we reported the development of the TRIDENS method that adds three further

hierarchial layers on top of the HINTS method. In TRIDENS, we first introduced planar defects

into individual NP SLs that comprised the order of about a thousand NPs. Then we used HINTS

to simulate the transport across these defected NP SLs. We performed these HINTS transport

simulations for tens of thousands of defected NP SLs, and constructed the distribution of the NP SL

mobilities with planar defects. Second, the defected NP SLs were assembled into a resistor network

with more than 104 NP SLs, thus representing about 107 individual NPs. This translated to length

scales of tens of microns, approaching the experimental scales for NP solids. Third, and finally, the

TRIDENS results were analyzed by finite size scaling to explore whether the percolation transition,

separating the phase where the low-mobility-defected NP SLs percolate from the phase where

the high-mobility-undefected NP SLs percolate, drives a low-mobility-insulator-to-high-mobility-

insulator transport crossover that can be extrapolated to genuinely macroscopic length scales.

Our extensive TRIDENS analysis generated the following results. On the level of individual

NP SLs, we found that the average of the mobility for undefected NP SLs was 0.42 ± 0.1 cm2/Vs,

for twin-plane-defected NP SLs 0.16 ± 0.06 cm2/Vs, and for grain-boundary-defected NP SLs 0.09

± 0.05 cm2/Vs. On average, grain boundary defects hinder transport about twice as much as

twin planes. This result makes sense, as grain boundaries are more disruptive to lattice periodicity

than twin planes, and transport across the grain boundaries involves longer hops between more

distant NPs, whereas transport across twin planes proceeds across many NPs shared by the grains

on the two sides of the twin plane, and thus it involves regular hop lengths. It is noteworthy that

the introduction of planar defects into NP SLs reduced their mobility by a factor of up to 5. On

one hand, this is a substantial suppression of the mobilities that drives a transport crossover, and

thus demonstrates the imperative of minimizing the density of planar defects in NP solids to help

their suitability for applications. On the other hand, this is not a qualitative, order-of-magnitude
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suppression of the transport that indicate a Metal-Insulator-Transition: those are driven by the

loss of phase coherence.

On the highest, resistor network-level analysis of TRIDENS, we observed that the introduction

of the planar defects immediately started to reduce the network mobility. This finding suggests

that even small concentrations of planar defects are not shorted out in NP solids, and thus every

reduction of the density of planar defects will lead to further improvements of the transport in NP

solids. Among the planar defects, the elimination of grain boundaries pays more dividends than

that of twin planes.

For the theoretical description, we adapted the Efros-Shklovskii bimodal mobility distribution

percolation model. We performed a finite size scaling analysis of the TRIDENS network mobili-

ties. We demonstrated that increasing the density of the undefected NP SLs drives an underlying,

structural/geometric percolation transition in the NP solid, which in turn drives a low-mobility-

insulator-to-high-mobility-insulator transport crossover. We demonstrated that our adaptation of

the ES bimodal theory’s two-variable scaling function is an effective tool to quantitatively char-

acterize this low-mobility-insulator-to-high-mobility-insulator transport crossover. For context, we

discussed the analogies with the Quantum Percolation Transition we developed in our earlier, MIT-

focused work [50].
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CHAPTER 7

From Femtoseconds to Gigaseconds: The SolDeg Platform for the

Performance Degradation Analysis of Silicon Heterojunction

Solar Cells

7.1. Introduction

7.1.1. Solar Cell Degradation. Heterojunction (HJ) Si solar cells have world record efficien-

cies approaching 27%, due to the excellent surface passivation by their amorphous Silicon (a-Si)

layer that leads to low surface recombination velocities and high open circuit voltages VOC . In spite

of the impressive efficiency records, HJ Si cells have not yet been widely adopted by the market

because of the perceived challenge that HJ cells may exhibit accelerated performance degradation,

possibly related to their a-Si layer. Traditional crystalline Si (c-Si) modules typically exhibit about

a 0.5%/yr efficiency degradation, primarily via their short circuit current Isc and the fill factor FF,

typically attributed to external factors, such as moisture ingress and increased contact resistance.

In contrast, in 2018 two papers reported studies of the degradation of fielded Si HJ modules over

5-10 years [59, 60]. They reported degradation rates close to 1%/yr, about twice the rate of tra-

ditional cells. These papers pointed to a new degradation channel, the decay of VOC , at a rate of

about 0.5%/yr. The decay of VOC suggests that the degradation is possibly due to internal fac-

tors, increasing recombination either at the a-Si/c-Si interface, or in the a-Si layer. Such increased

recombination is typically caused by the increase of the electronic defect density.

These initial reports on fielded panels were followed up by in-laboratory analysis. The Bertoni

group has studied the surface recombination velocity (SRV) at the a-Si/c-Si interface in HJ stacks.

By applying a model for the recombination at the a-Si/c-Si interface to their temperature- and

injection-dependent SRV data, they analyzed the degradation of the carrier lifetime and were able

to attribute it to a loss of chemical passivation [61]. More recently, Holovsky et al. investigated

ultrathin layers of hydrogenated amorphous silicon (a-Si:H), passivating the surface of crystalline
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silicon (c-Si) [62]. These authors applied highly sensitive attenuated total reflectance Fourier-

transform infrared spectroscopy, combined with carrier lifetime measurements. They manipulated

the a-Si/c-Si interface by applying different surface, annealing, and aging treatments. Electronic

interface properties were discussed from the perspective of hydrogen mono-layer passivation of the

c-Si surface and from the perspective of a-Si:H bulk properties. They concluded that both models

have severe limitations and called for a better physical model of the interface [62].

7.1.2. Defects in Amorphous Si. Photoinduced degradation of a-Si under prolonged expo-

sure to intense light was first studied, measured and modeled by Staebler and Wronski [160]. They

reported that the degradation is characterized by a remarkably universal t1/3 power-law tempo-

ral growth of the defect density. This behavior has become known as the Staebler-Wronski effect

(SWE).

The SWE was analyzed by different methods. Some groups performed electron spin resonance

(ESR) measurement on a-Si (a-Si:H) to experimentally detect the increase of the density of dangling

bonds induced by light exposure [161,162,163]. Some of these papers also developed a phenomeno-

logical model to predict the SW defect-increase as a function of exposure time and light intensity.

Other groups used the photocurrent method (PCM) to detect the change of defect density of a-Si

under light exposure. In agreement with ESR experiments, PCM also revealed the increase of

defect density under light exposure. While the ESR and PCM defect density measurements yielded

analogous results, it is recalled here that they capture different type of defect states [164, 165].

ESR detects all neutral defect states that only include dangling bonds (DBs), while PCM detects

both neutral and charged defect states that include DBs and other types of defect states. Therefore

PCM measurements revealed that the origin of defect states might be a result of different type of

general structural disorders beyond DBs. [166,167]

Recently, Wronski argued that three distinct defect states, A/B/C, are needed to account for

all the data, instead of the standard single “midgap dangling bond” defect [168]. The A/B states

are efficient electron recombination centers, while the C states recombine holes efficiently. Wronski

speculated that these states are differentiated by their different structures: dangling bonds, mono-

and divacancies, as also advocated by Smets. Other groups also analyzed their data in terms of

three distinct states [61,64]. However, they focused on the alternative picture that the defect states
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may be the three charge states H+, H0, and H- of hydrogen. In addition to these experimental

works, recent theoretical and computational papers also analyzed the defect states in a-Si, and

they concluded that besides dangling bonds, highly strained bonds also contribute to midgap states

significantly [169,170].

To summarize, while a fair amount of progress has been achieved in characterizing defect gener-

ation in a-Si, its underlying mechanism and connection to the different types of structural disorder

and defects is far from being settled and understood. The problem is still open to question. For this

reason, in this paper we analyze the above problem of defect generation in a-Si/c-Si heterojunction

solar cells, with a possible relevance for PERC cell passivation.

7.2. Methods and Results

7.2.1. The SolDeg Platform. To address the above-described Solar cell Degradation, we

have developed the SolDeg platform to model electronic defect generation in a-Si/c-Si heterojunc-

tions, which consists of the following hierarchical stages. (1) Creating a-Si/c-Si stacks. (2) Gen-

erating shocked clusters as likely hosts of electronic defects. (3) Identifying shocked clusters that

actually host electronic defects. (4) Determining the energy barriers that control the generation of

these electronic defects; and determining their distribution. (5) Determining the temporal evolu-

tion of the defect density from the energy barrier distribution. This SolDeg platform is described

next in detail.

7.2.2. Creating the Amorphous/Crystalline Si Stacks: Machine-Learning Driven

Molecular Dynamics. The SolDeg platform starts with creating a-Si/c-Si heterojunction struc-

tures, or stacks. We first created pure a-Si structures, which were carefully optimized in order to

match lab-grown a-Si as closely as possible. Second, we placed these optimized a-Si structures on

top of slabs of c-Si, and then annealed the interface region. This approach was chosen in order to

create the most realistic a-Si atomic structures possible, while still yielding a reasonable aSi/cSi

interface region. The details of this approach are as follows.

To create pure amorphous Si structures, one performs melt-quench molecular dynamics (MD)

simulations. In a melt-quench MD simulation, a crystalline Si structure is heated past its melting

point to generate liquid Si, which is then quenched down to low temperatures at an appropriate

86



rate. This method is widely used for generating amorphous Si networks. It is known that the

choice of the interatomic potential used for these MD simulations has a substantial effect on the

results. Classical parametric interatomic potentials, such as the Tersoff [171] and Stillinger-Weber

(SW) [172] potentials, have a limited number of parameters/descriptors, and are typically fitted

against experimental structural data under a specific set of conditions such as a particular mate-

rial composition and temperature range. As such, their accuracy in reproducing a wider variety

of structural properties of the specific material, or in simulating different temperature ranges or

material structures than they were fitted to, often limits the precision of the results.

For example, the excess energy (energy compared to diamond-type Si) of the a-Si resulting from

melt-quench simulations performed with these interatomic potentials is typically > 0.20 eV/atom,

falling outside of the lab-grown a-Si excess energy range of 0.07 − 0.15 eV/atom [173, 174, 175].

The defect densities, e.g. the density of dangling and floating bonds, also differ from typical lab-

grown a-Si data. MD simulations with these interatomic potentials are also unable to reach DFT-

level accuracy in determining elastic constants and defect formation energies. For all the above

reasons, the MD-created a-Si systems need to be further optimized by Density Functional Theory

(DFT) [170]. However, the need to use DFT slows down the computational time substantially, and

thus limits the accessible system sizes substantially.

To improve the accuracy of our MD simulations in all aspects compared to using these standard

interatomic potentials, we instead adopted a Machine-Learning driven general-purpose interatomic

potential which has been created for Si [176]. This machine-learning driven approach uses the

framework of the Gaussian approximation potential (GAP) with a smooth overlap of atomic posi-

tions (SOAP) kernel, and has been specifically developed so that GAP-based MD simulations yield

DFT-level accuracy, even though they are 10x more efficient, thus enabling the faster simulation

of larger systems [177,178]. Hereafter, we will refer to this potential simply as the Si GAP. It has

been shown that the Si GAP captures more than a dozen experimentally measured quantities sig-

nificantly better than any of the other available interatomic potentials [176]. We show below that

adopting the Si GAP for our MD simulations yield superior a-Si structures after only a minimum

level of DFT optimization. Now we proceed with the technical simulation details.
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We generated the a-Si/c-Si stacks by MD simulations, carried out using the LAMMPS software

package [179]. The simulation time step was 1 fs. Our melt-quench simulations started with crys-

talline Si cubic supercells containing 216 Si atoms, with three dimensional (3D) periodic boundary

conditions. The lattice constant a0 was chosen to be 5.43 Å, and the dimensions of the supercell

a = b = c = 3a0. This lattice constant was chosen to ensure that the mass density of the resulting

a-Si structures was 1-3% lower than the mass density of corresponding c-Si structures, consistent

with the mass density measured by experiments on a-Si/c-Si stacks.

The crystalline Si was first heated to 1800K to yield liquid Si. The liquid Si was subsequently

re-solidified by cooling down to 1500K at a rate of 1013 K/s before being equilibrated at 1500K

for 100 ps. This solid Si was quenched further down to 500K at a rate of 1012 K/s, following

previous studies [176, 180, 181, 182]. The first quench was performed in the constant-volume

and variable-pressure (NVT) ensemble, while the second quench was performed in the variable-

volume and constant-pressure (NPT) ensemble with fixed x and y cell-dimensions (to match the

dimensions of the c-Si unit cell in the later steps), both using a Nosé-Hoover thermostat and

barostat. We minimized the structural energy using a GAP-driven Hessian-free truncated Newton

(HFTN) algorithm to relax all atomic positions into their local minima.

These relaxed a-Si structures were further optimized with DFT, specifically making use of the

Quantum Espresso 6.2.1 software package [183, 184]. We used the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-newton algorithm, based on the trust radius procedure, as the optimization

algorithm.

The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [185] was used in both

the ionic relaxation and the electronic structure calculations using periodic boundary conditions.

The core and valence electron interactions were described by the Norm-Conserving Pseudopotential

function. Unless otherwise stated, an energy cutoff of 12 Ry was employed for the plane-wave basis

set and a 2×2×2 k-point mesh was used with the Monkhorst-Pack grid method for the Brillouin-

zone sampling in all the calculations. Methfessel-Paxton smearing [186] of width 0.05 Ry was

applied to determine the band occupations and electronic density of states.

Motivated by Pedersen et al., we use the excess energy, the bond angle distribution, and the

radial distribution function (RDF), as the most compelling criteria to validate our generated a-Si
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structures against a-Si experiments [188]. In our structures the typical excess energies were around

0.13−0.14 eV/atom, well within the experimentally acceptable range of 0.07−0.15 eV/atom. These

remarkably low excess energies strongly validate the superiority of the Si GAP over traditional

potentials, which yield excess energies above 0.20 eV/atom. The bond-angle distribution was

centered at 109.1◦ with a width of±10.5◦. These values are also consistent with typical experimental

values [189]. The average Si-Si bond length was 2.38 Å± .04 Å. Assuming a Si-Si bond-length

cutoff of 2.58 Å, slightly less than 10% longer than the average bond-length, the average number

of dangling bonds in each supercell was 2.2, and the average number of floating bonds was 0.8.

Dangling (floating) bonds are missing (extra) bonds of a Si atom relative to the standard number

of 4. Finally, the structures were further validated by calculating the radial distribution function

(RDF). The RDF measures the probability of finding the center of an atom at a given distance

Figure 7.1. Radial distribution function g(r) characterizing a typical melt-quench
MD a-Si structure, plotted against the experimental values of ref. 187
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Figure 7.2. Rendering of a simulated Si-heterojunction structure. Periodic bound-
ary conditions result in the presence of two distinct interface regions.

from the center of another atom as a function of their radial separation. For a-Si, the typical RDF

exhibits a strong peak centered at 2.3 Å, and two weak peaks centered around 3.8 Å and 5.4 Å (the

next-nearest and next-next-nearest neighbor distances in c-Si). As shown in Fig. 1, the RDFs

calculated from our GAP-MD generated structures track the experimental data compellingly.

We created the Si-heterojunction structures by placing the DFT-optimized a-Si on top of c-Si

slabs (of the same dimensions and number of atoms as the a-Si structures). See Fig. 7.2. Note that

requiring periodic boundary conditions for the a-Si/c-Si stacks forces two a-Si/c-Si interfaces into

the structure, as shown. At both interfaces, the a-Si was placed 1.36 Å (a0/4) away from the edge

of the c-Si slab. This distance was chosen by calculating the total energy of a series of structures

where this distance was systematically varied, and choosing the distance which yielded the lowest

total energy.
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The resulting a-Si/c-Si interfaces are highly strained. For this reason, we relax each interface

via thermal annealing. To avoid altering the structure of the carefully optimized a-Si layers, we

only annealed a strip of width a0 centered symmetrically at each a-Si/c-Si interface. The annealing

was performed at 450K for 25 ps, and was followed by cooling down to 270K at a rate of 1013 K/s.

Both steps were performed in the NVT ensemble with a timestep of 1 fs. In total, we created 50

a-Si/c-Si structures.

7.2.3. Defect Generation: Shocked Cluster Generation by the Cluster Blaster. Our

overarching theory is that the HJ cell performance degradation is driven by the generation of

electronic defects that act as recombination centers. We further posit that most of the electronic

defects are generated by a small group of Si atoms in the a-Si transitioning from their moderately

disordered cluster into a highly disordered cluster by thermal activation over an energy barrier.

The transition into this highly disordered cluster can strain or break the Si bonds, thereby creating

electronic defects, such as strained or dangling bonds.

We decided to create highly disordered, ”shocked” clusters by heating the cluster very quickly

to excessive temperatures, followed by a comparably quick cooling: a procedure we refer to as

the ”cluster blaster”. Using LAMMPS [179] and the ML-based Silicon Gaussian Approximation

Potential (GAP) [176], described in the previous section, we blasted clusters of 5 atoms in our a-

Si/c-Si stack, centered at the crystalline/amorphous interface to a temperature of T = 5000K while

keeping the rest of the structure frozen. We chose T = 5000K, because we found that temperatures

significantly below this value were not efficient at generating electronic defects in our systems, to be

described below. We allowed the shocked clusters to evolve at this elevated temperature for 20 ns

so that they could explore their configuration space extensively. After 20 ns, the shocked clusters

were quenched quickly, so that they could not escape whichever highly disordered metastable con-

figuration they were nearest to. We then performed a Hessian-free truncated Newton optimization

of the quenched shocked clusters, again using the Si GAP. This cluster blaster process was repeated

at the interfaces of all of our 50 a-Si/c-Si stacks at about 30 different locations each, eventually

creating about 1,500 shocked clusters with the cluster blaster.
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7.2.4. Defect Generation: Analysis of the Shocked Clusters for Electronic Defects.

The cluster blaster does not always induce electronic defects in the shocked clusters. To identify

which cluster blasting induced electronic defects as well, the next stage of SolDeg is to measure the

orbital localization of the electronic states in the a-Si/c-Si stacks with shocked clusters.

We determined the localization of the Kohn-Sham electronic orbitals in the a-Si/c-Si structures

before and after the cluster blasting by using the inverse participation ratio (IPR) method. The

IPR for an eigenstate Ψn is given as:

(7.1) IPRn =
ΣI
i=1a

4
ni

(ΣI
i=1a

2
ni)

2

where ani is the coefficient of ith basis set orbital in nth Kohn-Sham orbital Ψn (Ψn = ΣI
i=1aniφi)

and I is the total number of basis set orbitals used in the DFT calculation. The higher the IPR,

the higher the degree of localization. The IPR for a state extended equally over all atoms is close

to zero ( O(1/N)), and for a state completely localized state on only one atom is one.

Fig. 7.3(a) shows the IPRs, calculated for all Kohn-Sham orbitals obtained by DFT as a function

of their energy for a typical a-Si/c-Si stack. Visibly, the majority of the electronic states are localized

in the energy region of 5.5-7 eV, lying between the conduction band and the valence band. This

region can be identified as a mobility gap because the electronic states are localized within. In

contrast, the majority of the states are delocalized inside the conduction and valence bands. It is

recalled that the mobility gap often differs somewhat from the density of states (DOS) gap, since

the electronic states in the tails of the conduction and valence bands can be localized, separated

from the delocalized continuum of band states by a ”mobility edge”.

In order to determine the localization of the electronic orbitals more we rearrange Eq. 7.1 as

follows:

(7.2) IPR(Ψn) =
ΣK
k=1ΣJ

j=1a
4
nkj

(ΣK
k=1ΣJ

j=1a
2
nkj)

2

where ankj is the coefficient of jth atomic orbital belonging to the kth atom in the nth Kohn-

Sham orbital. J is the total number of atomic orbitals used in DFT calculations, which belong

only to the kth atom in the supercell, and K is the total number of atoms inside the supercell. We
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Figure 7.3. (a) IPR and (b) IPRk of typical a-Si/c-Si structures.

introduced the concept of Eq. 7.2 because it is capable of identifying not only that an electronic

state is localized, but the location of the atom where it is localized as well by defining a quantity

IPRnkj as follows: [170]

(7.3) IPRnkj =
a4
nkj

(ΣK
k=1ΣJ

j=1a
2
nkj)

2

Here IPRnkj is the contribution of the kth atom through its jth atomic orbital in the localization

of the nth Khon-Sham orbital. One notes that the denominator of Eq. 7.3 is the same for the all

IPRnkj for a given n. Thus, the number of IPRnkj values for a given k atom for each Kohn-Sham
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orbital is J. Denoting the number of Kohn-Sham orbitals as N, each atom in the supercell has NJ

IPRnkj values. In order to assign only one IPR value to each atom k, we choose the maximal

IPRnkj from among the NJ IPRnkj values for a fixed k. We name this maximal value IPRk:

(7.4) IPRk = MAXk
n,j{IPRnkj}

Fig. 7.3(b) shows IPRk for a typical a-Si/c-Si structure, as a function of the atom number

k, approximately translating into the z-coordinate of the atoms. As expected, almost all of the

localized states are located at the interfaces. There are no localized states in the c-Si, and only

one localized state in the a-Si. This localized state distribution is reasonable given the high degree

of strain at the interface, in contrast to the low strain in the a-Si, and minimal strain in the c-Si.

We identify electronic states as genuine electronic defects as long as they are mostly localized on

a single atom, This is captured by their IPRk value exceeding a threshold which we take as 0.5.

With this threshold convention, visibly there is only one defect at each interface in Fig. 7.3(b).

Once the IPR calculations have been completed, we can determine whether electronic defects

have been successfully created in the shocked clusters by the cluster blaster. As somewhat of a

surprise, we found that quite often the cluster blasting in fact did the opposite: it annealed out

an already existing electronic defect instead of creating one. Therefore, we broadened the scope of

our search to identify pairs of initial and final states of the cluster blasting in which the number

of electronic defects differed by precisely one. This protocol picked up both the creation and the

annihilation of electronic defects in the shocked clusters. We chose to only track initial-final state

pairs that differed by a single defect to avoid the need of tracking defect-defect interactions that

may affect our results.

7.2.5. Determining Energy Barriers and Their Distribution with the Nudged Elas-

tic Band Method. In the next stage of SolDeg, we determined the energy barriers that control

the creation and annihilation of the identified electronic defects because thermal activation across

these barriers controls the temporal increase of the overall electronic defect density in a-Si/c-Si

stacks, aged in the dark. We will return to light-induced defect generation in a later paper.
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Once pairs of initial and final states have been identified where a single electronic defect was

either created or annihilated, we employed the nudged elastic band (NEB) method [190,191,192,

193] to determine the energy barrier heights between these initial and final states. The nudged

elastic band method connects two different local energy minima with several intermediate replica

states, each connected to its nearest state neighbor with a ”spring” that is nudged perpendicular

to the path through state space to allow the ”band” to find a saddle point. The NEB method is

a standard tool for determining minimum energy paths between states in some fields, but to our

knowledge, the NEB method has not been used in the solar field yet, so we will describe the method

in some detail here.

NEB starts with an initial guess of a sequence of intermediate ”replica” states between an initial

and a final state. NEB then postulates an abstract ”spring” between the adjacent replica states,

to generate a tendency for sequence of replica states to evolve towards a compact, possibly lower

energy path between the initial and final state.

The NEB method uses two force components to cause the replica sequence to evolve toward

the sought-after minimum energy path (MEP). One of these, the longitudinal component of spring

force that connects adjacent replica states is given by:

(7.5) FSi = [k(Ri+1 −Ri)− k(Ri −Ri−1)] · τ̂ τ̂

where Ri represents the position of the ith replica in the energy landscape, k is the spring

constant, and τ̂ is the ”longitudinal” unit vector, parallel with the ”spring” at replica i.

The other, lateral force component is perpendicular to the ”spring”, exerted by the gradient

of the energy surface. As such, this force component nudges the spring towards the MEP. In our

SolDeg platform, the energy surface was computed with the Si GAP.

(7.6) F Vi = −∇V (Ri) +∇V (Ri) · τ̂ τ̂
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where V is the potential energy landscape. The advantage of the NEB method over a standard

elastic band method is that artifacts involved with the band cutting corners off the MEP are not

a problem for the NEB method.

Our NEB simulations were performed in LAMMPS using the Si GAP [176]. We used 32 replicas

for each simulation. In our simulations we kept the non-heated atoms fixed: only the heated atoms

were allowed to move replica-by-replica. The energy stopping tolerance was 10−6 (unitless), and

the force stopping tolerance was 10−6 eV/Å. The simulation timestep was 10 fs. We used the fire

minimization algorithm, a damped dynamics method with a variable time step [194].

Figure 7.4. Energy barrier distributions for: (a) defect creation; and (b) de-
fect annihilation. Black symbols and lines: exponential fit with: P (E) =
(1/E∗)exp(−E/E∗)

The results of our NEB calculation are shown in Fig. 7.4. The distribution of the barriers for

the defect creation processes is shown in panel (a), while the distribution of the barriers for defect

annihilation processes (a reverse transition across the defect creation barrier) is shown in panel (b).
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Because of the similarity of the two distributions, both the creation and the annihilation processes

will impact the time evolution of the defect density. Importantly, Fig. 7.4 reveals an extremely

broad distribution of barriers, from meV to 4 eV. Such an extremely broad barrier distribution is

the hallmark of glassy phenomena, and is the driving force behind the defect density growing not

only on microscopic time scales but also on the time scale of years.

7.2.6. Determining the Temporal Evolution of the Defect Density N(t) From the

Barrier Distribution. In the last stage of the SolDeg platform, we determined the temporal

evolution of the defect density from microscopic times scales to 20 years, the standard length of

solar cell performance guarantees.

In order to determine the defect density as a function of time, we turned to kinetic Monte

Carlo methods. We begun by creating samples with 20,000 individual two-state ”clusters” that

each could transition from a non-defected state to a defected state by overcoming a defect creation

energy barrier, and transition from a defected state to a non-defected state by overcoming a defect

annihilation energy barrier. For each cluster transition, the energies for these creation and annihi-

lation processes were drawn from the two barrier distributions determined in the previous section.

We eliminated artificial fluctuations induced by the discrete binning of the barriers by representing

the distributions with their smooth fitted forms, as shown in Fig. 7.4. The clusters transition over

the barriers by thermal activation, with an associated rate of

(7.7) Γ = Γ0e
−E
kT ,

where Γ0 is a characteristic attempt frequency of the cluster to overcome its energy barrier,

taken here to be 1010 s−1. These rates are calculated for each cluster and summed to determine

the ”total rate”, Γtot. Next, an event is randomly selected from the possible pool of events, with

the probability of selecting event i being equal to P (i) = Γi
Γtot

. The time is then moved forward

according to ∆t = −ln(r)
Γtot

, where r is a random number. This is equivalent to sampling a Poisson

waiting time distribution.

The above described method becomes computationally prohibitive when the phenomena of

interest are rare events, with rates of occurrence that are several orders of magnitude smaller than
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typical events. Not only are these rare events exceptionally unlikely to be chosen by the KMC

algorithm, but the number of simulation steps needed to evolve the simulation time far enough

to see the rare events will be impossibly large. Using our base kinetic Monte Carlo algorithm,

without any acceleration efforts, a million simulation steps only evolve the simulation time by one-

hundredth of a second. This is completely inadequate to determine degradation that occurs on the

scales of months or years.

Our solution to this problem was to implement the ”accelerated super-basin kinetic Monte

Carlo” (AS-KMC) algorithm [195]. The AS-KMC method adds the extra algorithmic step of

checking whether any of the events that are part of a ”super-basin” have been executed a pre-

specified number of times. For such events, the AS-KMC increases the barrier height, thereby

lowering their rate of occurrence. In conventional terms, a super-basin consists of clusters which

are linked to each other by high-frequency events but are separated from the surrounding energy

landscape by one or more high barriers, making the frequency of the escape from the basin dra-

matically lower. AS-KMC avoids getting stuck in a single super basin by boosting the probability

of the system overcoming these high barriers. In our implementation, as the clusters are indepen-

dent from each other, a superbasin is the set of fast transitions over the low energy sector of the

barrier distribution for each cluster. The AS-KMC method increasing the barrier height in the low

energy sector can be thought of as integrating out the fast degrees of freedoms in a renormalization

group sense, thereby mapping the problem to a scaled problem where the slower transitions over

the higher energy barriers are the typical processes. The formalism of our implementation of the

AS-KMC method is as follows. Every N times that an event occurs, the transition rate Γ of that

event is reduced by a factor α, such that Γ′ = Γ/α. Here α is taken as:

(7.8) α = 1 + (N δ)/| ln(δ)|.

where δ is the magnitude of the relative error in the new probability of escaping the superbasin

once the internal activation barrier has been raised. We chose N = 10 and δ = 0.25. As is clear from

the above description of the KMC method of forwarding the time at each executed transition by the

inverse of the executed rate, the scaling of the Γ rates scales the time itself. The integrating out of
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Figure 7.5. Defect density N(t) as a function of time. Defect saturation den-
sity was chosen as Nsat = 1x109 cm−2. Orange: defect generation by AS-KMC
at T=300K. Red: accelerated defect generation by AS-KMC at T=350K. Blue
and green: Stretched exponential fits to AS-KMC results with stretching exponent
β(300K) = 0.019, and β(350K) = 0.022.

the fast degrees of freedom and the rescaling of time together map the model to a ”slower transitions

only” model. As this integrating out and rescaling is repeated many times over, transitions over

all time scales are properly accounted for by this AS-KMC method.

We reduced the noise by simulating the AS-KMC dynamics for 64 samples of 20,000 clusters

each, and finally by averaging the results. Fig. 7.5 shows the time dependent defect density N(t),

determined by this method. The minimal fluctuations of N(t) are representative of the effective er-

ror bars and thus show that the above approach averaged out the fluctuations very efficiently. The

AS-KMC dynamics was performed for samples with temperature at T=300K (red), and T=350K

(orange), in order to simulate defect generation at ambient temperatures and with standard accel-

erated testing protocols at elevated temperatures, as described below in detail.
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In order to develop an analytic model and understanding for these simulation results, we recall

that systems that exhibit very slow dynamics are often thought of as glassy systems with a broad

distribution of energy barriers P (E) [196]. In general, the distribution of energy barriers P (E) can

be translated into a distribution of ”barrier crossing times” P (τ), and then coupled rate equations

can be written down for defect creation and defect annihilation. The expectation value of cluster

transition rates at time t can be determined by integrating over the barrier crossing time distribution

P (τ) up to t which turns out to be time dependent instead of the usual constant rates, typical for

well defined transition energies. [197, 198] This rate equation for the defect density with time

dependent rates can then be solved for N(t).

The specific time dependence of N(t) depends on the functional form of the energy barrier

distribution P (E). As seen in Fig. 7.4, our P (E) distributions can be well-fitted with an expo-

nential, P (E) = (1/E∗)exp(−E/E∗), with E∗ = 1.42 eV for barrier creation and E∗ = 1.44 eV

for barrier annihilation. Following the above steps for an exponential energy barrier distribution

yields a stretched exponential time dependence [197,199,200]:

(7.9) N(t) = Nsat

(
1− exp

{[
−(t/τ0)β

]})
,

where β = kBT/E
∗, and τ0 is a short time cutoff. It is important to emphasize that here β was

not a fitting parameter. Once we determined E∗ from the P (E) we computed earlier (Figs. 7.4a-b),

this fixed the value of β. β being fixed makes it all the more remarkable that we were able to fit

N(t, 300K) over ten orders of magnitude with β(300K) = 0.019 = kB ∗ 300K/E∗ since E∗ = 1.43

eV, the average of the defect creation and defect annihilation energy scales; and analogously, fit

N(t, 350K) with β(350K) = 0.022.

For completeness we note that we obtained very good fits setting τ0 with 1/Γ0, but our fits

improved by using shorter τ0 cutoff values. Developing a physical interpretation for the best τ0 is

left for a later paper. Further, forcing power law or near-flat fits on P (E) predicted power law and

logarithmic time dependencies. Such forms can achieve reasonable fits for N(t) over 2-4 orders of

magnitude in time, but as the fitting range was extended, the stretched exponential fit produced

the singularly best fit, and thus we conclude that the exponential for for P (E) is the natural choice.
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A stretched exponential time dependence was reported for the recombination lifetime at a-

Si:H/c-Si interfaces [201] before, as well as related aging phenomena [196]. The measurement

”annealing” temperature was T=450K, and the β exponent assumed values in the 0.29-0.71 range.

Accordingly, the characteristic energy scale E∗ of the barrier distribution that controlled this time

dependence was in the range of E∗ = 50 − 125 meV, an order of magnitude smaller than the Si

defect energies that control the time evolution in this paper. We agree with the conclusion of

the authors of Ref. 201: their time dependence was probably controlled by hydrogen diffusion.

Hydrogen was not considered in our model.

The main messages of Figs. 7.4a-b and Fig. 7.5 are as follows.

(1) It has been customary to think about degradation processes in Si solar cells as being

controlled by chemical bonds with well-defined energies, at most with a narrow distribution. But

our simulations of realistic a-Si/c-Si stack interfaces show that the bond energies of a large fraction

of the Si atoms, especially those close to the interface, are weakened by stretching and twisting,

many to the point of being broken. Therefore, the defect generation is controlled by a broad

distribution of energy barriers instead of a narrow one. One is led to the conclusion that the solar

cell degradation needs to be described in terms of such wide energy barrier distributions.

(2) We developed the SolDeg platform to answer the above need. SolDeg is capable of connecting

the fast atomic motions that control defect structures and play out on the femtosecond time scale,

with the slow, glassy transitions controlled by the wide distribution of energy barriers that take

place over time scales up to gigaseconds, the order of 20 years. The ability of the SolDeg platform to

bridge these 24 orders of magnitude in time makes it a uniquely powerful tool for a comprehensive

study of defect generation in a-Si/c-Si stacks.

(3) We have shown that a simple, stretched exponential analytical form can successfully describe

defect generation over an unparalleled range of ten orders of magnitude in time. This analytical

form may turn out to be quite useful for the analysis of experimental degradation studies.

(4) As far as numerical values are concerned, the defect generation rate in the first month

(starting from 105 seconds, about one day) is ≈ 1.5%/month that slows to 4%/year for the first

year. This defect generation rate will be used to connect our theoretical work to experimental data

as follows. The published NREL measurements capture degradation of fielded HJ a-Si/c-Si solar
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cells in terms of Voc, the open circuit voltage, with the result of 0.5%/year in relative terms [59].

The well-known relation connecting Voc to the defect density reads:

(7.10) Voc =
kT

q
ln

(
JL
J0

)
,

here J0 is the dark saturation current, proportional to the defect density N(t), and JL is the

light current. One expects that the primary driver of the performance degradation is the defect

density, N(t), thus, we can capture the degradation in natural, relative terms as

(7.11)
1

Voc

dVoc

dt
=

−1

ln(JL/J0)

1

N

dN

dt
.

Using relevant values for JL and J0 reveals that ln(JLJ0
) is realistically around 20, thus the

4%/year relative defect density growth rate gives a relative degradation rate for Voc of about

0.2%/year. On one hand, it is a reassuring validation of the quantitative reliability of the SolDeg

platform that our Voc degradation rate came out to be comparable to the 0.5%/year change observed

in fielded HJ modules [59]. On the other hand, the fact that our calculated degradation rate is

notably lower than the observed value is consistent with the physical expectation that in commercial

HJ cells the silicon is hydrogenated, and hydrogen migration is expected to be a primary driver

of the defect generation. Further, exposure to illumination also enhances defect generation. The

fact that our work has not included hydrogen or illumination yet comfortably accounts for the

computed degradation rate being lower than the observed one. Finally, it is noted that while some

published experiments report the above steady degradation rate of 0.5%/year over 7 years [59],

other, shorter time studies report a strongly slowing degradation [201]. Our results are consistent

with the latter, and thus we think that comparison with experiments should be done in terms of a

full time dependence of N(t) or Voc. At any rate, the natural next step for the development of the

SolDeg platform is to include hydrogen and illumination. This demanding work is already ongoing

and will be reported soon.
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Figure 7.6. Time Correspondence Curve, translating accelerated degradation time
to degradation time at standard temperature.

(5) The power of SolDeg can be further demonstrated by developing a quantitative guide to

calibrate the widely used accelerated testing protocols of solar cells. Fig. 7.5 also shows the ac-

celerated growth of the defect density in a HJ stack at the elevated temperature of T=350K. The

two simulations were started with the same defect density at t=0: N(T=300K, t=0)=N(T=350K,

t=0). Visibly, the T=300K and T=350K curves largely track each other: the difference is that

N(T=350K, t) reaches the same defect densities as N(T=300K, t) at shorter times. This is why

week-long accelerated testing can capture year-long defect generation under ambient/fielded con-

ditions.

To turn this general observation into a quantitatively useful calibration tool, we created the

Time Correspondence Curve (TCC). The TCC connects the times of accelerated testing with

those times of normal, ambient degradation that produce the same defect density. In formula:
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TCC plots the taccelerated – tnormal pairs for which N(T=350K, taccelerated) = N(T=300K, tnormal).

Fig. 7.6 shows the resulting TCC. For example, the TCC shows that taccelerated=106 seconds of

accelerated testing approximately generates the same density of defects as tnormal=108 seconds or

normal degradation. In general, the TCC was created by taking horizontal slices across the two

curves of Fig. 7.5 to find the corresponding pairs of times that generated the same defect density.

Even a cursory observation reveals that the TCC grows linearly on the log-log plot, i.e. as a

power law over an extended, experimentally relevant time period:

(7.12) taccelerated ∝ tνnormal

where ν = 0.85±0.05, an unexpected scaling relation with an unexpected precision. Just like in

Fig. 7.5, this scaling relation is observed over the most remarkable ten orders of magnitude in time.

Establishing such simple and practical correspondence relations can be a very helpful product of

the SolDeg platform that can be widely used for calibrating accelerated testing protocols. Remark-

ably, the above-developed description in terms of an exponential P (E) that led to an stretched

exponential N(t) that explained the results over ten orders of magnitude, also gives a straightfor-

ward explanation for this scaling relation. Direct observation of the stretched exponential formula

reveals that N(T=350K, t
300/350
normal ) = N(T=300K, tnormal), i.e. the stretched exponential form not

only explains the existence of the scaling form of TCC, but makes a prediction for ν:

(7.13) ν = Tnormal/Taccelerated = 300/350 = 0.85,

which is exactly the exponent what the direct analysis of the TCC determined. These consider-

ations provide a remarkably self-consistent and powerful tool set to analyze degradation processes.

7.3. Experimental Studies of Degradation of a-Si:H/c-Si stacks

In this section, we explore the correspondence between our simulations and experiments on

a-Si:H/c-Si heterojunction structures. Fig. 7.7(a) shows that for the interface defect density, a

wide range of values have been reported in the literature [202,203,204,205]. This unusually wide

104



Figure 7.7. (a) Interface defect density and effective surface recombination velocity
data reported in the literature for a-Si:H/c-Si interface at the time of deposition or
after annealing. (b) Interface defect density measured in our a-Si:H/c-Si stacks,
stored in the dark under standard ambient condition.

range is caused by many different factors, such as the different methods and protocols employed

for depositing a-Si, the level of cleanliness of c-Si wafer before deposition, substrate morphology,

orientation of c-Si, microstructure of the a-Si film, hydrogen content, bonding in a-Si, and storing

conditions of samples [206,207,208,209]. However, there are not many studies available correlating

the impact of such differences to long-term stability of a-Si/c-Si interface. For completeness, in

Fig. 7.7(a) we also summarize the corresponding surface recombination velocities (SRV) from the

cited papers. Disappointingly, very few of these papers have analyzed the time dependence of the

interface defect density and that of the SRV. Therefore, it is difficult to draw lessons from these

papers for the long term performance degradation of heterojunction structures.

Driven by these considerations, we have set out to fabricate our own a-Si:H/c-Si heterojunction

structures to measure the long time evolution of the defect density and SRV. In order to exper-

imentally isolate the processes associated with the time evolution of interface defect density and

SRV from the processes occurring in other layers, and to be able to access these quantities with

direct measurements, we created test structures that were simpler than Si HJ solar cells. This is to
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isolate the changes happening at the interface and in the film over time from the influence of other

layers present in the cell.

These simpler structures, or stacks, were comprised of c-Si of varying thickness (160–260 µm),

passivated on both sides with hydrogenated intrinsic a-Si (a-Si:H(i)). We used double-side polished

float zone (FZ) quality n-type c-Si wafers with (100) crystal orientation, 2.5 Ωcm resistivity and

initial thickness of ∼275 µm. These wafers went through rigorous surface cleaning before deposition

of 50 nm of a-Si:H(i) on both sides. Complete details about cleaning protocol and deposition

conditions are found in [210]. After deposition, these samples were annealed at 280 ◦C for 30 mins

in air in a muffle furnace. Then we measured injection-dependent effective minority carrier lifetime

(τeff ) on these samples at temperatures between 30 and 230 ◦C using the WCT-120TS tool from

Sinton Instruments. Data was collected in transient mode due to the long lifetime of the samples.

We performed linear fits for 1/τeff vs 1/W data at each injection level to obtain temperature- and

injection-dependent SRVs from their slopes. Here W is thickness of the c-Si. As a final step we

extracted the interface defect density by fitting the amphoteric defect model proposed by Olibet et

al. to the SRV vs temperature data at different injection levels. The input parameters, along with

their best-fit values to the model, were the interface charge density (Q = −1.3 × 1011 cm−2), the

neutral electron-to-hole capture cross-section ratio (σ
o
n
σ0
p

= 1
20), and the charged-to-neutral capture

cross-section ratio (σ
+
n
σon

=
σ−p
σop

= 500) with σop = 10−16 cm−2.

The resulting interface defect density values over time for the samples stored in dark and ambient

conditions are shown in Fig. 7.7(b). We found that the magnitude of the fitted interface charge

density remained the same over time, indicating no change in field effect passivation [201]. However,

the interface defect density increased with time at the rate of dN/dt= 5.6× 107cm−2/month. This

translates to a rate of increase of (1/N) dN/dt = 68%/month in relative terms for the first 3.5

months. Similar results have been reported previously by Bernardini et al., where the defect density

increased from (6.5±0.5)×105cm−2 to (5.5±1.5)×107cm−2 over a period of 28 months for samples

stored in dark, ambient conditions [61]. This translates to a rate of 17%/month in relative terms.

While our study found a higher rate in the initial 3.5 months, we expect the defect generation rate

to slow down considerably as time progresses, and converge to the results of Ref. [61]. The fact

that the defect generation slows down was clearly established by our simulations as well, as shown
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in Fig. 7.5, where we found that the rate of change in the early months is about 1.5%/month,

slowing to an overall rate of 4%/year for the first year.

To make connection to previous results, we fitted our experimental data with a stretched ex-

ponential. Holovsky. et al. reported such fits with stretching exponent β in the 0.3-0.7 range,

depending on deposition temperatures [201]. Our data are consistent with the stretching exponent

in this range. However, the relatively limited temporal range of the data does not conclusively

exclude β values outside this range either. We continue taking data that will narrow the range of

the stretching exponent.

We note that the initial defect density in our samples was lower than those reported for as-

deposited films in Fig. 7.7(a) by at least an order of magnitude. This could be due to the difference

of the deposited a-Si:H film in terms of the crystallinity, hydrogen content, hydrogen bonding

configuration and void fraction [211]. Whatever the reason may be, the notably low defect density

is a compelling indicator for the high quality of our a-Si deposition protocol.

It is noted, of course, that the degradation rate observed in our test structures shown in

Fig. 7.7(b) is not expected to directly correspond to the degradation rate observed in complete

Si HJ cells. This is due to the additional layers present in Si HJ cells on top of a-Si:H(i) which

may efficiently suppress the migration of hydrogen away from the a-Si:H/c-Si interface, as well as

prevent oxidation of the a-Si:H(i) layer.

7.4. Conclusions

In this paper we reported the development of the SolDeg platform for the study of heterojunction

solar cell degradation. SolDeg layers several techniques on top of each other, in order to determine

the dynamics of electronic defect generation on very long time scales. The first layer of SolDeg was

to adapt LAMMPS Molecular Dynamics simulations to create a-Si/c-Si stacks. Our simulations

used femtosecond time-steps. For the interatomic potential, we used the machine-learning-based

Gaussian approximation potential (GAP). Next, we optimized these stacks with density functional

theory calculations. In SolDeg’s next layer we created about 1,500 shocked clusters in the stacks by

cluster blasting. We then analyzed the just-generated shocked clusters by the inverse participation

ratio (IPR) method to conclude that cluster blasting generated electronic defects in about 500 of the
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1,500 shocked clusters. Next, we adapted the nudged elastic band (NEB) method to determine the

energy barriers that control the creation and annihilation of these electronic defects. We performed

the NEB method for about 500 shocked clusters on our way to determine the distribution of these

energy barriers. A simple exponential form gave a good fit for P (E). Finally, we developed an

accelerated super-basin kinetic Monte Carlo (AS-KMC) approach to determine the time dependence

of the electronic defect generation, as controlled by the broad energy barrier distribution.

Our main conclusions were as follows. (1) The degradation of a-Si/c-Si heterojunction solar cells

via defect generation is controlled by a very broad distribution of energy barriers, extending from the

scale of meV to 4 eV. (2) We developed the SolDeg platform that can track the microscopic dynamics

of defect generation N(t) from femtoseconds to gigaseconds, over 24 orders of magnitude in time.

This makes SolDeg a uniquely powerful tool for a comprehensive study of defect generation in a-Si/c-

Si stacks and solar cells. (3) We have shown that a simple, stretched exponential analytical form

can successfully describe the defect generation N(t) over ten orders of magnitude in time. (4) We

found that in relative terms Voc degrades at a rate of 0.2%/year over the first year. It is a reassuring

validation of the quantitative reliability of the SolDeg platform that our Voc degradation rate came

out to be comparable to the 0.5%/year change observed in fielded HJ modules [59]. The difference

is most likely attributable to the SolDeg platform not yet including hydrogen and illumination.

The project to include both has already started and will be reported in a later publication. (5)

Further, we developed the Time Correspondence Curve to calibrate and validate accelerated testing

of solar cells. This TCC connects the times of accelerated testing with those times of normal, fielded

degradation that produce the same defect density. Intriguingly, we found a compellingly simple

scaling relationship between accelerated and normal times t(accelerated) ∝ t(normal)0.85, which

can be used to calibrate accelerated testing protocols, making it a more quantitative assessment

tool. (6) We ourselves also carried out experimental work on defect generation in a-Si/c-Si HJ

stacks. We found that the degradation rate was high on the short, initial time scales, but slowed

considerably at longer time scales. A possible explanation is that our samples had unusually low

initial defect densities, in which case hydrogen diffusion may generate defects more efficiently.

The next chapter will discuss the development of a Si-H interatomic potential to continue this

project by incorporating hydrogen into the SolDeg platform, and determine the dynamics of the
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defect generation anew. We will follow this by validating and calibrating the improved SolDeg

platform by a rigorous comparison to our experimental data. Once the driving forces of defect

generation and degradation are reliably captured and characterized by the SolDeg platform and by

our experiments, we plan to develop strategies to mitigate these degradation processes.

109



CHAPTER 8

Training a Machine-Learning Driven Gaussian Approximation

Potential for Si-H Interactions

8.1. Motivation

One of the primary tools for materials modeling is the use of atomistic simulation methods.

The most accurate of these methods are those based in electronic-structure theory, such as density

functional theory (DFT), which are highly accurate at the cost of significant computational expense

and unfavorable scaling behavior. Simulations of more than a few hundred atoms, or with millions

of energy or force evaluations, instead are conducted using parameterized empirical interatomic

potentials. The potentials are typically quite simple in their formulation, and are usually optimized

to yield high levels of accuracy in reproducing a few carefully chosen observables on a particular

subset of structures. The limitations of the functional forms of these potentials necessitate that a

balance be struck between maximizing the accuracy for selected properties deemed the most crucial,

and transferability in measuring other observables or simulating structures which the potential was

not fitted to.

The imperfectness of these solutions, presenting a constant trade-off between accuracy or speed,

has motivated the adoption of machine-learning (ML) methods to fit functions with non-parametric

forms to DFT measured microscopic quantities. The goal of these methods is to create interatomic

potentials with DFT levels of accuracy over a wide range of structures and observables, while

maintaining a factor of 10x or more improvement over DFT capabilities in both simulation speed

and number of simulation atoms. The functional forms of these potentials are highly flexible, due

to their non-parametric nature, and can be fit to a wide range of structures.

The well-known limitation of ML models is that they are limited in their transferability. The

flexibility of their functional form enables the use of a broad training database, which can encompass

a wide variety of structures, and highly accurate interpolation between the constituent structures.
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However, the nature of this flexibility means that the ML model will be highly accurate for the

structures within the training database, a good fit for structures near the database, and increasingly

less accurate the farther away from the training database a structure lies. Training a truly ”general-

purpose” potential thus requires a very large database size, and even then is not wholly transferable

to situations which it has never encountered.

This problem of extrapolation is what motivated the development of the Gaussian approxi-

mation potential (GAP) framework. In previous GAP publications, it has been shown that the

combination of a kernel-based fit which nimbly adapts to previously un-encountered simulation

environments, and using an adaptive training database, does an excellent job in making up for

these shortcomings [176, 177, 178]. Here, the term ”adaptive training database” refers to, in an

iterative process over time, growing the training database from the GAP learns. In this process, the

GAP is fitted to an initial training set, and then is used to perform calculations such as structure

optimizations or basic MD simulations. The results of these calculations are then validated against

DFT calculations, and any ill-fitting results, corresponding to structures not contained in the inter-

polative structure space of the training set, are added to the training database. The progress of the

potential is measured by computing the error (relative to DFT) of GAP measurements of energies,

forces and virial stresses on a separate reference database. This process can be repeated as many

times as necessary to yield satisfactory levels of accuracy, either on macroscopic observables or on

the aforementioned microscopic quantities. This method has the advantage of only growing the

training database in areas where the ML model fits poorly, rather than blindly training the model

on a vast number of reference structures.

8.2. Technical Details

In this work we train our ML model by fitting a Gaussian approximation potential (GAP) using

a SOAP (Smooth Overlap of Atomic Positions) kernel with a core predefined pair potential. This

pair potential is chosen to be purely repulsive, and is given by cubic splines that are fitted to the

interaction of pairs of atoms in vacuum as computed by DFT. Pair potentials are given for all 3

relevant atomic pairs: Si-Si, Si-H, and H-H. Including these core repulsive pair potentials serves a

dual purpose. First, much of the interaction energy between atoms can be described by a simple
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pair potential, which describes exchange repulsion at close atomic approach, and some effects of

chemical bonding at further distances. Second, this exchange repulsion piece of the potential is

difficult to capture with kernel fitting in high dimensions due to the steepness of the energy curve

in that region, and thus capturing it with a core potential enhances numerical efficiency.

The total GAP energy for the system is thus a sum of the predefined repulsive pair potential

and the many-body term which is given by the linear sum over the kernel basis functions:

(8.1) E =
∑
i<j

V (2)(rij) +
∑
i

M∑
s

αsK(Ri, Rs)

where i and j range over the number of atoms in the system, V (2) is the 2-body repulsive pair

potential, rij is the distance between atoms i and j, K is the SOAP kernel basis function, and Ri is

the collection of relative position vectors corresponding to the neighbors of atom i which is termed a

neighborhood. The final sum ranges over the set of M representative atoms, selected from the input

data set, whose environments are chosen to serve as a basis in which the potential is expanded. The

coefficients αs are determined by solving a linear system that is obtained when available data are

substituted into the equation. These data are the total energies and gradients (forces and stresses)

of the system, calculated by density-functional theory (DFT). The representative environments over

which Eq. 1 is taken are selected by choosing basis environments which are maximally dissimilar

to each other, such that the variety of the entire set of possible environments is well represented

by interpolation over a small number of basis environments.

The kernel value determines the similarity between two neighborhoods, which is largest when

the two neighborhoods are identical, and smallest when the two neighborhoods are maximally

different. To compare the two neighborhoods, the neighborhood Ri of atom i is represented by it’s

neighbor density:

(8.2) ρi(r) =
∑
i′

fcut(rii′)e
−(r−rii′ )/2σ2

atom

These neighbor densities are not calculated directly, but are instead represented by an expansion

in a basis of spherical harmonics and radial functions.
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The SOAP kernel used here to compare two neighborhoods is calculated from the integrated

overlap of the neighbor densities:

(8.3) K̃(Ri, Rj) =

∫
R̂∈SO(3)

dR̂

∣∣∣∣∫ drρi(r)ρj(R̂r)

∣∣∣∣2
The final kernel is calculated by normalizing K̃ and raising it to an integer power:

(8.4) K(Ri, Rj) = δ2

∣∣∣∣∣∣ K̃(Ri, Rj)√
K̃(Ri, Ri)K̃(Rj , Rj)

∣∣∣∣∣∣
ζ

For further details of the GAP methodology, refer to Ref. 176.

8.3. Fitting a GAP to Si-H

8.3.1. Training and Reference structures. When training ML models, it is important to

have two sets of structures which the ML model sees. One of these is the adaptive training set,

the set of structures, iteratively growing over time, to which the GAP is fitted. The other is the

reference set, a set of structures which is used for evaluation purposes. The ML model is never

trained on this set of structures, but it does make comparative measurements against DFT, the

accuracy of which is used to measure the progress of the potential.

The base training and reference structure sets were assembled by adding H to pure Si structures

of various phases. Approximately 150 structures are contained in the initial training set, and

approximately 110 structures are contained in the reference set. These pure Si structures were taken

both from the previous chapter on a-Si/c-Si interface degradation, as well as from the reference

database on which the published Si-only GAP was trained [176]. The representative phases of Si

were: 1) Amorphous Silicon; 2) Liquid Silicon; 3) Diamond Silicon with a vacancy; 4) Diamond

Silicon with a divacancy; 5) Diamond Silicon with an interstitial Si; 6) Amorphous/Crystalline

Silicon interface structures. The atomic concentration of H added was between 6 and 12 at.% for

the liquid and amorphous phases. and between 4 and 8 at. % for the diamond phases, as sufficient

H was added to passivate all dangling or strained bonds. Since we specifically want to model

113



hydrogen-related defects, structures with plus or minus an additional H atom were also added into

both the training database and reference database.

It should be noted that the training set also contains a single structure with an isolated Si

atom, and a single structure with an isolated H atom. Isolated here means the structure possesses

a large enough unit cell that the atom is effectively in isolation. Including these isolated atomic

structures is essential because the potential is fit to the binding energy, not the total energy (i.e.

the binding energy plus the energy of isolated atoms). As such, it is necessary to properly account

for the individual atomic energies when fitting the potential.

8.3.2. DFT Calculations. DFT was used to calculate the total energy, forces on each atom,

and the virial stress of each of the atomic structures contained in the training set. These 3 pieces

of information are what the GAP is fitted to structure-by-structure.

The DFT calculations were performed using the Quantum Espresso 6.2.1 software package

[183,184,212]. The main parameters of the electronic-structure calculations we performed are as

follows: the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was used with periodic

boundary conditions [185]. The core and valence electron interactions were described by the Norm-

Conserving Pseudopotential function. The calculations were performed with Marzari-Vanderbilt

electronic smearing [213]. This smearing method was chosen as it ensures that the DFT energies

and forces are consistent. An energy cutoff of 42 Ry was employed for the plane-wave basis set, and

a Monkhorst-Pack grid method was used to define the k-point mesh which samples the Brillouin-

Zone. The k-point spacing was chosen to be .2Å
−1

.

Care was taken to ensure that the energy/atom calculated for each structure was accurate to

within 1 meV/atom. That is, ±1 meV/atom of the value that would emerge from calculations with

an exceptionally large cutoff energy and k-point density.

The PWSCF module of Quantum Espresso software was employed to perform DFT Born– Op-

penheimer molecular dynamics (DFT-BOMD) simulations. The self-consistent Hellmann-Feynman

theorem was used in order to calculate the interatomic forces at the electronic ground state at each

time step. The same exchange-correlation functional as the single point DFT calculations was used.

An energy cutoff of 36 Ry was used for the plane-wave basis set, and the first Brillouin zone was
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Element nmax lmax δ ζ rcut w σatom

Si 10 6 3 4 5.0 1.0 0.5
H 9 6 1 4 3.5 0.5 0.4

Table 8.1. Table of SOAP kernel parameter values, for each atomic type

Phase σenergy [eV/atom]

Amorphous Silicon 0.005

Liquid Silicon 0.0015

a-Si/c-Si Interface 0.005

Diamond Si Phases 0.001

Isolated Atom 0.0001

Table 8.2. Table of σenergy values for each structure type.

sampled using only the Γ point. A Gaussian smearing width of 0.01 Ry to the density of states

was implemented to avoid convergence problems with metallic configurations.

8.3.3. GAP Fitting. As described in the technical details, we used a SOAP (Smooth Overlap

of Atomic Positions) kernel in combination with a repulsive pair potential to fit our GAP. Two

SOAP kernels were used, one for the Si atoms, and one for the H atoms. Several input parameters

are needed for each SOAP kernel. These include: 1) nmax and lmax, the maximum number of

radial and angular indices for the spherical harmonic expansion of the neighbor densities; 2) δ,

a hyperparameter which corresponds to the energy scale of the many-body term in the SOAP

kernel; 3) ζ, the integer power to which the SOAP kernel is raised; 4) the cutoff radius rcut and

an associated transition width w, characterizing the point beyond which, and how fast, the cutoff

function smoothly goes to zero in the calculation of the neighbor densities; 5) σatom, the smearing

parameter for the neighbor density function. For the values of these parameters used, see Table

8.1.

Also important to the fitting are the chosen regularization parameters, σ. These parameters

represent the desired accuracy of the potential in fitting to the data, and correspondingly also

determine the relative weight of each structure in the fitting procedure. Separate σ values are

assigned for the energies (σenergy), forces (σforce), and virial stresses (σvirial). It is possible to input

these σ values to the potential in a number of different ways, including as single values for all
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Figure 8.1. Iterative progression of the average of the RMSE of the (a) Si and
(b) H cartesian force components, measured with respect to DFT on the reference
structure set.

structures, or on a ”structure type” basis, assigning single values to all structures in a single phase

(for instance, liquid Si). Our approach was slightly different than these methods: we instead chose

to assign the σ values on a structure-by-structure basis. The σenergy values were chosen to be the

same for all structures in a given phase, see Table 8.2 for these values. σforce was assigned on a

per-atom basis as:

(8.5) σforce =


0.1 , |F | < 2.0 eVÅ

−1

0.05|F | , |F | ≥ 2.0 eVÅ
−1

,

where |F | is the magnitude of the force vector on that respective atom. σvirial was assigned on a

per-structure basis as:

(8.6) σvirial =


0.025Natoms ,max (|τi|) < 1.0 eV

0.025Natoms ∗max (|τi|) ,max (|τi|) ≥ 1.0 eV

where Natoms is the number of atoms in the structure, and max (|τi|) is the max norm of the virial

stress tensor.

8.3.4. Iterative Training. As described in the motivation section above, the conventional

wisdom is that a ML model needs to be trained on a broad database of structures, containing as

many structures as possible, in order to be usable in a general sense. To mitigate this, we have
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adopted an adaptive training procedure, wherein the potential is used to conduct MD simulations

on the structures already contained in the training database, and the results of these simulations are

validated against DFT measurements of energies, forces, and virial stresses. Ill-fitting results are

then added to the training database, thus growing the training database in an iterative manner.

Using this procedure, it is not necessary to add thousands of structures, as the potential will

Iteration Structure Type

1 Optimized structures (all phases)

2 Optimized structures (all phases)

3 Low T anneal of a-Si:H

4 High T anneal of liq-Si:H

5 High T anneal of liq-Si:H

6 Med T anneal (1100K) of a-Si:H

7 Heating a-Si:H from 500K to 800K at 1013 K/s

8 Heating a-Si:H from 800K to 1100K at 1013 K/s

9 Heating a-Si:H from 1100K to 1400K at 1013 K/s

10 Heating a-Si:H from 1100K to 1400K at 1013 K/s

11 Heating a-Si:H from 800K to 1400K at 1012 K/s

12 Added new a-Si:H structures

13 Add new a-Si:H structures

14 Added c-Si/a-Si:H interface structures

15 Added c-Si/a-Si:H interface structures

16 Added new c-Si divacancy structures

17 Added new liq-Si:H structures

18 Added new c-Si vacancy structures

19 Added new c-Si interstitial structures

20 Low T anneal of c-Si/a-Si:H interface structures

21 Optimization of c-Si/a-Si:H interface structures

22 NPT high T anneal of liq-Si:H structures

23 NVT high T anneal of liq-Si:H structures

24 Quenching liq-Si:H from 2000K to 1500K at 1013 K/s

25 Annealing quenched liq-Si:H structures at 1500K

26 Quenching liq-Si:H from 1500K to 1400K at 1012 K/s

Table 8.3. Structure types added each iteration.
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naturally gravitate towards regions of configuration space where it is ill-fitting on its own, without

any external input or danger of over-fitting.

All MD simulations were performed using the LAMMPS software package built with QUIP

package support [179,214,215].

The error metric used to evaluate the accuracy of the GAP compared to DFT is the weighted

root mean square error (RMSE). As the desired accuracy of the GAP varies from structure to

structure, as determined by the Σ values, the RMSE itself loses some meaning, as structures with

a high RMSE value may also have a high σ value. To account for this, we weight the RMSE by σ2:

RMSEweighted =

(∑N
i=1(xi,GAP − xi,DFT)2/σ2

i

N

)1/2

Here, N is the number of data points, xGAP is the value measured by GAP, and xDFT is the

value measured by DFT.

26 full rounds of iterative training were conducted. See Fig. 8.1 for an iteration-by-iteration

progression of the average of the RMSE measured for each force component when comparing the

Si-H GAP to DFT on the reference database, for both Si and H separately. Primarily, the new

structures have been added in the same procedure as described above, conducting basic MD simu-

lations in order to find structures where the GAP struggles to match DFT measurements. However,

beginning in iteration 12, the method of adding H to pure Si structures was refined from the begin-

ning of the training procedure, and subsequently a few sets of such structures from various phases

were added to the training set. Once this process was complete, the training set once again was

expanded by conducting MD simulations on constituent structures. See Table 8.3 for a list of all

additions to the training set which have been conducted thus far. For a visualization of the RMSE

accuracy of the Si-H GAP relative to DFT when making energy measurements per atom on the

reference set, after iteration 26, see Fig. 8.2.

Of note here is the increase in accuracy that occurs in iteration 7. This increase in accuracy was

driven by changing the method by which the regularization parameters were assigned. Previously,

the per-structure or per-atom σ values mentioned in the GAP fitting section were not calculated on

a per-structure or per-atom basis, but were instead assigned to be the same value for all structures

in a given phase. In addition, the force σ fitting protocol was changed to be dependent upon
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Figure 8.2. Comparison between GAP and DFT measurements of the ener-
gies/atom on the reference set of structures, after iteration 23.

the magnitude of the atomic force measured by DFT, increasing accuracy as tightly as possible.

This change in accuracy meant that the average RMSE now more closely matches the desired

regularization, as the regularisation in fitting to structures with large forces and stresses was relaxed.

This method has led to a sizeable reduction in the RMSE.

8.3.5. Determining the Usability of the Si-H GAP. The final step in assessing the

usability of the potential is to conduct MD simulations representative of how the potential will

ultimately be used, and assess the accuracy of the relevant observables in comparison to both DFT

and lab results. Our primary goal in developing this Si-H GAP was to use it to create highly

accurate a-Si:H structures via a melt-quench procedure, and to subsequently use it to measure

defect creation/annihilation energy barriers via the use of the nudged elastic band method.

As such, the most critical round of assessment is the evaluation of the representative liq-Si:H

and a-Si:H structures emerging from fully GAP-driven melt-quench procedures. There are several

different metrics for evaluating the ”realness” of the resulting structures. These include: 1) the

radial distribution function (RDF), or correspondingly the partial pair correlation function when

multiple atomic species are present; 2) the bond length and angle distributions; 3) the excess energy,
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measured relative to c-Si; 4) the vibrational spectra. Of these, there is widespread debate concerning

which is the most important metric, with different proponents arguing in favor of either the RDF,

or the vibrational spectra [216]. It is significantly easier to measure the RDF computationally,

but experimental comparison is difficult, requiring x-ray diffraction measurements of the structure

factor S(Q) out to at least 40Å [187]. Conversely it is much easier to measure the vibrational

spectra experimentally using Raman and FTIR spectroscopy [217], but it is a substantial challenge

computationally. In this paper we report measurements of the partial pair correlation function,

leaving vibrational spectra measurements to future work.

8.3.5.1. Liquid. To simulate the structure of liquid Si infused with H, we performed constant

volume (NVT ensemble) molecular dynamics simulations as implemented in the LAMMPS software

package, built with QUIP package support [179, 214, 215]. One calculation was performed using

the Si-H GAP, and one calculation was performed using a Si-H Tersoff potential [218, 219] to

provide a point of comparison. Each simulation started with a cubic supercell of side-length 5.26

Å, containing 64 Si atoms and 8 H atoms placed at random, corresponding to a density of 2.58

g/cm3. The coordinates of these atoms were optimized with the given interatomic potential, before

equilibriating at 2000K for 150000 0.5 fs timesteps. Structural data was gathered over an additional

10000 0.25 fs timesteps.

Reference DFT data was gathered from an analogous DFT-BOMD simulation performed using

Quantum Espresso. Just as above, the starting configuration consisted of 64 Si and 8 H atoms

located at random nonoverlapping positions, in a cubic supercell of side-length 5.26 Å. Simulations

consisted of equilibriating the structure at 2000K over 100000 0.25 ps timesteps using the Verlet

algorithm, rescaling the velocities at every step to keep the temperature fixed at 2000 K. After

equilibriation, structural data was gathered over an additional 6000 0.25 ps time steps.

The partial pair coordination functions are presented in Fig. 8.3. Results are given for the Si-Si

partial pair correlation function as well as the Si-H partial pair correlation function. The GAP is in

excellent agreement with the DFT in both cases, matching peak locations and heights. The Tersoff

potential is visibly in much worse agreement.

The angular distribution functions, also known as the g3(r, θ) bond-angle distribution functions,

are presented in Fig. 8.4. The cutoff bond length is taken to be the first minimum value of the
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partial pair correlation functions after their initial peaks, 3.1 Å for Si-Si, and 2.2 Å for Si-H. Again,

the GAP is in excellent agreement with the DFT on both cases, completely reproducing the notable

features and closely tracking the DFT results. Again the Tersoff potential is visibly in much worse

agreement.

Figure 8.3. Partial pair correlation functions of equilibriated liquid Si infused with
H, with a density of 2.58 g/cm3, and T=2000K. Top: Si-Si; bottom: Si-H. Compar-
ison provided between the GAP, a Si-H Tersoff potential, and DFT.
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Figure 8.4. Angular distribution functions, or g3(r, θ), of equilibriated liquid Si
infused with H, with a density of 2.58 g/cm3, and T=2000K. Top: Si-Si-Si; bottom:
Si-Si-H. Comparison provided between the Si-H GAP, a Si-H Tersoff potential, and
DFT.

Finally, coordination statistics of the Si atoms are presented in Fig. 8.5. Results are only

given for the Si-H GAP and DFT. Here the coordination includes both neighboring Si atoms and

neighboring H atoms, and the coordination shell for each atomic species is again defined using the

first minimum of the corresponding partial pair correlation function. On this front the GAP is also

in excellent agreement with the DFT.
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Figure 8.5. Averaged coordination statistics of Si atoms in equilibriated liquid Si
infused with H, with a density of 2.58 g/cm3, and T=2000K. Top: GAP; bottom:
DFT.

It can be noted that all of these structural quantities are very similar to those of pure liquid

Si. See for instance Ref. 220 for a point of comparison.

8.3.5.2. Amorphous. To simulate the structure of a-Si:H, we performed both constant volume

(NVT ensemble) and constant pressure (NPT) molecular dynamics simulations, again as imple-

mented in the LAMMPS software package with QUIP package support. One calculation was

performed using the Si-H GAP, and one calculation was performed using a Si-H Tersoff poten-

tial [218, 219] to provide a point of comparison. Each simulation started with the same general

procedure as the previous section to create liquid Si infused with H, except with a larger supercell
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containing 216 Si atoms and 28 H atoms, and an initial density of 2.3 g/cm3. Once the liquid struc-

tures were equilibriated, the same general procedure was followed for each potential, except the

Tersoff calculations used cooling rates which were reduced by a factor of two for further accuracy.

The GAP procedure is as follows.

Once the liquid structure was equilibriated, it was cooled in the NVT ensemble down from

2000K to 1500K at a rate of 1013 K/s with a timestep of 1 fs. Further equilibriation was then

performed at 1500K for 100 ps, before the structure was cooled down to 500K at a rate of 1012

K/s. Both of these steps were also performed in the NVT ensemble. To collect structural data,

the structure was relaxed to the local energy minimum in atomic positions, then equilibriated for

20000 1 fs timesteps in the NPT ensemble at 0 pressure and 500K, before gathering the structural

data over an additional 10000 timesteps.

No reference DFT-BOMD data was gathered for these simulations. Instead, experimental

neutron scattering measurements [221] and DFT data from another paper [182] were used. This

is both because using experimental data when available is preferential, and DFT-MD simulations

with the number of timesteps given above are extremely computationally expensive, with reduced

necessity if there is available reference DFT data to compare against.

The partial pair coordination functions are presented in Fig. 8.6. Results are given for the Si-Si

partial pair correlation function as well as the Si-H partial pair correlation function. All structural

Si-Si data gives the same key features, with three strong peaks at about 2.4 Å, 3.8 Å, and 5.6

Å, corresponding the first, second and third neighbor peaks. Similarly, all structural Si-H data

also gives the same key features, with four peaks at about 1.5 Å, 3.1 Å, 4.9 Å, and 6.5 Å. The

GAP is in excellent agreement with the reference DFT in both cases, matching peak locations and

heights. Additionally, it slightly improves on the reference DFT in matching the experimental Si-H

partial pair correlation function. The Tersoff potential is notably improved in its fit compared to

the liquid-Si:H case, particularly when looking at the Si-Si partial pair correlation function, but

remains quite poor in its fit of the Si-H partial pair correlation function.

Further structural measurements were taken after performing additional relaxation with DFT,

using the same parameters as described in section III.B. The Si-Si-Si and Si-Si-H bond-angle distri-

butions were found to be Gaussian, 109.5±10.7◦ and 105±12◦ respectively. The coordination of the
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Figure 8.6. Partial pair correlation functions of a-Si:H. Top: Si-Si; bottom: Si-H.
Results provided for GAP and Tersoff simulations, and reference results generated
by a neutron scattering experiment [221] and DFT calculations [182] are shown for
comparison.

central Si atoms was found to be 1.8% 3-fold coordinated, 98% 4-fold coordinated, and 0.2% 5-fold

coordinated. The excess energy of the supercell, the energy difference of the supercell compared to

a supercell containing hydrogenated crystalline silicon with the same number of Si and H atoms,

was found to be 0.09 eV/atom. This is well within the measured a-Si:H experimental range of 0.06

to 0.13 eV/atom [175]. As expected, it is lower than the excess energies of 0.13 to 0.14 eV/atom of
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pure amorphous silicon structures that we generated using the Si-only GAP [176] in the previous

chapter, as the presence of the H atoms relieves some of the atomic strain.

8.4. Conclusion

This work clearly demonstrates the utility of using a non-parameterized ML model, here trained

by fitting a Gaussian approximation potential with a SOAP kernel to DFT data. The Si-H GAP

was not only able to closely match DFT measurements of microscopic quantities such as energies,

forces and virial stresses, but it was also able to reproduce structural characteristics such as partial

pair correlation functions and the vibrational spectra. Reference structural data taken from Tersoff

MD calculations was also provided, and highlighted the improvement that is gained by adopting the

non-parameterized model and more accurately matching the target potential energy surface. While

the computational complexity, and hence cost, of using a GAP is much higher than a traditional

parameterized interatomic potential, it remains significantly faster than DFT-MD, with a much

tighter alignment in all key metrics.

The potential presented here is limited in a few ways. (i) It was not developed to be a general-

purpose interatomic potential, and thus does not include structural phases beyond the key phases

which are needed in order to reliably produce experimentally accurate a-Si:H. For instance, it does

not include the various surface reconstructions of diamond Si. Fortunately, future training would

simply be a matter of adding additional structures to the training set, and thus the potential can be

adapted as needed. (ii) Long-range interactions beyond 5 Å for Si and 3.5 Å for H are not included.

This limits the maximum accuracy of the potential, as it runs into locality limits. For a discussion of

this phenomenon, see Ref. 222. Properly including a long-range interaction and integrating it into

the short-range interactions is still an outstanding problem with the underlying GAP framework.

(iii) The training database was assembled by hand, and did not include any automated procedures

for constructing the database. Using an active learning approach would reduce the DFT cost, as

DFT would only be performed on an ”as needed” basis, and would speed up the training of the

potential.

Those issues aside, the merits of the presented potential are undeniable: for the specific struc-

tural phases considered, it is more accurate than any potential before it. Few Si-H interatomic
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potentials have been developed, and they are not commonly used. This is surprising, as the major-

ity of experimental amorphous silicon structures contain at least trace amounts of atomic H. This

potential will thus be able to fill an immediate role.
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CHAPTER 9

Conclusions

9.1. Nanoparticles

9.1.1. Summary. In Chapter 2, the Hierarchical Nanoparticle Transport Simulator, HINTS,

was introduced. HINTS was used to perform studies on carrier transport in disordered nanoparticle

(NP) or nanocrystal (NC) solids.

Chapter 3 used HINTS to model the transport in binary nanocrystal solids (BNS), and study

the impact of several factors on this transport. It was observed that the BNS mobility exhibited a

minimum at a large-NC-fraction fLNC = 0.25=0.25. This was attributed to a percolation picture

where, as the LNC fraction fLNC within the small-NC (SNC) matrix starts growing from zero,

the few LNCs act as deep traps for the electrons traversing the SNC matrix. Increasing the fLNC

concentration of these traps decreases the mobility. However, as the increasing fLNC reaches the

above percolation threshold, the LNCs form sample-spanning networks that enable electrons to

traverse the entire BNS via low-energy, low disorder LNC pathways. This new percolating transport

channel leads to the recovery of the mobility. Trends in the effects of temperature, electron density,

charging energy, ligand length, and disorder on the mobility minimum were accounted for by a

new physical picture in which capturing an electron renormalizes a deep trap LNCs into either a

shallow trap or a kinetic obstacle, depending on the value of the charging energy EC relative to

the NC energy difference ∆. A central prediction of this model is that the position of the mobility

minimum shifts to a larger LNC fraction fLNC > fP as the electron density increases, but its depth

is modified differently depending on whether EC < ∆, or EC > ∆. The work in this chapter was

published with Davis Unruh as the second author, and can be found at Ref. 223.

Chapter 4 used complementary HINTS and DMFT work to construct a phase diagram of PbSe

NP solids on the filling–disorder plane. Several phase transitions were observed, both in the HINTS

work which built from the localized phases, and the DMFT work which built from the extended
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phase. We distinguished a Disorder-driven MIT at n 6= 1, and an Interaction-driven MIT at

n = 1. In particular, at n = 1, HINTS showed that at large interactions the Mott-localized–to–

Disorder-localized transition occurs with a persistent gap. Similar transitions were predicted by the

disordered Mott-Hubbard model, and thus we showed that adapting the vast body of knowledge

developed for the disordered Mott-Hubbard model for NP solids can and will produce many new

insights into the physics of NP solids, and thus can be used to develop strategies to improve their

optoelectronic properties. The work in this chapter was published with Davis Unruh as the first

author, and can be found at Ref. 81.

Chapter 5 combined electron tomographic reconstruction and HINTS simulations to mean-

ingfully statiscally analyze the structural disorder in 3D epitaxially-connected PbSe quantum dot

superlattice films. On the experimental side, testing correlations between neck number, neck diam-

eter, inter-QD distance, and QD location in the film lead to the discovery of a strong association

between neck number and both the average and standard deviation of the nearest neighbor QD

distance, demonstrating that QDs with more necks tend to have more ordered local environments.

This underscores the need for more complete, uniform necking, which will require fabrication of

more perfect oleate-capped SLs and greater control of the kinetics of the phase transition from the

oleate-capped SL to the epi-SL. These experimental results were complemented by the theoretical

work, which was able to combine nearest-neighbor hopping/tunneling transport in a simulation

of the exact tomographic reconstruction. Complementary simulations were also performed on

monocrystalline and bicrystalline analogues and showed that SL grain boundaries have limited im-

pact on the electron mobility as long as the grains remain interconnected by necked QDs that form

percolating neck networks. An encouraging message of this result is that high mobilities can still be

achieved in QD SLs even if they have a high density of grain boundaries, and thus small grain sizes,

by increasing the QD attachment density, or neck connectivity, across the SL grain boundaries. To

complete the picture, it is natural to expect that once the neck networks connect most of the QDs

of the epi-SL to the point that carriers delocalize into mini-bands, further mobility enhancements

can be achieved by reducing the density of conventional SL grain boundaries as well. The work in

this chapter was published with Davis Unruh as the lead theory author, and can be found at Ref.

80.
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Chapter 6, which wrapped up the nanoparticle work in this dissertation, reported the develop-

ment of the TRIDENS method which adds three further hierarchial layers on top of the HINTS

method in order to simulate extended defects on experimental length scales. In TRIDENS, we first

introduced planar defects into thousands of individual NP superlattices (SLs), and constructed the

distribution of NP SL mobilities by performing HINTS transport simulations. Second, the defected

NP SLs were assembled into a resistor network with more than 104 NP SLs, and the overall mobil-

ity was measured. Third, and finally, the TRIDENS results were analyzed by finite size scaling to

explore whether the percolation transition, separating the phase where the low-mobility-defected

NP SLs percolate from the phase where the high-mobility-undefected NP SLs percolate, drives a

low-mobility-insulator-to-high-mobility-insulator transport crossover that can be extrapolated to

genuinely macroscopic length scales.

Our extensive TRIDENS analysis generated the following results. The introduction of planar

defects into NP SLs reduced their mobility by a factor of up to 5. On average, grain boundary

defects hinder transport about twice as much as twin planes. This result makes sense, as grain

boundaries are more disruptive to lattice periodicity than twin planes, and transport across the

grain boundaries involves longer hops between more distant NPs, whereas transport across twin

planes proceeds across many NPs shared by the grains on the two sides of the twin plane, and

thus it involves regular hop lengths. It is noteworthy that even a reduction of mobility by a

factor of 5 is not a qualitative, order-of-magnitude suppression of the transport that indicate a

Metal-Insulator-Transition: those are driven by the loss of phase coherence. This finding was

bolstered by the resistor network-level analysis, which showed that the introduction of planar

defects immediately started to reduce the network mobility. This finding suggests that even small

concentrations of planar defects are not shorted out in NP solids, and thus every reduction of the

density of planar defects will lead to further improvements of the transport in NP solids. Finally,

finite size scaling analysis of the TRIDENS network mobilities demonstrated that increasing the

density of the undefected NP SLs drives an underlying, structural/geometric percolation transition

in the NP solid, which in turn does indeed drive a low-mobility-insulator-to-high-mobility-insulator

transport crossover. The work in this chapter was published with Davis Unruh as the second

author, and can be found at Ref. 224.
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9.2. Silicon heterojunctions

9.2.1. Summary. The last two chapters reported two stages of the development of the Sol-

Deg platform for the study of heterojunction solar cell degradation. All of this work has been

submitted, separately for the two chapters, for publication with Davis Unruh as the first author.

Chapter 7 started by reporting the development of the base SolDeg platform, which was used to

study silicon-only heterojunction degradation. SolDeg layered several techniques on top of each

other, in order to determine the microscopic dynamics of electronic defect generation from fem-

toseconds to gigaseconds. The main conclusions were as follows. (1) The degradation of a-Si/c-Si

heterojunction solar cells via defect generation is controlled by a very broad distribution of energy

barriers, extending from the scale of meV to 4 eV. (2) We have shown that a simple, stretched

exponential analytical form can successfully describe the defect generation N(t) over ten orders of

magnitude in time. (3) It was found that in relative terms Voc degrades at a rate of 0.2%/year over

the first year. (4) In the newly developed time correspondence curve, which connected accelerated

testing to normal, fielded degradation, we found a compellingly simple scaling relationship between

accelerated and normal times t(accelerated) ∝ t(normal)0.85, which can be used to calibrate accel-

erated testing protocols, making it a more quantitative assessment tool. (5) Experimental work on

defect generation in a-Si/c-Si HJ stacks was also carried out. It was found that the degradation rate

was high on initial time scales, but slowed considerably at longer time scales. This was attributed

to low initial defect densities, in which case hydrogen diffusion will have a stronger effect than it

would normally.

Notably, the simulated SolDeg Voc degradation rate was only half that of fielded HJ modules.

This difference was suspected to be due to the SolDeg platform not yet including hydrogen or

illumination. In response, in Chapter 8 the machine-learning led development of a Si-H interatomic

potential using the framework of a Gaussian approximation potential was reported. The training

process has been successful in creating an interatomic potential which accurately reproduces DFT

measurements of atomic energies, forces, and virial stresses. Validation tests show that the po-

tential can create liquid-Si:H and a-Si:H with the same characteristics as DFT and experiment,

respectively. Using this new potential the next stage of SolDeg, adding H and studying H-induced

defect generation in a-Si:H/c-Si heterojunctions, can begin.
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APPENDIX A

Binary NC Experimental Methods

Chemicals. Lead oxide (PbO, 99.999%), selenium (99.99%), oleic acid (OA, tech. grade, 90%),

diphenylphosphine (DPP, 98%), trioctylphosphine (TOP, tech. grade, > 90%), 1-octadecene (ODE,

90%), 1,2-ethanedithiol (EDT, > 98%), trimethylaluminum (97%), and anhydrous solvents were

purchased from Aldrich and used as received. Millipore water was degassed with three freeze-pump-

thaw cycles before loading into the atomic layer deposition (ALD) system.

Nanocrystal Synthesis. PbSe nanocrystals (NCs) were synthesized and purified using standard

air-free techniques. 1.5 g of PbO, 5 g of oleic acid, and 10 g of 1-octadecene was stirred in a

three-neck flask at 180◦C for 1 hr. 9.5 milliliters of a 1 M solution of trioctylphosphine selenide

containing 0.2 milliliters of diphenylphosphine was then rapidly injected into the hot solution. To

control the NC size, the NCs were allowed to grow at 160◦C for preselected times (several minutes).

The reaction was then quenched with a water bath and 15 milliliters of anhydrous hexane. The

NCs were purified by three rounds of dispersion/precipitation in hexane/ethanol and stored as a

powder in a glovebox for later use.

NC Film Deposition. NC solutions of various LNC number fraction were prepared by suspending

appropriate amounts of LNC and SNC powder in dry hexane at a total concentration of 2 mg mL-1.

A mechanical dip coater (DC Multi-4, Nima Technology) installed inside of a glovebox was used

to prepare NC films via layer-by-layer deposition [48]. Briefly, substrates (glass or prepatterned

FET substrates, cleaned by sonication in isopropanol and dried under N2 flow) were alternately

dipped into the NC solution and a 1 mM solution of 1,2-ethanedithiol (EDT) in dry acetonitrile.

We fabricated films with thicknesses of 30 ± 5 nm for field-effect transistors and 50-100 nm for

optical measurements. The fraction and spatial distribution of large NCs in each film type was

measured by SEM imaging (FEI Magellan 400) of dip-coated, oleate-capped NC monolayers prior

to ligand exchange with EDT.
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Atomic Layer Deposition Infilling. The NC transistors were infilled and overcoated with 20

nm of amorphous Al2O3 deposited in a homemade cold-wall traveling wave ALD system within a

glovebox from trimethylaluminum and water at a substrate temperature of 54◦C and an operating

base pressure of about 88 mTorr. Pulse and purge times were 9 ms and 60 s, respectively.

Other Characterization. Transmission electron microscopy (TEM) imaging was performed on a

Philips CM20 operating at 200 kV. Optical absorption spectra were acquired with a PerkinElmer

Lambda 950 spectrophotometer operating in transmission mode.
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APPENDIX B

DMFT Nanoparticle Simulation Methods

We study a four orbital (labeled by a, b = 1, 2, 3, 4) Hubbard model with diagonal disorder. The

Hamiltonian reads:

(B.1) H =
∑
〈i,j〉,a,σ

tijd
†
i,a,σdj,a,σ +

∑
i,a,σ

(wi − µ)ni,a,σ +
∑
i

H int
i .

Here i, j label sites in a lattice and 〈i, j〉 limit the summation over nearest neighbors only, ni,a,σ =

d†i,a,σdi,a,σ is the density of electrons of spin σ in orbital a on site i, µ is the chemical potential, and

tij is the (nearest neighbor) hopping. The disorder is introduced through the (quenched) random

site potential energy wi, which for simplicity we assume to be independent of orbital and spin index.

For the interaction term, we take the simplest of the standard Slater-Kanamori form

(B.2) H int =
∑
a

Una,↑na,↓ +
∑

a6=b,σ,σ′
Una,σnb,σ′

where U is the density-density Coulomb interaction. Inter-orbital and Hund’s couplings are usually

included in the study of materials, where the physics is dominated by electrons in the transition-

metal t2g orbitals. The model without disorder has been extensively studied [225, 226, 227, 228,

229, 230] in that context, and the role of Hund’s coupling and rotational invariance has been

highlighted. For the NP solid, spin-orbit interactions are not important. Only the 8-fold degeneracy

(4 orbitals plus spin) and density-density Coulomb repulsion are relevant.

We solve the model using the single-site dynamical mean-field approximation (DMFT), which

neglects the momentum dependence of the self-energy and where the local single-particle Green

function is determined self-consistently [231]. If in this approach the effect of local disorder is

taken into account through the arithmetic mean of the local density of states, one obtains, in the
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absence of interactions, the well known coherent potential approximation (CPA). This method is

appropriate for our current purpose, namely, to study the effect of disorder on the mobility of

the correlated metal state as a function of the occupation, and its effect on the gap at n=1. The

CPA-DMFT method, however, does not capture the physics of Anderson localization, and other

disorder-DMFT approaches have been proposed. For instance, “statistical DMFT,” where not only

the averages but the probability distribution itself are determined self-consistently, or “Typical

Medium Theory” where geometric averages are considered [98,115,116,117,119,120,121,122].

These methods are numerically more costly and more relevant to the specific study of the Mott-

Anderson transition. The extension of our work in those directions is an interesting perspective.

Here we will consider quenched, uncorrelated, local site energies wi drawn from a probability

distribution function given by:

(B.3) P (wi) =
1

2W
Θ(W − |wi|)

with Θ the Heaviside step function. We will set the disorder strength W � U where CPA is a good

approximation.

In DMFT for disordered electrons, a quasiparticle is characterized by a local but site dependent

self-energy Σi(iωn), with ωn the fermionic Matsubara frequencies. To obtain those self-energies the

problem is mapped into an ensemble of Anderson impurity problems embedded in a self-consistently

calculated conduction bath. Here we adopt a semicircular density of state (DOS) so that, in this

particular case, the hybridization function is given by:

(B.4) ∆(iωn) = t2Gavg(iωn)

and the average local Green’s function, Gavg, is obtained from the self-consistency condition:

(B.5) Gavg(iωn) =

〈
1

iωn + µ− wi −∆(iωn)− Σi(iωn)

〉
where 〈. . . 〉 stands for the arithmetic average over the distributions of wi. Since we are dealing

with a rather demanding 4-orbital model, we take ten random values of site energies at each self-

consistency loop.
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The simulations were performed using the continuous-time quantum Monte Carlo implemented

in ref 113, which samples a diagrammatic expansion of the partition function in powers of the

impurity-bath hybridization [232].

To calculate the mobility we obtain the dc conductivity σ from DMFT:

(B.6) σ = σ0

∫ ∞
−∞

dε

∫ ∞
−∞

dωD(ε)ρ(ω, ε)2

(
−∂f
∂ω

)
where σ0 is a constant, f the Fermi function, D(ε) is the DOS, ρ(ω, ε) = − 1

πG(iωn → ω + i0+, ε)

is the spectral function and G(iωn, ε) is given by:

(B.7) G(iωn, ε) =
1

iωn + µ− ε− Σavg(iωn)

with Σavg obtained from the Dyson equation:

(B.8) Σavg(iωn) = iωn + µ− t2Gavg(iωn)− [Gavg(iωn)]−1 .

In the calculation we set the units of energy such that t = 0.5, U = 7 and W = 1.
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