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ABSTRACT 

Perovskite SrTiO3 (STO) is an attractive photocatalyst for solar water splitting, but 

suffers from a limited photoresponse in the ultraviolet spectral range due to its wide 

band gap. By means of hybrid density functional theory calculations, we 

systematically study engineering its band gap via doping 4d and 5d transition metals 

M (M=Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt) and chalcogen 

elements Y (Y=S and Se). We find that transition metal dopant M either has no effect 

on STO band gap or introduces detrimental mid-gap states, except for Pd and Pt that 

are able to reduce the STO band gap. In contrast, doping S and Se significantly 

reduces STO’s direct band gap, thus leading to appreciable optical absorption 

transitions in the visible spectral range. Our findings provide that Pd, S and Se doped 

STO are potential promising photocatalysts for water splitting under visible light 

irradiation, thereby providing insightful theoretical guides for experiments to improve 

the photocatalytic activity of STO.    
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I. INTRODUCTION 

Photocatalytic water splitting provides an appealing way of producing hydrogen from 

water with solar energy [1-5]. Due to the match between the band alignment and the 

redox potential of water splitting reaction [6], the ABO3-type perovskite SrTiO3 (STO) 

is one of the most promising photocatalysts and has been widely studied 

experimentally and theoretically [5,7-21]. However, STO has a wide direct band gap 

of 3.75 eV [22], and hence its photoresponse is active only in the ultraviolet spectral 

range. It is crucial to engineer the band gap of STO photocatalysts to the visible light 

range, by doping STO with other elements [8,15,17,18,23,24], for which Rh and Sb, 

La are often used as dopants or co-dopants, respectively [7,11,16,19,24,25]. To guide 

the experimental efforts, several density functional theory (DFT) studies have been 

performed to investigate the electronic and optical properties of STO doped with 

different transition metals [16-19,26]. Nevertheless, conventional DFT calculations 

are known to underestimate the band gap of semiconductors and hence the 

dependability of existing predictions need to be examined by using higher level 

functionals such as the hybrid density functional which gives a more reliable band gap 

[27]. Furthermore, doping STO with anionic chalcogen elements S and Se, which are 

isovalent to oxygen but have stronger hybridization, has received much less attention 

so far. Given the condition that typical STO samples have appreciable oxygen 

vacancies [28-31], S or Se doping STO should be feasible. Compared with 4d and 5d 

transition metal dopants that usually have more d electrons than Ti, S and Se dopants 

may broaden valence and conduction bands (hence shrinking the band gap) without 

introducing detrimental mid-gap states.   

 

In this theoretical study, we employ hybrid density functional calculations to 

comprehensively investigate the electronic and optical properties of M-doped and 

Y-doped STO (M= Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt; Y=S and 

Se). For transition metal dopants, our calculations indicate that: 1) Zr and Hf have no 

obvious effect on the band gap; 2) Nb, Ta and W donate their electrons to the 
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conduction bands of STO; 3) Pd and Pt reduce the band gap of STO; 4) Mo, Tc, Ru, 

Rh, Re, Os and Ir introduce mid-gap states. Interestingly, we find that doping a small 

amount of Se in STO, i.e., SrTiSe0.0123O2.9877, can already reduce the direct band gap 

of STO from 3.30 to 2.58 eV and hence noticeably enhance optical absorptions in the 

visible spectral range. This work provides a comprehensive theoretical understanding 

for rational band gap engineering of STO and, in particular, calling for attention of 

using Pd, S, and Se as dopants in STO for achieving high photocatalytic activity.  

  

II. COMPUTATIONAL DETAILS 

All DFT calculations are carried out using the Vienna Ab initio Simulation Package 

(VASP) with the generalized gradient approximation formulated by Perdew, Burke 

and Ernzerhof (PBE) [32,33]. The projector-augmented wave pseudopotentials are 

used to describe the core-valence interaction [34,35]. More explicitly, we treat 

Sr4s4p5s, Ti3d4s and O2s2p as valance electrons; for dopants M (M= Zr, Nb, Mo, Tc, 

Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt) and Y (Y=S and Se), their valances electron 

are given at length in Table S1 in Supplementary Materials [36]. An energy cutoff of 

350 eV is adopted for the basis expansion and atomic positions are fully relaxed until 

the force acting on each atom is smaller than 0.01 eV/Å. The Gaussian smearing is 

used and the energy convergence value is 10
-6

 eV in our calculations. To model the 

doped systems, we construct different supercells with a fixed lattice constant of 3.945 

Å for the bulk STO. To correct the underestimated band gap in the conventional DFT 

calculations, we calculate the electronic and optical properties of the pristine and 

doped STO using the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional [27] with 

a mixing parameter α=0.25 for the PBE and hybrid functionals. To reduce the heavy 

computational loads of the hybrid density functional calculations, band structures of 

pristine and doped STO are obtained by mean of the maximally localized Wannier 

function as implemented in the Wannier90 tool [37]. 

 

III. RESULTS AND DISCUSSION 
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3.1 Geometry and electronic structure of pristine STO 

Pristine STO has a centrosymmetric perovskite structure (Fig. 1a) with the Pm3̅m 

symmetry group at room temperature. Ti atoms sit at the center of the octahedron that 

is formed by six O
2-

 anions. Because of the octahedral crystal field generated by O
2-

 

anions, the five-fold degenerate 3d orbitals of Ti atoms are split into low-lying 

three-fold degenerate 𝑡2𝑔 orbitals and high-lying two-fold degenerate 𝑒𝑔 orbitals. 

As Ti
4+

 cations have no electrons in their 3d orbitals, pristine STO is non-magnetic. 

However, 4d and 5d transition metal dopants may induce magnetization in STO, 

depending on the number of electrons filling their d orbitals. 

 

 

Fig. 1. Crystal structure and electronic and optical properties of pristine STO. (a) 
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Crystal structure of the 2×2×2 supercell of STO. Ti, O, and Sr atoms are represented 

by blue, red and dark green balls, respectively. (b) Band structure, (c) PDOS (in units 

of state/eV) and (d) optical absorption of pristine STO. Fermi levels in (b) and (c) are 

set equal to zero.  

 

Fig. 1b shows the DFT calculated band structure of pristine STO. It is clear that the 

bulk of STO is a semiconductor with a wide indirect (direct) band gap of 3.04 (3.42) 

eV, consistent with the experimentally measured indirect (direct) band gap of 3.25 

(3.75) eV [22]. Moreover, one can observe that the valence band maximum (VBM) is 

located at the R point while the conduction band minimum (CBM) is located at the 

Γ point. From the projected density of state (PDOS) as shown in Fig. 1c, one can see 

that: 1) the valence bands are mainly from O
2-

 anions; 2) the conduction bands are 

mainly from Ti
4+

 cations; 3) Sr
2+

 cations mainly donate their electrons and their 

weights in the valence and conduction bands are small. As shown in Fig. 1d, the 

optical absorption of bulk STO starts at 3.50 eV, consistent with the experimentally 

observed optical absorption spectrum [38].  

 

3.2 Electronic structures of STO doped with 4d and 5d transition metals M 

Now we investigate the effects of 4d and 5d transition metal dopants: Zr, Nb, Mo, Tc, 

Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt. Considering that they have similar chemical 

properties and comparable ionic radii to Ti, we only study the case where one of Ti
4+

 

cations in the 2×2×2 supercell of STO is substituted by these atoms. For the 

convenience of discussions, we denote them as M@222-STO. Before proceeding to 

study the electronic properties of M@222-STO, let us pay attention to the band 

structure of the 2×2×2 supercell of STO (denoted as 222-STO). As shown in Fig. 2a, 

222-STO appears to have a direct band gap of 3.04 eV due to the band folding. 

Depending on the number of electrons filling the d orbitals of dopants, M@222-STO 

can be divided into two groups: one is nonmagnetic, and the other is magnetic.       

 

We first examine the simplest nonmagnetic cases, Zr@222-STO and Hf@222-STO, in 
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which dopants Zr and Hf belong to the same group as Ti in the periodic table (Fig. 2k). 

Comparing the band structures of Zr@222-STO (Fig. 2b) and Hf@222-STO (Fig. S1 

in Supplementary Materials [36]) to that of 222-STO (Fig. 2a), Zr and Hf basically 

have no effect on the band structure of the bulk STO. The PDOS curves in Fig. 2c and 

2d indicate that the empty d orbitals of Zr and Hf lie higher in energy than those of Ti. 

Moreover, the filled d orbitals of Zr and Hf are delocalized and therefore more 

strongly hybridize with the 2p orbitals of oxygen.  

 

 

Fig. 2. Band structures and PDOS of the nonmagnetic M@222-STO. (a), (b) and (h) 

are band structures of 222-STO, Zr@222-STO and Nb@222-STO, respectively. (c), 

(d), (e), (f), (g), (i) and (g) show PDOS (in units of state/eV) of Zr@222-STO, 

Hf@222-STO, Nb@222-STO, Ta@222-STO, W@222-STO, Pd@222-STO and 

Pt@222-STO, respectively. Fermi levels are set equal to zero in (a)-(j). (k) Relative 

position of the studied transition metal dopant M with respect to Ti in the periodic 
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table. 

 

Intuitively, dopant M should lose four electrons to oxygen neighbors and form the 

M
4+

 state as a substitute to Ti
4+

. However, our calculations show that Nb, Ta and W 

are exceptions, as they do not exhibit the expected magnetic moments of 1.0, 1.0 and 

2.0 μB, respectively, due to their unpaired electrons if they were in the +4 oxidation 

state. Conversely, our calculations show no magnetic moments in Nb@222-STO, 

Ta@222-STO and W@222-STO, even though nonzero magnetic moments are 

initially set in our calculations. Furthermore, their PDOS curves (Fig. 2e, 2f and 2g) 

and band structures (Fig. 2h and Fig. S2 [39]) clearly show that the 3d orbitals of Ti 

are partially filled. Evidently, this implies that the +4 oxidation state of Ti is reduced, 

and that the oxidation state of Nb, Ta and W is larger than +4. This more metallic 

nature of Nb@222-STO, Ta@222-STO and W@222-STO suggests that they might be 

poor at producing photovoltages.   

 

Fig. 2i and 2j show the PDOS curves of the last two nonmagnetic cases: 

Pd@222-STO and Pt@222-STO. Our calculations show that the lower-lying 𝑡2𝑔 

orbitals of Pd
4+

 and Pt
4+

 ions are occupied by six electrons whereas their higher-lying 

𝑒𝑔 orbitals are empty. This unveils that the electronic configurations of both Pd and 

Pt dopants are 
6 0

2g gt e  in the doped STO. Distinctly from the PDOSs of bulk STO, 

extra PDOS features appear in the conduction bands of Pd@222-STO (Fig. 2i) and in 

the valence bands of Pt@222-STO (Fig. 2j). Their band structures (Fig. 5a and Fig. S3 

[39]) show that the direct band gaps of Pd@222-STO and Pt@222-STO are 2.24 and 

3.00 eV, respectively. Hence, doping Pd and Pt, especially the former, can 

significantly reduce STO’s direct band gap as desired.   

 

Now let us investigate the magnetic M@222-STO where dopants M are Mo, Tc, Ru, 

Rh, Re, Os and Ir. Their PDOS curves (Fig. 3a-3g) manifest different majority and 

minority states, indicating nonzero magnetic moments in these systems. Our 
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spin-polarized DFT calculations show that these systems have the following magnetic 

moments: 1.0 𝜇𝐵  in Rh@222-STO and Ir@222-STO; 2.0 𝜇𝐵  in Mo@222-STO, 

Ru@222-STO and Os@222-STO; 3.0 𝜇𝐵 in Tc@222-STO and Re@222-STO. As 

discussed below, the M-dependent magnetic moments in these systems result from the 

interplay between the crystal field of oxygen octahedron and the delocalization nature 

of their 4d and 5d orbitals. Due to the large crystal field splitting between 𝑡2𝑔 and 𝑒𝑔 

orbitals in the oxygen cage and the small Coulomb repulsion interaction of the 

delocalized 4d and 5d orbitals, electrons in the d orbitals of M
4+

 ions in magnetic 

M@222-STO prefer a low-spin state, thereby leading to the above-mentioned 

M-dependent magnetic moments (Fig. 3h).     

 

 

Fig. 3. PDOS of M-doped STO with nonzero magnetic moments. (a)-(g) show the 

PDOS (in units of state/eV) of Mo@222-STO, Tc@222-STO, Re@222-STO, 

Ru@222-STO, Os@222-STO, Rh@222-STO, Ir@222-STO, respectively. Majority 

(minority) states have positive (negative) PDOS. (h) Electronic configurations in the d 

orbitals of magnetic dopant M
4+

 (M=Mo, Tc, Ru, Rh, Re, Os and Ir) ions. Green and 

blue horizontal lines represent the low-lying three-fold degenerate 𝑡2𝑔 orbitals and 
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the high-lying two-fold degenerate 𝑒𝑔  orbitals, respectively. The red and black 

arrows denote the up-spin and down-spin electrons, respectively. 

 

Depending on dopants, the electronic properties of magnetic M@222-STO display 

rich variations as well. First of all, they all have mid-gap states as shown in Fig. 3a-3g. 

Some of these states are only from the majority spin channel (M=Mo, Tc and Re) (Fig. 

3a-3c) whereas others are from both spin channels (M=Ru, Rh, Os and Ir) (Fig. 

3d-3g). In particular, the majority spin 𝑡2𝑔  orbitals are fully occupied only in 

Tc@222-STO and Re@222-STO. Therefore, the valence bands contain contributions 

from Tc or Re, but the conduction bands are still the 3d orbitals of Ti in these two 

cases (Fig. 3b-3c). This is distinctly different from the other five systems studied with 

M=Mo, Ru, Rh, Os and Ir, in which both valence and conduction bands contain 

contributions from dopants.   

 

 

Fig. 4. Summary of the bandwidths and band alignments of dopant M with respect to 

the valence and conduction bands of the STO host in M@222-STO. For completeness, 

S@222-STO and Se@222-STO are also included. 

 

From the above comprehensive information, we make a summary of the electronic 

properties of M@222-STO and show it in Fig. 4. Zr, Nb, Hf, Ta and W do not 
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introduce mid-gap states, thereby having no noticeable effect on the band gap of the 

STO host. In contrast, Pd and Pt cause significant band gap reductions. Mo, Tc, Ru, 

Rh, Re, Os and Ir are complicated as they also produce magnetization. Taking Rh as 

an example, its occupied states lie in the valence bands of STO and its unoccupied 

states are separated from the conduction bands of STO in Rh@222-STO, consistent 

with previous theoretical studies [7,18]. Bands of Mo, Ru, Os and Ir doped STO have 

a similar layout as Rh@222-STO. Lastly, the occupied majority spin states of Re 

almost bisect the band gap of STO in Re@222-STO, but those of Tc are rather close 

to the top of valance bands of STO in Tc@222-STO.     

 

 

Fig. 5. Effect of the concentration of dopant Pd/Re on the electronic properties of 

Pd/Re doped STO. (a)-(d) Band structures of Pd-doped STO and numbers give the 

direct band gap in units of eV. (e)-(g) Band structure of Re-doped STO. Majority and 

minority bands in (e)-(g) are plotted by the black and blue lines, respectively. Fermi 

levels are set equal to zero and indicated by the horizontal red dashed lines in (a)-(g). 

 

Now we examine how the concentration of dopants affects the electronic properties of 

STO. Taking Pd and Re as examples, we increase the supercell size of STO from 
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2×2×2 to 2×2×3, 2×3×3 and 3×3×3 and substitute only one Ti atom with Pd or Re 

in these supercells. As revealed by the band structures shown in Fig. 5a-5d, the band 

gap of Pd-doped STO increases gradually as the supercell size expands. This is 

understandable as the Pd-Pd interaction is reduced. Nevertheless, the direct band gap 

of Pd@333-STO is still smaller by 0.48 eV than that of the pristine STO within our 

calculations, even though the bandwidths of the occupied Pd states become very 

narrow. Similarly, the bandwidth of the occupied majority spin of Re states also 

shrinks in Re-doped STO as the supercell size increases (Fig. 5e-5g). Obviously, the 

concentration of dopants is an important factor of engineering the band gap of STO. 

We perceive that doping STO with high concentration Mo, Rh, Re and Ir may 

significantly improve its solar absorption efficiency as the midgap states may allow 

optical transitions from/to the valance and conduction bands of STO through 

dopant-host hybridizations.     

 

3.3 Electronic structures of STO doped with chalcogen elements Y (Y=S and Se) 

In this section, we study the electronic structures of STO doped with anionic dopants. 

Here we choose the chalcogen elements S and Se that are isovalent to oxygen. Fig. 6a 

and 6b show the PDOS curves of S@222-STO and Se@222-STO, respectively. We 

observe that states at the top of the valence bands of these two systems are mostly due 

to the S and Se dopants (Fig. 6c and 6d), since the 3p and 4p orbitals of dopants are 

much larger than the 2p orbitals of oxygen. This follows the similar strategy that we 

reported for O-alloying of pyrite FeS2 to expand its band gap [40]. As a result, 

S@222-STO and Se@222-STO have significantly reduced band gaps: 2.40 and 2.16 

eV, respectively. Fig. 6d-6g show the evolution of band structures of Se-doped STO as 

the concentration of Se decreases. Excitingly, we see that the band gap increases only 

by a small amount of 0.42 eV on going from Se@222-STO (2.16 eV) to 

Se@333-STO (2.58 eV). It is worthwhile to point out that the concentration of Se in 

Se@333-STO is already very low, i.e., 1.23%, comparable to that of Rh-doped STO 

in experiments [7].   
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Fig. 6. Electronic properties of STO doped with chalcogen elements Y (Y=S and Se). 

(a) and (c) show the PDOS (in units of state/eV) and band structure of S@222-STO. 

(b) and (d) same as (a) and (c) but for Se@222-STO. (e)-(g) show the band structures 

of Se-doped STO with different concentrations of Se. Numbers in (c)-(g) give the 

direct band gap in units of eV. 

 

3.4 Discussions   

There are several key factors that we need to consider for tailoring the band gap of 

STO through doping. It is ideal to reduce the band gap of STO to below 2.0 eV, 

possibly via an increase in dopant concentration. Therefore, one must be concerned 

with the solubility and cost of dopants. For the strategy of expanding the widths of 

valence and conduction bands, we perceive that S, Se and Pd are good candidates. 

Previous studies [7,11,19] have shown that mid-gap states of Rh
4+

 in Rh-doped STO 

are acceptor states and may trap charge carriers, thus being detrimental for 

photocatalysis. However, they may mediate optical absorption if these states become 
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delocalized and have adequate wave function overlap with the conduction or valence 

states of STO host. Obviously, this could be a new strategy and only can be done with 

a high doping concentration. If the mid-gap bands are broad, they also give rise to a 

good mobility for photo-induced carriers, which mediates rapid separation of 

electrons and holes generated by light [5]. From the band widths and band alignments 

as summarized in Fig. 4, we see that many elements are promising candidates, and 

hope this motivates experimentalists to evaluate doped-STO containing 

non-traditional dopants.  

 

 

Fig. 7. (a) Optical absorptions of Pd@222-STO and Pd@333-STO. (b) Optical 

absorptions of S@222-STO and S@333-STO. (c) Optical absorption of Se@222-STO 

and Se@333-STO. For comparisons, the optical absorption of the pristine STO is 

shown by the black lines in (a), (b) and (c). The cyan shades highlight the energy 

region that is in the range of the visible light.  

 

Here, we report the optical properties of the above-suggested photocatalysts, Pd, S, 

and Se doped STO. As seen in Fig. 7a, the optical absorptions of Pd@222-STO and 

Pd@333-STO start at photon energies of 2.95 and 3.13 eV. This shows that Pd-doped 

STO can be used for water splitting using near-ultraviolet light. Strikingly, the 

absorption thresholds of S and Se doped STO shift toward the visible light range, as 

shown in Fig. 7b and 7c, even with a small concentration of dopants (~1.3%). 

Therefore, Pd, S, and Se doped STO are indeed potential promising photocatalysts for 

water splitting under visible light irradiation.   
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Finally, we want to point out that there are various defects in experiments that may 

affect band gaps and optical properties of the doped STO as predicted in our work. It 

is shown that the common native defect, oxygen vacancy, can induce local moments 

in STO depending on the neighboring vacancy sites, vacancy-vacancy interaction, 

strain, and charge carrier density [41-43]. In this case, the oxygen-vacancy induced 

moments can couple to the moments of the magnetic 4d/5d dopants and, thus, the 

midgap states, band gaps may hence be modified to some extent. On the other hand, 

the dopants themselves may distribute non-uniformly in STO or even form small 

clusters. Obviously, these disorders also have effect on the band gaps and optical 

properties of the doped STO as discussed before [44]. Considering the complexity of 

these defect types and distributions, our present work cannot cover all aspects of the 

electronic properties of the doped STO, but rather provide useful insights for 

improving the photocatalytic performance of STO. 

 

IV. CONCLUSIONS 

In summary, we study comprehensively how the band gap and optical properties of 

SrTiO3 photocatalysts are engineered by doping 4d and 5d transition metals M (M=Zr, 

Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt) and chalcogen elements Y (Y=S 

and Se). Our study shows that transition metal dopants M have different effects on the 

band gap of STO depending on the electron numbers in their d orbitals. First, 

isovalent Zr and Hf in place of Ti has no effect on the band gap of the STO host, and 

Nb, Ta and W donate electrons to the conduction bands of the STO host, making their 

electronic properties unsuitable for application in light-driven water splitting. Second, 

similar to Rh-doped STO, there are mid-gap states that are either occupied or 

unoccupied when doping Mo, Tc, Ru, Re, Os and Ir in STO. Based on previous 

studies of Rh-doped STO [7,18], codoping with other elements could be utilized to 

improve the photocatalytic activity in these systems. Lastly, it is rather exciting that 

the direct band gap of STO can be reduced by doping Pd, Pt, S and Se. Especially, Pd, 

S and Se doped STO have largely reduced direct band gaps and appreciable optical 
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absorptions in the visible light range. Our work suggests that doping Pd, S and Se 

should be appealing to engineer STO as a photocatalyst for water splitting under 

visible light irradiation. 
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S1. Tabel I. Valence electrons of dopant M and Y. Here VEs is short for valance 

electrons.  

Dopant M VEs Dopant M VEs Dopant Y VEs 

Zr 4d5s Hf 5d6s S 3s3p 

Nb 4s4p4d5s Ta 5d6s Se 4s4p 

Mo 4d5s W 5d6s   

Tc 4d5s Re 5d6s   

Ru 4d5s Os 5d6s   

Rh 4d5s Ir 5d6s   

Pd 4d5s Pt 5d6s   
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S2. Band structure of Hf@222-STO 

 

Figure S1. DFT calculated band structure of Hf@222-STO. Fermi level is set to be 

zero and indicated by horizontal red line.  

 

 

 

 

 

S3. Band structures of Ta@222-STO and W@222-STO 

 

Figure S2. DFT calculated band structure of (a) Ta@222-STO and (b) W@222-STO. 

Fermi levels are set to be zero and indicated by horizontal red line in (a) and (b).  
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S4. Band structure of Pt@222-STO 

 

Figure S3. DFT calculated band structure of Pt@222-STO. Fermi level is set to be 

zero and indicated by horizontal red line.  

 

 

 

S5. Band structures of M@222-STO (M=Mo, Tc, Ru, Rh, Os, and Ir) 

 

Figure S4. DFT calculated band structure of M@222-STO (M=Mo, Tc, Ru, Rh, Os, 

and Ir). Fermi level is set to be zero and indicated by horizontal red line. The majority 

and minority bands are shown by the black and blue lines. 
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