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Advances in Genomic Profiling and Risk Stratification in Acute 
Myeloid Leukemia

Daniel R. Richardson, MDa,b,*, Matthew C. Foster, MDa, Catherine C. Coombs, MDa, Joshua 
F. Zeidner, MDa

aUNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of 
North Carolina at Chapel Hill, Chapel Hill, NC

bThe Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel 
Hill, Chapel Hill, NC

Abstract

Objective: To review the current state of molecular and genetic profiling of acute myeloid 

leukemia (AML) and its implications.

Data Source: Peer-reviewed journal articles.

Conclusion: Significant advances in the understanding of the pathology of acute myeloid 

leukemia have led to refined risk stratification of patients and application of novel targeted 

therapies based on genetic profiles. Minimal residual disease testing allows for highly sensitive 

disease surveillance that can be used to predict relapse and assess treatment response.

Implications for Nursing Practice: Accurate prognostication and therapeutic decision-

making for patients with acute myeloid leukemia is dependent on molecular profiling. Being 

knowledgeable of the implications of minimal residual disease testing is critical for patient-

centered care.
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Introduction

Case

A 67-year-old woman with hypertension and diabetes presents with several weeks of fatigue 

and epistaxis and is diagnosed with acute myeloid leukemia (AML). Standard work-up 

revealed a normal karyotype and mutations in NPM1, FLT3-ITD with a high allelic ratio, 

and IDH2. How does the genetic profiling of this patient influence clinical management, 

including risk stratification, prognosis, induction and consolidation chemotherapy, disease 

response, and further treatment options? NPM1 mutation, as discussed further, is a favorable 
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risk mutation, while FLT3-ITD with a high allelic ratio represents an adverse risk marker. 

Concomitant NPM1 and FLT3-ITD mutation with a high allelic ratio is considered 

intermediate risk. Standard ‘7 +3’ (cytarabine continuous infusion + anthracycline) with 

either midostaurin, a tyrosine kinase FLT3 inhibitor, or gemtuzumab ozogamicin (GO), an 

antibody drug conjugate targeting CD33, may be considered during induction because of her 

risk profile. The NPM1 mutation will allow for highly specific surveillance of her disease 

and monitoring of treatment response following induction and consolidation therapy through 

minimal residual disease (MRD) testing. Further, although allogeneic stem cell transplant 

is not standardly considered for patients with NPM1 without a FLT3 mutation; transplant 

is often considered in patients with co-occurring NPM1 and FLT3 given the relatively high 

risk of relapse in patients with FLT3-ITD mutations. Lastly, because her AML harbors an 

IDH2 mutation, she may respond well to venetoclax, a small-molecule inhibitor of apoptosis 

regulator, BCL-2, and may garner benefit from a targeted IDH2 inhibitor on relapse.

AML is a heterogenous hematologic malignancy driven primarily by genetic abnormalities 

in myeloid progenitor cells causing an accumulation of abnormal immature blasts in the 

bone marrow.1 These leukemic cells impair normal hematopoiesis and eventually cause bone 

marrow failure, leading to characteristic clinical symptoms such as fatigue, infection, and 

bleeding. The diagnosis is made through a bone marrow biopsy, which identifies an elevated 

proportion of blasts within the marrow. Morphology, immunophenotyping, cytogenetic 

analysis, and molecular analysis lead to a further refinement of the diagnosis.2

Risk Stratification

Traditionally, risk stratification in AML was based on the morphology of the leukemic 

cells, cytogenetic abnormalities, and clinical features.3 However, more recently molecular 

profiling has allowed for the further classification of AML into prognostically distinct 

subgroups.4 Updated 2016 World Health Organization guidelines include the category 

“AML with recurrent genetic abnormalities,” which sub-classifies AML by many known 

molecular and genetic abnormalities.5 Furthermore, the 2017 European Leukemia Net 

(ELN) guidelines revised their risk stratification to include both cytogenetics and 

genomic information to stratify patients into one of three prognostic risk groups: 

favorable, intermediate, or adverse risk (Table 1).6 Other well-established risk-stratification 

models including the Southwest Oncology Group classification7 and the AML composite 

model,8 variably utilize cytogenetic and molecular abnormalities to define risk. The 

National Comprehensive Cancer Network, which is a consortium of National Cancer 

Institute-designated comprehensive centers that produce expert-consensus clinical guidance 

documents, has adopted the ELN guidelines for risk stratification.9 The World Health 

Organization, ELN, and National Comprehensive Cancer Network convene regularly to 

update clinical recommendations and diagnostic criteria.9

The initial intention for developing genetic risk categories by the ELN was to standardize 

the reporting of molecular abnormalities that have been shown to correlate with clinical 

outcomes.6 Principally, these risk categories are used to inform prognosis, including overall 

survival, disease-free survival, chance of obtaining complete remission (CR), and risk of 

relapse. Mrozek et al10,11 illustrate the substantial prognostic differences between genetic 

Richardson et al. Page 2

Semin Oncol Nurs. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk categories. For example, among patients <60 years of age, 60% with favorable-risk 

disease were alive at 5 years, as compared with only 10% of those with adverse-risk 

disease, highlighting the importance of allocating patients into prognostic risk groups 

at diagnosis. For older patients (≥60 years), overall outcomes are significantly worse 

because of a higher probability of treatment-related mortality with conventional induction 

chemotherapy, increased incidence of AML from pre-existing myeloid neoplasms, and a 

more chemoresistant disease biology; 2-year overall survival is 40% for favorable risk and 

<10% for adverse risk.10

The Development of Molecular and Genetic Profiling

As illustrated earlier, identifying individual mutations within genes can drastically change 

overall risk. For example, patients with a normal karyotype who are found to have an NPM1 
mutation without mutations in FLT3-ITD are considered favorable risk by ELN and achieve 

complete response rates between 80% and 90%, whereas those with an NPM1 mutation and 

a FLT3-ITD mutation with a high allelic ratio, as in the case presented earlier, have CR rates 

of 40% to 60%.4,12

Over the last decade there has been increasing interest in further subclassifying AML 

into prognostic risk categories. Papaemmanuil et al13 presented the results of the largest 

mutational analysis performed in AML (>1,500 patients) to illustrate how genomic 

classification, specifically the identification of driver mutations (those mutations that cause 

the pathologic effects) can influence prognosis. These results highlight important progress 

in the development of an integrated risk stratification system aimed at delineating risk to 

inform clinical practice. Papaemmanuil et al13 proposed a new classification system based 

on genetic subgroups (Table 2).

More recently, the entire composite landscape of the molecular abnormalities of AML 

has been explored. We now have a deeper understanding of the key genetic determinants 

of disease and the clonal nature by which these mutations occur.14 In whole genome 

sequencing analysis of 200 patients, 23 genes were identified to be commonly mutated 

in AML.15 Most patients were found to have ≥ two acquired mutations.15 NPM1, a nuclear-

shuttling factor, is mutated in roughly 20% to 30% of patients and is the most common 

mutation seen in AML. Mutations are also common in activated signaling including 

mutations in FLT3-ITD, FLT3-TKD, NRAS, and KRAS.14 Other commonly mutated genes 

are those that lead to aberrant regulation of DNA methylation and hydroxymethylation 

(DNMT3A, TET2, IDH1, IDH2), those that involve messenger RNA splicing (SF3B1, 

SRSF2), those that cause modified chromatin architecture (ASXL1, EZH2), and those that 

lead to deregulation of transcription (RUNX1, CEBPA, and WT1). Mutations in TP53, a 

tumor suppressor gene, are also common (6%).16

Because of the increasing awareness of the prognostic and clinical importance of genetic 

abnormalities in AML, mutational analysis has been integrated into the diagnostic work-up 

of newly diagnosed patients.17 Next-generation sequencing that is able to identify specific 

genetic mutations within a relatively short period of time has become the standard of 

care for classifying mutations for diagnostic purposes. Next-generation sequencing panels 
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can precisely identify multiple gene mutations that occur concomitantly, which is critical 

for diagnostic purposes. In addition to identifying individual mutations, next-generation 

sequencing also allows for the quantification of mutational burden by estimating proportions 

of cells carrying a mutation based on the allelic frequency.15 Identifying high versus low 

allelic burden is currently important for proper risk stratification of FLT3-ITD AML.6 

Prognostic implications of allelic burden for other subtypes of AML and myelodysplastic 

syndromes are being explored.18

Mutations with Clear Clinical Impact

In general, while hope remains that a deepening understanding of the molecular basis 

of disease will lead to transformative single-agent targeted therapies, as seen in chronic 

myeloid leukemia and acute promyelocytic leukemia, many mutational signatures largely 

only have prognostic and not therapeutic implications.19 However, several specific genetic 

alterations have clear clinical implications (outlined in Table 3).6,20

FLT3

The FMS-like tyrosine kinase 3 (FLT3) gene is important for proliferation and survival 

of early hematopoietic cells. Mutations within FLT3 are commonly classified as internal 

tandem duplication (ITD) or tyrosine kinase domain (TKD) mutations.21 FLT3-ITD 

mutations occur in 20% of patients with AML and TKD in 10%.22 Both mutations lead to 

uncontrolled proliferation of leukemic cells. FLT3-ITD is associated with inferior outcomes, 

whereas FLT3-TKD is thought to be prognostically neutral.22 A higher burden of mutations 

is associated with less favorable outcomes.21 ELN risk classification stratifies FLT3-ITD 

mutations by high and low allelic ratio, with a high ratio being classified as adverse risk if 

not accompanied by an NPM1 mutation.6

Several agents have been developed specifically to target the FLT3 mutation, including 

first-generation (midostaurin, lestaurtinib, sunitinib, sorafenib) and second-generation 

(gilteritinib, quizartinib, crenolanib) FLT3 tyrosine kinase inhibitors.20 The overall benefit 

of such agents has been modest. Midostaurin, when used with traditional induction and 

consolidation chemotherapy, was shown to improve progression-free and overall survival 

(hazard ratio for death 0.78; confidence interval 0.63–0.96; P = .009) for all patients with 

FLT3 mutations and is now considered a standard-of-care agent to include in induction 

with 7+3 and consolidation regimens (with high-dose cytarabine) for patients age 18 to 60 

years.23 Sorafenib has been shown to have modest benefits for FLT3-ITD patients when 

used prior to or after allogeneic hematopoietic cell transplant (allo-HCT).24 Gilteritinib 

was recently approved by the US Food and Drug Administration for the treatment of 

patients with relapsed or refractory disease based on the results of the randomized phase 

3 ADMIRAL trial, which showed a combined CR and CR with incomplete hematologic 

recovery of 30%, with an additional 10% achieving a partial remission, for an overall 

response rate of 40% (confidence interval 34%–47%).25 Median overall survival in the 

trial was 9.3 months. Quizartinib, another FLT3 inhibitor currently under investigation, has 

shown promise in the management of relapsed/refractory AML with FLT3-ITD mutations. 

The QUANTUM-R randomized phase 3 trial of quizartinib versus physician choice 
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significantly prolonged survival (6.2 months v 4.7 months).26 Further, randomized phase 

3 trials are investigating crenolanib in newly diagnosed and relapsed/refractory AML though 

the results have yet to be reported. In general, patients with FLT3-ITD mutations commonly 

respond poorly to standard chemotherapy regimens and often allo-HCT is considered for 

eligible patients.27

NPM1

Encompassing nearly 30% of AML with normal cytogenetics, AML with mutated NPM1 
is generally considered to be favorable-risk.6 NPM1 is uncommonly found in patients 

with myelodysplastic syndromes or other leukemias.28 Patients with NPM1-mutated AML 

are frequently younger and often harbor characteristic co-occurring mutations in DNA 

hydroxymethylation genes (such as DNMT3A, TET2, IDH1, and IDH2), which are found 

in nearly 75% of patients. Prognosis of patients with NPM1 has been shown to vary 

significantly by co-occurring mutations. Co-mutations in RAD21 and/or NRAS codon 12/13 

confer extremely favorable outcomes, whereas co-mutations in DNMT3A and FLT3-ITD 

with a high allelic ratio confer inferior outcomes.14 Patients with NPM1 mutations without 

FLT3 mutations or with FLT3-ITD with a low allelic ratio had a median overall survival 

of 79.7 months, while those with FLT3-ITD with a high allelic ratio had a median overall 

survival of only 17.2 months. This demonstrates the importance of the overall mutational 

spectrum when prognosticating outcomes in AML.29

Patients with NPM1 mutations without adverse features typically have a favorable response 

to conventional induction chemotherapy. The well-preserved unique DNA signature of 

NPM1 mutations allows clinicians to utilize copy number of transcripts for clinical 

surveillance and measurement of response through MRD testing, which is discussed later 

in this article. GO has been shown to improve EFS in patients 50 to 70 years of age 

with intermediate- and favorable-risk disease, and is often considered in patients with 

NPM1 mutations despite not having an established survival benefit.30 GO has been shown 

to produce deeper responses and improved MRD when added to traditional induction 

regimens.31 Allo-HCT is typically not considered in first CR given the high probability 

of long-term disease-free survival with chemotherapy alone in these favorable-risk patients. 

However, a higher rate of relapse is seen in those with suboptimal clearance of NPM1 
transcripts by MRD testing and often necessitates consideration of allo-HCT in eligible 

patients.32

IDH1 and IDH2

Isocitrate dehydrogenases (IDHs) are a class of enzyme catalysts that are found in the 

cytoplasm, peroxisome, and mitochondria of human cells. Mutations in IDH1 and IDH2 
have been described in colorectal cancer, glioblastoma, oligodendrogliomas, and more 

recently in AML.33 Approximately 16% of patients with AML harbor a mutation in either 

IDH1 or IDH2.34 There is no consensus on their prognostic value and, therefore, they are not 

included in current risk-stratification models.6

IDH-mutation status has several clinical implications. Ivosidenib, a small-molecule inhibitor 

of mutant IDH1, was shown to be safe and tolerable in patients with relapsed or refractory 
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IDH1-mutated AML, with overall response rates equal to approximately 42%, and is 

now approved by the US Food and Drug Administration for the treatment of newly 

diagnosed, untreated elderly patients with AML (≥75 years or who have comorbidities 

that preclude intensive chemotherapy) with an IDH1 mutation.35 Enasidenib, an IDH2 
inhibitor, was also shown to be safe and tolerable when given to patients with relapsed 

or refractory IDH2-mutated AML, with response rates similar to ivosidenib in IDH-1 

mutated –AML (approximately 40%).36 IDH inhibitors produce differentiation of leukemic 

cells into mature neutrophils, and, if this differentiation occurs rapidly, can lead to 

differentiation syndrome, a potentially lethal clinical combination of several clinical signs 

and symptoms, including hypoxia, fever, pleural effusion, rash, pain, and potentially 

disseminated intravascular coagulopathy. Approximately 12% of patients treated with 

enasidenib develop differentiation syndrome.37 Treatment requires the urgent use of 

corticosteroids. IDH1 and IDH2 have also been shown to induce dependence of AML cells 

to BCL-2, an anti-apoptotic gene.38 This dependence may confer increased sensitivity to the 

BCL-2 targeted agent, venetoclax, when used with hypomethylating agents.39

TP53

Mutations in the TP53 gene are identified in over one half of human cancers.40 TP53 
is a tumor suppressor gene, functioning to maintain genomic stability following DNA 

damage, activating DNA repair and limiting cellular proliferation. It is mutated in 

roughly 8% of patients with de novo AML and may be higher in those with secondary 

AML.41 It commonly occurs in patients with a complex (defined as three or more 

cytogenetic abnormalities) and monosomal karyotype (defined as loss of two or more 

autosomal chromosomes or a single autosomy monosomy in presence of structural 

abnormalities).5,13,42 Patients with AML and TP53 mutations also tend to be older.43 A 

TP53 mutation portends a very poor prognosis compared with those without such mutations, 

with inferior overall survival in both patients under age 60 years (median, 10.7 months v not 

reached) and those older (median, 6.0 months v 14.7 months).41 For patients with a complex 

karyotype, TP53 mutation is the most important prognostic factor.43

The dismal prognosis is thought to be because of the impaired susceptibility of 

mutated blasts to DNA-damaging agents, leading to inferior responses to traditional 

chemotherapy.40,43 Because of this, there has been an attempt to evaluate the response of 

patients with TP53 mutations to non-traditional agents. Hypomethylating agents have been 

shown to be effective in patients with TP53 mutations with and without the BCL-2 inhibitor 

venetoclax.39,44 These agents are attractive for use in older patients with TP53-mutated 

AML; however, overall prognosis remains very poor. Despite significant effort and resources 

expended across multiple cancer types, targeted agents for TP53 have been disappointing.45 

Although allo-HCT has been shown to be advantageous for many patients with adverse-risk 

disease, the outcomes following transplant for those with TP53 mutations and complex 

karyotype (88% of patients with a TP53 mutation) remain poor.46

Core Binding Factor (CBF)

This subset of AML includes patients with chromosomal abnormalities t(8;21) or inv(16)/

t(16;16) corresponding to the RUNX1-RUNX1T1 or CBFB-MYH11 fusion genes.47 These 

Richardson et al. Page 6

Semin Oncol Nurs. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chromosomal abnormalities result in abnormal transcription of genes, resulting in the loss of 

function of the core binding complex that is involved in normal hematopoiesis.48 Prognosis 

of patients with CBF-AML is traditionally favorable; however, co-occurring mutations in 

KIT may portend a worse prognosis.47

Patients with CBF-AML typically respond well to standard chemotherapy regimens.13 The 

clinical management of patients with CBF-AML is similar to those with NPM1, where GO 

has been shown to be beneficial in induction regimens.49 Those with inv(16)/t(16;16) have 

a 5-year overall survival rate between 60% and 80%. Five-year overall survival for those 

with t(8;21) is approximately 50%. Allo-HCT is typically not considered in the first CR 

for patients with favorable-risk disease, such as CBF-AML. For patients with CBF-AML 

with KIT mutations or overexpression of the KIT receptor, dasatinib, a multi-tyrosine kinase 

inhibitor that strongly inhibits KIT, may provide benefit.50

Minimal Residual Testing

Many patients achieve CR by morphology following induction chemotherapy; however, 

relapse remains common and leads to the majority of morbidity and mortality in AML. 

Technical advances in quantitative real-time polymerase chain reaction (PCR) and flow 

cytometry have enabled progressively improved sensitivity in the detection of leukemic 

cells. The detection of MRD in patients in CR illustrates that a residual reservoir of cells is 

likely driving relapse.51

Several techniques can be used for MRD testing with variable sensitivity and 

standardization. Standard MRD testing platforms include multi-parameter flow cytometry 

(MFC) and PCR. MFC-MRD tests rely on the identification of a unique antigen phenotype 

of the leukemia cells that differs significantly from the typical antigen-expression pattern 

of normal or regenerating cells. Such unique immunopheno-types are identifiable in the 

majority of patients and can be used to follow response to treatment. There are limitations 

to this approach, including variable sensitivity in detection, change in phenotype over time, 

lack of standardization across centers, and reliance on the expertise of the MFC analyst.52 

Sensitivity to detect leukemic cells by MFC-MRD is typically between one in 1,000 to one 

in 10,000.53

Real-time PCR is able to detect the presence of abnormal mRNA transcripts produced 

by leukemic cells. This technology has been clinically implemented in the monitoring 

of BCR/ABL transcripts in CML and PML/RARA transcripts in acute promyelocytic 

leukemia and is increasingly being used in MRD testing for AML. CBF-AML and mutated 

NPM1-AML are commonly monitored through PCR.31 Although sensitivity varies by assay, 

typically PCR has a better sensitivity than MFC-MRD, with the ability to detect one in 

10,000 to one in 100,000 cells. Limitations to PCR testing include lack of availability 

for many AML subtypes and the potential for false-positive results. Identifying a more 

ubiquitously expressed aberrant transcript in AML, such as WT1, may allow for PCR testing 

to be used across subtypes.54
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MRD testing is typically used clinically in two settings: determination of response to initial 

therapy and as a tool to predict relapse.53 Detection of MRD provides important prognostic 

information regarding the depth of initial response to induction therapy. Many studies 

have illustrated that residual disease, as detected by MRD techniques following induction 

chemotherapy, confers significantly higher relapse risk and inferior overall survival.53,55 

Further work remains to standardize both timepoints following therapy to assess MRD and 

therapeutic interventions following the detection of MRD. Intensifying therapy, including 

additional chemotherapy or immunotherapy through HCT, is often suggested, though 

randomized trials illustrating the benefit of MRD-directed therapy are currently lacking.56

Implications for Nursing Practice

The expansion of the therapeutic landscape and advances in risk stratification based on 

genetic profiling have changed practice in AML with implications for nursing practice. 

Whereas previously patients were started on chemotherapy fairly quickly following initial 

diagnosis, treatment decisions now are dependent on specialized genetic testing to identify 

targeted agents and appropriately assess risk. This often necessitates a several-day delay 

from initial diagnosis to induction chemotherapy, during which time cytoreductive agents 

such as hydroxyurea are often administered by nurses. Further, with the advent of targeted 

therapies with more tolerable side effects, patients often have additional therapeutic options, 

even at relapse. Even for patients with significant comorbidities or advanced age whose 

disease has progressed through first-line agents such as azacytidine or decitabine, targeted 

therapy may offer an opportunity to prolong survival and maintain quality of life. Certainly, 

enrollment in a clinical trial should be considered for such patients given the poor outcomes 

even with targeted therapy. Lastly, the development of MRD testing has allowed for a 

more dynamic assessment of individual prognosis. Treatment decisions, such as if patients 

should be considered for allo-HCT, now often depend on MRD status in addition to baseline 

risk. Oncology nurses are integral in understanding the impact of genetic profiling and risk 

stratification in adults with AML and the impact it will have on symptom management and 

the patients’ well-being.

Future directions

Given the rather nascent development of genetic profiling in AML to predict risk, 

further refinement of risk-prediction models is expected. Studies illustrating the prognostic 

importance of individual genes such as IDH1, IDH2, SRSF2, and c-KIT, as well as the 

influence of combinations of genes, will continue to be important. Further, while current 

clinical risk-stratification models use information that is easily accessible through standard-

of-care techniques, novel application of emerging technology may better delineate risk.57 

Gene expression profiles, which provide a functional view of the protein expression of 

leukemic cells, have been associated with prognosis, though are not currently integrated 

clinically.58 Using gene expression profiles to predict response to individual therapies is 

now becoming possible and may inform choice of induction therapy.59 Use of micro RNAs, 

immune polymorphisms, and epigenetic profiles for risk stratification is also promising.60–63 

Whereas most of these prognostic models use a baseline risk assessment to guide clinical 
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decision-making, dynamic models that integrate response to therapy likely assessed through 

MRD testing have the potential to vastly improve prognostication for individual patients.57

Conclusion

Significant advances in the genetic profiling of AML have led to a better understanding of 

individual risk stratification. Treatment decisions in AML are infrequently straightforward 

and should be tailored to the individual preferences of patients to trade-off risks to obtain 

benefits. A clear understanding of the risks and benefits of therapy, especially the overall 

prognosis, is vital, therefore, to determine the overall goals of therapy. These goals will 

inform the intensity of therapy and often the specific chemotherapeutic agent chosen 

through a process of shared decision-making between patients and clinicians. As we advance 

in our understanding of individualized prognosis through the further refinement of risk-

stratification models, we will be better equipped to practice patient-centered care.
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