
UC Irvine
ICS Technical Reports

Title
VHDL synthesis system (VSS) : user's manual, version 5.0

Permalink
https://escholarship.org/uc/item/08k4t2g4

Authors
Ramachandran, Loganath
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
1992-06-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08k4t2g4
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

VHDL Synthesis System (VSS)
User's Manual

Version 5.0

Loganath Ramachandran
Viraphol Chaiyakul

Daniel D. Gajski

Technical Report #92-52
June 1, 1992

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

(714) 856-8059

ramachan@ics.uci.edu

Abstract

This report provides instructionsfor installing and using the VHDL Synthesis System (Version 5.0).
VSS is a high level synthesis sytem that synthesizes structures from an abstract description, written
with VHDL behavioral constructs. The system uses components from a generic component library
(GENUS). The output of VSS is in structural VHDL and could be verified using a commercial VHDL
simulator. The designer can control the synthesis process by providing different resource constraints
to the system. VSS is also capable of producing different architectures which can be selected by the
designer.

teiwlcM siriT looilon
bolO!^fOii4 s(i vcfn
vvsJ jriQiivcin j vu
p.a.u' r 3iim

Contents

1 Overview 1

2 Installation Instructions 1

3 VHDL Synthesis System 3
3.1 VHDL preprocessor 3
3.2 Core Synthesis Tools 4
3.3 Display Tools 4
3.4 User Interface - 6

4 VSS Commands 6
4.1 Shell Mode 8

4.1.1 Commands for Synthesis 8
4.1.2 Commands for Results Display 8
4.1.3 Flowgraph Display 8

4.2 Interactive Mode 8

4.2.1 File => Quit 9
4.2.2 Synthesis ^ Read VHDL 9
4.2.3 Synthesis => Show Flowgraph 9
4.2.4 Synthesis => Execute VSS 9
4.2.5 Synthesis => Control Synthesis 10
4.2.6 Synthesis ^ Show Results ^ Control Tables 10
4.2.7 Synthesis => Show Results ^ Overall Structure 10
4.2.8 Synthesis => Show Results ^ Datapath Structure 10
4.2.9 Synthesis ^ Show Results ControlUnit Process 10
4.2.10 Synthesis ^ Show Results ^ ControlUnit Structure 10
4.2.11 Summary 10
4.2.12 Help 10
4.2.13 Control Style 10
4.2.14 Datapath Style 11

5 Component Library 11

6 The UNIT.CONSTRAINT file 11

7 Tutorial 13

7.1 Simulation 15

8 Acknowledgements

9 Appendix A

10 References

List of Figures

VSS Release - Directory Hierarchy 2
The VHDL Synthesis System 3
Control Pipelining Schemes 5
VSS Results 6
The VSS User Interface 7

Part of a sample UNIT.CONSTRAINT 12
Addr.Calc Behavioral Description . 13

1 Overview

VHDL Synthesis System (VSS) is a high level synthesis sytem that produces a structure netlist of mi
croarchitectural components from an abstract behavioral description. VSS accepts input descriptions
written with VHDL behavioral constructs. The system uses components from a generic component
library during the synthesis process. The output of VSS is in structural VHDL and could be verified
using a commercial VHDL simulator. The designer can control the synthesis process by providing
different resource constraints to the system. VSS is also capable of producing different architectures
and the designer can select one of the architectures for synthesis.

VHDL is an acronym for VHSIC(Very High Speed Integrated Circuit) Hardware Description Lan
guage. The VHDL standards are defined in document[8]. The VHDL constructs not currently sup
ported by VSS are listed in appendix A of this report.

This report provides instructions for installing and using the software in your site and is organized
as follows: the next section provides detailed instructions for installing the software. Section 3, gives
a brief description of the overall system. In Section 4, we show the different commands that can be
invoked. Section 5 and 6, give details of the component library and creation of the resource constraint
file respectively. We finally show a simple walkthrough tutorial to make it easy to understand and use
VSS.

2 Installation Instructions

This version of VSS has been tested on SUN-4 platforms with SUN OS 4.1.1. The VSS software
requires around 10 Megabytes of disk space. The interactive displays, require XWindows (Release
X11R5) and Motif (Release 1.1). The control synthesis requires some of the programs from Octtools
(distributed by UC Berkeley).

In order to load the software on your system complete the following steps:

1. Insert the VSS Distribution Tape into the tape drive of a SUN-4 machine.

2. Move to your home directory
% cd SHOME

3. Create a directory for installing the VSS software. We shall refer to this directory as release.dir.
Make sure that release.dir has the appropriate write permissions. Also change the working
directory.

% mkdir release_dir; cd release_dir

4. The VSS directory will be loaded into a subdirectory named vss-verS. (Ensure that no other files
with the same name exist). The VSS release can now be loaded by using the command

% tar xvf /dev/rstS

5. Do not forget to remove your tape from the drive. You can check to see if the installation
was successful by listing the files that were loaded and comparing it with the files shown in the
directory hierarchy (Figure 1).

6. We now have to setup some of the script files. Edit the file vss.verS/scripts/vssscript. This
file defines a few environmental variables. The original file (on the release tape) will contain the
following:

* Fill the name of the directory where VSS is installed,
setenv RELEASE.DIR

Fill the name of the directory where octtools is installed

setenv OCTTOOLS.DIR

setenv OCTTOOLS $DCTTaOLS_DIR

setenv CONTROL.SYN $RELEASE_DIR/vss_ver5

setenv GENUS_VHDL_DIR $RELEASE_DIR/vss_ver5/vhdl_models

setenv GENUS_DTAS_DIR $RELEASE_DIR/vss_ver5/dtas.model

set path « ($path $RELEASE.DIR/vss_ver5/bin)
setenv LD.LIBRARY.PATH $-CLD_LIBRARY_PATH}: $-CRELEASE_DIR>/vss_ver5/libraries
xrdb -merge $RELEASE_DIR/vss.verS/scripts/Xdefaults

Edit this file to reflect the proper pathnames. Fill in proper pathnames of the VSS release
directory and the octtools directory. After the above changes the first four lines of the script file
would look like:

Fill the name of the directory where VSS is installed,
setenv RELEASE.DIR /cz/ua/logi/release.dir
Fill the name of the directory where octtools is installed
setenv OCTTOOLS.DIR /cz/ua/octtools

7. This file vss^verS/scripts/vss^cript must be sourced into the shell before invoking VSS.
% source vss.ver5/scripts/vss.script

vhdl models

libraries

llbGENUS.so.1.2

libTRANS.so.4.0

libVSS_comp.so.4.0

VSS verS

dtas model

state_syn

vss_ver5

bdnet2vhdl

xdisp_file

vhdl2R

xdp

create unit constraint

examples

addr_calc
rw_cntr

bank_atm
ellip
hal

mod3

iccad91

scripts

Xdefaults

compjle_scrlpt
mcnc.geniib
vss_script

UNIT CONSTRAINT

Figure 1: VSS Release - Directory Hierarchy

genus

3 VHDL Synthesis System

The VSS system is a synthesis framework that contains a collection of tools. The overall picture of
the VSS system is shown in Figure 2. The system can be divided into four set of tools based on their
functionality. These sets are: (i) VHDL preprocessors, (ii) core synthesis tools, (ill) display tools and
(iv) User Interface.

VSS

System

User

Interface

VHDL
Descrtption

VHDL

Compiler

Transformauon

Controller

Synthesis

VHDL

Structure Netlist

Logic and Layout tools

Figure 2: The VHDL Synthesis System

3.1 VHDL preprocessor

Currently, the VHDL preprocessor serves two important functions. These functions are:

• Handle multi-process and multi-block descriptions - The input description could contain mutliple
processes or blocks. Each process gets synthesized into a CU-DP pair. In order to simplify this

synthesis task the description must be divided into multiple entities with each entity containing
a single process or block. This division of a multi-process or block description is done by the
VHDL preprocessor

• Structured Modeling Guidelines - The VHDL description must adhere to certain modeling guide
lines described in [1, 2]. The preprocessor checks for adherance to these guidelines.

3.2 Core Synthesis Tools

VSS contains two major synthesis tools, each catering to a different design style. These design styles

• FSM and a Datapath - Given an input description this tool produces a multi-state design
consisting of a Control Unit (represented as a finite state machine) with a datapath. The design
consists of many states and transitions from one state to another performing different operations
in each state. The functional units are shared between different states. Thus the datapath
components may be used more efficiently in this design style, but the design takes a larger
number of states to complete one iteration.

The Control Unit can be synthesized by a control synthesis tool called state_syn. State_syn
accepts an input description in kiss format and after performing state encoding and logic mini
mization the tool produces an optimized netlist. State^yn uses some of the programs available
in Octtools [3].

This design style can further be divided into three different architectures, each with a different
level of control pipelining. More details of the control pipelined architectures produced by VSS
is available in [4]. These architectures include:

- non.pipelined architecture where the control unit and the datapath are not pipelined

- status.pipelined architecture where the status signals are pipelined

- control_status_pipelined architecture where the control and status signals are pipelined.

Figure 3 shows the architecture for the three pipelinining methods. The designer can select any
one of these architectures.

• Designs with zero state registers - Given an input description, VSS can producea maximally
parallel design. Therefore all specified operations are completed in one clock cycleor state. Hence,
the control unit does not contain a state register. However, this design style may contain a large
datapath since all operations in the description have to be performed in parallel.

3.3 Display Tools

After the synthesis process completes, different types of results and statistics are provided by the core
synthesis tools. The table in Figure4 shows the type and format of results produced by the synthesis
tools. These results could either be in textual or graphical form. In order to view the results two
different display tools are released along with VSS.

• Textual Display tool (xdisp_file) - Used for displaying all textual results. (A simple text editor
could be used as a substitute for this tool).

Control Unit

< * ' STATE REG

Next-Slate

Control

Logic

Rcgistars

(a) Non Pipellnod Archltactura

Control Unit Datapath

STATE REG

Next-State

Control

Logic

Registers

(b) Status Pipelined Architecture

Control Unit Control Datapath

KiSiisijsKS®

STATE REG

Next-State

Logic

Control

Logic

Registers

(c) Control Status Pipelined Architecture

Figure 3: Control Pipelining Schemes

Rasult filenama Oascriptfon Format View with

V_P1Jinal.dgm CDFG of description dgm xdp

V_P1.state_info Descriptionof Actions in each state BIFIike xdispjiie

V_Pl_ai.kJss KISS format description of control unit KISS xdispjile

V_P1_cu_process.vhdl VHDL process description of control unit VHDL(proc) xdisp_file

V_P1_clp_struct.vhdl VHDL structural Descriptionof Datapath VHDLfstr) xdisp_file

V_P1_dp_summary Summary of Components used in Datapeith text xdispjile

V_P1_struct.vhdl VHDL structural description of the design VHDL(str) xdispjile

V_P1_cu.vhdl VHDLstructural description of Control Unit VHDL(str) xdispjile

V_Pl_cu_summafy Summary of Components used in ControlUnil text xdispjile

(1) Assuming V_P1.vtta is the Input fg«nama

(2) All the above files except'.dgm flee yvlU be found In a

separate subdireelofy caled 'RESULTS'

Figure 4: VSS Results

• Flowgraph Display tool (xdp) - This is one of the graphical display tools and is used to display
the flowgraph produced by the core synthesis tools.

• Netlist Display tool - This is a graphical display tool which can be display the CU-DP VHDL
structural netlist in graphical form. (Not available with current release).

3.4 User Interface

The User Interface (UI) provides users with a simple and elegant mechanism to control the synthesis
process. The UI displays a top level view of the design to the user. This top level view shows the
individual blocks and processes and their interconnections with global signals. A picture of the User
Interface is shown in Figure 5.

Using this top level view, designers can select individual blocks or processes to be synthesized.
The various options available during synthesis can be specified interactively. The results of synthesis
can also be viewed by clicking the appropriate buttons on the User Interface. The control of the UI
mechanism on the various tools is shown in Figure 2.

4 VSS Commands

The VSS system can be used in two different modes, (i) the shell mode, where the commands can
be issued directly from the UNIX shell. This mode can be used for simple non hierarchical behavioral
descriptions consisting of a single process or block, (ii) the interactive mode, which provides a
flexible user-interface for invoking various VSS commands.

Before invoking VSS, the vss_script must be sourced into the shell.
% source <release.dir>/vss_ver5/scripts/vss_script

HDL SYNTHESIS SYSTEM

File i^nthesls Summary

Con a®adVHDL [atus Registers
Show Flowgraph

Execute VSS

Control Synthesis

Replace Module

ShowResults flNetllst Display

Datapath Style: Pipelined Functional Units t>

Control Tables
EAD_STATE_BLK UIRITE_STATE_BLK

Overa Structure

pouer
Datapath Structure error_l

Contro Unit Process

ControlUnIt Structure

reset_l
parity_out

I
ujrite_i

n
read_l

parlty_in msb_ i o_bus_Dut

ad_ln

u isb_io_bus_out
msb_io_bus_i

I
lsb_io_bus_i

Figure 5: The VSS User Interface

The <release_dir> refers to the pathname where VSS was installed, (see section 2).

Before executing the following shell commands, ensure that you change the working directory, to
the location where the VHDL file was created. If a VHDL behavioral description has been created in
a file SHOME/models/a.vhdl, the following command needs to be executed

% cd SHOME/models

A UNIT.CONSTRAINT file that provides resource constraints is required in the same directory
as the model. This file specifies the maximum number of functional units of a particular type that can
be used during the synthesis process. A program called create_unit_constraint has been included in
the release. This will provide a way to interactively define the components. After adding the required
components to the database the data must be saved on a file called UNIT.CONSTRAINT.

4.1 Shell Mode

The commands in the shell mode are divided into two categories, (i) commands for the core synthesis
tools, (ii) commands for results display.

4.1.1 Commands for Synthesis

To invoke the single state synthesis tool use the command:
% trans -auto < vhdl_file >

To invoke the multi state synthesis tool use the command:
% vss_ver5 [-architecture <architecture_type>] <input_file >

The <architecture.type> can be one of the following: (a) non-pipelined (b) status.pipelined (c)
control_status_pipelined

For both these commands, a '.vhdl' extension is automatically assumed by VSS.

4.1.2 Commands for Results Display

The command for displaying textual results is:
% xdisp_file <results_filename>

The <resultsJilename> should be a valid textual filename. A list of files produced by VSS is shown
in the table in Figure 4.

4.1.3 Flowgraph Display

The command for displaying the flowgraph is :
% xdp <flowgraph_filename>

A '.dgm' extension to the <flowgraphJilename> is automatically assumed. The <fiowgraphJUename>
should be a valid filename. A list of flowgraph filenames produced by VSS is shown in the table in
Figure 4. Pressing the <c>-key inside xdp will provide a list of all possible flowgraph manipulation
commands.

4.2 Interactive Mode

The Interactive Mode used can be used for complex VHDL descriptions with multiple blocks and
processes. To invoke VSS in the interactive mode execute the command:

% VSS <vhdl_file>

A '.vhdl' extension to the filename is automatically assumed.

This command invokes the VHDL preprocessor which splits the given VHDL description into
multiple entities with appropriate routing of the global signals.

After invoking the pre-processor a user interface (UI) like the one shown in Figure 5 appears on
the screen. This UI can be used to invoke all synthesis commands, and also to view the results of the
synthesis. The designer can use this UI to control the synthesis and a examine the results.

A block or process must be selected before invoking any command on the UI. A block can be
selected by placing the cursor on any one of the boxes (representing VHDL blocks/processes) and
clicking the first mouse key (mi). The selected block will immediately appear shaded. As an example,
block MAIN'm Figure 5 has been selected.

The menu-bar on the upper portion of the UI contains four buttons File, Synthesis, Summary
and Help. Placing the cursor on any of these buttons and clicking on the first mouse key invokes
the particular command related to the button. Invoking the 'File' and the 'Synthesis' commands
will result in a submenu which contains a further list of commands. Some of the commands in the

submenus may create further submenus.

In this document we use a simple notation to indicate commands that are available in the lower
levels of the hierarchy of submenus. The command Synthesis ^ Results =» CU Netlist can be
accessed by first clicking on the Synthesis button in the menu bar. This would result in a submenu
appearing on the screen. The cursor must be moved within the submenu to point to the Results
item. Another submenu would appear, from which the CU Netlist option can be selected.

Let us now examine all the commands available from the User Interface. These commands are

relevant to the block or the process that has been selected on the UI.

4.2.1 File => Quit

This command closes the User Interface and quits the program.

4.2.2 Synthesis => Read VHDL

As mentioned above, the preprocessors splits the input VHDL into smaller entities, with one entity
per process or block. This command can be used to show the VHDL for the block or process selected
in the UI.

4.2.3 Synthesis ^ Show Flowgraph

The flowgraph for the selected block or process can be seen with this command.

4.2.4 Synthesis ^ Execute VSS

This command invokes the synthesis process. The type of architecture that is produced depends
on the Control Style: setting in the UI. (Section 4.2.14 explains how to set the architecture type.)
This command produces the VHDL structure netlist for the datapath, a process description of the
controller, and an overall netlist that combines the control unit and the datapath. It is possible to
simulate the datapath netlist after this command.

4.2.5 Synthesis => Control Synthesis

This command invokes the control unit synthesis program. The control unit description produced
during the datapath synthesis can be synthesized using this command. The output of this command
is a netlist of gates, from the mcnc.genlib.

4.2.6 Synthesis ^ Show Results Control Tables

This command shows the results of scheduling and binding. These results indicate the actions in each
state and the activation of control pins on all datapath components. The format is very similar to the
Ops Based and the Unit Based state tables in BIF [5].

4.2.7 Synthesis ^ Show Results ^ Overall Structure

This command shows the overall netlist consisting of two components (i) the control unit and the
(ii) datapath. This file can be used to verify the number of pins on both the control unit and the
datapath.

4.2.8 Synthesis => Show Results =?• Datapath Structure

This command shows the VHDL structural description of the datapath.

4.2.9 Synthesis ^ Show Results => ControlUnit Process

This command shows a VHDL process description of the control unit.

4.2.10 Synthesis ^ Show Results => ControlUnit Structure

This command shows the VHDL structural description of the control unit.

4.2.11 Summary

This command shows a summary of the components that have been used for synthesizing the descrip
tion.

4.2.12 Help

This command shows any on-line help that may be available.

4.2.13 Control Style

The architecture type can be set by using the option menu that is available below the top menu bar.
This command allows you to select one of the four possible architectures synthesizable by VSS. Proper
setting of the architecture type is required before invoking the synthesis command.

This command works differently from the other commands discussed above. If we place the cursor
on the rectangle to the right of the Control Style and click on the first mouse key (ml), all the
possible choices for the architecture get displayed. Keeping the mouse key pressed, the cursor must be

moved to the desired architecture type. When the mouse key is finally released the desired architecture
type will be selected and the selection will be displayed in the rectangle.

4.2.14 Datapath Style

This command determines the type of functional units that can be used (Pipelined or NonPipelined).
Note that the setting of this command is not considered for the current version of the release.

5 Component Library

VSS uses a generic microarchitectural component library called GENUS. Since GENUS is a parameter
ized library, VSS can instatiate any component by specifying the required parameters (e.g., bit-width,
functionality).

A generic library allows efficient synthesis by providing components with the required struc
ture. In addition to providing the components, GENUS also generates VHDL models automat
ically. These VHDL models are created in the directory specified by the environmental variable
GENUS_VHDL_DIR.

After the design is synthesized using generic components, each component can either be designed
manually or an automatic component synthesis program like DTAS can be used. DTAS can synthesize
microarchitectural components using the technology specific components from a vendor library.

References [6, 7] provide complete details about the GENUS library and the DTAS component
synthesis program.

6 The UNIT.CONSTRAINT file

VSS accepts functional unit constraints during synthesis. It is possible to constrain the number of
functional units of various types. A UNIT.CONSTRAINT f(\.Q must be created in the same directory
as the VHDL model.

In order to simplify the task of creating this file, we provide a sample UNIT.CONSTRAINT
in the release directory. Assuming that the model file is in the directory $HOME/models, the sample
constraint file can be copied to the directory where the model exists.

% cp <release_dir>/vss_ver5/scripts/UNIT_CONSTRAINT $HOME/modeIs

A part of a sample constraint file is shown in Figure 6.

The original file constrains the synthesis process to use three different functional units. Each
functional unit definition is demarcated with a line containing a sign. The first functional unit
describes a 10 bit ALU, which performs the ADD and SUBTRACT function. The second component
is another ALU that performs the COMPARISON and the NOT function. The third component is a
10 bit multiplier.

This file can now be edited to show the actual UNIT.CONSTRAINTS for the synthesis. Here are
some of the ways the file can be modified.

• Changing the number of instances - The NUM.INSTANCES parameter can be changed to in
dicate the maximum number of allowed instances for that component. For example if a maxi
mum of two multipliers are allowed, change the line NUM.INSTANCES: 1 for the multiplier to
NUMJNSTANCES: 2.

GC_COMPILER_NAME: ALU
GC_INPUT_WIDTH: 10
GC_NUM_FUNCTIONS; 2
GC_FUNCTION_LIST: GC_SUB.GC_ADD
GC_STYLE: GC_RIPPLE_CARRY
NUM_INSTANCES: 1
AREA: 100.0

DELAY: 80.0

#

GC_COMPlLER_NAME: ALU
GC_INPUT_WIDTH: 16
GC_NUM_FUNCTIONS: 2
GC_FUNCTION_LlST: GC_EQ,GC_LNOT
GC_STYLE: GC_RIPPLE_CARRY
NUMJNSTANCES: 1
AREA: 100.0

DELAY: 80.0

»

GC_C0MP1LER_NAME: MULT
GC_INPUT_WID"m; 10
GC.STYLE: GC_ARflAY
NUMJNSTANCES: 1
AREA: 3000.0

DEUY: 180.0

tf

Figure 6: Part of a sample UNIT.CONSTRAINT

• Changing the bit width of components - The GCJNPUT-WIDTH reflects the bit width of the
specifled component. To change the bitwidth of the multiplier change the GC.INPUT.WIDTH:

. 10 line for the multipHer to GCJNPUT.WIDTH: 16

• Deleting a component - A component can be deleted by changing the NUMJNSTANCES to 0.

• Creating a new type of component - The ALU in GENUS can perform many different functions.
The possible functions are explained in the GENUS manual [6]. To create an ALU that performs
the increment and decrement operations copy the nine lines (including the ^ line) that represent
the ALU component, and change the GC_NUM_FUNCTIONS AND GC_FUNCTION_LIST pa
rameters. In other words, the following lines would get appended to the UNIT.CONSTRAINT
file.

GC_COMPILER_NAME; ALU

GC_INPUT_WIDTH: 16

GC_NUM_FUNCTIDNS: 2

GC_FUNCTION_LIST: GC_INC.GC_DEC

GC.STYLE; GC.RIPPLE.CARRY

NUM.INSTANCES: 1

AREA: 100.0

DELAY: 80.0

• Changing Technology Specific Parameters - The AREA and the DELAY specification provides
hints to the synthesis program. This can be changed to reflect reality. In the original constraint
file the multiplier is twice as slow as the ALU.

• Note that the first two REGISTER components in the file must not be changed.

A program called create-unit.constraint is released with the package. This is an interface that
provides a simple way of creating the UNIT CONSTRAINT file.

7 Tutorial

In this section we will walkthrough an example to understand how to use VSS and the type of designs
that VSS can synthesize.

Let us synthesize a simple address calculation design. In this model, we increment the pcby4 if the
current instruction is not a branch instruction. Otherwise, it sets the pcequal to the input branchpc.

entity addr_caj is
port (branchpc : in bit_vector(15 downto 0);

branch,dk : in bit;

pc : out bit_vector(15 downto 0));
end addr_cal;
architecture behavior of addr_cal is

variable pc_reg: bit_vector(15 downto 0);
begin
P1; process (elk)

begin
it (dk"'1') then

if (branch - '1') then
pc_reg brar>chpc;

else

pc_reg :»pc_reg + 4;
end if;

end if;

pc <= pc_reg;

end process P1;
end behavior;

Figure 7: AddrXalc Behavioral Description

Figure 7 shows the behavioral description of the circuit. It has a single process containing a simple
branch statement. Let us go through the following steps for synthesizing this design.

1. Source the vss_script file
% source <release_dir>/vss_ver5/bin/vss_script

2. Create a new working directory and move to this new directory:
% mkdir $HOME/test_vss; cd $HOME/test_vss

3. Copy the VHDL file from the examples directory
% cp <release_dir>/vss_ver5/examples/addrjcalc/addr_calc.vhdl .

4. Copy the UNIT-CONSTRAINT file from the release directory:
% cp <release_dir>/vss_ver5/examples/addr_calc/UNIT_CONSTRAINT

5. Edit parts of the UNIT.CONSTRAINT to allow one 32 bit ALU for addition and one 1 bit ALU
for comparison as shown below:

GC.COMPILER.NAME: ALU

GC.INPUT.WIDTH: 32

GC_NUM_FUNCTIONS: 1

GC_FUNCTION_LIST: GC_ADD

GC.STYLE: GC.RIPPLE.CARRY

NUM.INSTANCES; 1

AREA; 100.0

DELAY: 80.0

«

GC.COMPILER.NAME: ALU

GC_INPUT_WIDTH: 1

GC.NUM.FUNCTIONS: 1

GC_FUNCTION_LIST: GC.EQ

GC.STYLE: GC.RIPPLE.CARRY

NUM.INSTANCES: 1

AREA: 100.0

DELAY: 80.0

6. Invoke VSS on the description
% VSS addr_calc

The User Interface appears on the screen showing the overall structure of the chip.

7. Select the process PI, represented as a box on the UI. This box becomes highlighted.

8. Select the following command on the UI
Synthesis ^ Show_Flowgraph

The flowgraph for the process appears in a separate window.

9. Note that the With Status Registers architecture types has been selected by default.

10. Synthesize the circuit for the process by selecting the following command
Synthesis => Execute_VSS

11. Synthesize the control logic by selecting the command:
Synthesis =>• ControLSynthesis

12. Click on the Summary button. A form containing a summary of the components used by VSS
will be displayed. A transistor count estimate is also provided.

13. Click on the 'Close' on the bottom of the summary form. The summary form wiU disappear.

14. Select any or all of the following commands to see the results of the synthesis
(Synthesis => Show Results =>• Control Tables,
Synthesis =» Show Results Overall Structure,
Synthesis ^ Show Results =» Datapath Structure,
Synthesis => Show Results ^ ControlUnit Process,
Synthesis => Show Results ControlUnit Structure)

Other architectures can be synthesized by changing the architecture setting to the desired Control
Style and repeating steps 10 to 14.

7.1 Simulation

All the VHDL files are created in a subdirectory (called RESULTS). Since the process is called PI,
all the results files will be called VJPl_<something>...

All the VHDL models for the individual components will be created in the directory pointed to by
the environmental variable GENUS_VHDL_DIR.

To simulate the complete design created by VSS, simulate the files in the following order.

• defs.vhd (This is available in $RELEASEJDIR/genus/defs.vhd)

• all files with a '.vhdP extension in the directory pointed to by the environmental variable
GENUS_VHDL_DIR.

• the datapath structure netlist - this is available in RESULTS/V.Pl.dp_struct.vhdl

• the control unit process - this is available in RESULTS/V_Pl_cu_process.vhdl

• the overall structure consisting of the CU and DP - this is available in
RESULTS/V_Pl_struct.vhdl

After compiling the files in the above order, test vectors can be applied to the overall structure.

8 Acknowledgements

This work was supported by the Semiconductor Research Corporation (grant ?^91-DJ-146). We are
grateful for their support.

9 Appendix A

In this appendix we list some of the features of the VHDL language that are currently not supported
by the VSS.

VSS does not support the following constructs in VHDL

• Procedure and Function Calls

• Enumerated Types

• Record Structures

• CONSTANT declarations

• Null statements

• Exit statements

• Return Satements

• loop with no iteration scheme

• Arrays of more than 2 dimensions

• Inout Ports

In addition to avoiding the above constructs, the following points must be observed, due to limita
tions in the current version of the software.

%

• Comment statements in the input VHDL cause problems to the VHDL preprocessor. They
should be removed before the preprocessor is invoked.

• The preprocessor also requires that all processes and blocks have a name. This implies that every
process should begin with
NAME: process
and end with

end process NAME;

10 References

[1] J.Lis and D. Gajski, "Behavioral Synthesis from VHDL Using Structured Modeling." University
of California, Irvine, TR ICS 91-05, 1991.

[2] J.Lis and D. Gajski, "Structured Modeling for VHDL Synthesis." University of California, Irvine,
TR ICS 89-14, 1989.

[3] R.K.Brayton, A. V. R.Rudell, and A.Wang, "MIS: A multiple level logic optimization system,"
IEEE Transactions on Computer-Aided Design^ Nov 1987.

[4] L.Ramachandran and D. Gajski, "Tradeoffs in Synthesis of Pipelined Controls." University of
California, Irvine, TR ICS 92-49, 1992.

[5] T. N. Dutt and D. Gajski, "BIF: A Behavioral Intermediate Form for High Level Synthesis."
University of California, Irvine, TR ICS 89-03, 1989.

[6] N. Dutt and P. Jha, "GENUS: A Generic Component Library for High Level Synthesis." University
of California, Irvine, TR ICS (will be available in June 92), 1992.

[7] J. Kipps, "An Approach to Component Generation and Technology Adaptation." University of
California, Irvine, TR ICS 91-79, 1991.

[8] "IEEE Standard VHDL Language Reference Manual.", 1988.

