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ABSTRACT OF THE DISSERTATION

Towards Structurally Closing the Academia-Industry Gap in Undergraduate CS

by

Andries Valstar

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor William G. Griswold, Co-Chair
Professor Leo Porter, Co-Chair

The academia-industry gap in undergraduate CS education has been a well recognized

problem over the past two decades. Many papers have identified this gap or proposed novel

solutions to parts of it. Yet, recent studies found the gap persists. This dissertation explores

various possible reasons that could lie behind the persistence of this gap. We uncover that the

majority of CS faculty support including more industry-relevant content in their courses. Faculty

do however experience a skills, resources and awareness gap which forms a barrier to making their

courses more relevant to industry practice. Moreover, we find that these barriers are experienced

by CS faculty at top universities world-wide. Furthermore, many of the efforts to close the

xiii



gap do not adequately address known barriers to adoption and barriers encountered by faculty.

Additionally, one concern raised by some faculty is that students may not be learning the skills

that we are teaching. These faculty are partially correct as we find evidence indicating that the

average student proficiency with prerequisite materials may not be fully aligned with instructor

expectations. Moreover, a different study indicates there are performance disparities between

several subpopulations of students. However, we also find evidence that indicates that students on

average continue to improve their understanding of CS fundamentals as they progress through

their program, indicating that students on average do appear to learn the materials that we teach.
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Chapter 1

Introduction

This chapter will introduce my motivation for pursuing research on the topic of the

academia-industry gap in Computer Science education as well as the early discoveries of my

first literature reviews on the topic, the current state of the art, my thesis statement and my

contributions to the field.

1.1 Motivation

When I started my first full-time job as a software engineer I realized quickly that there

were many skills that I needed to have to be able to perform my job responsibilities that I was not

necessarily taught in my Computer Science studies. Now this is of course not all that surprising

in and of itself, every job will be unique in some ways and require some form of on-boarding

process. However, many things I was unfamiliar with were certainly not unique to the company I

worked at. Take testing for example. From my education I was only familiar with unit testing.

However, my team was using numerous additional kinds of testing that I had never heard of

before: integration testing, UI testing, performance testing, load testing, acceptance testing, A/B

testing and even manual testing using formal test scripts. Moreover, I was also unfamiliar with

commonly used design techniques that lead to testable code and was unfamiliar with the concept
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of mocking.

Note that testing is merely one example used to illustrate the point that I experienced a

disconnect between my studies and my first job, I struggled with various other things as well. For

example, I was overwhelmed by the size of the project code bases which were several orders of

magnitude larger than any project I’d ever worked on before. The engineers employed numerous

design strategies to keep the code bases manageable, most of which were completely new to

me. These approaches and skills were not specific to the company I worked at and will likely be

applicable in most professional software engineering contexts.

Having spent about 5-6 years in CS education at two different world-renowned universities,

attaining both a Bachelor and a Master’s degree in Computer Science, I would have expected to

arrive better prepared for the realities of my first job. From this experience, I concluded that there

should be things that can be improved in academic CS programs that will narrow the gap that

recent CS graduates currently have to bridge by themselves. It is what ultimately motivated me to

pursue research in Computing Education aimed at closing the academia-industry gap.

1.2 Early Discoveries

When I first arrived at the University of California San Diego I was under the impression

that academia was generally unaware of the gap I had experienced. However, while performing

the literature review for my research exam, I was pleasantly surprised by the amount of studies

that had already been published on the topic. Studies published as early as 1998, have concluded

that there exists a gap between CS education and the realities of the software industry [67].

All throughout the past two decades studies reaching similar conclusions have continued to be

published. Table 1.1 presents an overview of these studies.

After discovering this abundance of proof for the existence of the academia-industry

gap I thought my main research contribution would be proposing educational innovations that

could close the gap. However, when I continued my literature reviews to inventorize the existing
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Table 1.1: Publications identifying the academia-industry gap in Computer Science.
Study subject: I=industry professionals, O=opinion article, S=students/recent graduates,
L=literature review

Year Author(s) Subj. Title
1998 Lethbridge I The relevance of software education: A survey and some

recommendations [67]
2002 Haddad I Post-graduate Assessment of CS Students: Experience

and Position Paper [51]
2003 Brechner O Things they would not teach me of in college: what Mi-

crosoft developers learn later [25]
2004 Hagan I Employer Satisfaction with ICT Graduates [52]
2007 Taft O Programming Grads Meet a Skills Gap in the Real World

[116]
2008 Begel & Simon S Struggles of New College Graduates in Their First Soft-

ware Development Job [22]
2008 Begel & Simon S Novice Software Developers, All over Again [21]
2010 Stroustrup O Viewpoint: What should we teach new software develop-

ers? Why? [113]
2013 Radermacher &

Walia
L Gaps Between Industry Expectations and the Abilities of

Graduates [93]
2014 Radermacher et al. I Investigating the Skill Gap Between Graduating Students

and Industry Expectations [94]
2018 Craig et al. S Listening to Early Career Software Developers [32]
2019 Kapoor & Gardner-

McCune
S Understanding CS Undergraduate Students’ Professional

Development Through the Lens of Internship Experiences
[62]

relevant educational innovations I discovered yet again a large number of studies (see Chapter 5

and Appendix A.1). The presence of this substantial body of educational innovations related

to the academia-industry gap somewhat surprised me. After all, if the community is aware that

the gap exists and there are already existing solutions to remedy at least parts of it, then why

does the gap persist? Since these innovations could in theory be taken straight off the shelf and

implemented in classrooms across the globe as solutions to the academia-industry gap, I had

to shift my ideal research contribution from a solution focus to an understanding focus. The

reason being that, given the abundance of relevant educational innovations, providing insight

into possible reasons why the academia-industry gap has persisted in the face of all this relevant
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research would be a more substantial contribution to the field than adding yet another educational

innovation to the literature.

Disregarding the opinion articles, one striking similarity between the studies in Table 1.1

is that they either study students/recent graduates or experienced industry professionals. Thus, my

literature study uncovered that there is a lack of studies conducted on Computer Science faculty.

Studying faculty then, would be the first avenue for my research to contribute to the understanding

within the academic community of the persistence of this problem. The findings in my studies on

Computer Science faculty would prompt new studies in several directions. One such direction of

study was to investigate existing relevant educational innovations for the presence of barriers to

adoption. Another direction of study directly following from faculty comments was to investigate

if the academia-industry gap could be caused by students simply not learning as much of what we

teach as we might expect.

1.3 The Current “State of the Art”

While there is a wide variety of educational innovations available that claim to address

one or more parts of the academia-industry gap (See Chapter 5 as well as a recent effort by MIT

that gained some popularity online [80]). There is not one recognized “state of the art” approach

to closing the academia-industry gap.

One likely reason for why there is no recognized current best approach is that the academia-

industry gap consists of a wide variety of different topics. Thanks to Radermacher and Walia,

we do know the dimensions of the academia-industry gap. In their study they identified 15 areas

of student deficiency that occur frequently in papers on the gap [93]. Additionally, while the

academia-industry gap is a recognized issue in the field there is less recognition on what should

be areas of prime focus, and against what baseline innovations should be assessed. The resulting

situation is a large body of studies that may claim to be beneficial in their respective settings, but

a lack of a wider push to systematically move towards closing the academia-industry gap.
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For some areas in Radermacher and Walia’s list of gaps it is easier to establish what is the

state of the art than for others. For example, in the area of Computer Ethics I am not aware of a

state of the art approach even after my literature reviews for Chapter 5. Moreover, since I myself

am not a computer ethics expert it would be difficult for me to establish exactly what the state of

the art is unless the literature is very clear on this matter. In Chapter 5 I dealt with this problem

by using citation frequency as a proxy for state of the art status among available innovations.

An example of an area for which there is a clearer state of the art is the area of Software

Testing. In this area several different approaches for the automated assessment of the quality of

student written tests have been compared. Shams found that mutation testing and all-pairs testing

were better indicators of student test quality than code coverage analysis, which is the current

industry standard for analyzing test quality in professional software projects [101]. However,

while according to this research it would be better to apply some combination of mutation testing

and all-pairs testing instead of code coverage analysis for automatically grading student test

quality, applying any approach to grade student test quality would likely already be substantially

better than the status quo in which Software Testing is often under emphasized and not graded at

all. Again, it was this realization, that adequate approaches exist but appear to simply not be used,

that prompted me to focus on investigating why the gap has persisted and what keeps faculty

from adopting these approaches instead of focusing on creating new approaches myself.

1.4 Thesis Statement

There is a long-standing academia-industry gap in undergraduate CS education that has

been able to persist in part due to a lack of understanding of how faculty view their role in

preparing students for industry. It is important to understand how faculty view the academia-

industry gap as they would ultimately need to implement at least some of the changes necessary

to close it.

Encouragingly, we find that a majority of faculty is supportive of closing the academia-
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industry gap in CS programs. However, despite substantial study and support, the gap persists.

This lack of success in addressing the gap is in part due to barriers experienced by faculty and

barriers to adoption present in existing solutions. While there are also some concerns regarding

student learning, we find students on average do continue to improve their understanding of CS

fundamentals throughout the program.

More precisely, this thesis substantiates the following claims:

1. There is a long-standing and unresolved academia-industry gap in CS, despite substantial

study and efforts (Chapters 2 and 5, and Table 1.1).

2. We claim that a majority of faculty are willing to help close the gap, but that many

experience barriers that keep them from closing the gap in their own courses (Chapters 3

and 4).

3. Moreover, we claim that many of the efforts to close the gap do not adequately address

known barriers to adoption and barriers encountered by faculty (Chapter 5).

4. A concern raised by some faculty is that students may not be learning the skills that we are

teaching. Our claims on this front are the following:

(a) We claim that students on average appear to not be as proficient with prerequisite

fundamental CS materials as instructors in later courses might expect (Chapter 6).

(b) We claim that students on average seem to continue to improve their knowledge of

CS fundamentals in later courses (Chapters 6 and 7).

(c) We claim that there appear to be performance disparities between several subpopula-

tions of students (Chapter 7).
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1.5 Contributions

The contributions to the field outlined in this thesis are the following:

1. Insight into the existing faculty views on this issue, the relative support for opposing views

and barriers experienced by faculty (Chapters 3 and 4).

2. Insight into which barriers to adoption are frequently present in currently available innova-

tions (Chapter 5).

3. Insight into student learning. More specifically, uncovering the importance of prerequisite

knowledge as well as how students continue to improve fundamental CS knowledge

throughout their CS program (Chapters 6 and 7).

4. Insight into performance disparities between student subpopulations (Chapter 7).
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Chapter 2

Background and Related Work

This chapter summarizes the related work on the academia-industry gap. More in-depth

related work sections can be found inside the relevant chapters in this dissertation.

2.1 Studies Uncovering the Gap—What About Faculty?

Many papers published over the past two decades have uncovered the existence of a

persisting academia-industry gap in CS. These works can broadly be categorized as follows:

studying students/recent graduates, studying industry professionals, literature reviews and opinion

articles. As can be seen in Table 1.1, the vast majority of these studies are studying students/recent

graduates or industry professionals. Unfortunately there was a striking lack of studies conducted

on CS faculty regarding this issue. It is important to understand how faculty view the academia-

industry gap and their role in this issue as they are ultimately the ones who will have to bring

about the change required to close the gap. The lack of studies on faculty is what prompted me to

conduct the research outlined in Chapters 3 and 4.

2.1.1 The Academia-Industry Gap in Other Fields

The presence of an academia-industry gap is not unique to the field of Computer Science.

Some examples of other fields in which researchers have noted the presence of a similar gap are:
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Hospitality [18], Law [37], Business [78], Medicine [23], and Accounting [104].

Also noteworthy is that a number of papers have identified the presence of an academia-

industry gap for Software Engineering (SE) programs and specializations [13, 20, 43, 83, 126].

This indicates that simply offering a separate SE program or specialization for students seeking

to become software engineers does not necessarily solve the academia-industry gap in CS.

2.2 Studies Proposing Solutions to (parts of) the Gap

The academia-industry gap is a diverse problem. Radermacher and Walia identified 15

different areas of student deficiency [93]. Some deficiencies are very technical whereas others are

more social in nature. For each of these 15 areas, educational innovations have been proposed

in academic literature (see Chapter 5 and Appendix A.1). Moreover, there are several different

styles of approaches to closing parts of the gap with industry that can take substantially different

forms:

Internships (e.g. students spend their summer break working at a company)

Co-op programs (e.g. students spend several terms working at a company, generally more

structured than internship programs)

Technological changes (e.g. use a different IDE in a programming course)

Curriculum-wide changes (e.g. grade software testing in all programming courses)

Course changes (e.g. teach software architecture using popular open source projects)

New courses (e.g. add a new course to teach communication skills)

Each different type of approach comes with its own benefits and drawbacks. For example,

internships may be relatively hands-off solutions for universities. However, since the number

of available internship positions is limited, not every student will be able to benefit from such
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programs. Moreover, the benefit to student learning will likely heavily depend on how serious the

companies take their role of creating learning opportunities for the students over simply using the

programs as recruitment opportunities. Furthermore, a recent study has found that about half of

CS students returning from an internship feel that their CS studies had not prepared them well for

their internship [62].

The diversity of the problem combined with the vastly different existing approaches makes

it difficult to compare among approaches directly and pick a “best” solution to the academia-

industry gap. Instead of trying to pick one “best” solution, it is likely better to implement a

combination of multiple different approaches. The most important insight I gained from my

reviews of related work on solutions to the academia-industry gap is that there is already an

abundance of educational innovations in academic literature that claim to be effective at closing

parts of the gap (see Chapter 5 and Appendix A.1). The question remains, why does the gap

persist today despite the presence of these innovations?

2.3 Studies on Adoption of Educational Innovations

A possible explanation as to why the gap persists despite the presence of educational

innovations can be found in studies on adoption of educational innovations. Multiple studies

have been conducted on this topic, in CS as well as in other fields. Notable is an organization

called “Increase the Impact” that aims to help innovators with achieving sustained adoption of

their innovations [123]. For the field of CS, a working group was started in 2018 to help promote

the adoption of educational innovations [119]. Their work led to a paper published at ITiCSE

2018 [118].

Several studies have identified barriers to adoption commonly cited by faculty, such as

unawareness of the innovation and a lack of time to implement it [60, 118]. Chapters 3 and 4

investigate how faculty experience these barriers. Chapter 5 investigates which barriers are

frequently present in existing solutions to parts of the academia-industry gap.
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2.4 Studies on Student Learning

Another possible explanation for the persistence of the academia-industry gap according

to some faculty in Chapters 3 and 4 is that students who feel underprepared for industry might

simply not have been learning what faculty were trying to teach them. The study described in

Chapter 7 was conducted in part as a result of the finding that some faculty hold this opinion.

In the field of Computing Education Research, naturally many studies have been conducted

on student learning. A famous example that shows students are not learning as much in courses

as instructors might expect is the “rainfall problem” described in Soloway’s 1986 paper [108].

Moreover, related work has found that knowledge loss among students can be substantial over

time. Tennyson and Beck found that students had a 15.1% knowledge loss over the summer break

whereas knowledge loss was only 4% over the much shorter winter break [120]. It is also known

that there are performance differences between students with prior experience with CS and those

who do not, that persist throughout the entire undergraduate program [16]. Chapter 7 investigates

several other subpopulations of students for the presence of similar performance differences.
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Chapter 3

Exploring Faculty Views on the

Academia-Industry Gap

A Qualitative Study of Faculty Views on the Goals of an

Undergraduate CS Education and the Academia-Industry Gap

3.1 Introduction

Students tend to take a relatively pragmatic approach in deciding to attend university. They

often expect their degree to prepare them for the job market and increase their employability [44,

84]. This job-focused mentality is even more prevalent in first-generation students [66] and does

not change significantly, among psychology students, as they progress through their degree [84].

The expected benefits are most heavily centered along extrinsic motivations, including obtaining

a better career or fulfilling family expectations. The most important factor influencing students to

study CS, in addition to general interest and prior experience in the field, are career prospects [15,

55].
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In contrast to their expectations, many CS graduates feel unprepared for the challenges of

their first job [22, 32, 62]. This disconnect between academia and industry in CS was identified at

least two decades ago [67], yet studies conducted in the past decade show that not much progress

has been made to close this gap [22, 32, 62].

This study aims to uncover some of the reasons why the academia- industry gap persists.

Although it is generally well-understood that students desire more career-related training [32, 44],

faculty views on the issue remain relatively unstudied in CS. Faculty are important to study, as

they design and implement the curriculum (e.g., choosing to what extent to realize the ACM

Curricula Recommendations [61]). Faculty views were recently studied focusing on the alignment

between CS education and industry needs [30], assuming faculty see industry preparation as a

primary goal. Our work explores faculty views more broadly, canvassing their views on the goals

of an undergraduate education and a CS major to ultimately answer the question: “Are faculty

views on undergraduate CS a potential cause for the persistence of the academia-industry gap?”.

Previous work has found that enhancing employability is not always a major focus of

curriculum design [44] and that learning outcomes of a degree are generally developed by faculty

without referring to students’ motivations for attending university [84]. Thus, we expected to

find that a sizeable group of faculty oppose the idea that preparing students for industry is a main

goal of a CS program. As such, our questions concern (a) whether faculty believe preparation for

industry is a primary goal of a CS degree, (b) why they hold that view, and (c) whether there are

other obstacles to closing the gap.

To identify the range of faculty views on the goals of a CS education, we conducted

semi-structured interviews. We recruited a diverse group of 14 CS faculty across 3 institutions,

including a large research-intensive university, a small liberal arts college, and a large primarily

undergraduate institution. We employed Phenomenography to identify the full spectrum of

experiences and beliefs of the participants.

We found, first, that faculty feel that, beyond the CS fundamentals, the goals of a CS
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degree should be defined by the student’s objectives. Moreover, with the understanding that

real-world impact is likely, students should be prepared for ethical leadership. Second, a range

of opinions regarding industry preparation were expressed, including faculty either opposing

or supporting industry preparation playing a significant role in CS education. Third, faculty

admitted struggling with properly preparing students for industry, citing increasing class sizes,

lack of background in industry practices, and the difficulties of designing realistic projects without

overtaxing both the students and instructors.

3.2 Background

3.2.1 Motivations for Attending University

Wilson et al. suggest that there should be a close alignment between student and instructor

expectations to improve students’ learning and performance. Hence, faculty designing curricula

should understand student motives and program expectations [136]. Student motives among

geography majors were also studied, finding that undergraduate and graduate students desire that

their curricula focus more on career guidance and vocational training [44]. Similarly, in computer

science, students value career-relevant training during their undergraduate degree [32] and, in

some cases, may not always understand the relevance of many CS courses for their careers [89].

3.2.2 Academia and Industry Preparation Gap

Industry practitioners report that there is a gap between university graduates’ abilities and

industry expectations, including both technical and non-technical skills [90]. Recent computer

science graduates have been found to undervalue software testing [90, 93], struggle with configu-

ration management systems and other software tools [93], lack relevant project experience [94],

and lack experience fixing bugs in, or adding features to, large or poorly documented legacy code

bases [22]. For a literature review, see [93].

A number of studies have also shown that students lack social and “soft” skills relevant
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for success in industry. A study that analyzed the alignment of course syllabi and industry needs

noticed a lack of mentioning of soft skills in the syllabi [72]. CS graduates have been found to be

underprepared to effectively communicate with co-workers and customers [94] and they fail to

reach out for help from colleagues or senior engineers when needed [22]. Moreover, they have a

number of fundamental misconceptions about how software engineering work is performed in

industry, including the importance of team interactions, although internship experience reduced

the frequency of these misconceptions to some extent [115].

Craig et al. summarized prior work on this subject and conducted additional student inter-

views. They found that CS students were underprepared for work on customer-centered projects

of vague and evolving scope, work on projects that would span multiple years, collaboration

with larger teams to design complex systems, and use of professional tools and formal practices.

Notably, half of CS students in a recent study reported that their CS program did not prepare them

adequately for their professional experiences [62].

Caskurlu et al. conducted a study on faculty views on the alignment between CS programs

and industry needs. They found many faculty believe CS programs prepare students well for

industry jobs, citing the fact that the majority of their graduates have no problems finding high

paying jobs. However, faculty also mentioned that soft skills are under-taught and that some

topics such as software maintenance are hard, if not impossible, to teach [30].

3.2.3 Attitudes and Beliefs about CS

A study by Lewis surveyed 13 faculty and 160 undergraduates on their beliefs and attitudes

about a variety of CS-related topics, and then compared how students and faculty differed in

their views. Topics included things like the importance of group work and the role of aptitude

for success. They found that although students and faculty disagree on many topics in general.

In some cases, students later in their CS degree began to better align with faculty views than

those earlier in their career, but in other cases the disconnect persisted [68]. One such statement
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rejected by faculty, but more accepted by the students, was “In the real world, computer scientists

spend a lot of time working alone.” This finding is relevant to our study, as it shows how faculty

and students may disagree on basic assumptions about applications of CS, even after interacting

with these faculty during their undergraduate education. These findings have been replicated and

further explored, focusing on areas where faculty and students disagree [69, 88].

3.3 Research Questions

While the motivation for our study is primarily the gap between academia and industry,

we framed our interviews more broadly. In particular, we included interview questions concerning

the goals of an undergraduate CS education in general and the preparation of students for careers

in academia. There are two reasons for this choice. The first is that we wanted our interviews to

allow us to identify other important aspects of a CS education besides preparation for industry.

The second is that we wanted to avoid potentially offending faculty by focusing solely on industry-

specific interview questions that could cause them to take a defensive position, compromising our

data collection process. Our research questions are:

RQ1 What are faculty views on the goals of an undergraduate CS education?
RQ2 What are faculty views on the role of an undergraduate CS education in preparing

students for industry?
RQ3 What are faculty views on better preparing students for careers in industry?

Whereas RQ1 remains more broadly focused, RQs 2 and 3 focus solely on preparation for industry.

For reasons of space we omit results related to preparation for careers in academia, only listing

some of the most important findings in Sections 3.5.3 and 3.6.

3.4 Methods

In order to understand the range of faculty views regarding the goals of a CS degree, we

found a qualitative interview method to be the best fit. A quantitative study using, say, a multiple

choice questionnaire would have limited faculty responses to our predetermined questions and
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answers, likely biasing the results towards our imagination of what faculty views might be. Taking

a qualitative approach allowed the participating faculty more freedom to directly and fully express

their views in their own words.

Specifically, to both ensure that our research questions were addressed and allow faculty

to express their full views, we decided to employ a semi-structured interview format, which

prescribes a short list of questions that can be followed up by additional questions that are

prompted by the participant’s answers. For data analysis, we chose a phenomenographic approach,

which seeks to identify the full spectrum of experiences and beliefs of participants, as opposed to

finding a single objective truth [75].

3.4.1 Data Collection

The semi-structured interviews were audio-recorded and then transcribed for data analysis.

We first devised an initial set of questions followed by a pilot study on four senior PhD students.

During this pilot we revised the interview questions until they rendered responses that adequately

answered our research questions. Some examples of the resulting questions are: “What does it

mean to you for someone to be a Computer Scientist?” and “..., what do you think is the role of

an undergraduate CS education in preparing students for industry?”. The full set of interview

questions is publicly available online [3].

To achieve a high response rate we applied convenience sampling by sending personalized

emails to personal connections of my advisors Leo Porter and Bill Griswold. Unfortunately,

recruitment from institutions other than our own proved challenging. We ultimately conducted in-

terviews at one research-intensive university (ours), one large primarily undergraduate institution,

and one small private liberal arts college. The distribution of participants across these schools and

the size of their CS programs can be seen in Table 3.1. I personally conducted all the interviews

and either Sophia Krause-Levy or Alex Macedo was taking notes during the first 10 interviews.

We deliberately invited faculty from a wide variety of research areas. Resulting in
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Table 3.1: Participant distribution and size of CS programs.

School Type Participants Degrees awarded in 2016 [9]
Research 11 total: 6,477, CS: 470

Undergraduate 1 total: 7,058, CS: 101
Liberal Arts 2 total: 1,463, CS: 9

participants with the following backgrounds: Theory of Computation, Algorithms, Real-Time

Scheduling, Cryptography, Cloud Computing, PL, ML, Cyber-Physical Systems, Bioinformatics,

Parallel Programming, CER, and Architecture. The seniority of the participants varied greatly,

from faculty who were recently hired to faculty with several decades of experience. Of the

14 participants, 5 have some experience working in industry (only 2 as software engineer).

Additionally, 1 participant owns a startup and 2 participants collaborated with startups.

3.4.2 Analysis

Phenomenography is a method used in qualitative research as an alternative to Grounded

Theory. Where Grounded Theory allows the researcher to develop a theory grounded in the data,

Phenomenography focuses on identifying the full range of understandings or beliefs exhibited by

the subjects. An excellent explanation of the phenomenographic process can be found in Simon

et al.’s work [107, §1.2]. A more in-depth explanation can be found in Åkerlind’s work [11]. An

overview of how Grounded Theory and Phenomenography are applied in computing education

research can be found in Kinnunen and Simon [64].

In short, Phenomenography allows the researcher to identify all the understandings of

and beliefs about a phenomenon and structure them in a hierarchical manner, where the lowest

level in the hierarchy maps to the simplest understandings of the phenomenon and the highest

level maps to the most complete understandings. The process we applied was derived from the

process described in Carbone et al.’s work [28, §2.3] and follows the following steps. For brevity,

researchers/paper authors are labeled A1-A5 (respectively: myself, Sophia, Alex, Bill and Leo).
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Step 1: Individual Labeling

A1 applied labels to all interview transcriptions. A2 and A3 both labeled half of the

transcriptions. Each person created their own label codes.

Step 2: Extracting Dimensions of Variation

Next, a list of summarized beliefs per research question was extracted by collectively

analyzing all labeled excerpts from step 1. A “summarized belief” refers to a collection of

labeled excerpts that can be viewed as all exhibiting the same belief. Each summarized belief

was then mapped to each faculty who exhibited it. From this collection of summarized beliefs,

we determined the dimensions of variation in our data.

Step 3: Constructing Categories of Description

The summarized beliefs and dimensions of variation from step 2 served as the basis for

extracting the hierarchical categories of description. This was done collaboratively with the use

of a whiteboard. This process also resulted in subcategories that make it more explicit which

belief belongs where.

Step 4: Validation of Categories of Description

We validated the output of step 3 by mapping each summarized belief from step 2 to its

corresponding subcategory. Whenever there was a disagreement about where a belief should

be placed, the names and descriptions of the (sub)categories were clarified. After creating this

hierarchy, A2 and A3 labeled a single participant interview and refined the subcategories based

on their disagreements. Step 4 resulted in Figures 3.1 and 3.2. The categories of description are

depicted as the dotted boxes, with the blue boxes being their subcategories.

Step 5: Extracting Quotes

The faculty quotes for this paper were extracted by back-tracing from the figures created

in step 4, to the summarized beliefs from step 3, which gave us the faculty that exhibited these
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beliefs. The labels created in step 1 were then used to find the relevant sections in each interview.

3.5 Results

In this section we will discuss the outcomes of our phenomenographic analysis, as well as

some other interesting findings that do not directly relate to our research questions. Wherever a

participant is quoted, an anonymous identifier is provided (P1-P14).

3.5.1 RQ1: Goals of Undergraduate CS Education

The (sub)categories of description we identified during our analysis of faculty beliefs

about the goals of an undergraduate CS education are displayed in Figure 3.1. The hierarchical

relationship between the categories is that of dependency or prerequisite, i.e. it is not possible to

be a competent problem solver without the required depth of knowledge and hard skills. However,

while each subcategory depends on some subcategories in a lower category, it does not necessarily

depend on all.

Figure 3.1: The Goals of Undergraduate CS Education: Categories of Description and Their
Respective Subcategories.
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Fundamentals

The simplest understanding of the goals of a CS education are the specific skills a student

should attain. In this category, we differentiate between Hard Skills, Personal Soft Skills, and

Collaborative Soft Skills.

Hard Skills. Examples include being a good programmer, having good software engineering

skills, having a strong understanding of how a computer works, and being able to work with data.

Personal Soft Skills. Examples include having good time management skills or perseverance

and dedication.

“... we need to get our students to do things they don’t like ... to see through even when it’s difficult

... perseverance and dedication.” - P5

Collaborative Soft Skills. Examples include socializing and translating between human lan-

guage, formal language and code.

“... be able to clearly communicate and translate between formal, precise language, and human

oriented language.” - P5

Program Responsibilities

A more sophisticated understanding of the goals of CS are the responsibilities of the CS

program.

Provide Breadth. Faculty believe the program should allow students to develop a broad knowl-

edge base as this will help students approach problems in a more sophisticated way.

Provide Depth. Furthermore, the program should allow students to develop some area of

specialization within CS.

Provide Project Experience. Faculty believe providing project experience is essential for

students to learn to collaborate.

Provide Opportunities to Explore. Faculty mentioned how every student is a unique individual

with their own strengths, weaknesses, and interests. The program should offer opportunities
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that will allow for each of these unique individuals to excel in their own way and find out what

interests them.

“People discover their potential at various points in life ... you can give them multiple paths ... so

taking advanced courses, graduate courses, doing a project, doing independent study.” - P1

Provide Real World Context. It is important to study computing in the context of the world.

The program should teach students what types of problems are good to approach computationally,

how computing has changed the world in the past, and how computing itself has evolved over

time.

“... what does it mean to be a computational problem? What kinds of characteristics do these

problems have in common?” - P14

Student Outcomes

We identified student outcomes as the most complete understanding of the goals of CS.

This category applies when high level outcomes are mentioned, which will of course depend on

the program, as well as the fundamentals.

Competent Problem Solver. Faculty mentioned that becoming a good problem solver was a

major student outcome. Some even considered this to be a generic non-CS specific skill, that

becoming a good problem solver is the goal of any undergraduate education.

Competent Collaborator. Often noted by faculty was the fact that outside of the classroom,

people tend to solve problems in teams. So a major outcome of CS programs should be that

students are able to contribute to such a collaborative environment.

Prepared for Their Next Step in Life. University education is seen by faculty as preparation

for a person’s next step in life. Hence, one major outcome of a CS education is that a student is

reasonably sure what their next step will be, is well prepared for it, and able to gain the position

they desire.

“... to prepare themselves for that next step, be it going into industry, starting their own company,

going off to grad school ... the goal is to help students be successful in whatever that pursuit is.” -
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P9

Understands Role of Computing in Society. Some faculty were adamant about the need for

students to be able to relate their work to society. Specifically, students should understand the

impact their work might have on society, as well as its ethical implications.

3.5.2 RQ2: Preparing Students for Industry

The categories of description we identified during our analysis of faculty beliefs about the

role of an undergraduate CS education in preparing students for industry are displayed in Figure

3.2. The quotes in this section are all responses to questions that asked specifically about students

headed for industry.

Figure 3.2: The Role of an Undergraduate CS Education in Preparing Students for Industry:
Categories of Description.
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Fundamentals

Being successful in industry requires a minimal set of fundamental skills. In this category,

faculty mentioned some vocational skills as well as fundamental CS skills.

Vocational Skills. Vocational skills mentioned by faculty include being fluent in software

engineering principles, familiar with the tools, and able to collaborate and communicate well.

CS Skills. An example of a CS skill that faculty believe is important for industry is the ability to

learn a new technology or algorithm quickly by leveraging a strong fundamental understanding

of CS.

Program Responsibilities

A CS program has specific responsibilities in preparing students for industry.

Raise Awareness of All Career Possibilities. Faculty believe that a CS program should raise

awareness on industry career options and what knowledge is necessary for those careers.

Provide Opportunities to Explore. Along with raising awareness, there should be possibilities

available to try things out. This can be an internship, co-op program, or working with a professor.

Provide Project Experience. There should be at least one significant project in the curriculum.

Students should gain experience with large code bases that are being worked on by multiple

people.

Keep Program Up to Date. Faculty say they have a responsibility to keep the program up to

date and relevant. This includes listening to feedback from students returning from internships

and alumni.

Prepare for Job Market. Faculty also state we should keep in mind that our students will have

to enter the job market and interview with companies. Part of our program’s responsibility is to

ensure that our students will be able to pass interviews and find a job.

Provide Societal Context. CS is not an isolated field, it has a major role in society. Our programs

should make students aware of the role they play in society and how their work can influence the
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lives of other people in both positive and negative ways.

“I think people should be aware when they take a job in industry, why that company is focusing

on what they’re focusing on, and that it’s aligned to a problem that is a real problem, and that

doesn’t have sort of negative consequences for somebody, or if it does, that student goes in well

aware of that. So I think helping students understand that it’s not just about writing code ... but

it’s about evaluating the overall big picture as well.” - P14

Role

The highest level of understanding on the role of CS education in preparing students for

industry is how that role should manifest itself.

Major Role. Some faculty believe industry preparation should be a major role of a CS program,

perhaps even the most important.

Not a Major Role. Other faculty believe industry preparation is a responsibility of the students

themselves or even of the companies they will work for in the future.

Not the Right Environment. Another group of faculty believe it is simply unrealistic to expect

universities to provide industry preparation, because they are not well equipped for it.

“... faculty are not suited for preparing them for the workplace. They never worked, and very few

worked outside the campus ...” - P1

3.5.3 RQ3: Better Preparing Students

We found that when faculty mentioned what they believed to be goals of a CS degree or

the role of a CS degree in preparing students for academia or industry, those same things were

usually brought up when asked what CS degrees could do better. Below we list our most notable

findings on what faculty believe CS programs can do to improve in the preparation for academia

and industry.

Reduce Class Sizes. One of the most widely mentioned problems was that class sizes have

become too big. Issues resulting from large classes mentioned were: not being able to go as deep
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into the material because too many students wouldn’t be able to keep up, grade inflation, and the

quality of group projects suffering. To increase the quality of undergraduate CS programs, faculty

recommended reducing class sizes or providing more resources.

“I would love to [better prepare for ind.], but I don’t know how because it would require way more

resources, and smaller classes” - P14

Increase the Number of Projects. Another widely mentioned recommendation was to increase

the number of project courses and make them more authentic, e.g. working with a real customer

or solving real-world problems. Interestingly, some faculty advocated for more vaguely defined

problems, whereas other faculty claimed that having more project courses with well-defined

problems would provide a more authentic preparation for industry.

“In industry projects there are often times where the requirements are not well defined ...” - P12

“Less open-ended projects. My experience with industry is that projects are usually pretty well-

defined, especially for junior folks.” - P7

Some faculty also mentioned that it is difficult to create an authentic experience, even in a

project class.

“Maybe what they’re most lacking is things like real experience on large project teams, and I don’t

think team projects in undergraduate classes really give you a sense of what it’s like to work on a

larger ongoing project. Maybe there’s no way they could.” - P3

The User Perspective. In industry, software is always shipped to a user. However, most classes

don’t teach how that works.

“There’s not a sense across the curriculum that we’re always talking how to ... put something out

there for people to use ... [e.g.] a desktop app that runs on different operating systems or ... a

web app.” - P2

More Research Opportunities. There is a call from faculty to scale up research opportunities

for undergraduates by creating more programs that make it easy for faculty to work with them.

Software Engineering. Another concern faculty have is that students may not be well prepared
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for the level of rigor required of software engineers in industry.

“They need to have more software engineering skills ’cause the industry is a lot more rigorous

about that stuff than academia is.” - P7

Furthermore, students should be given more opportunities to familiarize themselves with

important industry standard tools.

“... more experience with the tools that you would use in industry that are kind of standard. Like

version control software, or different build systems.” - P12

While faculty may be willing to address these deficiencies, it is difficult to implement

these changes without increasing the workload on the students or faculty or cutting back on course

materials.

“And then in terms of like code quality ... I can’t find the time in my classes to really teach it or to

really get them to do it because I’m putting so much technical challenge on them, like, ”You’re

going to solve this really hard problem, and then solve this other really hard problem.” And then

I don’t have the time to check up on whether they’ve really thought about all the different edge

cases, or whether their code looks good ... So I think we’d need to cut way, way back on the

amount of content we’re throwing at them, and have them focus on some of these other either

more open-ended issues, or communication issues, or impact issues, or quality issues.” - P14

Side Projects. Faculty mentioned the value of students having side projects in being better

prepared for industry.

“That’s often a distinction between strong and weak students, if they really love programming and

like doing it in their spare time.” - P3

Communication. Many faculty mentioned communication and other soft skills are not well

addressed in the curriculum.

Inspire Students. Faculty are concerned we may focus too much on teaching content and forget

to make students excited about CS.

Societal Context. Similarly, we often forget to put CS in the context of society and think critically
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about our work.

Curriculum is Already Adequate. While most faculty see many ways to improve our degrees,

some faculty mostly mentioned things that were going well such as students securing good jobs.

“My feeling is that we do a great job of preparation and if they’re feeling unprepared, then maybe

they didn’t do all their work as an undergrad or didn’t achieve very well or something of that sort.”

- P9

Everything Needs to Be Done Differently. On the other end of the spectrum, a few faculty

believed the way we teach our CS programs is fundamentally flawed.

“in many classes, attendance is below 50%. Which means, is that our undergraduates are paying

for the product, but are not taking it, which is very unusual when you are a customer and paying

... Which means that our education is inferior and has serious, serious problems ... My response

would be to change educational system. To ... ban traditional classroom lectures.” - P10

3.6 Discussion and Take-Aways

This section summarizes our key findings.

Industry preparation is important Contrary to our initial hypothesis that industry preparation

might be a controversial programmatic goal, we found general agreement among the faculty in

support of industry career preparation. Although Phenomenography does not offer quantitative

conclusions, we note that the vast majority of our participants recognize that industry is the next

step for most students and view preparing them for their industry careers as a key goal. Part

of their motivation is simply to see their students succeed. However, as we discuss below, they

also understand that CS plays a critical role in the making of the modern world and much of the

impact students have on society comes from what they do after being hired by companies.

Two Curriculum Drivers: The Role of CS in the World and Student Choice Beyond the

belief that learning CS fundamentals is an essential goal of CS education, we’ve identified two

additional organizing principles.
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The first, as stated above, is that faculty understand that CS plays a critical role in the

making of the modern world. This perceived role of computing in society drives several beliefs.

Faculty believe that they should prepare their students to be leaders who can make decisions

with a regard for the social and ethical implications of their work. Thus, faculty believe their

courses should include ways for students to practice with real-world implications. In turn, faculty

value project courses, authentic assignments, and devoting more time to code quality, testing,

and industry standard tools. Additionally, they understand that real-world problems tend to be

solved by teams of people. As such, they understand that “soft” skills are important, even while

acknowledging that they are under-supported in their curriculum.

The second organizing principle that faculty expressed is that every student is unique.

Hence, beyond having a common base of CS fundamentals, students should be allowed to create

their own path through the curriculum by means of opportunities, including conducting research

with a professor, side projects, internships, electives, graduate courses, etc. Furthermore, faculty

advocate for creating more of these types of opportunities for students.

The Academia-Industry Gap May be a Resource Gap The interviews reveal some possible

explanations for why the academia-industry gap has persisted over the years in spite of the

perceived importance of industry preparation and a significant body of research on the topic.

For one, faculty expressed concern over how the recent meteoric rise in enrollments has

impacted the quality of education they are able to offer, specifically citing difficulties in achieving

depth, grade inflation, and the difficulty of managing group projects. While previous enrollment

booms have waned, the present one seems unlikely to subside. We would note that the gap has

persisted even during periods of low enrollment, but the challenges related to enrollments may

now be an additional barrier for change.

Second, a few faculty confided that they do not believe preparation for industry is a

principal role of an undergraduate CS education. While this group is seemingly small, they no

doubt have some influence on curriculum design.
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Third, and perhaps most impactful, is the observation that, despite the fact that faculty

cited interest in helping students prepare for careers in industry, many may not be sufficiently

equipped to do so. Most of the faculty we interviewed never worked in industry and some told us

to discount their views due to lack of experience: “I’ve never worked in industry, so take that

all with a grain of salt.” - P14. However, alumni boards and teaching assistants with industry

experience were identified as possible resources for faculty to gain an industry perspective.

Finally, faculty cited struggling with finding ways to provide authentic experiences. One

reason for this struggle is class size, but another is that it remains unclear for faculty how to make

experiences such as projects and programming assignments more authentic without unacceptably

increasing the workload of the students or the instructional team.

3.7 Limitations and Threats to Validity

This study is subject to the following threats and limitations. Participants were recruited

through the personal networks of my advisors Leo Porter and Bill Griswold; this may have biased

some participants’ answers due to their relationships with my advisors. We believe this threat to be

limited by the fact that Leo and Bill were never present during the interviews. On the other hand,

we attempted to limit bias regarding our research questions by framing them about all goals, not

just, say, industry preparation. Additionally, the participants were drawn from three institutions,

however most participants were from the same research-intensive institution. Moreover, all

three institutions are located in the same (US) metropolitan area. Both potentially limit the

generalizability of the results and warrant replication to other institutions and regions. Finally,

while Phenomenography identifies the range of understandings of a phenomenon, it, combined

with the study’s scale, did not clearly determine their prevalence. Since we identified conflicting

beliefs—e.g., both opposition and support of industry as a major role of CS education—it will be

valuable for future work to establish the relative support for such views.
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3.8 Summary

We performed a phenomenographic analysis to identify the range of views faculty have

on the role of undergraduate CS education, focused on student preparation for industry. We cate-

gorized these findings in this work while identifying multiple key themes relevant to remedying

the gap between academia and industry: faculty generally want to prepare their students well

for industry and want the program to address their career needs, however lack of instructional

resources and, in some cases, industry experience are barriers to facilitating this preparation.
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Chapter 4

Investigating Relative Support for

Differing Faculty Views

A Quantitative Study of Faculty Views on the Goals of an

Undergraduate CS Program and Preparing Students for

Industry

4.1 Introduction

Computer Science students and their ultimate employers have long lamented that their

undergraduate education did not adequately prepare them for their career. Many stakeholders in

the so-called academia-industry gap have been studied over the years, including students [29, 62],

recent graduates [22, 32], employers and practitioners [51, 94]. Given that faculty are essential to

closing any such gap, it is surprising that the faculty view on this topic had remained relatively

unstudied.

In Chapter 3, we described an in-depth interview study of 14 computer science faculty to
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learn the range of faculty views on the goals of a CS program, where they felt their programs were

falling short, and what was hindering improvement. One might think that faculty would claim

“we are not a vocational school” in regards to questions about closing the academia-industry

gap. Such views were indeed voiced by a small number of the interviewed faculty, but the other

faculty desired to teach a curriculum relevant to industry preparation. These faculty cited a range

of barriers to better preparing students for industry, including lack of knowledge of industry

practices, lack of resources, and large class sizes.

Although this prior qualitative study uncovered a wide range of faculty views on these

matters, including on the academia-industry gap, the relative support for those views in the

broader community of CS faculty is unknown. Is the attitude of “we are not a vocational school”

a major contributor to the academia-industry gap, or is the larger contributor these barriers to

improvement cited by faculty? To learn the answers to these questions, we sought to quantify

faculty views on the goals of a CS education, how best to prepare students for their academic or

industry career, and what barriers they perceive inhibiting achievement of those goals.

Building on the results of our prior qualitative study described in Chapter 3, we conducted

a broad survey study to establish which views are predominant among faculty, and how those

views vary by institutional type and other factors. Specifically, we translated the range of faculty

views captured in our prior qualitative work into multiple choice questions, and then sent them out

as a survey to thousands of CS faculty across the globe, using mailing lists, contact information

from Google Scholar, and scraping e-mail addresses from computer science department web sites

(described further in Section 4.3). In analyzing the survey responses, we found the following:

• In terms of the goals of a CS education, we found the highest support for traditional CS goals

such as students learning problem-solving, programming, and how to acquire new computing

knowledge on their own.

• We found consistently high support for imparting skills and experiences related to industry
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preparation. Right behind the above-cited traditional CS goals were understanding the real-

world context of computing as well as soft skills, including time management and working

in teams, ethics and the role of computing in society, and software engineering skills. Yet,

we found split support for goals related to personal development, such as helping students

explore new interests or discover their path in life. When asked about the relative importance

of supporting industry preparation and academic (graduate school) preparation, faculty favored

industry preparation. Faculty also felt that much of the responsibility for industry (and

academia) preparation should fall on the shoulders of their institution.

• The majority of faculty expressed support for improving their courses by integrating material

and experiences related to industry preparation into their courses, such as software engineering

best practices and soft skills. This varied widely by the primary course taught by faculty, with

faculty who teach courses related to algorithms being more split about the appropriateness of

preparing students for industry in their course, whereas faculty who teach courses involving

the construction of software rate industry preparation more highly.

• Faculty were split about how many and which barriers they encounter to offering students

better industry preparation, with roughly half of participants perceiving only a few barriers

and a quarter of participants perceiving substantial barriers.

With generally strong faculty support for industry preparation, and the split views on the

difficulty of providing that preparation, there remains a puzzle about why the gap remains.

In the next section we review the literature on the academia-industry gap. We then

describe our methods and the survey results, and finally close with a discussion of the results and

a conclusion.
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4.2 Background

4.2.1 The Academia-Industry Gap

The gap between recent CS graduates’ knowledge and industry expectations has been a

well-known problem for decades, yet it still exists. Industry practitioners have stated that many

recent graduates lack relevant technical and non-technical skills, leading to failed interviews and

requiring graduates to go through large amounts of additional training upon being hired. Recent

graduates are known to lack the ability to test software in real world settings [90], lack relevant

project experience [93, 94], have poor communication and team building skills [22, 93, 94] and

lack the ability to configure and use software tools [93].

A study by Radermacher and Walia, interviewed 23 industry professionals to understand

areas where recent graduates were underprepared. They found the most common issue to be

struggling with software tools, followed by misunderstanding the expectations of the job. Another

study interviewed recent graduates and found that there were six main areas where the graduates

fell short, these included: “communication, team work, working on large, long-lasting projects

that are open-scoped and using complex software systems” [32].

To gain a deeper understanding of new graduates’ experiences in industry, Begel and

Simon followed eight new graduates during their first six months in industry. They found that the

graduates had many misconceptions about their new roles such as “I must do everything myself

so that I look good to my manager.” and “I must be the one to fix any bug I see – and I should fix

it the ‘right’ way, even if I do not have time for it.” [22].

In addition to technical skills and general misconceptions about industry, many students

lack non-technical, “soft” skills such as oral and written communication, being able to work

in a large group and understanding the ethics of their work [32, 94]. A study by Mardis et al.

compared universities’ syllabi to industry certifications, job postings and internship postings and

found that many of the syllabi did not list any non-technical skills.
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The motivation for remedying the gap is grounded in satisfying student career goals but

also in our theoretical understanding of how students learn. Under Situated Learning, students

learn better while working with others and they desire to be part of a community of professional

practice [65]. Also relevant is Cognitive Apprenticeship where experts model behaviors that are

meaningful to learners in a real-world context [31]. Learners then attempt to imitate those skills

with coaching by the experts. Under Cognitive Apprenticeships, students want to learn from

experts in their future discipline in a real-life context and this approach may enable students to

achieve a high degree of learning [129].

4.2.2 Relationship Between Faculty and Undergraduate Beliefs

Some of the academia-industry gap—real or perceived—could be due to divergent views

on CS education. Indeed, faculty and undergraduate attitudes and beliefs about computer science

and computer science education do not always align. A study by Lewis et al. surveyed 13 faculty

and 160 undergraduates on their beliefs and attitudes about a variety of CS-related topics, and

then compared how student and faculty views differed. The survey questions were clustered

into two topic areas: “Computer Science as Accomplishment” and “Computer Science as an

Intellectual Discipline” [68, 69]. The survey results showed that while student and faculty views

aligned in some cases, there were many areas of misalignment, including for students in their

final year at the university. Several statements that were rejected by faculty and more accepted by

students included “A significant problem in learning computer science is being able to memorize

all the information I need to know”, “Doing things the ‘right’ way is not as important as just

pushing through to a solution”, and “In the real world, computer scientists spend a lot of time

working alone.” These findings show that faculty and undergraduate students may not agree on

important aspects of being a computer scientist, even when students are close to completing their

degree. Such misconceptions could lead to related misconceptions as to what a computer science

education should contain. On the other hand, such misconceptions could be influenced by how
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CS courses are conducted (e.g., testing for memorization and having students work alone). As

will be shown below, if courses are run this way, it could be due to challenges in instruction rather

than faculty beliefs about the goals of a CS education. Lewis et al.’s findings have been replicated

and further explored, focusing on areas where faculty and students disagree [88].

It has been suggested that faculty designing curricula should understand student motives

and program expectations in order to improve students’ learning and performance [136]. A study

aimed at identifying motives among geography majors found that students desire their curricula

to focus more on career guidance and vocational training [44]. This is similarly true in computer

science [32]. In some cases, students may not understand the relevance of many CS courses for

their careers [89]. A recent study reported that half of CS students believed their CS program did

not sufficiently prepare them for their professional experiences [62]. On the other hand, a study

interviewing faculty found that many faculty believe CS programs do sufficiently prepare students

for jobs in industry, stating that the majority of their graduates are able to find high paying jobs.

However, faculty also cited topics like software maintenance as being difficult to teach and “soft”

skills as under-taught [30].

In Chapter 3, we described a study focused on faculty views on the goals of an under-

graduate computer science education. We conducted semi-structured interviews with 14 faculty

members from three different universities, including a large research-focused university, a large

undergraduate-focused university, and a small liberal arts university. Study participants came

from a variety of technical backgrounds such as Theory, Machine Learning, and Bioinformatics.

Coding the interviews via phenomenography [11], a wide-range of views were uncovered on

the goals of a CS education, their institution’s role in achieving those goals, and the barriers

encountered in pursuing those goals. Separately, we also observed that our 14 faculty intervie-

wees generally, although not universally, viewed industry preparation as an important part of

an undergraduate degree in CS, yet many felt that they did not have the resources to make their

courses successful in that regard. Our present study attempts to put these observations and related
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questions on a quantitative footing, asking similar questions in an online survey sent to faculty

worldwide.

4.2.3 Barriers to Change

An element uncovered in our interview study in Chapter 3 was that faculty face barriers

to narrowing the academia-industry gap. There have been a number of studies investigating the

challenges to changing faculty practices [56] and how best to address them (please see Henderson

et al. for a summary of the literature [58]). Guidelines for fostering faculty change require

identifying the barriers to adoption that faculty may face before attempting to create potential

solutions. This allows solutions to account for those adoption challenges [63]. As such, this study

seeks to identify which barriers are most commonly faced by faculty in order to inform future

solutions.

4.3 Study Design

4.3.1 Research Questions

Based on the results of our prior qualitative study in Chapter 3, we formulated the

following research questions.

RQ1 What are the views of the broad community of CS faculty on the goals of an

undergraduate CS education?

RQ2 What are the views of the broad community of CS faculty on the role of an under-

graduate CS education in preparing students for industry?

RQ3 What are the views of the broad community of CS faculty on better preparing

students for careers in industry?

RQ4 What barriers to providing more industry-relevant course content are the broad

community of CS faculty encountering?
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4.3.2 Methods

To gain insight on the above research questions, we selected relevant questions and

findings from our prior qualitative study in Chapter 3 and formulated them as survey questions.

In order to assess whether the survey questions were being interpreted properly, we tested our

survey on three graduate students in think-aloud sessions.

The final survey consisted of the following questions (a full version of the survey is posted

online [2]):

1. What course/area do you primarily teach or identify with?

2. Do you teach at a public or private institution?

3. Which of the following terms best defines your institution?

4. In what country is your institution located?

5. How would you rate the size of your institution in terms of estimated total number of

undergraduate students?

6. How would you rate the size of your CS program in terms of estimated number of under-

graduate CS degrees awarded per year?

7. What type of term system does your institution use?

8. For each of the following items please list how important you believe this goal should be in

your institution’s undergraduate CS program.1

9. Please indicate your agreement with the following statement: Preparing students for

the academic challenges of a Masters or PhD program should be a principal goal of an

undergraduate CS education.
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10. Please indicate your agreement with the following statement: Preparing students for careers

in industry should be a principal goal of an undergraduate CS education.

11. Out of a total of 100%, what do you believe should be the balance of responsibilities for

preparing students for the academic challenges of their Masters or PhD programs?

12. Out of a total of 100%, what do you believe should be the balance of responsibilities for

preparing students for careers in industry?

13. Please indicate your agreement with the following statement: It would be beneficial for the

quality of my institution’s CS program if we investigated how we could better prepare our

students for careers in industry.

14. Please list your agreement with the following statements. In order to better prepare students

for their future careers than we are doing today at my institution, I believe we should...1

15. Please indicate your agreement with the following statements. The strongest barriers to me

providing more directly industry-relevant content in my primary course are...1

16. What is your gender?

17. What is your age group?

18. Did one (or more) of your parents/caregivers receive a college or university diploma?

19. Do you identify with a group that is underrepresented in computer science programs in

your country? (e.g. ethnicity)

1The full item list can be found online [2]
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4.3.3 Dissemination of Survey

We employed a range of methods to maximize the reach of our survey. First, we posted

our survey invitation to a few established CS community mailing lists, although we were unable

to send to many mailing list as most do not allow the posting of surveys. Second, using automated

methods, we scraped information from Google Scholar by searching for profiles with tags related

to computer science. Finally, we similarly scraped the faculty listings of a wide selection of

computer science department web sites. We obtained these department websites by searching on

Google for the institution names as they appeared in the Times Higher Education Ranking [5]

together with the words “computer science department”. In all, we emailed approximately 7250

faculty at 140 institutions in 35 countries.

An example of the email template used for participant recruitment can be found online [2].

4.4 Results

We received 325 responses in total, 249 of which are complete responses (77% completion

rate). Unless stated otherwise, the results we report are based on the 249 complete surveys.

4.4.1 Demographics

Of the 249 respondents, 200 were men, 37 were women, 2 were non-binary, and 10 chose

prefer not to answer. The age distribution of the respondents is shown in Figure 4.1. A total of

66 respondents were first-generation students and 40 respondents identified with an underrep-

resented group in CS, including gender, sexual orientation, ethnicity, disability, socioeconomic

status and age.

As illustrated by Figure 4.2, the great majority of our respondents are from doctoral

granting institutions. We also found that 70% of respondents are from public institutions and

30% work at private institutions. The great majority of respondents work with a semester system

(74%), followed by the quarter system (13%), and the trimester system (10%). The remaining
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Courses and areas taken from the ACM curricula guidelines [61].

3% use other term systems. Figure 4.3 shows that most participants are from large schools with

medium to large CS programs. Responses were collected from 26 countries in all.

As seen in Figure 4.4b, the majority of our respondents are from the United States (57%).

Figure 4.4a shows that while did send out a larger number of emails to the United States than to

any other country, it was not the majority of our emails (39%). However, the response rate for

emails sent to the United States at 5% was higher than the average response rate of 3%.

Around 13% of our participants identified CS1 as their primary course. The full distribu-

tion of faculty respondents’ primary courses/ areas can be found in Figure 4.5.
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Figure 4.6: Q8: Relative support for goals of a CS program, “For each of the following items
please list how important you believe this goal should be in your institution’s undergraduate CS
program.”

4.4.2 Faculty Views on the Goals of CS

With the exception of just two people who voted “Not at all important” and one person who

voted “Slightly important”, faculty overwhelmingly support “For students to become competent

problem solvers” as a goal of a CS program. Other strongly supported goals include “For

students to learn how to program”, “For students to know how to learn a new technology or

algorithm quickly”, “For students to attain ‘hard’ skills” and “For students to attain a breadth of

CS knowledge”. The vast majority of the listed goals received only a very small number of “Not

at all important” votes, with “For students to figure out what their next step in life should be” as

the item receiving the most dissidence. This high level of agreement is partially to be expected

because the stated goals were taken from those expressed by faculty in our previous qualitative

study in Chapter 3.
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4.4.3 Views on Industry-Specific Program Goals

Figure 4.6 shows that, while there is a minority who disagree, most faculty support

industry specific goals such as developing strong software engineering skills and preparing

students for the job market. In an interesting contrast, faculty seem to be split on the importance

of keeping the program up to date with industry practice. This could be due to faculty perceptions

that software industry trends are not always driven by fundamental changes to practice, but rather

by factors like cost, tool compatibility, or levels of scalability not relevant to the course context.

Figure 4.7 shows that faculty seem to have a stronger agreement that industry preparation

is a principal goal of a CS program. The medians were “Agree” for industry preparation and

“Neutral” for academic preparation. We ran a one-sided Mann-Whitney U test to determine

whether or not the agreement was significantly greater for industry preparation. We found

significance for α = 0.05 with a Mann-Whitney U statistic of 38792.0 and a p-value of 1.935e-07.

More importantly, Figure 4.8 shows that for the preparation of students for careers in both

industry and academia, faculty view their own institutions as the primary responsible party. This

is encouraging as finding other results here would likely imply that faculty are not willing to close

the academia-industry gap. Faculty do, however, place a significant portion (around 25%) of the

responsibility on both the students themselves and the party hiring the students after graduation.

For industry preparation, faculty expect the companies hiring the students to take on a larger part

of the remaining responsibility whereas for preparation for academia, faculty expect the students

to take on a larger part of the remaining responsibility.

We also explored the role that age has on faculty perceptions of the value of industry

preparation. Our hypothesis was that older faculty may have entered CS when it was part of

mathematics departments and hence more theory-heavy, perhaps making older faculty less open

to teaching content relevant for industry preparation. As such, we grouped faculty by age, binning

those under 50 years old as younger. Comparing medians led to the interesting finding that,
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Figure 4.10: Q13: Relative support for investigating how to better prepare students for industry.
“It would be beneficial for the quality of my institution’s CS program if we investigated how we
could better prepare our students for careers in industry.”

contrary to our expectation, older faculty had a higher median rating for industry preparation as

a principal goal (“Agree”, vs. “Neutral” for early-career faculty). And indeed when running a

one-sided Mann-Whitney U test to establish significance, we find that older faculty reported a

significantly greater agreement with industry preparation as a principal goal for α = 0.05 with a

statistic of 6406.5 and a p-value of 0.008.

For preparation for academia as a principal goal, we find no significant differences between

younger and older faculty. Both groups report a median of “Neutral”. A two-sided (to identify

any difference in either direction) Mann-Whitney U test led to a statistic of 7475.5 and a p-value

of 0.343, indicating no significant differences for α = 0.05.

4.4.4 What Should Be Improved?

The majority of faculty believe their curriculum should be improved with respect to

preparing students for industry careers, as can be seen in Figure 4.9. This finding contradicts

popular claims that “ivory tower” faculty attitudes would be responsible for perpetuating the

academia-industry gap. The same graph also shows that most of the needs for improvements

that surfaced from our prior interviews in Chapter 3 can count on broad support among faculty.

The strongest support can be found for integrating software engineering best practices, such as

software testing, more explicitly in courses with a programming component. Faculty appear to
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be split on the topics of reducing grade inflation and reducing class sizes. Overall, we see broad

support for many ideas for improvement, but for each of them there is also a number of faculty

who oppose this idea. In Figure 4.10, we also see broad support from faculty for investigating

how their institution could better prepare students for industry careers.

4.4.5 Barriers to Improvement

Figure 4.11 shows that faculty appear to be quite split in terms of which barriers limit their

ability to provide more industry-relevant content in their courses. Although there are perceived

barriers, we see a continued trend in desiring to better prepare students for industry in the fact

that the majority of faculty do not oppose including industry-relevant content in their courses.

However, there is a sizeable group of faculty who agree or strongly agree that such content does

not belong in their course. This difference in the number of faculty supporting better industry

preparation from the number who support doing so in their own courses may be a factor in

perpetuating the academic-industry gap. As such, we wanted to determine if faculty from certain

courses or areas of CS are more likely than others to find that industry content does or does not

belong in their course. Figure 4.12 explores participant agreement with this statement based

on the course they most commonly teach. From this figure, it appears that instructors who

teach CS1, Software Engineering or Human-Computer Interaction are the most supportive of

teaching industry-relevant content in their course. In contrast, instructors who teach Algorithms

and Complexity represent the largest group opposing industry-relevant content in their courses.

Somewhat surprisingly though, we also find a sizeable portion of Programming Languages faculty

believe such content does not belong in their course.

Since faculty appear to be split on whether large class size is a barrier and on the need to

reduce class sizes to improve the quality of education, we decided to compare the results on these

two survey items for faculty from small and large institutions.

We found that the median for “The class size is too large” as a barrier to improvement to
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Figure 4.12: Q15: Participant level of agreement with “I do not believe such content belongs in
my course” as a barrier to providing directly industry-relevant content in their course, plotted
against the main CS course/area they identify with. Courses and areas taken from the ACM
curricula guidelines [61].

be “Disagree” for faculty from small CS departments, whereas faculty from large CS departments

responded with a median of “Neutral”. For “Reduce class sizes to improve the quality that we can

provide” as an improvement, the median was “Neutral” for faculty from small CS departments

and “Agree” for faculty from large CS departments.

We followed up by running a one-sided Mann-Whitney U test to determine whether the

responses for faculty from larger CS departments were statistically greater than responses from

faculty from smaller CS departments for these two survey items. We found “The class size is

too large” had a Mann-Whitney U statistic of 2369.0 and a p-value of 0.001, indicating that

the response for faculty from large CS departments was significantly higher for α = 0.05. For

“Reduce class sizes to improve the quality that we can provide”, we found a Mann-Whitney U

statistic of 2349.0 and a p-value of 0.002, also indicating a significantly greater agreement for

faculty from larger CS departments for α = 0.05.
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Figure 4.13: Q15: Number of barriers experienced per participant (counting number of “Agree”
and “Strongly Agree” ratings)

Another interesting point to note is the large numbers of “N/A” responses for the questions

regarding instructional staff in Figure 4.11. Specifically, for the item “My instructional staff (e.g.

teaching assistants) is not sufficiently aware of industry best practices”, 41% of the faculty from

small CS departments responded with “N/A”. We suspect the reason for this is that due to smaller

class sizes they may not have instructional staff available to them.

Figure 4.13 shows that there is not a two group split between one group of faculty who

experience all the barriers and another group of faculty who experience no barriers. While there is

a sizable group of faculty who experience no barriers at all, the vast majority of faculty experience

at least some barriers to providing more directly industry-relevant content in their courses.

4.5 Discussion

Concerning RQ1, we find that faculty demonstrate strong support for the following goals

of an undergraduate CS education:

1. For students to become competent problem solvers

2. For students to learn how to program

3. For students to know how to learn a new technology or algorithm quickly
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4. For students to attain “hard” skills

5. For students to attain a breadth of CS knowledge

Whereas faculty are in disagreement about the importance of the following goals:

1. To keep the program up to date with industry practice

2. For students to figure out what their next step in life should be

3. For students to attain a breadth of general knowledge outside CS

4. To offer many opportunities to explore other interests

Regarding RQ2, we find that 57% of faculty agree that industry preparation is a principal

goal of an undergraduate CS education whereas only 17% of faculty disagree. The faculty opinion

is more split on whether or not preparing students for academia is a principal goal (39% agree,

33% disagree). Moreover, faculty view their own institution as the primary responsible party for

preparing students for both industry and academia.

For RQ3, we find that a majority of faculty believes it would be beneficial for the quality

of their institution’s CS program if they would investigate how they could better prepare students

for careers in industry (57% agree, 16% disagree). We also find that many faculty expressed

support for improving their courses by integrating materials and experiences related to industry

preparation into their courses. Examples of such materials are software engineering best practices

and soft skills. However support for such course changes varied widely by course area.

With respect to RQ4, we find that faculty were split regarding the number of barriers

encountered as well as which barriers they encountered. Unfortunately this finding implies

that the academia-industry gap is a multi-faceted problem that most likely cannot be solved by

addressing a single barrier.

The remainder of this section explores these research questions in greater depth.
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4.5.1 Dissenting Views

Although a majority of our respondents agree that preparing students for industry should

be a primary goal of undergraduate CS education and that the quality of their institution’s CS

program would be improved by better preparing students for industry, there is a substantial

group of faculty who disagree with these statements. These faculty may believe, as the quote

attributed to a famous CS professor in Stroustrup [114]: “We don’t teach programming; we teach

computer science”, that software engineering skills important for industry are different than the

skills of a computer scientist. These beliefs are apparent in the distinction between software

engineering [17] and computer science [97] degree programs. What matters most, perhaps, is that

these disagreements about the goals of CS education exist. If institutions are working to improve

student preparation for industry, these dissenting voices could slow progress and represent a new

barrier not currently addressed in our survey.

4.5.2 Entrenched Beliefs?

One might wonder if those faculty who have been in the present system longer would be

more resistant to change, in particular change towards aligning CS curricula with better industry

preparation. This could potentially explain the persistence of the gap, i.e., younger faculty are

eager to make changes, while entrenched interests resist that change, causing the younger faculty

to lose momentum.

However, as discussed in Section 4.4.3 we found that older faculty were be more inclined

to support industry preparation as a primary goal. Thus entrenched beliefs, if present, would

appear to support the goal of industry preparation. Interestingly, Florian et al. found that employee

age is negatively correlated with resistance to change [41]. This result would support the idea that

older faculty, having greater support for industry preparation, would be more open to curriculum

changes that improve industry preparation.

Why older faculty report higher agreement with industry preparation as an important
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programmatic goal remains unclear. However, we wonder if it might be that faculty learn more

about the merits of an industry background throughout their interactions over the years with

graduated students or with people returning to academia from industry. They may also be more

likely to have older children who are making career choices; having a concern for their success

could cause a broader pragmatic turn.

4.5.3 First-Generation Respondents

In contrast with previous work which finds first-generation students have a stronger job-

focused mentality [66], we did not find any statistically significant difference for faculty who

were first-generation students and their agreement on the importance of industry preparation as

an important goal. We find that for the item “To prepare students for success on the job market”

as a goal of CS programs, both faculty who were first-generation students and faculty who were

not first-generation students report a median of “Very important”. A two-sided Mann-Whitney U

test reported a statistic of 5630.0 and a p-value of 0.426, indicating no significant difference for

α = 0.05.

Why there appears to be a difference in job-focused mentality between first-generation

students and faculty who used to be first-generation students remains unclear. We wonder if

perhaps faculty having tenured jobs could play a role here or if the subset of students who pursue

faculty positions is different from the general population of first-generation students. Future work

could investigate these questions.

4.5.4 CS Subdisciplines

We find some evidence that certain areas of CS may be more biased than others against

industry preparation. As discussed in Section 4.4.5, we find that faculty identifying with the areas

of Algorithms and Complexity as well as Programming Languages are more likely to believe that

industry-relevant content does not belong in their course. However, we should keep in mind that a

possible explanation for this is that it might be the case that academia is ahead of industry in these
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specific fields. For example, one participant who identifies with the Programming Languages

area reached out to us over email after completing the survey. They stated that it would be

counter-productive to cover directly industry-relevant content in their course because it would

mean not covering the state of the art in their field. According to this participant, it was not

necessarily the case that such content does not belong in their course, but more that they believed

it would be counter-productive to inspiring students and preparing them for life-long learning. It

is unclear how many of our respondents from these areas may share this perspective.

4.5.5 Barriers Encountered

As demonstrated in Section 4.4.5, faculty face barriers towards providing more directly

industry-related content in their courses. Identifying common barriers is important as they

inherently impact the likelihood that faculty will adopt possible solutions [58, 63]. We already

see some evidence of this because the academia-industry gap persists despite the many papers

that have been published on how to effectively teach industry-relevant content. For instance, there

is a plethora of studies on how to teach software testing as well as on how to automatically grade

it; some examples are [38, 101, 109]. Unfortunately, these practices are not yet commonplace

at many institutions (among which our own) which suggests these barriers may be inhibiting

adoption. Future work is needed to investigate why such studies have not gained traction and

whether or not that may be related to the barriers discussed in Section 4.4.5.

Furthermore, we find in Section 4.4.5 that not all faculty experience the same barriers.

Figure 4.13 demonstrates that we find about half of the faculty experience relatively few barriers

while about a quarter experience substantial barriers. For example, we unsurprisingly find that

faculty from schools with larger CS programs experience class size as a barrier to improvement.

Similarly, for smaller CS programs, their faculty report experiencing fewer barriers pertaining

their instructional staff as they may not have any. For most barriers, however, it remains unclear

why certain faculty are experiencing these barriers while others are not. Future work is needed
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to uncover what separates these groups of faculty for each barrier such that the barrier can be

addressed.

4.5.6 Research and Policy Implications

The results of this study have implications for researchers as well as administrators.

For instance, we find substantial support for industry preparation among CS faculty, yet the

academia-industry gap in CS remains. Furthermore, faculty cite experiencing substantial and

diverse barriers that obstruct the way towards providing more industry-relevant content in their

courses. We do not find one or two clear barriers that almost all faculty experience. Instead we

find that each of the barriers in Figure 4.11 is experienced by a substantial number of faculty.

These findings indicate that the academia-industry gap is a multi-faceted issue and that more

work is needed in understanding and overcoming these barriers.

4.6 Limits and Risks to Validity

As a closed-ended survey study, the range of responses to questions was limited to the

responses previously elicited in our open-ended interviews in Chapter 3. Although there may

have been other responses that respondents may have wished to choose, we do note that our

questions achieved a sufficiently wide range of responses to give us confidence that the responses

to our survey represented real alternatives and choices for the respondents.

Our survey results are subject to potential selection bias. Participation in our survey was

voluntary, without remuneration, so there could be a bias in our results due to the type of person

who answers such surveys (e.g., respondents may be more community-minded than the average

faculty member). We attempted to counter other selection biases by using multiple methods to

target respondents and building department mailing lists from a wide variety of institutions.

Related to the above, although we solicited responses from thousands of faculty, we

achieved a response rate of only 3%, a relatively low proportion, although typical for survey
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studies. For example, Sheehan reports the following factors are strongly correlated to email survey

response rates: Survey Length, Respondent Pre-Notification, Follow-Up Contact/Reminders, and

Relevance of the Issue to the People Approached [103]. Our survey does not do well on these

factors, except for the relevance of the issue to the people we approached. We could of course

have sent pre-notifications or reminders, however we did not want to bother people with more

than one unsolicited email about our survey. Our completion rate of 77% gives us confidence that

the survey design itself was not deterring people from completing it.

We used statistical methods where appropriate in order to test for confidence, and were

clear on when we did and did not achieve sufficient confidence.

Furthermore, although we solicited responses from 35 countries, a large portion of our

participants are from universities from the US and other English speaking countries. This may

limit the generalizability of our results.

As a survey study, our results reflect what respondents consciously chose as answers

in the survey, not necessarily what they actually believe or enact in their daily lives. While an

observational study (e.g., of department faculty meetings or the conduct of courses) might reveal

actual beliefs or tendencies, it would be extraordinarily difficult to achieve the quantitative results

required to lend insight on the research questions of this study. On the other hand, because survey

responses were anonymous, there was no incentive for our respondents to intentionally mislead.

4.7 Summary

Although the academia-industry gap has been long-studied, little was known about the

perspectives of the broad community of CS faculty. In our survey study of 249 faculty, we find that

the community is strongly supportive of industry preparation as a goal of their undergraduate CS

programs. Moreover, they generally view their own institution as the primary party responsible

for industry preparation. Faculty are also strongly supportive of teaching more industry-related

content, for example by integrating more software engineering practices into existing courses
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and by teaching more soft skills that may be important in a professional context. That said, this

support varies by the faculty’s primary course area, with instructors of software-related courses

offering more support and instructors of more mathematical courses offering less support.

The enthusiasm for the goal of industry preparation is tempered by an acknowledgment

that there are many barriers to success. Although faculty varied widely in the number of barriers

they cited as preventing their inclusion of more industry-related content, over half encountered

more than three barriers. There were no discernible patterns in the number of barriers according

to institution or program characteristics.

With such strong faculty support for industry preparation, the common barriers uncovered

in this work may offer a partial answer to the question of why the gap persists. A clear research

priority should then be learning more about the characteristics of these barriers and how we might

begin to remedy them.
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Chapter 5

Barriers to Adoption

Analyzing the Adoptability of Educational Innovations: A Case

Study of the Academia-Industry Gap in CS

5.1 Introduction

Based on struggles with gaining faculty adoption of evidence-based educational prac-

tices [57], extensive work to identify the common barriers to adoption of educational innovations

has been conducted within the past decade [63, 112, 118, 125]. As a prime barrier is lack of time

for adoption [60], educational innovations must either be extremely lightweight or innovators

must provide extensive support.

The group “Increase the Impact” seeks to improve the rate at which faculty adopt peda-

gogical innovations by providing recommendations that educational innovators can employ to

make adoption more likely [123]. These recommendations have been only recently developed

(within the past decade) and require additional effort from innovators—particularly by asking

them to prioritize meeting the needs of potential adopters from the start.

We believe these previous works can provide insight into why certain innovations have
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failed to gain traction in our community. To that end, we developed a checklist that helps the user

identify potential barriers to adoption present in a CS educational innovation paper.

The use of checklist guidelines is not new to computer science. McGill et al. [77] provided

guidelines on what data to report in future papers focusing on experience reports in pre-college

computing activities. The need for consistent reported information allows for better replication

studies, [54] analysis and comparisons of these initiatives. These frameworks have also been

used to evaluate the current literature of the CS education community, as seen in the work of

Malmi et al. [71], allowing for better understanding of how research is carried out along with

what key areas of the research process need improvement.

We based the contents of this checklist on Increase the Impact’s formal framework for

analyzing the potential for sustained adoption [111, 123], the work of Taylor et al. on propagating

the adoption of CS educational innovations [118], the barriers experienced by faculty as identified

in Chapters 3 and 4, and our own experience as educators. Some examples of items on the checklist

are: whether or not materials such as a topic schedule, assigned readings and assignments are

publicly available and whether or not the innovation requires paid products or services. The full

checklist can be found in Appendix A.2.

As part of the checklist development process and to explore its value in a relevant context,

we used our checklist to evaluate the adoptability of proposed innovations that seek to solve

the academia-industry gap. The academia-industry gap has been well studied over the past

two decades, with numerous studies uncovering the divide between what is taught in academia

and what is important to CS graduates for their careers [93]. While this academia-industry

gap was identified at least two decades ago [67], recent work has shown that it still persists

today [22, 32, 62]. Although one might say this is because faculty do not care about remedying

the problem, in Chapter 4 we actually identified that a majority of CS faculty view industry

preparation as a major goal of CS degrees.

To demonstrate the presence of solutions to this problem, we provide an overview of
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the dimensions of the academia-industry gap in CS (Section 5.4.1) as well as an overview of

the solutions that have been proposed (Section 5.4.2). Were these solutions widely adopted,

we believe we would have seen a narrowing of the academia-industry gap. However, because

papers on the gap have continued to be published in recent years [32, 62], we suspect these listed

solutions have not yet made it into standard practice in CS curricula.

The status quo of the academia-industry gap can thus be summarized as follows:

1. The academia-industry gap has been a recognized issue in the field of CS education for at

least 2 decades [67].

2. Many faculty would like to better prepare students for industry, but lack awareness, skills

and resources necessary to provide more industry-relevant content in their courses (see

Chapter 4).

3. There are many solutions proposed in academic literature waiting to be used in practice

(see Section 5.4.2).

4. The gap continues to persist today [22, 32, 62], thus there appears to be little adoption of

these solutions.

Hence, for the case study in this work we hypothesize that published solutions to the

academia-industry gap contain substantial barriers to adoption. To assess our hypothesis we use

our checklist to analyze these innovations. We find the most common areas of improvement are:

(1) examining the scalability of the proposed innovation and examining the innovation beyond

a single institution, (2) providing concrete teaching materials that can directly be used by a

potential adopter, and (3) providing innovations that do not require expertise beyond what can be

reasonably expected of someone who holds a CS degree.

We hope that this case study on the importance of minimizing potential barriers to adoption

helps both with identifying next steps for innovations that seek to close the academia-industry
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gap and with underscoring the importance of minimizing these barriers during the development

and publication of CS educational innovations.

5.2 Related Work

5.2.1 Faculty Adoption of Pedagogical Practices

Stanford et al. found that most published educational innovations are not developed with

a clear plan for propagation and gaining adoption [112].

Al-Zubidy et al. conducted a review of empirical evaluations in papers presented at a large

CS Education conference and found that there was a lack of replication which may be to due a

number of reasons including “papers do not report methodologies clearly enough to allow for

replication”, “faculty are unaware of other similar studies from which they could build their work

upon” and “faculty are not able to recruit others to use their methodologies” [12].

In a similar scope, Sanders et al. conducted a review of inferential statistics used in

computing education research by reviewing 270 papers from a large CS Education conference and

found that many of the papers that do use inferential statistics do not provide enough information

to understand the statistical tests and for the purpose of being able to replicate the studies.

Surprisingly only 51% of the papers even using inferential statistics and 28% of the papers used

no numbers to describe their data. This provides further evidence that mnay papers do not provide

a clear path for replication and therefore adoption of the conducted research.

This is worrying as Khatri et al. found that devoting attention to adoption from the start is

important for developing a successful innovation [63].

A 2018 literature review assessed what motivates and discourages educators to adopt

educational innovations, particularly in CS [118]. Their work lists the following barriers to the

adoption of educational innovations:

1. Unawareness of the innovation
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2. The time and effort required to implement the innovation

3. The skills required to implement the innovation

4. Incompatibility of the innovation with existing practice

5. The worry that the innovation will take so much time that not all course topics can be

covered anymore

6. The worry that the innovation will have a negative impact on student evaluations of the

course and its instructor

7. The potentially limited amount of time a research track faculty devotes to teaching and

updating their teaching methods

8. Unconscious habits and (potentially irrational) beliefs that influence teaching decisions

In a survey of 821 CS faculty, Hovey et al. identified “not having time to try it out” as

the most important barrier to adoption of educational innovations. With other strong barriers

being satisfaction with the current practice, lacking the necessary resources, and being unfamiliar

with the innovation [60]. These findings exemplify the importance of minimizing the time and

resources required to adopt an innovation.

Turpen et al. found that educators who have chosen not to adopt an innovation perceive

different barriers to adoption than educators who claim to have adopted the innovation [125].

Unfortunately, self-reporting has been found to be an unreliable way of measuring the adoption

rate of an educational innovation as many faculty will claim to have adopted an innovation, but

will in fact not adhere to all of its implementation details [110]. This indicates that innovations

should come with clear implementation guidelines in terms of what is “required” and what is

“okay to modify” [118]. To address this issue, Walter et al. designed a validated survey which

minimizes this self-reporting bias when measuring faculty use of an innovation [131]. Other work
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has found that the fewer implementation components an innovation has, the more likely faculty

are to adopt it properly [24].

5.2.2 The Academia-Industry Gap

In this work, we use our checklist to run a case study on a problem that has been well

studied by our community over the last two decades: the academia-industry gap. Notably,

Radermacher and Walia analyzed 30 papers on this gap between industry expectations and the

abilities of CS graduates [93]. In a follow up study, they interviewed 23 managers and hiring

personnel from a variety of companies and found that the most frequent problem companies

experience with recent graduates is lacking proficiency in- or awareness of different software

tools [94]. The managers mentioned that it takes about six months for recent graduates to reach

the same degree of proficiency with the tooling as other employees. One example mentioned

is that recent graduates are unfamiliar with version control beyond its basic usage, i.e. they

know how to commit and push code, but have no idea how to deal with things like merging and

branching. Also, most have never been exposed to core topics, such as continuous integration,

that are essential to quality assurance in a professional setting.

Craig et al. interviewed recent CS graduates and performed an analysis of five studies on

the academia-industry gap [32]. They extracted a number of differences between academia and

industry that lie at the basis of this gap. For example, the well-defined fixed scopes of student

projects versus the large continually evolving scopes of industry projects and the difference in

scale of codebases for student projects compared to industry projects.

The academia-industry gap is not unique to CS education, some examples from other

fields include: Hospitality [18], Law [37], Business [78], Medicine [23], and Accounting [104].

Also noteworthy is that there are a number of papers identifying an academia-industry gap

in Software Engineering (SE) programs and specializations [13, 20, 43, 83, 126], indicating

that simply offering a separate SE program or specialization for students seeking to become
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software engineers does not necessarily solve the academia-industry gap in CS. Fortunately, many

innovative solutions have been proposed to address parts of the academia-industry gap in CS. The

case study we run in this work analyzes these innovations for the presence of potential barriers to

adoption.

5.3 Methods: Developing the Checklist

For educational innovations to gain “Sustained Adoption”, they need to address three

challenges:

1. Be Effective. Any published innovation should show evidence, either qualitative or quantitative,

that it is effective in achieving its goals. Based on the fact that these papers were peer reviewed

and published we expect these papers address this challenge. We assume that not showing

sufficient evidence would provide a reviewer with strong reasons to reject a paper submission.

2. Gain Faculty Awareness. In order for faculty to begin considering adoption of any edu-

cational innovation, the innovator first needs to make sure faculty are aware of the problem.

However, assessing faculty awareness is challenging to do in our case study because much of the

dissemination and outreach efforts for a proposed innovation occurs outside of what one might

find in a publication. As such, our study does not examine this element of “Sustained Adoption”,

but we revisit this topic in Section 7.5.

3. Be Easy to Adopt. As the most commonly cited reason faculty choose to not adopt educational

innovations is lack of time [60], it is critical that solutions are well described, well tested, and are

easy to obtain and deploy (preferably at scale). How well solutions address this challenge can be

answered by analyzing the potential barriers to adoption that arise from information provided

in the papers. As such, the remainder of this section details how we developed an instrument

to formally analyze the potential barriers to adoption that may be present in a CS educational

innovation.
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5.3.1 Developing a Checklist to Identify Barriers to Adoption

A group called “Increase the Impact” [123] has already published a formal framework

for assessing the “Sustained Adoption” of an educational innovation: “Design for Sustained

Adoption Assessment Instrument (DSAAI)” [111, 122]. However, as mentioned above in point

3, ease of adoption (or “Adoptability”) is only one aspect of “Sustained Adoption”. Where

Adoptability only concerns whether it is easy to adopt a solution, “Sustained Adoption” also

concerns developing a strategy to achieve high adoption of an innovation and sustaining that

adoption into the future. This means the DSAAI includes items on propagation and increasing

faculty awareness, however these items are difficult to assess without intimate knowledge of the

work (beyond what is available in a publication). Hence, our checklist does not address this issue

and instead focuses on identifying the potential barriers to adoption of a solution in order to

provide insight in the Adoptability of the solution.

Our final checklist is based on Increase the Impact’s DSAAI instrument [122], the barriers

to adoption of innovations identified by Taylor et al. [118], the barriers faculty experience as

identified in Chapters 3 and 4, and our own experience as educators. The full checklist is appended

to this article in Appendix A.2. Moreover, Table 5.1 lists abbreviations of all items on the checklist.

Please note that for some items on the checklist, not checking the item may indicate a potential

barrier (e.g. items under 3 and 9).

Items on the checklist were heavily based on the Sustained Adoption Assessment with

some additional changes [111, 122]. First, items that we could not realistically and accurately

rate on from simply reading a paper were removed. This included items under the ”Dissemination

through:” category in Section 3 of the instrument, such as methods and venues the dissemination

of an innovation could be done through. Considering we only looked at the papers in isolation, we

could not determine if seminars, conference booths or other methods of dissemination occurred for

an intervention. Next, items were added to the checklist based upon prior work done on analyzing
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the effectiveness of innovation propagation. An example of an addition made is the specification

of scalability issues and specific sample details and setting (i.e. size of sample, institutions,

country) the innovation is reported on. This was done to gain a more detailed understanding of

what aspect of the innovation may be difficult to scale up, such as high amounts of manual grading,

class size or physical working space for students. Finally, in order to increase the inter-rater

reliability, Likert scales were changed to check boxes and some items were rephrased, split or

combined.

5.3.2 Checklist Reliability Validation

We desired to make an instrument that would be easy to use by authors of innovations,

potential adopters, and paper reviewers, as well as provide consistent results. We tried multiple

approaches, such as 5 point and 3 point Likert scales, but ultimately arrived a checklist similar to

the Teaching Practices Inventory as that proved to be more reliable than using scales [135]. The

first three authors iteratively created the checklist using the following process:

1. The first author picked two new papers to rate.

2. Each of the first three authors then independently analyzed these two papers using the latest

version of the checklist while using a spreadsheet to keep track of the items checked as

well as any corresponding notes.

3. The three authors then discussed the differences in their analyses in a meeting where they

updated the checklist.

This process was repeated until an average pairwise agreement of 87% and an average

pairwise Cohen’s Kappa of 0.72 was achieved across the three raters for both papers in the seventh

iteration, indicating substantial inter-rater reliability for the final checklist.
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5.4 Methods: The Case Study

We first determined the different dimensions of the academia-industry gap. Next, we

determined whether solutions exist for those dimensions. And finally, we selected a subset of all

identified solutions and analyzed those with the checklist.

5.4.1 Determining the Dimensions of the Academia-Industry Gap

To classify the various dimensions of the academia-industry gap, we use a literature review

of papers describing the academia-industry gap by Radermacher and Walia. In their work, they

analyzed 30 papers and found 31 knowledge deficiencies [93]. Of these 31 deficiencies, they

report the 15 most frequent.

We amended this list of deficiencies with several clarifications and additions where we felt

the deficiencies on the list were not complete or well defined enough based on our own literature

review. They are differentiated below by italic text and added citations.

Written Communication: Technical writing and documentation.

Oral Communication: Communicating with customers, listening skills, communicating about

struggles and the need for assistance.

Project Management: General project management skills.

Software Tools: Tools for version control, code development (IDEs), project management, issue

tracking, code analysis, database management, testing, debugging, and continuous integration.

Testing: Writing high quality test cases, making use of test quality metrics such as code coverage.

Understanding the importance of testing [51]. Not giving up when writing tests is difficult [22].

Teamwork: Working in large teams, working with experts from other disciplines, working in the

same codebase with multiple teams [25].

Problem Solving & Critical Thinking: Analyzing problems. Being able to come up with

alternative solutions to a problem. Critiquing and justifying a solution [51].

Programming: General programming ability, multi-threaded programming, language indepen-
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dence.

Requirements Engineering: Elicitation and specification.

Personal Skills: Motivation, attitude, disposition, face and learn from errors, accept feedback,

time management [32, 116].

Ethics: Being able to distinguish between ethical and unethical behavior. Acting ethically.

Leadership: General leadership skills.

Software Design: Describing and producing software designs.

Databases: Query languages. Database design.

Development & Improvement Processes: Familiarity with development processes such as

code reviews and shipping cycles [116]. Awareness of process standards such as the Capability

Maturity Model (CMM) and process improvement frameworks such as Capability Maturity Model

Integration (CMMI).

5.4.2 Process Used to Find Solutions

Given the dimensions of the problem from Section 5.4.1, we next sought out solutions

in academic articles for the identified gaps. We formalized our search for solutions with the

following process. We used the ACM digital library and Google Scholar to find published studies.

The search range used was 2000–2019 as we suspect teaching methods published before 2000

may be less relevant to the way we teach CS today. Our queries took the form of: “Teaching

¡gap¿ in CS” (e.g., “Teaching ethics in CS”). Because the ACM digital library contains papers

focused on Computer Science, we found that querying it led to more directly relevant results

than Google Scholar. So we used it as our primary query platform, only moving to Google

Scholar whenever we did not find relevant results. However, we found that searching the ACM

digital library through Google was faster, so we used the following strategy to search on Google:

“site:dl.acm.org Teaching� gap� in CS”.

If the high level gap name did not render any results, we searched for more specific
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descriptions of the gap. For instance, “Teaching Software Tools in CS” did not render any relevant

results, so we instead searched for: ‘site:dl.acm.org teaching “version control” OR “IDE” OR

“project management tools” OR “issue tracking” OR “debugging” OR “continuous integration”

in CS’

We found a total of 78 relevant papers [4] proposing solutions to the 15 gaps listed in

Section 5.4.1. We do not claim that this is an exhaustive lists of all solutions, but rather proof of

existence of solutions to each of the academia-industry gap’s dimensions.

5.4.3 Selection and Analysis of Solutions

For each of the 15 gaps we selected the 3 papers with the highest number of citations

per year as papers to analyze in our case study. The following formula was used to calculate the

number of citations per year: #citations/max(1, 2019− year). We used the number of citations

reported by Google as the numbers were consistently higher than those in the ACM library. We

used this metric as a proxy for papers with the highest impact and possibly greatest likelihood

for adoption. Moreover, by selecting exactly three papers from each gap dimension we avoid

potentially biasing our results towards dimensions with relatively many proposed solutions. Next,

the 3 papers per gap were divided up among the first 3 authors of the paper such that each author

analyzed exactly 1 paper for each of the 15 areas of the academia-industry gap. The final list

of the 45 solution papers analyzed for barriers to adoption can be found in Appendix A.1. The

complete list of all 78 identified solution papers can be found online [4].

5.5 Results

Table 5.1 shows the results of the analysis of these 45 papers. For each item on the

checklist, one can see for how many of the 45 solutions this item was checked. Please note that

for some items a potential barrier may be implicated when the item is not checked (e.g. items

under 3 and 9).
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Table 5.1: The results of applying the checklist to analyze 45 papers proposing innovative
solutions to aspects of the academia-industry gap. The count indicates the number of papers
for which a checklist item applied, the percentage indicates the count relative to the total of 45
papers.

Checklist Item Count % Checklist Item Count %
1. Project type 6. Hardware requirements
Curricular Change 9 20% Raspberry Pi, Arduino or similarly priced 0 0%
Course Change 18 40% Generic web servers 0 0%
New Course 14 31% Self-designed or self-assembled hardware 0 0%
Technology 4 9% Other hardware: 3 7%
Other 1 2% 7. Teaching assistant requirements
2. Components mentioned in the paper Paper mentions TAs per students 5 11%
Course topic schedule 19 42% Author’s TAs have expertise in: 1 2%
Lectures 22 49% 8. Author collaborated with
Readings 18 40% a prof in their own department 14 31%
In-class activities 29 64% a prof from the department 3 7%
Videos 4 9% at their university 2 4%
Individual assignments 36 80% another university 4 9%
Group projects 21 47% industry 9 20%
Labs 10 22% the open source community 2 4%
Required software 20 44% other: 3 7%
Other: 2 4% 9. Paper reports innovation was used
3. Materials/examples publicly available On a max class size of students 22 49%
Course topic schedule 11 24% On a min class size of students 22 49%
Lecture materials 0 0% In multiple offerings of the same course 22 49%
Reading materials 11 24% In multiple different courses 9 20%
In-class activity materials 9 20% By multiple instructors 11 24%
Video materials 1 2% At multiple institutions 5 11%
Assignment materials 9 20% In multiple countries 1 2%
Project materials 2 4% 10. Paper reports statistical evidence
Lab materials 5 11% That shows innovation is beneficial 20 44%
Grading strategies 6 13% 11. Potential scalability issues
All required software 19 42% Class size NOT mentioned in paper 20 44%
Software manuals/documentation 19 42% Paper does NOT report any usage on a large class 43 96%
Other: 2 4% Requires manual grading 30 67%
4. Expertise requirements Requires significant reading for grading 24 53%
Author/collaborator has expertise in 21 47% Requires presentations 12 27%
Author provides info to help learn 12 27% Requires in-class student interaction 25 56%
5. Monetary requirements Requires all students to work at the same time 20 44%
Products/services author or students paid 11 24% Requires students to have employment 1 2%
Other: 0 0% Requires interaction with customer/product owner 6 13%

Not all students can participate (limited spots) 4 9%
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We find that 14 out of the 45 solutions are of the “New Course” type. Proposing new

courses can be problematic, because the CS curriculum is already full with courses. Thus the

adopter will have to figure out what course to remove. Consequently, proposing a new course may

not be particularly helpful unless it is clear which course it should replace. Course changes and

curricular changes may not require the removal of an entire course from the curriculum, however

there is likely still some content that should be considered for removal in favor of the change.

For many course components we find that, even though the components are explicitly

mentioned in the paper, actual materials or detailed examples are missing, leaving any potential

adopter with the burden to recreate these materials from scratch. When papers described, or

linked, course materials these generally included topics schedules, readings, labs, and required

software. The course components for which often no materials were provided were lectures,

in-class activities, group-projects, individual assignments and grading strategies.

For close to half of the papers, the author of the paper or a collaborator had special

expertise that a potential adopter (who just has a CS degree) could not be expected to have. An

example of this comes in the work of Fioravanti et al. [39]. The innovation presented in this paper

requires the adopter to have experience with industry project management. Although industry is

a popular choice for many computer scientists, it is possible (and in our own experience quite

common) for instructors to have a pure educational background with minimal to no industry

experience. Another example is that of the innovation presented by Burton et al. [26]. This

innovation requires the adopter to have knowledge on science fiction literature and computer ethics.

Although computer ethics is an important aspect of the field, it is typically not a requirement of

computer science degree programs. For about half of these papers, the author seems to realize

this and provides resources to help a potential adopter learn the topic. For the other half, potential

adopters are seemingly expected to either already have this expertise or to be able to attain it

independently. Moreover, papers often did not mention how many teaching assistants were used

and if these teaching assistants had any special expertise. This makes it hard for potential adopters
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to judge whether or not the innovation would for instance require more teaching assistants than is

supported by their budget. About a third of papers require some form of collaboration with other

professors, industry professionals, or other outside entities. This may form a barrier for potential

adopters from smaller institutions or for adopters who are not as well connected as the author.

The 22 papers that reported maximum class sizes had an average class size of 70.45

students (median 42.5 and standard deviation 64.03). In total only 2 papers were evaluated on a

class size larger than 200, and 5 papers on a class size between 100 and 200. The 22 reported

minimum class sizes had an average of 62.32 (median 31.5 and standard deviation 69.02). Some

papers mentioned aggregate class sizes across multiple course instances, hence the class size

related items under 9 and 11 on the checklist do not add up to 45.

About half of the papers reported the solution had been used in multiple offerings of

the same course, giving confidence that these innovations gained some traction at the author’s

university. However, few papers report usage in multiple courses, by multiple instructors, at

multiple institutions, or in multiple countries.

Perhaps somewhat surprising is that for 25 out of 45 solutions, the published paper does

not provide any statistical evidence that the proposed innovation is beneficial. This contradicts

our original expectation that papers would certainly provide such information, as we believed

that either the lack of or minimal evidence would be clear reason for a paper rejection. This is

worrying as it may mean that the innovation does not have the desired effects. Moreover, it may

make it harder for potential adopters to convince their colleagues that it is worthwhile to adopt an

innovation.

One of the things that stands out in Table 5.1 are the scalability issues that apply to many

of the solutions. For example, 43 papers did not report that the solution had been evaluated

on a large class. Moreover, 20 papers did not mention class size at all. This is particularly

concerning because if a solution has not been used on a large class, it is likely that it may hide

some scalability issues that an adopter has to uncover and correct (likely making them less willing
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to adopt it). Moreover, as class sizes continue to rise in computer science, scalable solutions

become a necessity [27]. Another point of worry is grading at scale—30 solutions require manual

grading and 24 solutions require a significant amount of reading for grading (e.g. when grading

essays or project reports), which is difficult to do in large classes. Only 9 solutions provide

explicit grading strategies.

There were other issues related to scalability as well. We found many solutions require

some form of in-class student interaction. Depending on the type of in-class activity, this may not

work well in large classes, especially if student participation in the activity is graded. Just under a

quarter of solutions include some form of student presentations. This is also a potential scalability

issue as student presentations can consume considerable class time. That said, one innovation had

an interesting approach: the author proposed having students present lecture content to practice

presenting, that way there is no need to scrap course content in order to make time for student

presentations [45]. However, there may be quality concerns if core course content is presented by

students. Requiring all students to work at the same time of day may also pose a scalability issue,

especially if students are expected to work in a computer lab, because there may not be enough

workstations to fit a large class. Only few solutions required employment, interaction with actual

customers, or access to a student program with limited spots available. This is encouraging as

innovations depending on such things are inherently difficult to scale.

5.6 Discussion

Our checklist can be applied to CS educational innovation papers by authors, reviewers

and adopters alike in order to uncover any potential barriers to adoption and inform the decision

making process on how to move forward with a paper or project. For example, before submitting a

paper for publication, the author(s) of an innovation might analyze their work using our checklist

and find that adding a link to their publicly posted lecture slides would be beneficial for potential

adopters.
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5.6.1 Gaining Adoption

As discussed before, minimizing barriers to adoption of an educational innovation is by

no means the only aspect that is important for successful sustained adoption. For instance, one

of the main barriers to adoption as listed in Section 5.2.1 is “Unawareness of the innovation”

which is tied to the key challenge of gaining faculty awareness of the solution. In addition,

Chapters 3 and 4 have shown that faculty may not always have knowledge of current industry

practices, so proposed solutions should help to close that divide. It is also important to note that

simply because barriers to adoption are lowered does not mean an innovation will be universally

adopted. As discussed by Hovey et al., faculty are also motivated by additional factors such as

how the innovation may benefit their students’ learning and how compatible it is with their current

teaching practices [60].

Thus, before an author of an innovation arrives at the point where they might use our

checklist to analyze their work for potential barriers to adoption, they should ideally already have

followed some of the best practices for sustained adoption. As only reducing barriers to adoption

may for instance still lead to an innovation that other people are not interested in.

5.6.2 Many Papers Contain Substantial Barriers

Judging by our findings in Section 5.5, it is clear that many educational innovations

proposed in our community, specifically on topics related to the academia-industry gap, pose

substantial barriers to adoption. For example, many papers do not provide concrete teaching

materials, did not evaluate the innovation on large class sizes and may contain several potential

scalability issues. With the prime reason for not adopting an innovation being a lack of time [60],

this is worrying information as regenerating course materials or making innovations suitable for

larger classes could place a heavy time burden on the adopter.
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5.6.3 Developments in the CSE Community

With our work, we hope to see more attention paid to adoptability, particularly for

research papers and experience reports submitted to SIGCSE conferences. Fortunately, we believe

our community has already began to recognize the importance of adoptability in educational

innovations as new criteria relevant to adoption were added just two years ago to the SIGCSE

symposium reviewer guidelines. For example, according to the reviewer guidelines for the

SIGCSE 2021 Technical Symposium [105], papers in the “Experience Reports and Tools Paper

Track” should “provide enough detail so that others could adopt the new innovation”. This is a

welcome addition and we laud the changes to the reviewer guidelines. We hope this paper will

lead to further investigations into how these guidelines may be improved with respect to helping

reviewers identify potential barriers to adoption that may be present in submitted papers.

5.7 Limitations and Threats

This study has several limitations and threats to validity. For example, we created an

instrument that can be used by authors, reviewers and adopters to analyze CS educational

innovation papers and we have provided evidence that the instrument performs reliably between

different raters. However, a minor threat is that we ourselves were not an author, reviewer

or adopter of the innovations we analyzed. Moreover, it is unknown how well the instrument

performs for people who were not involved with this work.

Since each paper is somewhat unique in its own way it is near impossible to eliminate all

chance for ambiguity from our checklist, especially in cases where the paper itself is ambiguous.

For example, we found that differences between raters during our validation iterations were often

caused by a rater misinterpreting parts of a paper. In addition, as our knowledge of the solutions

in our case study is limited to what is presented in the papers, we may not be aware of all efforts

made by authors to achieve sustained adoption.
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We also wish to note that research on designing for sustained adoption [122, 123] is

relatively new to the CSE community, thus designers of the solutions we analyzed were likely

unaware of its recommendations. However, many items on our checklist do not require a thorough

focus on sustained adoption. For example, virtually any innovation should be able to make

relevant course materials publicly available.

Despite these limitations we believe our checklist is beneficial to authors, reviewers and

adopters of CS educational innovations. Moreover, our case study clearly uncovers a lack of focus

on minimizing barriers to adoption, which may detract from the closing of the academia-industry

gap.

5.8 Summary

The goal of this study is to uncover the barriers to adoption that may be present in

educational innovations. Our checklist may assist authors, reviewers and adopters alike in

analyzing papers for the presence of potential barriers to adoption. This in turn can help identify

missing information to improve the potential adoptability of a promising educational innovation.

The checklist then, can help guide discussion whether to submit, accept or adopt an innovation or

if more focus on reducing barriers is desired.

Further more, we used our checklist to run a case study on a well studied problem in

our community: the academia-industry gap. We examined whether the presence of barriers

to adoption in CS educational innovations addressing this gap could be an explanation for its

persistence. The results of this case study clearly show that many potential barriers to adoption

are often present in these papers. Although we do not claim this to be the key reason why this

issue has persisted, these barriers may be increasing the difficulty when trying to implement

these innovations at another institution. This leads us to conclude that the presence of barriers to

adoption in the proposed solutions is indeed one reason the academia-industry gap has been able

to persist for two decades despite the many publications on the topic.

79



Hence we encourage the CSE community to reiterate on these solutions by addressing

the potential barriers to adoption that arise from applying our checklist. Table 5.1 provides an

overview of which potential barriers to adoption are commonly present. Key areas we believe are

relatively easy to improve include providing ready-to-use course materials and making sure the

solution does not contain aspects that will hinder its scalability in larger classes. On the other

hand, checklist items such as evaluation at multiple institutions may be too costly to address in

initial publications.

Finally, we want to recognize the valuable recent addition of adoptability-related questions

to the review criteria for SIGCSE conferences and encourage the CSE community to continue

these efforts by devoting more attention to uncovering potential barriers to adoption in the review

process going forward. Future community conversations should determine how we can raise the

bar regarding adoptability of submissions to SIGCSE conferences.
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Chapter 6

Prerequisite Proficiency and Student

Performance

A Study on The Relationship between Prerequisite Proficiency

and Student Performance in an Upper-Division Computing

Course

6.1 Introduction

Although prerequisites have been shown to be valuable for student outcomes outside

computing [74, 128], their value has not been empirically studied in computing. Studying the

importance of prerequisite success takes on greater meaning in light of institutional pressure to

reduce failure rates, as well as recent discussions about reducing prerequisites to speed time to

degree [130].

Many instructors have a story about the student who somehow enrolled in their course

without a required prerequisite, suffering dire consequences. But what happens when a student
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has taken the prerequisite and just did poorly in that class—does low prerequisite knowledge

relate to poor performance, and if so, to what extent? What percentage of students enter courses

with insufficient proficiency of required prerequisites? Do students improve on their deficiencies

in prerequisite knowledge during the course?

To answer these questions, we measured the prerequisite knowledge of 208 students in

an upper-division data structures class through a pre- and post- survey. From these results, we

examined changes in proficiency over the term, correlated pre-term and post-term proficiency

with the students’ final exam scores, and analyzed which prerequisite content was most salient

for student success.

We expected that proficiency with prerequisite knowledge would be generally high as

the prerequisites for this course are reported to be rigorous and demanding. Yet we also had

concerns that the very low rates of D’s and F’s (< 7% combined) in the prerequisites could mean

that some instructors were giving passing grades to students who are not truly prepared for the

next step. Other possible factors include fading knowledge for those not taking these courses

back-to-back [19] and cheating in prerequisite courses [82, 106].

The results were both sobering and encouraging. Prerequisite proficiency on entry to the

course was far lower than anticipated. We classified student prerequisite proficiency as low (under

half of the questions correct), medium (50-70%), or high (over 70%). Nearly a third of students

(29%) demonstrated low proficiency and only 27% demonstrated high proficiency. On the other

hand, students improved their proficiency over the term, by 8 percentage points on average, with

a number of low-proficiency students improving to at least medium proficiency by the time of the

final.

Not entirely surprising is our finding that final exam performance is correlated with

prerequisite proficiency, 0.366 (Pearson correlation coefficient) for the pre-term test, 0.384 for

the post-term test, and 0.434 for the two taken together. Improvement in prerequisite proficiency

during the term mattered: for students demonstrating low proficiency on the pre-term prerequisite
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test, their improvement on the post-term test was correlated (0.371) to their performance on the

final. All of these correlations were statistically significant. Not all prerequisite knowledge was

found to be equally important, however, nor was proficiency uniform over the subject matter. For

example, a student’s ability to perform a basic runtime analysis was the strongest predictor of

performance on the final. We discuss which topics were of most importance in detail.

Taken together, these results show the importance of proficiency with prerequisite knowl-

edge for future performance in computing, and highlight the possible benefits of putting more

attention on the reinforcement of prerequisite knowledge.

6.2 Background

Course prerequisites are commonly used in curricula to ensure students have the necessary

prerequisite knowledge to succeed in subsequent courses. In computing, course prerequisites are

described in the ACM curricula recommendations CS 2013 [85]. Prerequisites can play a variety

of roles in the curriculum, including ensuring students have the proper background knowledge or

sufficient maturity, that they display a certain degree of commitment to a program, or to convey

program requirements [130]. In particular, the role of mathematics and introductory computing

prerequisites have been well discussed [130]. There is pressure, however, to reduce the depth of

prerequisite chains to aid with students’ time to degree [130]. In view of these discussions, the

role prerequisite proficiency plays in student success in computing courses deserves further study.

Outside computing, Martin found that grades in prerequisite courses, specifically statistics

and mathematics, correlated with student performance in an agriculture price analysis course [74].

Expanding on the work of Martin in agriculture, Vitale et al. found that cumulative GPA and

grades in prerequisite courses predict student grades in a Farm and Agribusiness Management

course [128].

In computing, direct connections between prerequisite course grades or knowledge from

prerequisite classes has not been similarly established. However, there has been substantial work
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examining a myriad of factors that determine students success in introductory programming

courses. These factors include prior knowledge, gender, motivation, self-efficacy, and achieve-

ment goals [70, 95, 137, 138]. Although each of these factors have shown promise, Wilson et

al. recently cautioned that these relationships may not always replicate [132], which has led to

large replication efforts [139]. Our work expands on our understanding in computing by estab-

lishing a direct relationship between prerequisite course knowledge and success in upper-division

computing courses.

The study most closely related to ours is that of Muralidharan et al. [81]. Muralidharan

et al. examined student performance in Hindi and mathematics with 8th grade students in India,

finding that a surprising majority of students are lacking prerequisite knowledge from prior

grade levels. Their study goes on to show that an intervention program targeting prerequisite

knowledge can significantly improve outcomes. In our study, we similarly examine student

prerequisite knowledge entering an Advanced Data Structures course, finding that incoming

students demonstrate a wide range of proficiency and that improvement in prerequisite proficiency

during the course is correlated with improved final scores.

6.3 Research Questions

Our study has five primary research questions:

RQ1. Are most students arriving with sufficient prerequisite knowledge to start subsequent

courses?

RQ2. Do students, particularly those with low preparedness, improve their proficiency in prereq-

uisite content as they progress through subsequent courses?

RQ3. Does incoming prerequisite proficiency impact final exam scores?

RQ4. If there is a relationship between incoming prerequisite proficiency and final exam scores,

which prerequisites are most meaningful?
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RQ5. Does improvement in prerequisite proficiency translate to improved final exam scores?

6.4 Study Design

To understand the influence of prerequisite proficiency on final exam performance we

chose to study an instance of the course “Advanced Data Structures” (ADS), an early upper-

division course in our CS program. This is an excellent candidate for our study because it has

a wide range of prerequisites including software, theory, and hardware. As we were interested

in actual proficiency at the time of taking the course, not just performance in the prerequisite

courses, we tested proficiency at the beginning and the end of the term. Our study has institutional

Human Subjects approval.

6.4.1 Course Context

The ADS course we studied was taught at a large North American research university on

the quarter system. This 10-week course is designed for CS majors and minors, and is one of

the gateway classes to other advanced courses in the major. The goal of the class is for students

to learn how to program and analyze high-performance data structures. The data structures

studied include trees, hash tables, Huffmann coding, and graphs. Related topics include memory

management, pointers, and recursion. Assignments are programmed in C++. The course has three

principal prerequisites, all lower-division courses: introductory data structures (CS2), advanced

discrete math, and computer organization.

6.4.2 Data Collection

In order to be able to study the relative levels of prerequisite proficiency we needed a

tool to broadly examine the prerequisite knowledge of the students in this class. We chose to test

the prerequisite knowledge of students by means of two surveys. In a pre-study for the present

study, we ran the surveys online. However, we found a significant mismatch between student

correctness in the online survey versus questions which were subsequently given in class. This
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suggested that students collaborated or used outside aids while completing the survey online. So,

for this study, we performed the data collection with an in-class survey, on paper. The first survey

was taken during the first day of class and the second survey was taken during the last week of

class, before the final exam. Both surveys consisted of 15 multiple-choice questions and students

were given 20 minutes for each survey. This format was chosen to balance the needs of data

capture with the time taken away from the class lecture time.

6.4.3 Survey Content

The following courses are prerequisites for majors for the upper-division data structures

class at our institution:

Figure 6.1: Prerequisite chains for ADS.
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Table 6.1: Survey questions listed by question topic and related prerequisite courses.

Q Topic Related courses
1 Pass by value/reference CS1
2 Valid Heap not BST CS2 - Basic Data Structures
3 Valid Heap not BST CS2 - Basic Data Structures
4 Valid BST not Heap CS2 - Basic Data Structures
5 Neither Heap nor BST CS2 - Basic Data Structures
6 Best List implementation CS2 - Basic Data Structures
7 Runtime analysis CS2 - Basic Data Structures

and Adv. Discrete Math
8 Invariants Discrete Mathematics

and Adv. Discrete Math
9 Tracing recursion CS1 and Adv. Discrete Math
10 Assembly Computer Organization
11 Bitwise arithmetic Computer Organization
12 Little-endian addressing Computer Organization
13 Pointers Computer Organization
14 Probability Discrete Mathematics
15 Tracing recursion CS1 and Adv. Discrete Math

Lacking validated assessments for direct prerequisite courses, we selected questions for

our survey from those used in prior research studies on these topics [34, 47, 53, 102]. In cases

where such a question was not available, we asked the instructor of the corresponding prerequisite

course to supply us with two easy and two medium difficulty multiple-choice questions for us to

use.

The two surveys were designed to be essentially equivalent, matched question-for-question.

To limit the effects of memorization between the two surveys, small changes were made to the

questions in the second survey, making sure that the changes did not make a question harder or

easier. For example, on a tracing question, it was important that the number of statements that

needed to be traced stayed the same. Table 6.1 lists the question topic and associated prerequisite

courses for each survey question. Publicly hosted PDF versions of both surveys can be found

online [8]. Because questions 2-5 are topically related, we reversed the order of these questions

between the first and second survey. In the table (and the rest of this paper), the order of questions

2-5 for Survey 2 has thus been reversed so that they align with the equivalent questions in Survey
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Figure 6.2: Distribution of Scores on Surveys 1 and 2. Respectively: avg=8.6 (57%), 9.8 (65%);
median=9, 10; std dev=2.7, 2.7.

1. For example, question 5 on Survey 2 is treated as question 2 in the table.

6.4.4 Population

The first survey was taken by 365 students, the second by 236 students, and the final

by 363 students. A total of 209 students took both surveys and 208 of those students took both

surveys and the final exam. Unless stated otherwise, the statistics in this paper are based on these

208 students.

6.5 Results

6.5.1 RQ1: Early-Term Prerequisite Proficiency

For Survey 1 students scored an average of 8.6 out of 15 points with a median of 9 and a

standard deviation of 2.7. Figure 6.2 shows a bar chart of the distribution.

Table 6.2 shows the amount of low-, medium-, and high-performing students for Survey 1.
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Table 6.2: Low, medium, and high groups on Survey 1.

Group Threshold # students % students
lowS1 0≤ score S1 < 8 61 29.3%
mediumS1 8≤ score S1≤ 10 90 43.3%
highS1 10 < score S1≤ 15 57 27.4%

Table 6.3: Low, medium, and high groups on Survey 2.

Group Threshold # students % students
lowS2 0≤ score S2 < 8 44 21.2%
mediumS2 8≤ score S2≤ 10 73 35.1%
highS2 10 < score S2≤ 15 91 43.8%

We define low performance as below 50% (below 8) and high performance as above 70% (above

10). As listed in Table 6.2, just over 29% of students answered fewer than 50% of the questions

on prerequisite topics correctly.

In sum, the students entering a subsequent course like ADS exhibit a wide distribution of

prerequisite proficiency, with about a third having considerably lower proficiency than expected.

6.5.2 RQ2: Change in Proficiency during Term

For Survey 2 students scored an average of 9.8 out of 15 points with a median of 10 and

a standard deviation of 2.7. Figure 6.2 shows a bar chart of the score distribution for Survey 2.

Table 6.3 shows the number of low-, medium-, and high-performing students for Survey 2 using

the same thresholds as Survey 1.

The score improvement between Surveys 1 and 2 was 1.2 (8%) on average, with a median

of 1 and a standard deviation of 2.7. The scores on Survey 2 were significantly different compared

to Survey 1 with a p-value less than 10−4. As seen in Figure 6.3, most students improved their

score by 0, 1, or 2 points out of 15. This resulted in over a quarter of the low performers on

Survey 1 moving to medium or high proficiency. Overall, these results demonstrate that for

the prerequisites in this study, as students progress in a subsequent course, they improve their

prerequisite proficiency.
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Figure 6.3: Distribution Score Change. The average score change was 1.2 points (8%), with a
median of 1 and a standard deviation of 2.7.

Table 6.4: Low, medium, and high groups on the Final Exam.

Group Threshold # students % students
lowFinal 0≤ score < 59 64 30.8%
mediumFinal 59≤ score≤ 65.5 76 36.5%
highFinal 65.5 < score≤ 75 68 32.7%

6.5.3 RQ3: Relationship between Prerequisite Proficiency and Final Exam

Scores

The average score on the final exam was 61.8 points out of 75 (82%), with a median

of 63 (84%) and a standard deviation of 6.9 (9%). For both surveys, the students’ scores are

significantly correlated to their final exam performance. For Survey 1 the correlation to final exam

grades is 0.366, for Survey 2 the correlation is 0.384, and for the sum of the scores for Survey 1

and 2 the correlation is 0.434. The p-values for these Pearson correlations are all below 10−7.

The same correlations are illustrated in Figure 6.4. We binned students based on their

final exam performance as low, medium, or high performers. To obtain a balanced grouping we

used the two tertile points of the score distribution as thresholds. The reason the group sizes are

not perfectly in balance despite using the tertile points as thresholds is because multiple students

received the same final score. Notable is that these thresholds are at 79% and 87% of a full

score, so on average students did much better on the final exam than on our prerequisite surveys.
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Figure 6.4: Comparison of Survey 1, Survey 2, and final scores. Low, medium, and high scores
are defined in Table 6.4. A data point’s size conveys the number of students under the point.

Table 6.4 shows the groupings.

In Figure 6.4, each student is plotted in the scatter plot with the x axis being their score

on Survey 1 and the y axis being their score on Survey 2. The color and shape of the data point

indicates whether the student performed low, medium, or high on the final. The size of the data

point indicates the number of students represented by it. Note that in cases when there were

students from multiple performance levels in the same point, multiple data points appear (e.g., a

large green triangle and a small yellow circle). Where these multiple points occur, the color may

appear as combinations of others (e.g., orange is a combination of red and yellow).

Figure 6.4 hence visualizes the correlation between prerequisite proficiency and final
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Table 6.5: Statistics for survey questions: percentage of correct answers and comparison to
final exam scores: correlation with p-values, sufficiency, and inverse necessity. Bolded values
indicate significant correlation for al pha = 0.05.

Survey 1 Survey 2
Q Subject correct correl p-val suff nec−1 correct correl p-val suff nec−1

1 Pass by value/reference 64% 0.050 0.470 1.13 1.25 71% 0.103 0.139 1.24 1.68
2 Valid Heap not BST 44% 0.006 0.937 0.99 1.00 44% 0.065 0.350 1.27 1.20
3 Valid Heap not BST 56% 0.190 0.006 1.36 1.46 75% 0.193 0.005 1.21 1.80
4 Valid BST not Heap 62% 0.055 0.434 1.04 1.07 83% 0.126 0.069 1.14 1.90
5 Neither Heap nor BST 76% 0.108 0.120 1.15 1.55 90% 0.063 0.370 1.03 1.37
6 Best List implementation 61% 0.032 0.646 1.13 1.21 65% 0.071 0.307 1.06 1.12
7 Runtime analysis 61% 0.329 0.000 1.85 2.56 69% 0.284 0.000 1.34 1.92
8 Invariants 34% 0.009 0.895 0.89 0.94 41% 0.072 0.299 1.05 1.03
9 Tracing recursion 78% 0.119 0.087 1.05 1.17 77% 0.211 0.002 1.16 1.65

10 Assembly 56% 0.200 0.004 1.43 1.57 43% 0.235 0.001 1.59 1.40
11 Bitwise arithmetic 58% 0.155 0.025 1.25 1.35 67% 0.217 0.002 1.36 1.86
12 Little-endian addressing 21% 0.194 0.005 1.91 1.18 27% 0.252 0.000 2.10 1.30
13 Pointers 69% 0.244 0.000 1.47 2.35 69% 0.203 0.003 1.32 1.87
14 Probability 55% 0.215 0.002 1.34 1.42 72% 0.265 0.000 1.36 2.19
15 Tracing recursion 70% 0.198 0.004 1.16 1.40 88% -0.049 0.479 1.02 1.12

exam performance. Most strikingly, it shows that most of the high performing students on the final

were those who performed well on both Survey 1 and Survey 2 (upper right quadrant). Overall,

we find a strong correlation between prerequisite proficiency and final exam performance.

6.5.4 RQ4: Which Prerequisites Relate to Final

To gain insight on whether prerequisite knowledge can be unbundled into more- and

less-relevant topics, we performed a few per-question statistical analyses. Table 6.5 lists the

correlation of the individual survey questions to the final exam scores, providing a hint as to

which prerequisites might be important for performance on the final. Significantly correlated

questions are listed in bold. Question 7, which concerns runtime complexity analysis, is the

highest (significantly) correlated question for both Survey 1 and 2.

Some questions may be harder than others, reducing correlation at the extremes because

there is little to distinguish high and low proficiency. Additional signal might be teased out of

such questions by using conditional probabilities. For example, getting the right answer on a

really hard survey question might be associated with high performance on the final, yet getting
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it wrong might say little about doing poorly on the final. Such distinctions are captured by the

concepts of Sufficiency and Necessity [36]. A high likelihood of high performance when getting

a survey question right is interpreted as meaning that the prerequisite knowledge is sufficient

for success. A low likelihood of high performance when getting a survey question wrong is

interpreted as meaning that the knowledge is necessary for success.

We express sufficiency as a likelihood ratio—the ratio that one outcome is more likely

than another—specifically the positive likelihood [36]:

Sufficiency =
P(E|H)

P(E|∼H)

where the variable E stands for Evidence (in our case answering a question correctly), H stands

for Hypothesis (the student falling in the top 50% of the final exam scores), and E|H means

E givenH (all students that answered the survey question correctly and were in the top 50% of

the final exam scores).

Necessity is the negative likelihood, that of finishing in the top half of the final if a student

answers a question incorrectly, that is, ∼E|H. Since we are interested in the association between

answering the question incorrectly and being in the bottom 50% on the final exam, ∼E|∼H, we

use inverse necessity (inverse negative likelihood):

Inverse Necessity =
P(∼E|∼H)

P(∼E|H)

The question most strongly associated with high final exam performance when answered

correctly (sufficiency) is question 12 for both Survey 1 and 2. Its sufficiency of 2.10 on Survey

2 means that students who answered it correctly had more than twice the probability of ending

up in the top half of the class than in the bottom half. Question 12 was deemed difficult by the

authors of this paper, and the students performed worst on it.

The question most highly associated with low final exam performance when answered
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Table 6.6: Correlation between change in survey score and final exam score, broken down
by the groups defined in Table 6.2, Significant correlations are in bold for al pha = 0.05 and
underlined for al pha = 0.005.

Group avg. impr. med. impr. σ corr. p-val
lowS1 2.90 3 2.8 0.371 0.003
mediumS1 1.01 1 2.4 0.114 0.284
highS1 -0.37 0 2.0 0.306 0.020

incorrectly (inverse necessity) is question 7 on Survey 1 and 14 on Survey 2. Question 7

was deemed by the authors as solvable with just a basic proficiency. Question 7 stands out

for being strong for sufficiency, inverse necessity, and correlation. As such, we can safely

(and unsurprisingly) conclude that early-term proficiency in runtime analysis is crucial to good

performance in an Advanced Data Structures class. The second highest question for inverse

necessity was question 13, a basic question on pointers. As the data structures class jointly

teaches C++ programming, the importance of having a background in C is unsurprising. The high

necessity for question 14 on Survey 2, regarding basic probability, was a surprise, as ADS does

not explicitly use probability. Question 10, regarding assembly language, inexplicably exhibits a

similar pattern. The necessity of an apparently unrelated topic raises the possibility that there are

dependences that remain to be understood or may be indicative of an intervening variable (e.g.,

study skills, mathematical reasoning, maturity, etc.).

Overall, we find that most prerequisite topics exhibit positive correlations and modest

sufficiency and necessity. Some related topics that exhibit the strongest values, like runtime

analysis, make sense. However, the high inverse necessities for unrelated topics leave many open

questions.

6.5.5 RQ5: Relationship between Improvement in Prerequisite Mastery

and Final Score

The correlation of score change between Surveys 1 and 2 for the entire class was small

and insignificant at 0.02, p-value of 0.77. Examining the course on a whole can mask effects for
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subpopulations, and we were curious if low performers on Survey 1 saw a significant benefit from

improving their prerequisite proficiency. Examining student performance based on the groups

defined in Table 6.2, lowS1 and highS1 have significant correlation, as shown in Table 6.6. We

do not find significance for mediumS1, however their 1-point improvement is small. The scores

of the high performers barely moved, interestingly. The movement and correlation for lowS1

is especially strong, improving a median 3 points, with a correlation of 0.371 and a p-value of

0.003. This effect can also be seen in the left half of Figure 6.4, which contains those students

who performed poorly on Survey 1. For those students, if they continue to do poorly on Survey 2

(students in lower-left corner) they tend to have poor final exam scores, whereas students who

improved on Survey 2 (students in upper-left corner) they tend to have better final exam scores.

In sum, most of the improvement in proficiency is due to the improvement of those with

low entering proficiency, and that improvement had a significant correlation with their final score.

6.6 Discussion

In this section we reflect on our research questions, results, limitations, and threats to

validity.

6.6.1 Findings

The relatively low early-term prerequisite proficiency that we identified, combined with

the correlation between proficiency and final exam performance, shows that many students will

indeed be struggling. This is especially worrying as Muralidharan et al. [81] found that virtually

no learning at the 8th grade math level is occurring for students who lack proficiency with the

lower grade math materials. They found intervention with a focus on proficiency with lower

grade math materials is required in order for students to make progress with their learning at the

8th grade math level.

In our study, we find that students do improve their prerequisite proficiency over the term,
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however they do so only marginally on average. But we also find that the amount of improvement

in prerequisite proficiency is especially correlated to final exam performance for students with

low early-term prerequisite proficiency.

One group we did not discuss was the 16 students who dropped the course (and hence are

not included among our 208 participants). Their average early-term proficiency was 7 percentage

points lower than those who finished the course, with 43% demonstrating low proficiency and

only 12% high proficiency. While not statistically significant (likely due to the small sample size),

this result suggests that prerequisite proficiency may be even lower at the start of the term than

we found here. Moreover, it may indicate that lack of proficiency may be a reason for students

dropping the course.

Given these findings, we suggest two possible courses of action: (1) final exams should be

carefully designed to ensure that students who pass have achieved proficiency before proceeding

to the next course (see discussion of course grades in the next section) and/or (2) teachers of upper-

division computer science courses, especially those with many prerequisites, should consider

helping students reinforce their prerequisite knowledge at the beginning of the term.

6.6.2 Why Students Lack Prerequisite Knowledge

Grades in Prerequisite Courses. In this study, we found that prerequisite proficiency in an upper-

division Computer Science class is much lower than one might expect, given the students achieved

passing grades in prerequisite courses. When we analyzed the failure rate of the prerequisite

courses for Advanced Data Structures [6] we found that at our institution, on average, only 2.9%

and 3.6% of students will receive a D or F (respectively) with the remainder of the students

received a C or higher. (A ‘D’ grade presently allows students to progress at our institution).

Our study highlights that not just 3.6% of students but likely 29% of students are failing in their

prerequisite proficiency. We suspect there might be some form of grade inflation occurring and

the consequence is that we are sending under-prepared students into subsequent classes.
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Multiple Prerequisite Paths. At our institution, we offer non-majors options for prerequisite

courses to provide flexibility. For example, non-majors can complete either a computer organi-

zation course that follows CS2, teaching C and assembly programming, or a non-major’s CS1

course in C. Either course should teach students the necessary knowledge in C (e.g., pointers) to

begin a course in C++, however one may do so in more detail. Additionally, one interdisciplinary

major at our institution (with a large number of required units and few students) requires the

Advanced Data Structures course but waives the Computer Organization prerequisite. As such,

part of the effect seen in this study may be due to students bypassing prerequisites or due to some

prerequisite courses being inferior to others as preparation for this course. Further inquiry is the

topic of ongoing future work.

Unrealistic Expectations. Prior work in CS1 has shown that students often underperform

instructor expectations. For example, instructors expect students completing CS1 to be able

to complete the rainfall problem when, in reality, few students are so capable [108]. It is

possible that this mismatch is again at play, where our survey questions on prerequisites were

viewed as relatively easy by the authors when in reality, they may be difficult for students. This

underscores the importance of using meaningful assessments at the end of courses (e.g., concept

inventories [117]) to measure student learning in order to better understand their abilities.

6.6.3 Limitations and Threats to Validity

Limitations. Generalizability from our study is limited as we only studied one course (ADS)

and one term. Because correlation is not causation, the correlations found might not imply that

increased prerequisite proficiency causes increased performance on the final. However, the fact

that increased proficiency over the term was correlated with increased final exam performance for

low- and high-performing groups provides compelling complementary evidence.

Underlying Factors. Although our survey focused on prerequisite knowledge, the relationship

between the survey and the final exam may not be entirely related to prerequisite content. There

97



may be intervening variables as perhaps prerequisite proficiency is related to students’ general

study habits or motivation in the field. Moreover, perhaps “better” students took the survey

seriously and hence did better on the survey than those who did not. However, evidence that

questions on particularly critical prerequisite topics were most strongly correlated with student

exam performance suggests that at least some portion of the effect found related to the content

itself.

Threats to Validity. The two surveys we used as a measuring tool are not validated and the

questions were drawn from many different sources. Some survey questions may have been too

hard for all students, making them less useful in our study. Although most students answered

all questions, students were given a relatively short amount of time to complete them. As such,

students may have hurried through the last questions and hence impacted findings. In addition,

those who completed the survey were those who were in class on the two days the survey was

given, so the results may be biased for the population of students who frequently attend class.

6.7 Summary

In our study of prerequisite proficiency in an upper-division advanced data structures

course, we find that students varied in their proficiency to an unexpected degree, that prerequisite

proficiency correlated with higher final exam scores, and that students improve on their under-

standing of prerequisites in a way that correlates to improved final exam scores. In sum, these

findings support more care by instructors in ensuring students have fundamental proficiency with

their course content before allowing them to move on to subsequent courses. In turn, instructors

who teach courses with multiple prerequisites may wish to provide students with resources to

buttress their mastery of prerequisites early in the term. Additional study is needed to understand

whether these findings replicate across multiple institutions and across multiple courses, how-

ever, these results offer a promising glimpse of how prerequisites relate to student success in

upper-division computing courses.
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Chapter 7

Student Proficiency in CS Fundamentals

A Study on Proficiency in Basic Data Structures among Various

Subpopulations of Students at Different Stages in a CS Program

7.1 Introduction

Inspired by the findings in Chapter 6 that a surprisingly large percentage of students enter

later CS classes unable to demonstrate knowledge from earlier classes, we sought to gain better

insight into how students’ understanding of a core computing topic changes in a progression

of courses in our curriculum. To this end, we administered the validated Basic Data Structures

Inventory (BDSI) [92] in three classes in a sequence of dependent courses at our institution to see

1) how much student understanding varies and 2) whether their understanding improves in later

courses.

Similar to our study on prerequisite knowledge in Chapter 6, we found that student

performance varied widely on the BDSI, which might pose challenges for instructors trying

to address the pedagogical needs of the students in those classes. Encouragingly, we found

that student performance on the BDSI increased for each course in the sequence. This increase
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suggests that either students are improving in their knowledge of basic data structures over time

or students who struggled are leaving. If students are improving on their knowledge from prior

courses, this is an interesting finding as a previous study documented notable knowledge loss of

CS1 material over the period of a summer [120]. However, unlike that study, we believe basic

data structure concepts are likely reinforced in each subsequent course rather than being left to

atrophy over the summer.

In addition to looking at student performance for the whole class, we examined per-

formance differences between various subpopulations of the course including: 1) transfer and

non-transfer students,1 2) students from demographically represented and underrepresented

groups in CS in the United States (RG and URG respectively, see Section 7.4.4 for definitions),

and 3) by gender.

We found a difference in performance by gender for one of the three courses, but no clear

overall trend. We also found that students from URGs on average do slightly worse on the BDSI

than students from RGs for all three courses. However, we find no evidence that this performance

gap is widening or closing over time. Our most concerning finding is for the transfer students.

Although transfer students perform roughly the same as non-transfer in the first course in the

series, they do not improve like their non-transfer peers in the two later courses. This causes a

growing knowledge gap between transfer and non-transfer students over time.

These findings are consistent with the recent finding from Alvarado et al. that students who

took computing courses prior to college (AP-CS) did better than those who did not, through the

entire major [16]. This makes the findings no less problematic. Indeed, these findings highlight the

need for research on interventions capable of offsetting the societal barriers presented to students

from lower socioeconomic backgrounds (common among transfer students at our institution) and

to offset the lack of access to early computing courses in school districts in the United States with

a majority of Black and Latinx students [73].

1transfer students are generally those who join our university after completing two years of school at a community
college
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7.2 Related Work

It has long been known that students are not learning as much in courses as instructors

think they do [49, ch. 2], [108]. Moreover, evidence indicates an issue of knowledge retention

among students. After an extensive literature review on knowledge retention, Custers found

support for about a third of knowledge being lost in the first year, half being lost after a few years,

but leveling off subsequently [33]. Tennyson and Beck recently showed that CS2 students who

took CS1 in the Fall semester and CS2 in the Spring semester had a knowledge loss of only 4%,

whereas students who took CS1 in the Spring semester and CS2 in the Fall semester showed a

knowledge loss of 15.1% [120]. This difference may be explained by the long summer break

between the Spring and Fall semesters. Chapter 6 has shown that upper division CS students enter

their courses with substantially less prerequisite knowledge than teachers might expect. However,

students did show evidence of improving their prerequisite knowledge during the course that was

studied. While these studies all provide great insights, the knowledge retention of a core CS topic

for students at various stages in a CS program has not yet been studied.

Considerable work has been done in the space of the recruitment and retention of students

from groups that are underrepresented in computing. For example, women in computing have

been studied extensively over the years [35, 40, 42]. More recently the Computing Education

Research (CER) community has begun to recognize and study the underrepresentation of certain

minority populations in computing, such as Black and Latinx students in the United States [73].

The gap between the performance of students from represented populations relative to

underrepresented populations has been described in STEM education studies, particularly in

publications that aim to narrow the achievement gap using active learning techniques [50, 124].

In CS, a recent study showed that adopting Computing in Context [48], Pair Programming [134],

and Peer Instruction [76] improved performance for all groups of students with students from

URGs benefiting more in absolute numbers, but because the relative rates of improvement were
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comparable, there was no evidence of the achievement gap narrowing [98].

Transfer students have been studied less extensively, but a study from 2010 presents

several recommendations [86]. For example, it is suggested a university should appoint study

advisors specifically to advise transfer students in order to provide them with better guidance.

But to our knowledge, less is known about the performance of transfer students in computing

relative to their non-transfer peers.

There are several assessments available to assess student understanding of CS topics [14,

59, 87, 91, 92, 121, 133]. In this paper we chose to use the recently developed Basic Data

Structures Inventory (BDSI) [92] because of its rigorous validation process and because we

believe data structures is a central topic in virtually any CS program. As such, other institutions

should be able to repeat our methods as part of potential replication efforts. Lastly, because basic

data structures also appear on industry coding interviews, this is a topic that should be important

to students. At the time of writing, the BDSI is not publicly available, but it can be obtained via

the instructions appearing in the article by Porter et al. [92].

7.3 Methods

This study was conducted at the University of California San Diego and is approved for

Human Subjects Research. The Basic Data Structures Inventory (BDSI), a Concept Inventory

(CI) specifically designed to assess student knowledge on fundamental data structures knowledge,

was used as our instrument for measuring student proficiency [92].

7.3.1 Research Questions

We formalized our research questions for the study as follows:

RQ 1: Does general student performance on Basic Data Structures change throughout the various

stages of a CS program?

RQ 2: Are there differences in student performance on a Basic Data Structures test for the
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following subpopulations?

• Transfer students vs non-transfer students

• Men vs women

• Students from URGs vs RGs

RQ 3: Do the performance differences between subpopulations (if any) change across the various

stages of a CS program?

7.3.2 Data Collection

Participants were recruited from the following three CS courses at our university towards

the end of the Fall 2020 term. We chose to measure in multiple different courses during the same

term instead of following a single cohort because if a student were to complete the BDSI more

than once, particularly if answers were discussed at the end of the administration, it would bias

later results.

1. Introduction to Data Structures (CS2)

2. Introduction to Computer Organization (ORG)

3. Advanced Data Structures (ADS)

These courses form a prerequisite chain in our department:

CS2→ ORG→ ADS

CS2 is taken after our introductory CS course (CS1). CS2 and ORG are lower division

courses primarily taken by first and second year students. ADS is the gateway course into our

upper division which is generally taken by students in their second or third year.

We approached the instructors of these courses to ask for permission to run a study on

their students. For most of these courses the content addressed by the BDSI is extremely relevant
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course prerequisite material. This enabled us to frame our BDSI sessions as prerequisite material

review sessions for the final exams.

The instructors informed their students about these sessions. Participation was voluntary

and, depending on the course, the students were compensated at the instructor’s discretion with

extra credit on their final exam or on a programming assignment. Since the BDSI is a Concept

Inventory, we cannot give performance based rewards to the students as this would heighten the

chances for cheating to occur. Thus students were graded based solely on participation. In order

to discourage students from submitting random answers to receive the participation credit without

making an honest attempt at the BDSI, we told students they would only receive the extra credit

if they took at least 30 minutes to complete the test.

For each course, students were given one hour to complete the test. To make it the

promised review session (and to provide the students with an additional incentive to take the

test seriously), we discussed the answers with the students after they had completed the test and

submitted their answers.

We are using the recommended process for BDSI administration as presented in the BDSI

paper [92]. However, because of the ongoing COVID-19 pandemic at the time of this study, we

were unable to administer the BDSI in person. Instead, we held video conference calls with our

participants. The BDSI was provided through a non-downloadable link and responses to the

BDSI questions were collected using a Google Form. On the final page of the form we asked

students to reflect on the test and provide some personal background information.

7.4 Results

7.4.1 BDSI Performance per Course

Table 7.1 shows the of BDSI score distributions for the three courses. Figure 7.1 shows

a visual overview of the distribution of BDSI performance in CS2, ORG and ADS. An upward
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Table 7.1: Overall BDSI performance per course. The maximum possible BDSI score is 13.

CS2 ORG ADS
n 221 187 325

mean 5.52 6.14 6.93
std 2.67 2.70 2.92

25% 3 4 5
50% 5 6 7
75% 8 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 7.1: Student BDSI performance plotted per course. A clear shift to the right is visible.

trend in later courses is evident, suggesting that students continue to improve their knowledge

of basic data structures as they progress through their CS program after completing their CS2

course.

We determined with a normality test that the BDSI performance data per course is not

normally distributed, thus we apply nonparametric tests for our analyses. For example, we use

Kruskal–Wallis H tests instead of ANOVAs and Mann-Whitney U tests instead of t-tests. As

we are running many statistical tests in this study, we adjust our p-values in order to address the
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Table 7.2: All Students: Holm-Bonferroni-adjusted p-values resulting from a post-hoc Dunn’s
test for the general student population in each course. Significant values for α = 0.05 are bolded.
Results indicate significantly different BDSI scores for ADS compared to CS2 and ORG as well
as for ORG compared to CS2.

CS2 ORG ADS
CS2 1 0.02 2.15e-08

ORG 0.02 1 0.01
ADS 2.15e-08 0.01 1

increased chances for Type I errors. We chose to apply the Holm-Bonferroni adjustment method

as it is allows for more statistical power and reduces the probability for introduction of Type II

errors when compared to the simpler Bonferroni adjustment method [10].

A Kruskal–Wallis H test shows there are significant differences among the BDSI results

for the three courses (Kruskal Stat: 34.16, p: 3.83e-08). In order to assess all pairwise differences

for significance we ran a post-hoc test for nonparametric data (Dunn’s test). As can be seen in

Table 7.2, this test shows that the scores for ADS differ significantly from the scores in both CS2

and ORG and that the scores for ORG differ significantly from the scores for CS2 as well.

7.4.2 Transfer students

As can be seen in Table 7.4b, transfer students performed significantly worse than non-

transfer students for ORG and ADS. Moreover, Figure 7.2b shows a clear upward trend for

non-transfer students, whereas there is no clear upward trend visible for transfer students. When

we run a Kruskal-Wallis H test on the non-transfer students, we find there is a significant difference

among the three courses (stat: 33.97, p: 4.19e-08). Following up with a post-hoc Dunn’s test

(details in Table 7.3), we find that the scores for non-transfer students significantly improved

throughout the entire program. Concerningly, we find no evidence that transfer students improve

their performance on the BDSI anywhere from CS2 through ADS (Kruskal-Wallis H stat: 0.52, p:

0.77).
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Table 7.3: Non-Transfer Students: Holm-Bonferroni-adjusted p-values resulting from a post-hoc
Dunn’s test on non-transfer student BDSI total scores for the three courses. Values indicating
significance for α = 0.05 are bolded. Results indicate for non-transfer students BDSI score
differences between CS2, ORG and ADS are significant.

CS2 ORG ADS
CS2 1 0.01 2.32e-08

ORG 0.01 1 0.01
ADS 2.32e-08 0.01 1

Table 7.4: BDSI performance distribution details per course and subpopulation corresponding
to the box plots in Figure 7.2. Statistically significant differences between subpopulations are
bolded (for α = 0.05 according to a Holm-Bonferroni-adjusted Mann-Whitney U test).

(a) Men and women.
CS2 ORG ADS

M F M F M F
n 147 71 122 64 210 98

mean 5.41 5.77 6.20 6.11 7.17 6.28
std 2.59 2.83 2.65 2.80 3.01 2.75

25% 3 4 4 4 5 4
50% 5 5 6 6 7.5 6
75% 7.5 8 8 8 10 8

M-W U
stat=4878.5

p=0.43
stat=3777.5

p=0.43
stat=8415.0

p=0.01

(b) Transfer and non-transfer.
CS2 ORG ADS

NT T NT T NT T
n 160 60 160 26 257 52

mean 5.56 5.45 6.33 5.15 7.16 5.50
std 2.75 2.47 2.66 2.75 2.93 2.68

25% 3 3 4 3 5 4
50% 5 5 6 5 7 5
75% 8 8 8 7 10 7

M-W U
stat=4714.5

p=0.42
stat=1521.0

p=0.03
stat=4432.5
p=1.79e-04

(c) RG and URG students.
CS2 ORG ADS

RG URG RG URG RG URG
n 199 22 169 17 282 28

mean 5.64 4.45 6.30 4.88 6.98 6.14
std 2.66 2.50 2.72 2.11 2.96 2.75

25% 4 3 4 3 5 4
50% 5 4 6 5 7 6.5
75% 8 6 8 6 9 8

M-W U
stat=1621.5

p=0.06
stat=998
p=0.06

stat=3313.0
p=0.08
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(b) Transfer and non-transfer stu-
dents. A clear upward trend is vis-
ible for the non-transfer students.
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(c) RG and URG students.

Figure 7.2: Box plots of BDSI performance by gender, transfer status and URG status per
course.
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Table 7.5: BDSI performance distribution of transfer students in ADS who took CS2 at our
institution and those who took CS2 at a different institution. The difference is not statistically
significant for α = 0.05.

CS2 at our institution CS2 not at our institution
n 27 17

mean 5.26 6.47
std 2.73 2.45

25% 3.5 5
50% 5 6
75% 7 8

Mann-Whitney U stat=170.0, p=0.08

Could it be the case that transfer students who took CS2 at our institution do better than

those who took a basic data structures course elsewhere?

We asked ourselves this question after we noticed that the BDSI performance differences

between transfer students and non-transfer students at the end of our CS2 course were not

statistically significant. Thus we suspected that perhaps what mattered most for the difference in

performance between transfer students and non-transfer students in the following courses was not

caused by whether they were transfer students, but whether they had taken the same CS2 course.

However, contrary to our expectations, the transfer students in ADS who took CS2 at a

different institution performed better on the BDSI than transfer students who had taken CS2 at

our institution. This difference, though, was not statistically significant. Figure 7.3 and Table

7.5 show the details of the distributions. Students who did not report their CS2 institution were

excluded from the analysis.

7.4.3 Gender

The differences in performance between men and women are not significant except

in ADS, where we find men performed significantly better on the BDSI. Details about the

performance distributions can be seen in Figure 7.2a and Table 7.4a. Section 7.5.2 discusses a

possible explanation for why we may suddenly see this difference.
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Figure 7.3: BDSI performance of transfer students in ADS who took CS2 at our institution
plotted against those who took CS2 at a different institution.

Table 7.6: RG Students: Holm-Bonferroni-adjusted p-values resulting from a post-hoc Dunn’s
test for the BDSI performance of RG students. Significant values for α = 0.05 are bolded.
Results show that for RG students BDSI scores differ significantly between all three courses.

CS2 ORG ADS
CS2 1 0.03 6.72e-07
ORG 0.03 1 0.03
ADS 6.72e-07 0.03 1

7.4.4 Underrepresented Groups

The University of California San Diego defines students from represented groups in

CS (RG) as those who are Caucasian (non Hispanic or Latinx) and Asian. Students from

underrepresented groups in CS (URG) are defined as those who are Black, Hispanic or Latinx,

Native American and Pacific Islander. Students who did not report their demographic background

to the university were not included in the results pertaining to RGs and URGs. We find that, on

average, RG students performed better than URG students in all courses. However, we were not

able to establish statistical significance for these differences. Details can be found in Figure 7.2c

and Table 7.4c.

A Kruskal-Wallis H test shows that for RG students there is at least one strongly significant
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improvement from CS2 through ADS (26.99, p: 1.38e-06). A post-hoc Dunn’s test (see Table

7.6) shows significant differences between the BDSI scores for all three courses for RG students.

We see slightly different results for students from URGs. Although, judging by the

average scores, URGs do seem to increase their BDSI performance throughout CS2, ORG and

ADS, and a Kruskal–Wallis H test shows near significance (5.80, p: 0.055), we did not find any

significant differences between courses in a post-hoc Dunn’s test.

7.5 Discussion

Our results led to several interesting findings that we will discuss in the context of our

research questions.

7.5.1 RQ 1: BDSI Performance at Different Stages in Our CS Program

We find that general student performance on the BDSI improved throughout the progres-

sion of courses in our CS program. For example, the median score increased consistently from

CS2 through ADS. Moreover, we find that the performance increases between the courses are sta-

tistically significant. These findings are encouraging as they imply students continue to improve

their understanding of CS fundamentals as they progress through our program. However, we have

some concern whether a 7 out of 13 in ADS represents mastery of the material. Unfortunately,

the BDSI is a relatively new instrument and we know of no articles on student performance later

in their CS careers against which we might compare.

7.5.2 RQ 2: Differences in Performance Between Subpopulations

Gender

We encouragingly find that men and women mostly perform equally well on the BDSI,

despite the many sociocultural barriers that cause women to be less likely to gain access to

computing education prior to university in our country [7, 40]. Only for ADS do we find a
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Figure 7.4: Student BDSI performance plotted per course and major group.

statistically significant difference in performance. However, we suspect this may be due to the

fact that the women in our courses are less likely than the men to be CS majors (in ADS 69% of

men were CS majors vs 49% of women). At our institution, other majors are allowed, at times, to

bypass ORG to reach ADS and our department has found that those who take ADS without ORG

are less likely to do well.

Indeed, we see in Figure 7.4 for ADS that CS majors scored substantially higher than

other majors, whereas the differences between majors were not as substantial in the other courses.

In ADS, 49% of women were Math and Biology-related majors, which both scored substantially

lower on average than CS majors. As only 27% of men in ADS were Math and Biology-related

majors, this could potentially explain why we are seeing a performance difference between

men and women in ADS. Moreover, we encouragingly find no evidence that the performance

difference between men and women is significant within CS majors in ADS.
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Transfer Students

We find that transfer students perform significantly worse on the BDSI than non-transfer

students in all courses except CS2. This concerning finding prompted us to investigate whether

transfer students who took CS2 at our institution were at an advantage compared to their transfer

student peers who had taken CS2 elsewhere. However, contrary to our expectations, transfer

students who took CS2 at our institution do not seem to have an advantage over transfer students

who took CS2 elsewhere. In fact, our data seems to suggest the opposite may be true. A possible

explanation is that most of the community colleges that our transfer students attend are on a

semester system, and we are on a quarter system. It is possible that the additional 4–5 weeks

of content might explain the difference. However, we remain concerned that overall transfer

students still perform worse than non-transfer students in our courses, and call for future research

to determine the cause.

Underrepresented Groups

We find that students from URGs consistently score lower on average than students from

RGs. However, the combination of small sample sizes of URGs and the small differences with

RGs makes it difficult to attach any statistical significance to the observed differences. When

we filter out transfer students and compare only non-transfer RGs and non-transfer URGs, the

performance gap widens further.

Interestingly, in our preliminary investigations using self-reported URG status, we found

much stronger effects than in our analysis on the official URG status data as provided by our

institution. This suggests there may be merit in investigating the power of self-reported URG

status when compared to an automatically assigned demographics-based status, especially in light

of recent work on the impostor phenomenon and the importance of sense of belonging [96, 100].
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7.5.3 RQ 3: Do Performance Differences Change Over Time?

We investigated whether the performance differences between the subpopulations change

or remain the same throughout the different stages in the program. Our findings for this question

are concerning.

Transfer students

For transfer students the performance gap compared to non-transfer students appears at

all stages of the program that we measured. Moreover, the issue worsens over time, with the

gap widening with each succeeding course. While non-transfer students significantly improve

their understanding of data structures, transfer students appear to remain at the same level of

proficiency as they progress through the program. This finding is deserving of future inquiry

to see if it is consistent across multiple institutions and to determine potential sources of the

problem.

Underrepresented Groups

Similarly, the performance difference between students from URGs and RGs appears in

all three courses. Moreover, while we find that RGs improve significantly over time, we do not

find statistically significant improvements between courses for URGs. However, we observe no

clear trend that the difference between RGs and URGs increases or decreases over time.

We know from prior work that, compared to RGs, students from URGs have less exposure

to computing before attending university [73]. We also know from prior work that prior experience

(or lack thereof) causes performance gaps in CS courses throughout the entire curriculum [16].

Based on these findings one might wonder whether lack of prior experience causes a persisting

gap in understanding of basic data structures concepts even for those who persevere in the major.

This, too, is deserving of future inquiry.
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7.6 Limitations and Threats

The students in our dataset all attend the University of California San Diego; our results

may not generalize beyond that context. One limitation of our findings is that we did not measure

performance over time for the same population of students. This would be difficult. For the

“review sessions” recommended by the BDSI creators [92], the benefit to students is the subsequent

discussion of the correct answers. Also, there is only one version of the BDSI. These factors

limit our ability to administer the same exam to the same population more than once. We have

assumed the populations of students are similar for our assessed courses, and believe this to be

reasonable based on our institutional knowledge. However, a threat to validity remains that the

populations of students are different.

The BDSI instrument we used assesses just one subject that has a unique position in the

typical CS curriculum. The results may not generalize to other subjects. Furthermore, working

in a field of practice leads students to constantly advance their knowledge by themselves (e.g.,

studying for interviews), so good performance on the BDSI cannot necessarily be attributed to

what was taught nor the quality of instruction.

A threat to external validity is that the BDSI was originally designed for in-person sessions,

whereas, due to the ongoing COVID-19 pandemic, we administered the BDSI over video calls.

This may have had an impact on student performance, so our results may not be comparable to

studies where the BDSI was administered in person. We attempted to minimize this risk by telling

students to treat the online BDSI session like a test on paper in a lecture hall, and by asking them

to not discuss or search for answers online.

Future work could explore a wider array of institutions, graduating students, and evaluate

knowledge on topics beyond basic data structures. Access to student grades in CS2 could generate

useful additional insight. Likewise, learning students’ interview preparation strategies could shed

further light on the sources of graduating student knowledge.
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7.7 Summary

This study investigated the basic data structures proficiency of several student subpop-

ulations at various stages in a CS program. Encouragingly, we find that the average student

proficiency with basic data structures increases for courses later in the CS program. This evidence

suggests that students, on average, continue to learn core concepts like basic data structures as

they progress through the program.

Concerningly, we find that transfer students perform significantly worse than non-transfer

students in both ORG and ADS. Furthermore, we find that this performance gap widens as

students progress further in their studies. Similarly to transfer students, students from URGs in

CS do not perform as well on the BDSI as students from RGs, but this difference is not statistically

significant and we do not find any evidence for a widening or closing of this performance gap

over time. The performance for both transfer students and students from URGs (despite a visible

trend in Figure 7.2c for URGs) does not statistically significantly improve in courses over time,

whereas performance of non-transfer students and students from RGs increased significantly.

These findings are concerning for the diversity, equity, and inclusion of computing courses,

particularly in light of the socioeconomic diversity of transfer students. It is possible that the

systemic societal problems in our country that limit access to computing before college for

students with lower socioeconomic status (often transfer students) and those from URGs [73]

continues to impact student performance even after many courses in our major. This unsettling

finding would be consistent with the work of Alvarado et al. who found that students who took

CS in high school outperform those who did not, all the way through the CS curriculum [16]. We

believe these findings are a call to action for more research into the sources and extent of the

problem as well as possible interventions that aim to close the performance gap.
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Chapter 8

Conclusions and Future Work

The academia-industry gap has persisted for at least two decades despite substantial

attention from the academic community. This attention has come in the form of studies conducted

to further understand the gap’s dimensions as well as attempts to address it (see Table 1.1 and

Chapter 5).

Encouragingly, Chapters 3 and 4 show that a majority of faculty are willing to help close

the gap. However, we also uncovered that faculty experience a wide variety of barriers that

keep them from addressing the gap in their own courses by themselves. Additionally, there is

unfortunately still a sizeable minority of faculty who disagree with the notion that preparing

students for industry should be a primary goal of undergraduate CS education. It is unclear how

much influence this dissenting group has on the design of CS curricula.

We found in Chapter 5 that for each gap dimension, several educational innovations to

address it have already been proposed in academic literature. Moreover, we uncovered that the

adoptability of many of these innovations could be substantially improved by simple changes

such as providing relevant course materials with the publications.

Regarding student learning, we found in Chapter 6 that students on average are not as

proficient with prerequisite materials as expected coming into a more advanced later course.
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However, we also found that students on average do improve their proficiency with prerequisite

materials during that later course. Moreover, findings in Chapter 7 show that students on average

continue to improve their understanding of CS fundamentals throughout their CS program and

not just until the end of the course that taught the concepts. Unfortunately we also found that

there are substantial performance disparities between certain groups of students with especially

worrying data for transfer students.

With these findings, the claims in my thesis statement as outlined in Section 1.4 have all

been addressed.

8.1 Limitations

The research presented in this dissertation has several limitations. For example, most

of the data is from the University of California San Diego. And while the survey in Chapter 4

was administered to CS faculty world-wide, participants were still predominantly from North

American universities. Thus the presented findings may be specific to this geographical location.

Moreover, the faculty who participated in our studies were not incentivized to participate.

This could mean that our sample of faculty is not representative of the general population of CS

faculty due to self-selection bias. We have tried to mitigate this by framing our work in terms

of the goals of CS education in general instead of in terms of the academia-industry gap when

recruiting study participants.

In the analysis of existing educational innovations for presence of barriers to adoption

that was discussed in Chapter 5 we were limited to the information presented in the papers. Some

authors may have made additional efforts to increase the adoptability of their work outside of the

paper. Such efforts were not captured in our analysis.
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8.2 Future Work

Studies presented in this dissertation uncovered that many faculty experience barriers in

adopting educational innovations into their own courses. Future work should focus on alleviating

some of these barriers such that it becomes easier for faculty who are willing to help close the

academia-industry gap to adopt relevant innovations into their own courses.

8.2.1 A Call on the Computing Education Research Community

While there are already many promising educational innovations that could help close the

gap, the findings presented in Chapter 5 show that there is much that can be improved in terms

of making these innovations easier to adopt. Some possible improvements, such as providing

relevant course materials, should be relatively easy to achieve. Especially since conference

guidelines already contain phrases about adoption and reproduction. For example, for experience

reports the SIGCSE 2021 reviewer guidelines say: “All papers in this track should provide enough

detail so that others could adopt the new innovation.” And for research track papers, the reviewer

guidelines say that the data analysis and methodology should be sufficiently described so that

the reader could reproduce the study [105]. Unfortunately it appears these requirements are

not yet specific enough to incentivize authors to provide the relevant course materials for their

educational innovations.

Future work should explore how to best approach this issue. Preferably in a coordinated

structural way such as explicitly requiring publication of all relevant course materials in the author

and reviewer guidelines of conferences and journals. Moreover, because of page count limits for

papers, conferences and journals should suggest suitable methods for CS education researchers to

publish these resources. In the future, the community should look at standardizing the publication

method for these external resources as it is important that they remain accessible in perpetuity.
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8.2.2 DevContainers and Online Codespaces

Another challenge which should be addressed is how to share tech stacks between in-

novators and adopters. For example, if an innovation includes custom software or scripts, then

it should be possible for the innovator to share it in such a way that it is still easy for potential

adopters to get started without first having to install and configure a large number of tools.

Just like potential adopters, students may experience similar setup difficulties with pro-

gramming assignments. I noticed during my teaching at the University of California San Diego

that if assignments come with complex tooling, some students do not bother to setup and con-

figure the suggested tools. As a result those students may be making their assignments much

more challenging for themselves. For example, if students did not configure the debugger, they

would not have any debugging aids available to them during the assignment. This issue can

be especially challenging when the instructor-suggested tools are not available for all common

operating systems.

In order to make it simpler for students to get started with their programming assignments

without having to worry about installing and configuring a large number of different tools, I have

experimented with a promising technology called “DevContainers” and published an experience

report about my findings [127]. DevContainers are an integration of Microsoft Visual Studio

Code [79] and Docker [1]. When implemented in a programming assignment, a DevContainer

allows students to open a fully configured development environment with the click of a single

button. The only limitation is that students will still have to install Visual Studio Code and Docker

on their machines. However, GitHub is working on a new initiative called “Codespaces” [46]. It

will allow users to open a GitHub project in a DevContainer running in their web browser with

the click of a button, eliminating the need for students to install tools such as Docker (which can

be difficult on certain operating systems). At the time of writing, GitHub Codespaces is still in a

closed beta phase. However, I expect this to become widely used in CS classrooms in the future
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as it seems to effectively address the issue of configuring student programming environments.

Future work should investigate whether DevContainers and GitHub Codespaces can in a similar

way be used by educational innovators to share their tech stacks with potential adopters.

8.2.3 Iterating on Existing Innovations

Appendix A.1 lists three educational innovations per area of the academia-industry gap as

defined by Radermacher and Walia. I encourage CS educators to attempt to adopt any relevant

innovations into their own courses. Since many of the innovations on this list contain several

barriers to adoption, adopting them might be an intensive task. Thus I encourage educators who

take up this challenge to publish about their findings and to publish resources that would make it

easier for future potential adopters to adopt these innovations into their own course. The checklist

presented in Appendix A.2 may be beneficial for helping determine what resources to publish.
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Appendix A

Materials for Chapter 5

A.1 Analyzed Solutions

Gap Dimension/Title DOI Link

Written Communication

“Writing for computer science: a taxonomy of writing tasks and general

advice”

10.5555/1127442.1127468

“Integrating communication skills into the computer science curriculum” 10.1145/2157136.2157248

“Communication skills in the CS curriculum” 10.5555/1516546.1516560

Oral communication

“Technically speaking: fostering the communication skills of computer

science and mathematics students”

10.1145/1227504.1227375

“It is time to stand up and communicate [computer science courses]” 10.5555/1253528.1254284

“A Curriculum Model Featuring Oral Communication Instruction and

Practice”

10.1145/3017680.3017775

Project Management
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“Integrating Project Based Learning and Project Management for Software

Engineering Teaching: An Experience Report”

10.1145/3159450.3159599

“Teaching design and project management with lego RCX robots” 10.1145/366413.364551

“Re-imagining a course in software project management” 10.1145/3183377.3183379

Software Tools

“Teaching Git on the Side: Version Control System as a Course Platform” 10.1145/2729094.2742608

“Distributed version control in the classroom” 10.1145/1953163.1953342

“Pushing Git & GitHub in undergraduate computer science classes” 10.5555/3015220.3015251

Testing

“Rethinking computer science education from a test-first perspective” 10.1145/949344.949390

“Teaching software testing concepts using a mutation testing game” 10.1109/ICSE-SEET.2017.1

“Test-driven learning: intrinsic integration of testing into the CS/SE cur-

riculum”

10.1145/1124706.1121419

Teamwork

“Teaching teamwork in engineering and computer science” 10.1109/FIE.2011.6143000

“A Method to Analyze Computer Science Students Teamwork in Online

Collaborative Learning Environments”

10.1145/2793507

“Towards best practices in software teamwork” 10.5555/948785.948797

Problem Solving & Critical Thinking

“Critical thinking and computer science: implicit and explicit connections” 10.5555/1127389.1127423

“Critical thinking in an introductory programming course” 10.5555/2184451.2184473

“Using pseudocode to teach problem solving” 10.5555/1089053.1089088

124

https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1145/366413.364551
https://doi.org/10.1145/3183377.3183379
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/1953163.1953342
https://dl.acm.org/doi/10.5555/3015220.3015251
https://doi.org/10.1145/949344.949390
https://doi.org/10.1109/ICSE-SEET.2017.1
https://doi.org/10.1145/1124706.1121419
https://doi.org/10.1109/FIE.2011.6143000
https://doi.org/10.1145/2793507
https://dl.acm.org/doi/10.5555/948785.948797
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Programming

“Evaluating programming ability in an introductory computer science

course”

10.1145/331795.331857

“A short unit to introduce multi-threaded programming” 10.5555/1734797.1734800

“Effects of Course-Long Use of a Program Visualization Tool” 10.5555/1862219.1862234

Requirements Engineering

“Facing the challenges of teaching requirements engineering” 10.1145/2889160.2889200

“Teaching requirements engineering to an unsuspecting audience” 10.1145/1124706.1121475

“Teaching requirements engineering to undergraduate students” 10.1145/1953163.1953207

Personal Skills

“Teaching computer science soft skills as soft concepts” 10.1145/2445196.2445219

“Examining Classroom Interventions to Reduce Procrastination” 10.1145/2729094.2742632

“Nature of Creativity in Computer Science Education. Designing Innova-

tive Workshops for CS Students”

10.1145/2643572.2643580

Ethics

“How to teach computer ethics through science fiction” 10.1145/3154485

“Ethics Education in Context: A Case Study of Novel Ethics Activities for

the CS Classroom”

10.1145/3159450.3159573

“A learner-centered approach to teaching ethics in computing” 10.1145/1124706.1121505

Leadership

“Learning to love computer science: peer leaders gain teaching skill,

communicative ability and content knowledge in the CS classroom”

10.1145/1953163.1953225
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Checklist for Identifying Barriers to Adoption of 
a CS Educational Innovation Paper 
 
Paper Title:  
 
________________________________________________________________________________________ 

Rating: Yes ☑  , No/Unsure/Cannot Assess ☐ 
The rater is advised to take notes on why they chose to select or not select the items 
 

1. Project type 
⃞ Curricular change 
⃞ Course change 
⃞ New course 
⃞ Technology 
⃞ Other: ________________________ 

 
 

3. Actual course materials or equivalently 
complete examples publicly available in 
English (in the paper or linked in the paper) 
A title is sufficient if googling the title leads to 
the resource 
Rate “No” for materials NOT selected under 2 

⃞ Course topic schedule (e.g. course topics 
by week) 

⃞ Lecture materials (e.g. slides) 
⃞ Reading materials 
⃞ In-class activity materials (e.g. clicker 

questions) 
⃞ Video materials 
⃞ Assignment materials 

 
⃞ Project materials 
⃞ Lab materials 
⃞ Grading strategies (e.g. how to autograde 

the proposed assignments/projects/labs) 
⃞ All required software 
⃞ User manuals/documentation for software 
⃞ Other: _________________ 

2. Course components mentioned in the paper 
⃞ Course topic schedule  

 
⃞ Lectures 
⃞ Readings (e.g. assigned readings) 
⃞ In-class activities (e.g. peer instruction, 

student presentations, discussions) 
⃞ Videos (e.g. for flipped classrooms) 
⃞ Individual assignments (e.g. homework, 

programming assignments) 
⃞ Group projects 
⃞ Labs (e.g. to introduce technologies or 

to take a test on a computer) 
 

⃞ Required software (e.g. web 
application, LMS, custom software) 

⃞ Other: ________________ 

4. Expertise requirements for implementing this innovation  
(look for expertise mentioned in the paper and on the author’s university profile page) 

⃞ The author has (or collaborates with someone who has) a level of expertise in 
_____________________________, beyond what is typically taught in a Bachelor CS degree. 

⃞ The author provides or links information in the paper to help adopters learn about the topic 
5. Monetary requirements for implementing this innovation. The paper mentions the author uses 

(google the products mentioned in the paper) 
⃞ Products/services that the author or students had to pay for themselves (e.g. books, software) 
⃞ Other monetary requirements: _________________ 

1 
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6. Hardware requirements for implementing this innovation. The paper mentions the author uses 
⃞ Raspberry Pi, Arduino or similarly priced hardware 
⃞ Generic web servers 
⃞ Self-designed or self-assembled hardware 
⃞ Other hardware: ___________ 

7. Teaching assistant requirements for implementing this innovation. The paper reports 
⃞ The author uses ___ teaching assistants per ___ students 
⃞ The author’s teaching assistants have a level of expertise in ___________________, beyond 

what is typically taught in a CS degree 
8. Collaboration requirements for implementing this innovation. The paper reports the author 

collaborates with ____________________ (do NOT count TAs as collaborators). 
⃞ A professor in the their own department (e.g. guest speaker, topic expert) 
⃞ A professor from the ___________________ department at their university 
⃞ ________________ at their university (e.g. writing center, library, administrators etc.) 
⃞ Another university  
⃞ Industry (e.g. guest speaker, co-op program, local business as customer, etc.) 
⃞ The open source community (e.g. students contribute to a popular open source project) 
⃞ Other: ______________ 

9. The paper reports the innovation has been used 
⃞ On a maximum class size of _____ students 
⃞ On a minimum class size of _____ students 
⃞ In multiple offerings of the same course 
⃞ In multiple different courses 
⃞ By multiple instructors 
⃞ At multiple institutions 
⃞ In multiple countries 

10. The paper reports statistical evidence 
⃞ That shows the innovation is beneficial 

11. Potential scalability issues 
⃞ Class size is NOT mentioned in paper 
⃞ The paper does NOT report the innovation was used on a large class (≥200 students) 
⃞ Requires manual grading 
⃞ Requires a significant amount of reading for grading (e.g. grading reports) 
⃞ Requires students to give presentations 
⃞ Requires in-class interaction between students (e.g. in-class group work or discussions) 
⃞ Requires all students to work at location at the same time (e.g. timed computer lab assessment) 
⃞ Requires students to have real employment (e.g. internship, co-op program) 
⃞ Requires students to interact with a real customer or product owner (e.g. local business or 

organization, open source project maintainer) 
⃞ Not every student can participate due to limited availability of spots (e.g. tutor program) 

12. Other potential barriers to adoption: 
 
________________________________________________________________________________________ 
 
________________________________________________________________________________________ 
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