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The quality of metabolic pathway
resources depends on initial enzymatic
function assignments: a case for maize
Jesse R. Walsh1,2,5, Mary L. Schaeffer3, Peifen Zhang4, Seung Y. Rhee4, Julie A. Dickerson1,2

and Taner Z. Sen1,5,6,7*

Abstract

Background: As metabolic pathway resources become more commonly available, researchers have unprecedented
access to information about their organism of interest. Despite efforts to ensure consistency between various
resources, information content and quality can vary widely. Two maize metabolic pathway resources for the B73
inbred line, CornCyc 4.0 and MaizeCyc 2.2, are based on the same gene model set and were developed using Pathway
Tools software. These resources differ in their initial enzymatic function assignments and in the extent of manual
curation. We present an in-depth comparison between CornCyc and MaizeCyc to demonstrate the effect of initial
computational enzymatic function assignments on the quality and content of metabolic pathway resources.

Results: These two resources are different in their content. MaizeCyc contains GO annotations for over 21,000 genes
that CornCyc is missing. CornCyc contains on average 1.6 transcripts per gene, while MaizeCyc contains almost no
alternate splicing. MaizeCyc also does not match CornCyc’s breadth in representing the metabolic domain; MaizeCyc
has fewer compounds, reactions, and pathways than CornCyc. CornCyc’s computational predictions are more
accurate than those in MaizeCyc when compared to experimentally determined function assignments,
demonstrating the relative strength of the enzymatic function assignment pipeline used to generate CornCyc.

Conclusions: Our results show that the quality of initial enzymatic function assignments primarily determines the
quality of the final metabolic pathway resource. Therefore, biologists should pay close attention to the methods and
information sources used to develop a metabolic pathway resource to gauge the utility of using such functional
assignments to construct hypotheses for experimental studies.

Keywords: Metabolic pathway databases, BioCyc, CornCyc, Database comparison, MaizeCyc, JavaCycO

Background
Developing a metabolic pathway resource involves many
steps. These steps can be described as follows: Given a
genome assembly and a gene model set, translated pro-
tein sequences are fed into a computational pipeline.
Enzymes are then predicted and assigned a functional cat-
egory, usually based on Gene Ontology (GO) [1] terms or
Enzyme Commission (EC) [2] numbers. After the initial
enzymatic function assignments are made, enzymes are

*Correspondence: taner.sen@ars.usda.gov
1Bioinformatics and Computational Biology Program, Iowa State University,
Ames IA, USA
5USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State
University, Ames IA, USA
Full list of author information is available at the end of the article

then mapped to a reference metabolic pathway database
to create an initial metabolic pathway resource. Finalizing
a pathway resource requires manual curation to improve
the accuracy of the final metabolic representation.
A wide-range of computational methods can be applied

at each step of developing a metabolic pathway resource.
This variance makes a comparison of metabolic path-
way resources challenging. The problems that complicate
comparison between heterogeneous databases have long
been recognized [3], and several attempts have been made
to homogenize data from different sources [4, 5]. Stud-
ies seeking to compare data content between resources
[6] describe many of the challenges of matching biologi-
cal data in order to assess overlap. Non-standard chemical
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naming conventions, difficulty matching stereo-chemistry
and protonation, as well as defining pathway boundaries
and managing gene variants all create challenges for com-
paring metabolic pathway resources.
For maize, two metabolic network resources are avail-

able, both of which are based on the B73 RefGen_v2
genome assembly/gene model set [7] and used the Path-
way Tools software [8] tomap enzymes onto reactions and
pathways. This provides a unique opportunity to explore
the effect of the initial enzymatic function assignment
pipeline on the final metabolic pathway resource.
CornCyc 4.0 (http://www.plantcyc.org) was developed

using the Ensemble Enzyme Prediction Pipeline (E2P2
v2.0) [9] created by Plant Metabolic Network (PMN) [10]
in collaboration with MaizeGDB (http://www.maizegdb.
org) [11, 12]. MaizeCyc 2.2 [13] was developed based
on the Ensembl XRef pipeline [14, 15] in collaboration
between two database projects, Gramene (http://www.
gramene.org) and MaizeGDB. The term “Ensemble” in
the CornCyc pipeline refers to integration of methods,
whereas “Ensembl” in the MaizeCyc pipeline refers to the
collaborative project between the European Bioinformat-
ics Institute and the Wellcome Trust Sanger Institute.
In order to gain insight into the strengths of each

resource based on initial enzymatic function assign-
ments, we compared the data content and accuracy of
CornCyc and MaizeCyc by calculating the overlap of
different data types between the resources and com-
pared the accuracy of computational annotations against
experimentally-assigned enzymatic functions.

Methods
Gold standard protein annotation data
A gold standard set of protein functional annotations
was generated by extracting data from UniProt [16] and
BRENDA [17]. We extracted all protein sequence and
annotation data from UniProt (release 2016_05) for the
organism Zea mays, keeping the EC annotations only
from the manually reviewed component of UniProt, while
removing those annotations that had not undergone man-
ual review. We also extracted experimentally verified pro-
tein annotations for Zea mays from BRENDA (release
2016.1). TheUniProt and BRENDA annotations were then
merged bymatching proteins based on the database cross-
links provided by BRENDA, resulting in the union of
the reviewed annotations from UniProt and the exper-
imentally verified annotations of BRENDA with dupli-
cates removed. Themerged protein annotations were then
matched to the B73 RefGen_v2 translated gene models
using BLASTP based on a sequence identity cutoff of
96% and an e-value cutoff of 1e-20. We selected the top
scoring hit for each protein which resulted in matches to
1,815 unique maize proteins. EC annotations for alternate
isoforms were consolidated at the gene level, resulting

in 1,475 experimentally verified or manually reviewed
protein functional annotations across 1,450 maize genes.

Resource preparation and access
We compared CornCyc version 4.0 with MaizeCyc ver-
sion 2.2 hosted within Pathway Tools 17.5 [8]. Throughout
the text, we refer to CornCyc version 4.0 as CornCyc
and MaizeCyc version 2.2 as MaizeCyc unless otherwise
specified. Figure 1 compares the pipelines used to pro-
duce both databases. Both resources are based on the
B73 RefGen_v2 reference genome assembly and the fil-
tered gene set (FGS) [7]. Although the v2 assembly of the
maize genome sequence is not as recent as the v3 assem-
bly, MaizeCyc was only available for v2, which drove our

Fig. 1 Overview of the pipelines used to create CornCyc 4.0 and
MaizeCyc 2.2. Green represents common components, and orange
and blue CornCyc- and MaizeCyc-specific components respectively.
CornCyc and MaizeCyc were both based on the B73 RefGen_v2 gene
model. They mainly differed in different functional annotation
prediction methods incorporated into their respective pipelines. Both
databases used Pathway Tools and MetaCyc for their reaction and
pathway inference. Since both databases were created at different
times, they used different versions of MetaCyc. Finally, manual
curation has been applied to both databases. In order to account for
differences at the pathway and reaction inference steps as well as at
the manual curation step, we propagated updates from the same
version of MetaCyc to both databases and allowed the propagation
utility to remove manually curated data

http://www.plantcyc.org
http://www.maizegdb.org
http://www.maizegdb.org
http://www.gramene.org
http://www.gramene.org


Walsh et al. BMC Systems Biology  (2016) 10:129 Page 3 of 9

decision to use the v2 assembly and less recent Corn-
Cyc 4.0 (the current version CornCyc 7.0 uses the more
recent v3 assembly). Also, while MaizeCyc was developed
using Pathway Tools 15.5, CornCyc was developed using
Pathway Tools 16.5. In order to make a consistent com-
parison, both CornCyc and MaizeCyc were upgraded to
Pathway Tools 17.5 and MetaCyc 17.5 as follows: first we
upgraded the schema of both CornCyc and MaizeCyc to
Pathway Tools 17.5 using the built-in PathoLogic upgrade
tool. Then we removed all manually curated GO terms
from MaizeCyc. Finally, we used the “propagate Meta-
Cyc updates” and “rescore pathways” procedures in order
to ensure that all reactions, compounds, and pathways
were up-to-date with MetaCyc version 17.5. The process
of updating and rescoring pathways also served to remove
existing manual curation at the pathway level, such as the
application of SAVI to CornCyc. The SAVI procedure was
not reapplied to either CornCyc or MaizeCyc. Remov-
ing the manually curated GO terms before the propagate
and rescoring steps prevented bias that would other-
wise occur. All data extraction queries to the CornCyc
and MaizeCyc resources were made using the JavaCycO
libraries [18] and the Pathway Tools Application Program
Interface (API). Details of the methods used to extract
and compare the data from CornCyc and MaizeCyc are
available in Additional file 1.

CornCyc annotation pipeline
CornCyc was developed based on the Ensemble Enzyme
Prediction Pipeline (E2P2) [9]. E2P2 uses an average
weighted integration algorithm based on results from
individual classifiers such as BLAST [19], CatFam [20],
and Priam [21]. The ensemble algorithm relies on an aver-
age weighted integration scheme where the weight of each
predictedmodel was determined by a 5-by-3 nested cross-
validation routine. For CornCyc 4.0, E2P2 version 2.1
(https://dpb.carnegiescience.edu/labs/rhee-lab/software)
was used with BLAST’s e-value cutoff set to be ≤
1e-30. The training of E2P2 and the reference databases
used in the annotation process are based on the Reference
Protein Sequence Dataset (RPSD) version 2.0 included in
the E2P2 v2.1 package. RPSD contains protein sequences
with experimental support of existence compiled from
Swiss-Prot [22], MetaCyc [23], and BRENDA [17].
After the initial database generation, CornCyc was fur-

ther modified by Plant Metabolic Network using the SAVI
pipeline [10], which categorizes the initially predicted
pathways to be retained, deleted, or manually reviewed
based on a set of rules developed as a part of the curation
process. SAVI also detects missing pathways. The SAVI
program uses six curated pathway library files to enable
semi-automated changes to a predicted pathway database
(http://www.plantcyc.org/about/savi_pipeline.faces).
All pathway library files used in validating and refining

CornCyc 4.0 are available online at: ftp://ftp.plantcyc.org/
Pathways/SAVI_validation_lists/SAVI_validation_lists_
archive/SAVI_lists_pmn8_july_2013/.

MaizeCyc annotation pipeline
The development pipeline for MaizeCyc was described
in detail previously [13]. MaizeCyc is based on the B73
RefGen_v2 filtered gene set. The pipeline uses transcripts
with the longest open reading frame (“the canonical tran-
script”) for functional annotation based on scores derived
from the Ensembl XRef pipeline [14] following protein
sequence alignment to UniProt [16]. Additional sources
of enzymatic function annotations include classical maize
genes [24], coordinates and cross-references from Maize-
sequence.org (now folded into Gramene), MaizeGDB
(locus names/synonyms, molecular function, etc.)
[11, 12], UniProtKB/Swiss-Prot [16, 22] (functional
descriptions and EC assignments), Gene Ontology [1]
(molecular function, biological process, and cellular loca-
tion), and proteomics-supported gene annotations (e.g.,
cellular location). Reactions and pathways were compu-
tationally inferred using the Pathologic component of
Pathway Tools [8].

Results and discussion
Validation of enzymatic function assignments against
experiments
To determine the accuracy of the computationally pre-
dicted protein function annotations in the publicly avail-
able versions of CornCyc 4.0 and MaizeCyc 2.2, we
compared the predicted annotations at the gene level
against the gold standard set of annotations described
in the “Methods” section. We used the following defini-
tions for our performance classifications: 1) true positive
(TP) is when a predicted function of an enzyme matches
an experimentally determined function category for that
enzyme. 2) False positive (FP) is when a predicted function
does not match any experimentally determined function
category for that enzyme. Finally 3) false negative (FN)
is when a function category is an experimentally deter-
mined but is not predicted by the annotation algorithm.
When counting the false negatives, we included cases
when a gene is not present in CornCyc or MaizeCyc,
which accounted for 86 additional false negatives in Corn-
Cyc and 2 additional false negatives in MaizeCyc. The
fourth category, true negative (TN), is a quantity that is
difficult to capture, as it means that for a given enzyme
no prediction is made for a functional category that is also
ruled out experimentally. Precision, recall, and F-measure
only uses TP, FP, and FN classifications. A summary of the
results is shown in Table 1.
We used the following expressions for analysis:

precision = TP/(TP + FP) and recall = TP/(TP + FN).
Precision is a ratio of correctly predicted classes among all

https://dpb.carnegiescience.edu/labs/rhee-lab/software
http://www.plantcyc.org/about/savi_pipeline.faces
ftp://ftp.plantcyc.org/Pathways/SAVI_validation_lists/SAVI_validation_lists_archive/SAVI_lists_pmn8_july_2013/
ftp://ftp.plantcyc.org/Pathways/SAVI_validation_lists/SAVI_validation_lists_archive/SAVI_lists_pmn8_july_2013/
ftp://ftp.plantcyc.org/Pathways/SAVI_validation_lists/SAVI_validation_lists_archive/SAVI_lists_pmn8_july_2013/
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Table 1 Prediction performance of CornCyc 4.0 and MaizeCyc 2.2

True positive False positive False negative

CornCyc 1,326 213 149

MaizeCyc 1,235 436 240

Merged 1,365 583 62

the predictions, and recall is a ratio of correctly predicted
classes among all the possible correct classes. F-measure
is a combination of these twomeasures and provides a sin-
gle measure for comparing the performance of two sets
of predictions. F- measure is defined as 2 ∗ (precision ∗
recall)/(precision + recall).
CornCyc performs better than MaizeCyc, as demon-

strated by higher precision (0.86 versus 0.74), recall (0.90
versus 0.84), and F-measure (0.88 versus 0.79) (Fig. 2).
CornCyc’s performance originates from the much higher
number of true positives. For biologists, a higher F-
measure means is that when they find an annotation in
CornCyc, it is more likely to be correct than it is in
MaizeCyc.
In order to understand how combining annotations

determines the final prediction performance, we merged
all the enzymatic assignments from two resources into a
single resource. Figure 2 shows the performance measures
for the merged resource. The merged annotations from
CornCyc and MaizeCyc performed worse than CornCyc
overall and better than MaizeCyc, while having greater
coverage than either dataset individually.

Comparison of data overlap
Despite the fact that both were developed on the
same gene model set, MaizeCyc and CornCyc have a
quite different distribution of GO-annotated and mapped
genes/proteins (Fig. 3a–c). Part of the reason for this

is that the scope of MaizeCyc includes all genes in the
maize B73 RefGen_v2 filtered gene set, while the scope
of CornCyc is limited to only enzyme-coding genes in the
filtered gene set. In order to draw a useful comparison
between the gene content in CornCyc and MaizeCyc, we
only considered genes associated with a form of annota-
tion. Specifically, we define a gene to have annotation if
it is either assigned at least one GO term or is associated
with a protein that catalyzes at least one reaction. In Corn-
Cyc, only 9 of the 9,142 genes have GO term annotations,
but 99.1% are mapped to at least one reaction. In Maize-
Cyc, 53.1% of the 39,654 genes have GO term annotations
while 19.8% are mapped to at least one reaction (Fig. 3b).
MaizeCyc contains more genes/proteins than CornCyc,

many of which only have GO annotations and are not
associated with a reaction. CornCyc contains 1.5 times as
many unique genes as MaizeCyc (Fig. 3b), and nearly four
times as many unique reaction-mapped proteins (Fig. 3c).
The difference in the number of proteins can be explained
by the fact that this version of CornCyc contains, on aver-
age, 1.6 alternative splice variants per gene. In contrast,
MaizeCyc includes very few splice variants.
While 1,857 reactions were found in both CornCyc and

MaizeCyc, CornCyc contains 1,245 reactions not present
in MaizeCyc, and MaizeCyc contains 417 reactions not
present in CornCyc (Fig. 3e). In order to determine if the
differences in reaction content reflect differences in cov-
erage of reaction space, we compared the distribution of
Enzyme Commission (EC) categories for the reactions in
each resource. Reactions were assigned to EC categories
using their top-level EC class.We compared the total reac-
tion content of CornCyc and MaizeCyc to the portion of
reactions unique to CornCyc and MaizeCyc, as well as
the total reaction content of BRENDA [17] and MetaCyc
[23] (Fig. 4). MetaCyc is the source reactions from which

Fig. 2 Performance comparison between CornCyc 4.0, MaizeCyc 2.2, and the union of both datasets based on 1,475 experimentally verified
annotations across 1,450 genes
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Fig. 3 Comparison of a) GO annotated gene, b) reaction mapped gene, c) reaction mapped protein, d) compound, e) reaction, and f) pathway
statistics between CornCyc 4.0 and MaizeCyc 2.2

CornCyc and MaizeCyc imported their reaction informa-
tion, while BRENDA contains a comprehensive source
of enzyme information derived from literature. Meta-
Cyc, CornCyc, and MaizeCyc frequencies are distributed
similarly, whereas frequency distribution for BRENDA is
lower in EC 1 and EC 2 and much higher in EC 3.
Table 2 shows that the distribution and overlap of reac-

tions categorized by top-level EC category for CornCyc
and MaizeCyc follow a similar trend. Comparing the

reactions unique to CornCyc and MaizeCyc reveals that
CornCyc has stronger representation than MaizeCyc in
each category. A total of 216 unique reactions in CornCyc
and 109 in MaizeCyc were not assigned an EC number.
Reactions might be missing an EC number in three cases:
1) the reaction is pending review by the EC commission,
2) the reaction is hypothetical without an experimentally
characterized enzyme activity, or 3) the reaction is not
associated with an enzyme such as the case for some

Fig. 4 Comparison of Reactions Sorted by EC Category between CornCyc 4.0, MaizeCyc 2.2, BRENDA (July 2015 Release), and MetaCyc 19.5. For
CornCyc and MaizeCyc, reactions with no EC category are not included in the calculations. CornCyc unique reactions refer to all reactions that were
unique to the CornCyc when compared to MaizeCyc, and vice versa. For MetaCyc and BRENDA, all reactions, including those not found in plants,
were included
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Table 2 Comparison of reaction and EC number statistics for all
reactions in CornCyc 4.0 and MaizeCyc 2.2

Overlap Unique to
CornCyc

Unique to
MaizeCyc

Oxidoreductases (EC 1) 496 356 109

Transferases (EC 2) 540 354 101

Hydrolases (EC 3) 282 195 55

Lyases (EC 4) 141 63 28

Isomerases (EC 5) 73 30 5

Ligases (EC 6) 80 33 10

Unclassified (No EC Number) 244 215 127

Total Reactions 1,856 1,246 435

transport reactions. CornCyc has more unique reactions
than MaizeCyc in all EC categories.
We compared the compounds in both databases for

small, non-elemental molecules (i.e., excluding proteins,
DNA/RNA, etc.). Since compounds are imported into
the CornCyc and MaizeCyc from MetaCyc, we do not
expect them to be intrinsically unique in one resource
except when the two resources contain reactions catalyz-
ing compounds unique to those reactions. As expected, as
CornCyc has more unique reactions, it also contains sig-
nificantly more small-molecule compounds than Maize-
Cyc, providing a greater coverage of the compound space
(Fig. 3d). The number of unique reactions has a direct
effect on pathway coverage as well: CornCyc and Maize-
Cyc have 328 pathways in common with 177 and 81
pathways unique to CornCyc and MaizeCyc, respectively
(Fig. 3f).

The level and quality of manual curation differentiates
metabolic databases
Manual curation is a powerful approach for ensuring con-
sistency and accuracy of a database. Unfortunately, the
time-consuming and expensive nature of curation means
that only limited parts of a data resource will receive
manual review. In the case of CornCyc and MaizeCyc,
their content was first populated with computationally
predicted annotations using their respective annotation
pipelines. This content is then reviewed in an ongoing
curation effort to integrate literature-supported experi-
mental annotation into the metabolic resources.
The current version of CornCyc (version 7.0) has 114

proteins and 84 pathways with experimental support. One
area of MaizeCyc that has received considerable man-
ual curation effort is Gene Ontology (GO) annotations.
Because GO annotations are important for researchers
interested in gene function, we previously developed a
tool to migrate GO annotations between Pathway Tools-
based metabolic databases [25]. Previous work reported
789 experimentally verified GO assignments to proteins

in MaizeCyc, of which 179 were matched and transferred
to CornCyc by using this tool [25].

CornCyc andMaizeCyc show distinct differences on the
pathway level: C4 photosynthesis pathway
To demonstrate how initial enzymatic functional annota-
tions can lead to differences in a given pathway, we used
the C4 photosynthesis pathway (the pathway PWY-7115)
as an example, as the pathway is present in both resources.
In Fig. 5, the top panel shows the pathway diagram that
displays the reaction set. At the bottom, a matrix displays
which genes are linked to which reactions in this path-
way. A yellow ‘c’ designates a gene which was linked to the
given reaction in CornCyc, while a green ‘m’ designates a
gene which was linked to the given reaction in MaizeCyc.
An orange ‘cm’ means that CornCyc and MaizeCyc agree
on a gene-reaction pairing. This example visually illus-
trates how different gene-reaction pairs in the C4 pho-
tosynthesis pathway for both resources. In this example,
CornCyc predicts enzymes for the reactions RXN-13697
(catalyzed by aspartate transaminase) and RXN-13698
(catalyzed by alanine transaminase) while MaizeCyc does
not predict any enzymes for these reactions.

Conclusions
The availability of genome-wide metabolic pathway
resources provides a systems-level view of the chemical
interactions in a cell, which creates phenotypes of inter-
est. When a metabolic pathway resource is developed and
made publicly available, scientists can then construct a
network of interactions around their enzymes of interest,
and build further hypotheses based on the annotations
assigned to the genes and proteins. For example, when
an enzyme of interest is discovered to be differentially
expressed and hypothesized to play a critical role in cellu-
lar processes, the next step is often to gather its functional
annotations from several database resources for further
analyses. Therefore, it is highly desirable for a metabolic
pathway resource to have annotations for larger num-
bers of enzymes. A higher coverage of the genome-wide
enzyme space, however, does not automatically translate
into a higher accuracy of prediction for those annota-
tions. Most of these annotations are generated through
computational pipelines that involve multiple processing
steps, and each step can contribute the final quality of
a metabolic pathway resource. A larger number of func-
tional assignments can indeed provide a higher number
of correct assignments (i.e., true positives), but it can also
introduce a higher number of wrong assignments (i.e.,
false positives).
CornCyc 4.0 and MaizeCyc 2.2 are based on the

same maize genome assembly version (B73 RefGen_v2),
and reaction and pathway mapping were done using
the Pathway Tools software suite that heavily uses an
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Fig. 5 The gene-reaction relationships for reactions in the C4 photosynthesis pathway PWY-7115. While the pathway and reaction-pathway
membership (above) remain the same for both resources, the gene-reaction relationships differ. Each gene-reaction pair (below) indicates if the
pairing is found in CornCyc (yellow), MaizeCyc (green), or both resources (orange)

“encyclopedia” of pathways “from all domains of life”
called MetaCyc [23]. CornCyc and MaizeCyc, however,
were created by two different research groups based on
their pipeline for enzymatic function assignments. In this
work, we harnessed the availability of these two distinct
metabolic pathway resources for maize in order to com-
pare how initial enzymatic function assignments influence
the final products that the biologists commonly use in
their research.
Our results demonstrate that even though both Corn-

Cyc and MaizeCyc were constructed using the same gene
model set and the same pathway assignment software,
they have significantly different content. When we com-
pared both databases in detail, we observed thatMaizeCyc
contains a larger number of GO annotated genes whereas
CornCyc covers a larger metabolic space having more
compounds, reactions, and pathways.
We also extracted experimentally determined enzy-

matic function assignments from UniProt and analyzed
how well these assignments were discovered by the com-
putational pipelines used during the development of the
resources.We defined performance measures such as pre-
cision and recall, and consolidated these results into a
single F-measure. F-measure comparison demonstrates
that though CornCyc coverage is more limited than
that of MaizeCyc in terms of GO-annotated genes, its
functional annotations are more stringent, and therefore

more reliable for creating further hypotheses. Alterna-
tively, a dataset composed of themerged annotations from
both CornCyc and MaizeCyc demonstrates that there is
potential benefit to a merged resource which, while less
accurate overall than CornCyc, would provide greater cov-
erage than CornCyc or MaizeCyc at a higher accuracy
than MaizeCyc alone.
To conclude, computational pipelines used in the ini-

tial enzymatic function assignments can have a large
impact on the scope and quality of the metabolic pathway
resources. The features of these pipelines determine the
final accuracy and quality of these resources. Given the
large divergence between CornCyc and MaizeCyc after
starting from the same gene set, users of other metabolic
resources should give additional scrutiny to the methods
used in the generation of the resource.

Additional file

Additional file 1: Method for extracting and comparing data from
CornCyc and MaizeCyc. This document describes how CornCyc and
MaizeCyc data were selected, extracted, and filtered and/or modified
before comparison. The five major data types, Genes, Proteins, Compounds,
Pathways, and Reactions were each handled in unique ways. (PDF 342 kb)
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