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Cooperative, Opportunistic Imaging within a Bayesian Distributed
Constrained Optimization Framework

A. A. Morye, C. Ding, A. K. Roy-Chowdhury, J. A. Farrell
Department of Electrical Engineering

University of California, Riverside

Abstract—This article considers the design of a network of
pan, tilt, zoom (PTZ) cameras to obtain high resolution facial
imagery through opportunistic imaging of moving targets within
a surveillance area. Camera locations are assumed to be fixed and
known and the camera network is assumed to be connected. The
number of targets is time-varying, often exceeding the number of
cameras. The targets are free to maneuver within the surveillance
area and to enter or leave the surveillance area through known
doorway locations. The proposed solution involves distributed
solution of a constrained, locally convex, optimization problem.
The value function quantifies the per target image quality. The
tracking constraint is an upper bound on the uncertainty in the
estimated horizontal position error of each target. At each time
step, optimization is over the PTZ parameters for each camera
in the network with the feasible parameter space defined by the
tracking constraint. All cameras optimize their PTZ parameters
simultaneously by using information broadcast by neighboring
cameras. At certain time steps, due to the configuration of the
targets relative to the cameras, and the fact that each camera may
track many targets, the camera network may be able to achieve
the tracking specification with remaining degrees-of-freedom that
can be used, by cameras at appropriate locations, to obtain
high resolution facial images from desirable aspect angles. The
challenge is to find these time instants, the appropriate camera,
and the appropriate parameter settings to capitalize on them.
Ideally, the system would acquire at least one high-resolution
image of each target in the region before the target leaves the
region. The Bayesian approach automatically trades off maxi-
mization of the objective versus risk (probability of losing track
of a target). The solution involves a Bayesian formulation of the
approach, design of the local and global objective functions and
the inequality constraint set, and development of a Distributed
Lagrangian Consensus algorithm that allows cameras to exchange
information and asymptotically converge on a pair of primal-dual
optimal solutions. This article presents the theoretical solution
along with simulation results.

I. INTRODUCTION

Camera sensor networks using static cameras that cover a
wide-area may have low cost, but may also have low resolution
imagery, may image uninteresting features or viewpoints, etc.
Consequences of such scenarios are the increased difficulty of
analysis of the collected video data and accumulation of vast
quantities of unimportant imagery.

These issues can be addressed by employing distributed
pan, tilt, zoom (PTZ) camera sensor networks. Cameras with
dynamically controllable PTZ parameters can be made to
differentially focus on multiple regions of interest through
dynamic camera parameter selection. Such an approach would
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provide improved performance and greater flexibility while
requiring less hardware.

A prototypical application is a security screening checkpoint
at the entrance lobby of a building. Over the course of each
day a high volume of people flow through the room. The
room is equipped with a fixed number of cameras while the
number and location of people in the room varies with time.
The objective of the camera network is to track (i.e., state
estimation) all persons in the room at a specified accuracy
level at all times and to capture high resolution images for
certain persons in the room at opportunistically selected time
instants.

The challenges of such an application are development of
algorithms to ensure accurate propagation of target-related
information through the distributed network, analysis of the
effect of changing network topology on solution convergence,
and the design of objective functions suitable to solving the
specified problem that also have the properties necessary to
ensure convergence. All these factors influence the selection
of an optimization strategy. In this paper, we formulate the
problem within the Bayesian framework and utilize a dis-
tributed constrained optimization approach to compute the
optimal camera parameter settings that achieve the global cam-
era network objective through optimization of local camera
objectives.

II. LITERATURE REVIEW

Active vision [1], [2], [3] in a camera sensor network is a
research area of great interest. Active computer vision systems
have been applied to applications like automatic surveillance,
simultaneous localization and mapping (SLAM), trajectory
planning, etc. It involves research on cooperation and coordi-
nation between many cameras in a network. Assumptions on
the camera network topology play a major role in the problem
solution; therefore recent work done on networks of vision
sensors is important.

A recent research surveyed [4] identifies various computer
vision problems that can be solved in a distributed fashion
within a network topology. The article mentions the effects
of nodes in the network with no measurement information
and how such nodes may affect convergence properties of
a distributed algorithm. An automated annealing approach
for updating Lagrange multipliers to reduce dependence on
agent inter-communication is provided in [5]. The method uses
the probability collectives framework to generate a relation
between game theory and statistical physics. The authors use



a game-theoretic motivation to develop a parallel algorithm,
but consider a non-cooperative game between agents, where
the action of one agent is completely independent of the other
agents in the network. Such an assumption is not appropriate
for our application.

The authors of [6] proposed a game-theoretic approach to
camera control, where the problem was limited to area cover-
age. A distributed tracking and control approach that required
camera control and state-estimation to run independently and
in parallel was proposed. The camera control mechanism used
game-theory to assign camera settings that provided coverage
over regions of interest while maintaining a high resolution
shot of a target. Concurrently, a Kalman-Consensus filter [7]
provided state estimate for each target. A sequential camera
parameter optimization process is described and applied in [8].

Various system design methodologies are analyzed and
proposed in [9]. Each agent is modeled as a self-interested
decision maker within a game-theoretic environment such
that it ensures attainment of local objectives for desirable
global behavior of the system. The authors utilize convergence
proofs within the game theory literature for a hierarchical
decoupling of the global optimization problem into smaller
local rules. A systematic methodology for designing agent
objective functions is outlined. A similarly detailed objective
function design methodology will be explained in this article.

III. STATEMENT OF CONTRIBUTION

The class of PTZ camera network optimization problems
considered herein is the same as that considered in [8].
The solution approach of [8] performs utility maximization
sequentially and does not include an analysis of convergence.
Herein, a method for distributed, cooperative and parallel
optimization on a strongly connected camera sensor network
is defined, analyzed, and implemented.

We redefined the camera parameter image optimization pro-
cess as a Bayesian value function that accounts for risk arising
from the uncertainty in the estimated target positions, while
adhering to Bayesian constraints on the tracking performance.
The Bayesian value function is designed as an ordinal potential
function, such that it can be decoupled into local objectives
known to each particular camera. The tracking constraint is
common to all cameras.

In [10] the authors consider the distributed solution of a con-
vex optimization problem where individual agents minimize
local objectives under global inequality constraints. A gen-
eral distributed constraint optimization algorithm is proposed
and shown to asymptotically converge to a pair of primal-
dual solutions, under certain assumptions. Our problem can
be mapped to a distributed constraint optimization problem
similar to that in [10]. For the case where there is only one
target in the area, the local objective functions are unimodal
and locally convex. However, further complexity arises from
the presence of multiple targets in the area because the local
objective functions become multi-modal.

IV. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

The objective of the article is to develop a control mecha-
nism for a distributed camera sensor network for opportunistic
imaging of targets within a predefined surveillance area,
subject to tracking constraints on targets in the area. We
use the term ‘opportunistic’ as each camera must select its
parameters to satisfy a tracking constraint at all times and to
obtain high resolution facial images at times of opportunity.
Such an opportunity may arise due to the high probability of
image capture at a high zoom setting from a superior aspect
angle, and when tracking constraints on all the targets can be
simultaneously satisfied. The tracking constraints, while useful
in their own right, are necessary to enable high resolution
imaging.

The operating environment includes NC cameras placed
at known, fixed locations and a time-varying NT (t) number
of targets with independent and unknown trajectories. It is
possible that NT (t) > NC . All cameras have changeable
pan (ρ ∈ [−180◦, 180◦]), tilt (τ ∈ [−90◦, 90◦]), and zoom
(ζ ∈ [F , F̄ ]) parameters. We assume the cameras to have
parfocal zoom lenses that maintain focus with changing focal
length and have a negligible focus error.

In a distributed solution framework, each camera in
the network will be required to optimize its parameters
(ρ(tk), τ(tk), ζ(tk)) for each imaging instant tk, in coopera-
tion with other cameras to maximize an objective function.
The parameters of camera Ci are organized into a three
vector ai = (ρi, τi, ζi). Any choice of ai yields a field-of-
view (FoVi) for the resulting image. That image may contain
multiple targets and each target may be imaged by multiple
cameras. The parameters of all cameras are organized into a
vector a = [a1, . . . ,ai, . . . ,aNc

]. The vector containing all
parameter vectors except those of Ci will be denoted by a−i.
Additional notation is summarized in Table I.

For solution of the overall problem, in the time interval
t ∈ (tk, tk+1) several processes occur. Figs. 1 shows the in-

Fig. 1. Information exchange shown is only between neighboring cameras.

Fig. 2. Time-line of events between image sample times.
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TABLE I
NOTATION SUMMARY

Parameter Variable
Pan, Tilt, Zoom (ρ, τ, ζ)
Min. focal length, Max. focal length F , F̄
No. of Cameras, No. of Targets in region NC , NT (t)
i-th camera, j-th target Ci, T j

(ρ, τ, ζ) settings for Ci, all cameras except Ci ai, a−i

(ρ, τ, ζ) settings for all cameras a
Dimension of (ρ, τ, ζ) settings for Ci ai ∈ <ni , ni = 3
Dimension of (ρ, τ, ζ) settings for all cameras a ∈ <n, n = 3NC

Tracking performance vector for T j Uj
T (a)

Tracking performance vector for all targets UT (a)
Tracking threshold vector for all targets T̄
Global Bayesian imaging value over all targets VI(a)
Local Bayesian imaging value over all targets VIi (ai)
Bayesian tracking value vector for all targets VT (a)
Lagrange multiplier vector for constraint on T j λj

Lagrange multiplier vector for all targets λ
Lagrangian constructed for optimization L(λ,a)

Weight for importance of imagery of T j by Ci wj
i

Image resolution obtained for T j by Ci rji (ai)

Relative pose quality factor between Ci and T j αj
i (ai)

State vector for T j xj
State est., state est. covariance for T j x̂j , Pj

Fisher Information Matrix J
Measurement Vector, Measurement Covariance u, C
Rotation Matrix from frame a to frame b b

aR
Entity e before, after new measurement e−, e+

Entity e in global frame, frame defined by Ci
ge, ie

Entity e at time-step tk e(k)
Entity e for target T j ej

formation flow. Images acquired at tk are processed for feature
detection and target association. Subsequently, distributed state
estimation ensures that the state of each target is estimated
consistently by each camera from its and its neighbors’ im-
agery. Consistency and accuracy of state estimation are pre-
requisites that enable distributed optimization of the network
parameter vector a for high resolution image acquisition at
tk+1. The time sequence of processing is illustrated in Fig. 2.

Based on the previous images up to and including the image
at tk, the target state estimation process provides a prior mean
x̂j(k + 1)− and covariance matrix Pj(k + 1)− for all targets
(i.e., j = 1, . . . , NT ). Every camera in the network has its
own embedded target detection module [6], [8], [11], [12], an
Extended Kalman-Consensus tracker [7], [13] that provides an
estimate of the state of each target, and a distributed camera
parameter optimizer. This article focuses on distributed camera
parameter optimization.

On completion of the target state estimation process at tδ ,
a prior position estimate gp̂j(k + 1)− is available for each
target T j at the future image sampling time tk+1, along with a
prior covariance matrix Pj(k+ 1)−. To simplify the notation,
the time argument tk+1 is dropped. Over the time interval
t ∈ (tδ, tε), each camera will have various opportunities to
optimize its parameter settings.

Remark 1: If cameras take images with a period Ts, the
designer could choose to re-optimize the camera parameter
settings a after every M -th image, resulting in tk = MTs.
In this design, all M images could still be used for target

detection and tracking. In this article, we choose to use M = 1.
When a is not optimized for each frame, it could be interesting
to choose M during operations in response to events (e.g.,
some target nearing the edge of the FoV, or targets nearing
occlusion, etc.).

V. BACKGROUND

This section reviews optimization and game theory con-
cepts.

A. Centralized Constrained Optimization

Consider a standard convex vector optimization (maximiza-
tion) problem with a differentiable primal objective function1

fo and differentiable inequality constraints f j :

maximize fo(a) (1)
subject to f j(a) ≥ 0, j = 1, · · · ,m,

where m is the total number of constraints and a ∈ <n. The
Lagrangian L(λ; a) augments the primal objective function
with the constraints:

L(λ,a) = fo(a) +

m∑
j=1

λjf j(a) = fo(a) + λ>f , (2)

where f is the vector of constraint functions and λ ∈ <m,
with λj ≥ 0, is the Lagrange multiplier vector.

Since the objective and constraint functions fo, f1, · · · , fm
are differentiable, if an optimum a∗ exists, then the La-
grangian L(λ∗,a∗) attains its maximum at the primal-dual
pair (a∗,λ∗). The KKT conditions that provide a certificate
for optimality are [14]:

∇fo(a∗) +

m∑
j=1

λj∗ ∇f j(a∗) = 0, (3)

f j(a∗) ≥ 0, (4)
λj∗ ≥ 0, (5)

λj∗f j(a∗) = 0. (6)

For the optimization problem in Eqn. (1), the primal and dual
optimal points a∗ and λ∗ must satisfy the KKT conditions
given by Eqns. (3 - 6).

In a centralized system, the Lagrangian is maximized by
search over the parameters a and λ. This requires that all
data and all parameters are available at a central controller.
Although, proofs of optimality are simpler and well known
for this centralized approach, for reasons stated in the intro-
duction, we are interested in decentralized solutions.

1Throughout this article, we use the notation such as fo(a) for the
objective function. The notation fo(a : xj , j = 1, . . . , NT ) is more precise
in making explicit the fact that the utility depends on the target state; however,
it is too cumbersome to be effective.
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B. Game Theory and Ordinal Potential Functions

For a distributed optimization approach, Ci will only adjust
ai and λ. A challenge in formulating a distributed optimization
problem is the decoupling of the system objective into local
objectives, one for each agent. The game theory literature and
the concept of potentiality provides guidance for addressing
this challenge [15].

Consider a ∈ S and ai, bi ∈ Si, where S = S1×. . .×SNC

is the collection of all possible camera parameter settings in
the game G, and Si is the collection of all possible camera
parameter settings for camera Ci. Let2 fl(ai : a−i) denote the
local objective function of Ci. Game Gp is a potential game if
there exists a potential function φp : S 7→ < such that ∀a ∈ S
and ∀ai,bi ∈ Si,

φp(bi,a−i)− φp(ai,a−i) = fl(bi : a−i)− fl(ai : a−i). (7)

Game Go is an ordinal potential game if there exists an ordinal
potential function φo : S 7→ < such that ∀a ∈ S and ∀ai,bi ∈
Si,

φo(bi,a−i)− φo(ai,a−i) > 0

⇔ fl(bi : a−i) − fl(ai : a−i) > 0. (8)

Potential games and ordinal potential games allow the global
utility maximum to be achieved by maximization of the local
utilities of each camera. When Eqn. (8) is satisfied, the local
objective functions are said to be aligned with the global
objective. Given φo(a), if the local utilities are defined as

fl(ai : a−i) = φo(ai,a−i), (9)

then it is straightforward to show that the resulting game is a
potential game.

Thus, by defining the global objective function as an ordinal
potential function with the individual local camera objectives
aligned to it, the game becomes an ordinal potential game.
When the set S is compact, and a game has a continuous
potential function, then the game has at least one Nash Equi-
librium. Therefore, given any feasible initial condition, at each
step for which one camera increases its own utility, the global
objective function increases correspondingly, due to G being
a potential game. If φo is continuous and S is compact then
φo(a) is bounded above; therefore, the optimization converges
toward a local maxima. At the maxima, no camera can achieve
further improvement and thus a Nash equilibrium is reached.

C. Distributed Constrained Optimization

As described in Section V-A, to maximize the Lagrangian
in Eqn. (2), a centralized system would find the primal-dual
solution pair. For the distributed approach define the local
constrained optimization problem for the i-th camera:

maximize foi(ai : a−i) (10)
subject to f j(ai : a−i) ≥ 0, j = 1, · · · ,m,

2This notation fl(ai : a−i) means that the value of the function fl may
depend on both ai and a−i, but that ai as treated as an independent variable
while a−i is treated as a constant by Ci.

where m is the total number of constraints and ai ∈ <ni . Thus
the local Lagrangian can be formulated as,

Li(λ,ai : a−i) = foi(ai : a−i) +

m∑
j=1

λjf j(ai : a−i)

= foi(ai : a−i) + λ>f , (11)

where f is the vector of constraint functions and λ ∈ <m is
the non-negative Lagrange multiplier vector.

If we define the global Lagrangian as the sum of local
Lagrangians:

L(λ,a) =

NC∑
i=1

Li(λ,ai : a−i), (12)

and the objective of each agent is to maximize its local
Lagrangian, it is straightforward to show that increasing the
agent’s objective leads to an increase in the global Lagrangian.
Therefore, the local and global Lagrangians are aligned.

However, each agent could select a distinct value for λ.
Also, Ci1 adjusts ai1 , while Ci2 adjusts ai2 . Therefore, mech-
anisms are required to ensure convergence of a and λ.

VI. SYSTEM MODEL

The continuous-time state space model of target T j is:

ẋj(t) = Fxj(t) + Gωj(t) (13)

where j = 1, . . . , NT is the target number and xj = [gpj ; gvj ]
with gpj and gvj representing the position and velocity vec-
tors. The process noise vector ωj ∈ <3 is zero mean Gaussian
with power spectral density Q.

A. Discrete-time Propagation

The discrete-time equivalent model is:

xj(k + 1) = Φxj(k) + γ(k) (14)

where Φ = eFT is the state transition matrix, γ ∼ N (0,Qd)
is process noise, and T = tk+1 − tk is the sampling period.

The state estimate and its error covariance matrix are
propagated between sampling instants using [16]:

x̂j(k + 1)− = Φx̂j(k)+ (15)
Pj(k + 1)− = ΦPj(k)+Φ> + Qd. (16)

B. Camera Coordinate Transformations

Target T j’s position in the i-th camera’s frame cipj is
related to its position in the global frame gpj by:

gpj = g
ciR

cipj + gpci (17)
cipj = ci

g R[gpj − gpci ]. (18)

where gpci is the position of Ci in global frame and ci
g R is

a rotation matrix that is a function of the camera mounting
angle and ai.
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C. Measurement Model

Camera measurement models are derived in various refer-
ences [17], so the following only presents final results for
the expressions needed herein. A derivation using the same
notation can be found in [8].

Let the coordinates of target T j in the i-th camera frame be
cipj =

[
cixj , ciyj , cizj

]>
. The standard pin-hole perspective

projection camera model for camera Ci and T j , assuming that
T j is in the FoV of Ci is,

iiuj =

 (Fi)(cixj)
(sx)(cizj) + ox
(Fi)(ciyj)
(sy)(cizj) + oy

+ iiηj , (19)

where sx and sy give the effective size of a pixel in (m/pixel)
measured in the horizontal and vertical directions, respectively;
Fi is the focal length setting defined by ai; the point (ox, oy)
gives the co-ordinates of the image plane center in pixels;
and the measurement noise iiηj ∼ N (0,Cji ) with Cji (ai) ∈
<2×2. The fact that the measurement noise covariance Cji is
dependent on the parameter settings ai is important. Note, for
example, that as the focal length increases, the size of a target
and the pixel uncertainty of its location in the image increase.

Given the estimated state and the camera model, the pre-
dicted measurement is

ii ûj =

 (Fi)(ci x̂j)
(sx)(ci ẑj) + ox
(Fi)(ci ŷj)
(sy)(ci ẑj) + oy

 . (20)

The measurement residual ii ũj is
ii ũj = iiuj − ii ûj . (21)

D. Observation Matrix Hj
i

The linearized relationship between the residual and the
position error vector is

iiuj − ii ûj ≈ Hj
i (
gpj −g p̂j), (22)

where Hj
i = ∂iiuj

∂gpj

∣∣∣
g p̂j
∈ <2×3 is

Hj
i =

Fi
(ci ẑj)2

[
gNj

>

1
gNj

>

2

]
=

Fi
(ci ẑj)2

gNj
>
, (23)

where the matrix gNj
>

is defined as:

gNj
>

=

[
gNj

>

1
gNj

>

2

]
. (24)

The symbol Nj is used as each column is normal to the vector
from camera Ci’s origin to the j-th target’s estimated position
ci p̂j :
gNj1 = g

ciR
ciNj1

ciNj1 = (sx)−1
[
ci ẑj , 0,−ci x̂j

]>
gNj2 = g

ciR
ciNj2

ciNj2 = (sy)−1
[
0,ci ẑj ,−ci ŷj

]>
.

Note that gNj is determined by the target location relative to
Ci and g

ciR is a function of ai. So, Hj
i is a function of both

gpj and ai. When T j is not in FOVi, then Hj
i = 0 ∈ <2×3.

E. Measurement Update

Using Eqns. (21), (22), and (23), a measurement update
for the state estimates and error covariances for targets in the
area is performed using a Kalman-Consensus Filter described
in [18].

VII. IMAGE OPTIMIZATION METHODOLOGY

The goal is to image targets at a high resolution at times of
opportunity while tracking all targets at all times to a specified
accuracy. The method is to perform distributed and parallel
optimization to compute the optimal camera parameters a∗
relative to Eqn. (1) at each imaging time-instant. The problem
definition starts with specification of the global objective
and constraints that are subsequently decoupled into local
objectives for each camera. The global objective function
for the constrained optimization problem is designed as a
Bayesian imaging value function that accounts for the risk in
imaging the target. Risk will be formulated using the Fisher
information matrix defined as Jj−(k+1) =

(
Pj−(k + 1)

)−1
.

The prior covariance matrix Pj−(k+1) computed using Eqn.
(16) can be written in block form as3:

Pj− =

[
Pj−pp Pj−pv
Pj−vp Pj−vv

]
, (25)

where Pj−pp is the prior, position error-covariance matrix.
As discussed relative to Figs. 1-2, for each image, the sys-

tem detects and associates targets. These target measurements
are used in a Kalman-Consensus Filtering approach [18] that
computes gx̂j− and Pj− at each camera using the model in
Section VI. The selection of the camera parameters a affects
both, the tracking accuracy and the image quality.

A. Global Optimization Problem Design

This section discusses the design and desired properties of
the global imaging value function VI

(
a : gp̂j−,Pj−

pp

)
and the

global constraint set. The notation VI
(
a : gp̂j−,Pj−

pp

)
with

j = 1, · · · , NT makes explicit that the optimization variable is
a, while the value also depends on the distribution of target T j

which is parameterized by
(
gp̂j−,Pj−

pp

)
. For ease of notation,

from this point in the paper, we will drop dependence of VI (a)
on gp̂j− and Pj−

pp, unless needed for clarity.
1) Value Function Properties: The imaging value function

should have the following properties:
• Continuously differentiable: This is necessary for

proofs of convergence, and greatly facilitates the numeric
optimization process.

• Increases with image quality: Herein, image quality is
defined by two parameters: the image resolution and the
relative pose between the imaging camera and the imaged
target. Image resolution rji (ai,

gp̂j), which is a positive
real number, will be quantified by the number of pixels
occupied by target T j on camera Ci’s image plane. Given
gp̂j , the resolution increases monotonically with zoom ζ
of the imaging camera. Relative pose between camera

3The time argument (k + 1) is dropped for ease of notation.
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Ci and target T j will be quantified by the scalar quality
factor αji (ai) ∈ [0, 1] defined as:

αji (ai) =

{
− (oc oo)

2 if ovj · oCi
< 0

0 otherwise,
(26)

where the scalars oc =
oCi
·oTj

‖oCi
‖‖oTj ‖ , and oo =

oCi
·ovj

‖oCi
‖‖ovj ‖ .

The vector ovj is the target’s direction of motion vector,
and the vector oCi is the direction of the optical axis of
the i-th camera in the global frame

oCi
=g
i R ie3, (27)

where e3 = [0, 0, 1]>. The vector oT j is from camera
Ci’s position to target T j’s estimated position. The un-
derlying assumption is that the target is facing in the
direction of its velocity vector. In Eqn. (26), the term
oo ∈ [−1, 1] yields a negative value if T j’s motion vector
ovj is pointing towards camera Ci. The term oc ∈ [−1, 1]
yields the maximum possible positive value of 1 if Ci
images target T j such that T j is at the center of its FoV.
Hence when αji ∈ [0, 1] is large, it is likely that T j is
facing Ci and at the center of Ci’s FoV.

• Balanced Risk: Risk is defined as the probability that
the target is outside of the FoV of the cameras that are
expected to image it. Risk increases monotonically with
zoom ζ, because the area under the FoV decreases as ζ
increases.

To understand the issues involved, it is informative to briefly
consider the simple case where NT = 1 and α1

i > 0 for
i = 1, . . . , NC . For this case, if risk was neglected and VI
was defined with the properties mentioned above, then each
camera would maximize its focal length and select its pan
and tilt parameters to center on the expected target location.
If instead, the value accounted appropriately for risk, then one
camera might significantly increase its zoom parameter, while
the remaining cameras would use lower zoom parameters, to
decrease the tracking risk due to the uncertainty in target
position. The camera at the highest zoom setting would be
the one at the best aspect angle.

2) Imaging Value VI(a : gp̂j−,Pj−
pp): Consider the follow-

ing example global objective function:

VI(a) =

NC∑
i=1

∫
FoVi

NT (t)∑
j=1

wj(t) rji (ai) α
j
i (ai) ppj

(z)

 dz,

(28)
where wj(t) is a time-varying weight that magnifies the
importance of imaging certain targets relative to other targets4.
The probability distribution ppj

of the position of T j in the
global frame at the next imaging instant is defined herein as
the Normal distribution N (gp̂j−,Pj−pp). The approach easily
extends to other distributions. The dummy variable z repre-
senting target position is used for integration over the ground

4Specification of wj
i (t) is application dependent. It could be user spec-

ified or could increase as the target approaches a specified location such as
an exit.

plane, where the limits of integration are provided by the i-th
camera’s FoV.

Each imaging camera integrates over its own FoV. The
integral of image quality over FoVi as a function of probability
weighted target position yields the Bayesian value function,
which provides the desired tradeoff between image quality and
risk. The summation over the targets yields a multimodal (i.e.,
nonconvex) objective function when NT > 1.

3) Performance Constraints: The performance constraints
that ensure tracking of all targets to a specified accuracy T̄ will
be defined as a function of the posterior Fisher Information
Matrix Jj+

(
a : gp̂j−,Pj−

pp

)
.

• Fisher Information: The Fisher Information for T j is:

Jj+ = Jj− +

NC∑
i=1

Hj>

i

(
Cji
)−1

Hj
i (29)

which is a function of the camera settings a because
each Hj

i is a function of ai, as was shown in Section
VI-D. In addition, Jj+ depends on the distribution of
target positions. The tracking utility will have to account
appropriately for the probability that T j ∈ FOVi.
Representing the posterior information Jj+ in block form,
we have:

Jj+ =

[
Jj+pp Jj+pv
Jj+vp Jj+vv

]
(30)

where Jj+pp represents the position information matrix.
• Tracking Performance: We define a vector Uj

T (a :
gp̂j−,Pj−

pp) as a measure of tracking performance for
each target in the area. One example is Uj

T (a) =
diag

(
Jj+pp
)
. Because the quantity Uj

T (a) depends on
whether Tj is within the FOV of each camera that is
expected to image it, we define the global Bayesian
tracking value vector Vj

T (a) as the expected value of
the tracking performance vector Uj

T (a) over the position
of target T j computed across all the camera’s FoVs. It is
denoted as follows:

Vj
T (a) = E

〈
Uj
T (a)

〉
=

∫ (
Uj
T (a)ppj

(z)
)
dz, (31)

where all variables are as defined in Eqn. (28).
• Tracking Constraint: The tracking constraint for each

target is
Vj
T (a) � T̄j (32)

where T̄j is a constant tracking acuracy parameter spec-
ified by the user and the notation ‘�’ indicates a per-
element vector inequality. Stacking the Bayesian tracking
value vectors for each target, we obtain

VT (a) =
[
V1
T , · · · ,V

j
T , · · · ,V

NT

T

]>
, (33)

and rewrite Eqn. (32) for all targets presently in the area
as:

VT (a) � T̄. (34)

where VT (a), T̄ ∈ <mNT (t) with m = dim(gpj). Eqn.
(34) is the global tracking constraint.
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4) Global Problem Summary: The constrained global imag-
ing value maximization problem can be written as:

maximize VI
(
a : gpj−,Pj−

pp

)
(35)

subject to VT

(
a : gpj−,Pj−

pp

)
� T̄.

The global Lagrangian L(λ; a) is

L(λ; a) = VI (a) + λ>
[
VT (a)− T̄

]
, (36)

where L : (λ,a) 7→ <, λ is the Lagrange multiplier vector,
and the sub-vector λj ∈ <m is the Lagrange multiplier vector
for the inequality constraint associated with the j-th target.
Thus, to find the optimal primal-dual pair of solutions (a∗,λ∗)
through a central controller, the global unconstrained problem
given by the Lagrangian in Eqn. (36) would be solved.

B. Decoupling the Global Problem

Due to the distributed nature of our problem, we need to de-
construct the global problem into smaller local problems that
are solvable by each camera. The Fisher Information given in
Eqn. (29) can be decomposed as:

Jj+ =

[
Jj− + Hj>

−i

(
Cj−i

)−1

Hj
−i

]
+ Hj>

i

(
Cji
)−1

Hj
i .

While Ci is optimizing its parameters ai, the contribution from
prior information and all other cameras (term in brackets)
is considered by Ci to be constant and known. The term[

Hj>

−i

(
Cj−i

)−1

Hj
−i

]
is computed from a−i which will be

available through the distributed optimization process dis-
cussed in Section. VIII-C.

In our problem formulation, we allow camera Ci to op-
timize only its own camera parameter settings ai. Using this
system restriction, we define the local Bayesian imaging value
function,

VIi(ai) =

∫
FoVi

NT (t)∑
j=1

(
wji (t) r

j
i (ai) α

j
i (ai) ppj

(z)
)
dz.

(37)
Define VTi

(ai) = VT (ai : a−i) as the local constraint
function for Ci. This notation concisely indicates that Ci can
only alter ai where for its purpose, a−i is fixed. Of course, in
general VT (ai : a−i) = VT (a), so that all cameras are trying
to jointly satisfy the constraints. Thus the tracking constraint
for camera Ci is

VTi
(ai) � T̄. (38)

Note that,

VTi(ai) � T̄ ⇒ Vj
Ti

(ai) � T̄j for j = 1, . . . , NT (t).

Thus from Eqns. (29-31), we can write:

E
〈

diag
(
Jji

)〉
� T̄− E

〈
diag

(
Jj− + Jj−i

)〉
, (39)

where Jji = Hj>

i

(
Cji
)−1

Hj
i and Jj−i = Hj>

−i

(
Cj−i

)−1

Hj
−i.

Targets for which the right-hand side of Eqn. (39) is negative

can be removed from the set of tracking constraints for camera
Ci.

From Eqns. (37) and (38), the local imaging value maxi-
mization problem can be written as:

maximize VIi
(
ai : gpj−,Pj−

pp

)
(40)

subject to VTi

(
ai : gpj−,Pj−

pp

)
� T̄.

The local Lagrangian Li(λi; ai) is:

Li (λi; ai) = VIi(ai) + λ>i
[
VTi

(ai)− T̄
]
. (41)

Thus, for camera Ci to find its local optimal primal-dual
pair of solutions (a∗i ,λ

∗
i ), Ci will maximize the local uncon-

strained Lagrangian given in Eqn. (41). It is important to note
that since we assume that all cameras in the network optimize
synchronously and simultaneously, the subscript i on λi in
Eqn. (41) indicates that the Lagrange multiplier picked by
camera Ci to solve the problem is a local variable and may
not be globally the same throughout the network. In order to
overcome this predicament, cameras in the network employ a
variant of the algorithm described in [10]. This results in a
consensus-step after each optimization-step5. The algorithm is
explained in detail in Section VIII-C.

C. Lagrangian as an Ordinal Potential Function

For the problem stated in Eqn. (35), define the global
objective of the multi-camera network to be the sum over the
local objectives defined in Eqn. (37):

VI(a) =

NC∑
i=1

VIi(ai). (42)

From Eqns. (34) and (38):

VT (a)− T̄ � 0

⇒
NC∑
i=1

[
VT (a)− T̄

]
� 0

⇒
NC∑
i=1

[
VTi

(ai)− T̄
]
� 0. (43)

Thus the global Lagrangian in Eqn. (36) is an ordinal potential
function, i.e.

L(λ; a) =

NC∑
i=1

Li(λ̃; ai : a−i). (44)

where
⋃NC

i=1 ai = a and a−i
⋂

ai = ∅. Hence, as explained
in Sections V-B and V-C, Eqns. (36), (41) and (44) form an
ordinal potential game.

5Every optimization and consensus step may contain multiple iterations.
In fact, they may proceed simultaneously.
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VIII. DISTRIBUTED LAGRANGIAN CONSENSUS

In this section we describe a modified version of the
Distributed Lagrangian Primal-Dual Subgradient Algorithm
proposed in [10] which is used to perform average consensus
on the local versions of Lagrange multiplier vectors.

In [10], the authors consider a convex optimization problem
over a multi-agent network. The goal for the approach in [10]
is for all agents to asymptotically converge to an optimal
primal-dual pair under certain assumptions on network con-
nectivity and communication. Therein, every agent maintains
estimates of the primal-dual optimal pairs computed by all
agents in the network. Each agent performs dynamic average
consensus on the locally maintained estimates and the opti-
mal pairs broadcast by the agent’s neighbors. Consensus is
performed to asymptotically converge on an optimal pair by
using an update law proposed in [19].

A. Connectivity, Communication, and Consensus

To utilize the convergence properties of the algorithm de-
scribed in [10], we make the following assumptions on the
camera communication graph.

Assumption 1: (Connectivity) The camera communication
graph is undirected, and connected, i.e. there exists at least
one communication path from each agent to every other agent
in the network.

Assumption 2: (Weights rule) There exists a scalar β > 0
such that for Cn ∈ Ni, ωii(κ) ≥ β and ωin(κ) ∈ [β, 1].
If cameras Ci and Cn are devoid of a communication link
between them, then ωin(κ) = 0.

Remark 2: Camera Ci is only allowed to optimize ai.
Thus, instead of performing dynamic average consensus on
the optimal primal-dual solution pair, each camera need only
perform dynamic average consensus on λ∗i and the set of
Lagrange multiplier vectors {λ∗n} for Cn ∈ Ni.

Remark 3: Define Bi = Ci
⋃
Ni, from Assumptions 1 and

2, it holds that
∑
l∈Bi

ωil(κ) = 1 and
∑
i∈Bi

ωil(κ) = 1.
This fact along with assumption 2 ensures that all cameras
are influential [19] when cameras perform consensus on the
Lagrange multiplier vectors.

B. Lagrange Multiplier Update Law

Since camera Ci receives the set of Lagrange multiplier
vectors {λ∗n} for Cn ∈ Ni, camera Ci computes a convex
combination of λ∗i and {λ∗n} as follows:

νλi(κ) =
∑
l∈Bi

ωil(κ) λl(κ), (45)

where the non-negative vector νλi ∈ <mNT (t) with m =
dim(gpj). Let Dλi = ∇λiLi(λi(κ); a∗i ) be the gradient of
the local Lagrangian with respect to λi. Considering that
assumptions 1 and 2 hold, camera Ci performs a Lagrange
multiplier update using the following update law:

λi(κ+ 1) = ΘMi

[
νλi

(κ) + s(κ) D>λi
(κ)
]
, (46)

where Dλi
∈ <mNT (t), and the scalar s(κ) > 0 is the step-

size. The matrix ΘMi ∈ <mNT (t)×mNT (t) is an alternating

projection operator [20]. The projection operator is used to
project the Lagrange multiplier vector into the set Mi which
contains all the dual optimal solutions for Ci. It is shown in
[10], [19] that for all nodes,

lim
κ→∞

‖λc − λi(κ)‖ = 0. (47)

The convexity of Mi and convergence properties of ΘMi
are

described in Appendix A and [19].

C. Optimization

Since the optimization problem described by Eqn. (40) is
non-convex, any solution found may only be locally optimal.
The distributed optimization process can be broken down into
three separate steps:

1) Camera Parameter Optimization: Camera Ci selects
(ai,λi) to maximize Li (λi; ai) while holding a−i con-
stant. It then communicates the newly computed local
primal-dual pair (a∗i ,λ

∗
i ) and a−i to its set of neighbors

denoted by Ni. Parameter broadcast rule is described in
Section VIII-D.

2) Camera Parameter Replacement: If camera Cn ∈ Ni,
then Cn receives (a∗i ,λ

∗
i ,a−i) and replaces its previous

value of (ai,a−i) with (a∗i ,a−i). Similarly, camera Ci
receives (a∗n,λ

∗
n,a−n) and performs the replacement

step on (an,a−n). The rules of replacement are de-
scribed in Section VIII-D.

3) Consensus on Lagrange Multipliers: Using the La-
grange multiplier update law in Eqn. (46), Cn performs
dynamic average consensus on its local Lagrange mul-
tiplier vector λ∗n and the Lagrange multiplier vectors
received from cameras in Nn to converge toward the
consensus Lagrange multiplier vector λc.

This distributed optimization process is then repeated.

D. Camera Parameter Replacement Rule

After Ci computes a∗i , let ai ∈ <3NC be camera Ci’s
version of the camera parameter vector a, such that ai =[
ai1, · · · ,a∗i , · · · ,aiNC

]>
. Camera Ci broadcasts a∗i to its

neighbors in Ni along with the new parameters ail ∈ <3 that it
received this iteration. New parameters are defined as follows.
The camera parameter vector ail of camera Cl available at
camera Ci as a sub-vector6 of ai was received at a known time-
stamp κil . When a neighbor Cn ∈ Ni communicates a camera
parameter vector anl , time-stamped as valid at κnl , camera Ci
uses the following rule for replacement:

ail =

{
ail
(
κil
)

if κil ≥ κnl
anl (κnl ) otherwise. (48)

Eqn. (48) results in a local replacement of only those camera
parameters that are not as recent as the parameters received
from the set of neighbors.

After replacement, Ci updates the local time-stamps, com-
putes λc, and repeats the local optimization process at iteration

6Note that Cl may or may not be in the set Ni as ai
l could have

propagated through the network to Ci over time.
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step κo. It then broadcasts a∗i (κo), λ∗i (κo), and only the most
recently updated camera parameter sub-vectors from a−i.

Thus, by using the replacement step in Eqn. (48), and
the Lagrange multiplier update law from Eqn. (46), at each
consensus iteration7 κ, every camera maintains an estimate of
the primal-dual pairs of all cameras, which are the saddle-
points of the local Lagrangians.

E. Certificate for Optimality

For each unconstrained maximization problem given by
Eqn. (41), the KKT conditions [14] are:

∇VIi(a∗i :) + [∇VTi
(a∗i )]

>
λ∗i = 0, (49)

VTi
(a∗i )− T̄ � 0, (50)

λ∗i � 0, (51)
λ∗>i

[
VTi

(a∗i )− T̄
]

= 0, (52)

where, for the optimization problem in Eqn. (40), the optimal
primal-dual pair (a∗i ,λ

∗
i ) must satisfy the KKT conditions

given by Eqns. (49 - 52).
It must be noted that all cameras optimize in parallel and

broadcast a∗i , a−i and λ∗i to their neighbors which propagate
them through the network. While any camera is locally opti-
mizing its settings, it is accounting for the prior information,
an updated λc, and the currently best settings of all the other
cameras.

For the solution approach described in [8], optimization
stops when either an optimum is achieved, a user-defined
heuristic as a stopping condition is met, or as shown in
Fig 2, the time interval t ∈ [tδ, tε] allotted for optimization
elapses. In case the system fails in achieving the optimum,
there is no guarantee of the solution computed being feasible.
Whereas, the KKT conditions described in Eqns. (49 - 52)
provide a certificate on optimality of the solution. A non-
heuristic stopping condition on optimality is provided by the
Lagrangian Li at the primal-dual optimal pair (a∗i ,λ

∗
i ) as

∇Li (λ∗i ; a
∗
i ) = 0. Thus, when the time interval t ∈ [tδ, tε]

allotted for optimization elapses, even if the solution is sub-
optimal, the solution obtained is guaranteed to be feasible.
This results in all targets being tracked to the specified
tracking accuracy at all times, while procuring high-resolution
imagery when opportunity arises. After optimization, cameras
reconfigure themselves in the time interval t ∈ [tε, tk+1], in
readiness for upcoming images at tk+1.

IX. IMPLEMENTATION

This section describes an implementation of the proce-
dure proposed in this article, implemented in a simulation
in Matlab. The goal of the simulation is to show that a
distributed network of cameras obtains opportunistic high-
resolution facial imagery of targets in the area, while tracking
all targets at all times to a specified tracking accuracy.

7Note that at the first update iteration, all cameras use the optimum
primal-dual pair (a∗,λc).

A. Scenario and Setup
As shown in Fig. 4, we set up an area of 400 m2 being

monitored by NC = 3 calibrated cameras with the following
position vectors in meters:

C1 = [10, 0, 4]>, C2 = [0, 10, 4]>, C3 = [20, 10, 4]>.

The FoVs of each individual camera are color-coordinated
with its colored position marker. To emulate a real-life setup,
it is imperative that the entrance of the area be constantly
monitored. This is done by treating it as a stationary target with
an initial covariance that considers the width of the entrance.
This is done so that the camera network detects and has an
accurate initial state estimate for targets entering the area.
While there is tracking value to be gained by imaging the
entrance, the imaging value gained is always zero.

B. Experiment Details

The simulation was run for T = 30 seconds, with target
state propagating through time. Targets enter the area from the
entrance at random times. Thus the total number of targets in
the area is time variant. To make results concise and under-
standable, the maximum number of targets permissible in the
area was limited to NT = 6 targets, where 0 ≤ NT (t) ≤ NT .
After entering the area, each target was able to travel on a
random trajectory.

1) Optimization: All cameras optimize contemporaneously.
The network of cameras were required to satisfy the tracking
constraint in Eqn. (38), where T̄ = 1m−2. Camera Ci receives
camera parameters a∗−i from its neighbors, and uses its cur-
rent parameters ai to compute Eqn. (29) and then computes
(a∗i ,λ∗i ) through maximization of Eqn. (41). The optimum a∗i
is bounded by permissible camera specifications8 ai and ai
The specifications ai and ai are the lower and upper bounds
for possible values of ai respectively. We use an interior-point
method [21] to perform optimization.

C. Results

Each target enters the area at a random time-instant that is
unknown to any of the cameras in the network. While in the
area, targets adopt the motion model in Eqn. (14). On hitting
any wall of the area, the target bounces and stays within the
area.

For this run of the simulation, targets T 1 to T 6 entered the
area at times 1, 3.53, 4.25, 4.86, 5.09, and 8.61, respectively.
As each T j enters, a camera monitoring the entrance detects
and images it at imaging time. By the time the simulation
ends, all targets were active in the room and approaching the
exit.

1) Bayesian Imaging and Tracking Performance: Cameras
try to maximize their local Lagrangians9 Li(λc; a

∗
i ) by satis-

fying the tracking spec and maximizing the local Bayesian
imaging values. Fig. 3a shows that the planned Bayesian

8These specifications do not adhere to any specific camera configuration
and have been chosen for the sake of implementation.

9Note that λc is obtained from {λ∗i ,λ∗−i} using the algorithm described
in Section VIII.
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Fig. 3. Bayesian Tracking and Imaging Values: Fig. a (top) shows that the
camera network successfully and co-operatively satisfies the tracking threshold
T̄ on every target, at all times. This results in feasible optimum solutions .
Fig. b (second from top) shows the achieved tracking value by the network.
Random motion of targets may result in this value not satisfying the spec. In
Fig. c (second from bottom), a high resolution facial image capture by camera
Ci is indicated by a spike for the local Bayesian Imaging Value function
VIi (ai). The plot also shows the global Bayesian Imaging Value VI(a) as
a sum of the local values. Cameras obtain high-res facial shots of targets at
various times of opportunity. Fig. d (bottom) shows the local optimization
iterations of the cameras at time-instant t9. Within the time allotted for
cameras to optimize, cameras achieve a local optimum and broadcast their
PTZ parameters to update their local estimates of (a,λ). Local optimization
resumes after solutions are updated, and the process repeats.

tracking value V jT (a∗) maintained by the network of cameras
on every target in the area is always greater than the tracking
spec, at all times. Also, from Fig. 3a, it is clear that all primal-
dual (a∗i ,λ

∗
i ) solutions obtained through local optimization

are within the feasible set. From Eqn. (52), it is thus trivial
to prove that the Lagrange multiplier vectors λ∗i (t) for all
cameras are 0 ∈ <2NT .

The network cooperatively maintains track on targets, by
predicting their motion based on a-priori information. But
an unexpected maneuver by a target, can lead to a drop
in accuracy. Fig. 3b shows the tracking value achieved by
the network by tracking every target. A compromise on the
achieved tracking value may occur on account of the random
motion of targets. Such an occurrence can be seen in the case
of tracking target T 2 at time-step t6.

Fig. 3c shows cameras procuring opportunistic high reso-
lution facial images of targets, when tracking constraints on
all targets are satisfied. A high value for VIi (a∗i ) indicates
a high resolution facial capture by camera Ci. For the initial
portion of the displayed run of the simulation, target dynamics
dictated that cameras C2 and C3 were more suited for high-res
facial capture. Camera C1 obtains a high-res facial image at
time-step t18.

For this simulation, the local dynamic imaging weight wji (t)
on camera Ci imaging target T j is defined as a continuously

Fig. 4. Top-view of Opportunistic High-res Facial Image Capture: The
figure is a plot of the optimized FoVs of the cameras after a feasible optimal
solution is achieved at time-instant t9. Cameras start with a wide FoV before
optimization begins. As shown in Fig. 3, camera C2 obtains high imaging
values while all cameras cooperatively satisfy the tracking constraint.

differentiable and bounded function:

wji (t) =
(

1 + exp
[
l1

[
V̄ − exp

[
l2
[
d̄j − dje(t)

]]
V jIi(t)

]])−1

,

(53)
where V̄ = max(V jIi(1), · · · , V jIi(t − 1)), d̄j is the known
distance between the area exit and T j’s position of entrance,
and dje(t) is the distance between the area exit and T j’s
position at time t. Such a choice of wji (t), for large l1 and
l2, ensures that the maximization of wji (t) for imaging target
T j is only factored in if the imaging value V jIi(t) obtained by
Ci exceeds the previous best imaging value specified by V̄ or
if the target is approaching the exit. This is done to prioritize
imaging of other targets in the area if a better image of T j has
previously been captured by any camera, and also to provide
a higher weight on imaging T j if it is approaching the exit
and has not yet been captured with sufficient quality.

Fig. 3d is an illustration of the sub-process that all cameras
perform to provide co-operative solutions at time-instant t9. As
shown in the figure, all cameras reach a local optimum before
broadcasting their primal-dual solutions, updating their local
estimates of (a,λ) and resuming the optimization process.
This process repeats till an optimum is reached or time for
optimization comes to an end.

Remark 4: Cameras may or may not require an equal num-
ber of iterations to reach an optimum. Cameras were assigned
a maximum of 20 PTZ broadcast10 instances. Note that due
to the cooperative nature of the solution, after broadcast of
ai, there may or may not be an increase in the local Imaging
Value.

Fig. 5 shows that the network of PTZ cameras obtain at
least one high resolution facial capture of every target in

10Cameras complete camera parameter optimization before the broadcast
instant while performing parameter replacement and Lagrange multiplier
consensus after broadcast.
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Fig. 5. Opportunistic High-res Facial Image Capture: The figure shows that
the camera network obtains at least one high-res facial image of every target in
the area, at opportunistic times. A high resolution facial image capture of T j

is indicated by a spike for the global Bayesian Imaging Value function VI(a).
The times of opportunity are dictated by the value to be gained by imaging
T j and by the cooperative behavior of the cameras to satisfy the tracking
spec. Take the case of target T 1 for example. After T 1 enters the area at
time t1, as shown in Fig. 3c, camera C1 images it to satisfy the tracking
constraints. As T 1 moves through the room, at various times, cameras have
opportunities to image it.

the area. The local dynamic imaging weight in Eqn. (53)
ensures that the capture of a high-res facial image occurs
if the opportunity for an image of higher quality than the
previous capture becomes available. Eqn. (53) also ensures
high imaging weights to targets approaching the exit. A
camera’s action of zooming in to take the image is countered
by random entrances of other targets. As other targets enter
the area, cameras are compelled to image the incoming targets.
This restricts the number of chances cameras get to zoom in
and image targets.

At the end of the simulation, it can be concluded that all
targets were always tracked to an accuracy better than T̄, and
when an opportunity arose (constraint was satisfied and facial
imagery was possible), the network responded cooperatively
with high resolution facial images of targets based on target
dynamics.

X. CONCLUSION AND FUTURE WORK

In this article, we propose a method for a network of
distributed cameras to opportunistically obtain high-resolution
images, while always tracking all targets at all times. Dis-
tributed Constrained Optimization to image and track targets
within a Bayesian framework is presented. This guarantees a
feasible solution for targets maneuvering with random trajec-
tories, even if the solution obtained is sub-optimal. Moreover,
a Lagrangian consensus algorithm based on a primal-dual
optimization method is proposed to perform distributed, co-
operative and contemporaneous optimization across all cam-
eras in the network.

The global optimization problem is formulated as a po-
tential game with the global objective decoupled as smaller
local problems with tracking constraints on all targets. This
formulation enables using existing convergence proofs avail-
able in game-theory, thus making this framework resourceful.
Depending on the target’s position, orientation and direction of
motion, an image resolution and relative pose quality factor
describing the quality of image captured by the cameras is
included in the Bayesian imaging value function. A dynamic
weighting scheme for targets is utilized, since the importance
of a target reduces drastically once its high resolution image
has been captured by the network, unless a better aspect angle
and facial resolution for capture can be obtained.

Designing a value function that considers a planning horizon
for the dynamic panning, tilting and zooming of cameras to
enforce continuity of optimum parameters versus time, is crit-
ical to minimize mechanical wear of the camera and provide a
smooth video feed. Dynamic-programming or receding hori-
zon control based approaches are worth investigating. Value
functions based on target activity is another intriguing facet
that can be explored, along with exploration of other image
quality-oriented functions. Implementation of the proposed
approach on a Camera Network test-bed is in process.

APPENDIX

A. Convexity of the Dual Optimal Set

The projection operator ΘMi
of Section VIII-B requires a

compact set Mi. In this section we follow the approach of
[10] to compute such a compact set Mi containing all the
dual-optimal solutions. Corresponding to the notations of [10],
we rewrite the global imaging value maximization problem
in Eqn. (35) as a global cost minimization problem in the
following manner:

minimize f(a) (54)
subject to g(a) � 0,

where the global objective f : <n → < is defined as f(a) =
−VI(a) and the vector of constraints g : <n → <2NT is
defined as g(a) = T̄−VT (a). As mentioned in Section V-B,
a ∈ S and ai ∈ Si, where S = S1 × . . . × SNC

is the
collection of all possible camera parameter settings, and Si
is the collection of all possible camera parameter settings for
camera Ci.

The dual of the optimization problem in Eqn. (54) is

maximize q(λ) (55)
subject to λ � 0,

where q(λ) = infa∈S{f(a) + λ>g(a)} : <2NT

�0 → < is the
dual function of f(a).

Let a∗ be the optimal value of the global minimization
problem given in Eqn. (54) and a∗ = [a∗1, . . . ,a

∗
NC

]>. Let
f∗ = f(a∗) and q∗ = q(λ∗) be the function values at the
global primal optimal point a∗ and the dual optimal point λ∗,
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respectively. From the property of weak duality f∗ ≥ q∗. This
implies that ∀(a,λ) ∈ S ×<2NT

�0 ,

f(a) ≥ q(λ). (56)

From Eqns. (42) and (43), we can write the global objective
as:

f(a) =

NC∑
i=1

fi(ai), (57)

and the global constraints as:

g(a) =

NC∑
i=1

gi(ai : a−i), (58)

where the functions fi : <ni → < and gi : <ni → <2NT are
defined as fi(ai) = −VIi(ai) and gi(ai : a−i) = T̄−VTi

(ai).
The local cost minimization problem is

minimize fi(ai) (59)
subject to gi(ai : a−i) � 0.

The dual of local optimization problem in Eqn. (59) is

maximize qi(λ) (60)
subject to λ � 0,

where qi(λ) = infai∈Si
{fi(ai) + λ>gi(ai : a−i)} : <2NT

�0 →
< is the dual function of fi(ai).

Let f∗i = fi(a
∗
i ) and q∗i = qi(λ

∗) be the function values at
the local primal optimal point a∗i and the dual optimal point
λ∗, respectively. From the property of weak duality f∗i ≥ q∗i .
This implies that ∀(ai,λ) ∈ Si ×<2NT

�0 ,

fi(ai) ≥ qi(λ). (61)

It should be noted that for all λ � 0,

q (λ) = inf
a∈A

{
NC∑
i=1

(
fi(ai) + λ>gi(ai : a−i)

)}

≥
NC∑
i=1

inf
ai∈Ai

{
fi(ai) + λ>gi(ai : a−i)

}
q (λ) ≥

NC∑
i=1

qi(λ). (62)

Thus, from Eqns. (56), (57) and (62), we can write
NC∑
i=1

fi(ai) ≥ q(λ) ≥
NC∑
i=1

qi(λ). (63)

Assume that there exists a vector ā ∈ <n such that g(ā) ≺
0, i.e. Slater’s condition is satisfied. Then, ∀λ̄ � 0, define the
non-empty set

Qλ̄ = {λ � 0 | q (λ) ≥ q
(
λ̄
)
}. (64)

Lemma 1 in [19] guarantees that the set Qλ̄ is bounded as:

max
λ∈Qλ̄

‖ λ ‖ ≤ 1

ξ(ā)

(
f (ā)− q

(
λ̄
))
, (65)

where ξ(ā) = min1≤l≤2NT
{−gl(ā)}, and gl is the l-th

element of g ∈ <2NT . Define the set of dual optimal points
Q∗ as:

Q∗ = {λ � 0 | q(λ) ≥ q∗}. (66)

Note that Q∗ ⊆ Qλ̄. Hence, from Eqn. (65)

max
λ∗∈Q∗

‖ λ∗ ‖ ≤ max
λ∈Qλ̄

‖ λ ‖ ≤ 1

ξ(ā)
(f (ā)− q∗) . (67)

We need to show that the set of dual optimal points Q∗ is
contained by a non-empty, convex, and compact set. For this
purpose, we define the function ri : S ×<2NT

�0 7→ < as11:

ri(ai;λ : a−i) =
1

ξi(ai : a−i)

NC∑
i=1

(fi (ai)− qi (λ)) . (68)

In Eqn. (68), the scalar ξi(āi : ā−i) = ξ(ā) is given as:

ξi(āi : ā−i) = min
1≤l≤2NT

{
−

NC∑
m=1

glm(ām : ā−m)

}
, (69)

where glm is the l-th element of gm ∈ <2NT .
For the Slater vector ā, we can write ξ(ā) = ξi(āi : ā−i) >

0. This, along with Eqn. (61), implies that ∀λ � 0, the
function ri(āi;λ : ā−i) ≥ 0. Thus, by picking any λ̂ � 0 and
a positive scalar θi, we can define the following non-empty,
convex, and compact set:

Mi(āi, λ̂ : ā−i) = {λ � 0 |‖ λ ‖≤ ri(āi;λ : ā−i) + θi} .
(70)

From Eqns. (62) and (67), we can write:

max
λ∗∈Q∗

‖ λ∗ ‖ ≤ 1

ξ(ā)

(
f(ā)− q(λ̂)

)
≤ 1

ξi(āi : ā−i)

NC∑
i=1

(
fi(āi)− qi(λ̂)

)
= ri

(
āi; λ̂ : ā−i

)
. (71)

Thus the dual optimal set Q∗ ⊆ Mi(āi, λ̂ : ā−i) for every
camera in the network.

Based on the imaging value function properties and function
definition discussed in Section VII-A, the global objective
function f(a) and the local objective function fi(ai) are
continuous and locally convex. The global dual q(λ) of the
global objective function f(a), and the local dual qi(λ) of
the local objective function fi(ai) are also continuous and
locally convex. From Eqns. (68) and (69), the function ri
is also continuous, and locally convex. Hence the set Mi

is non-empty, locally convex, and locally compact. Thus an
alternating projection operator ΘMi can be used to project
the computed dual points into a locally compact set Mi. A
method to compute Mi(āi, λ̂ : ā−i) is proposed in [10].

11Note that ri is a function of a ∈ S, where S = S1 × . . .× SNC
, and

λ � 0. Since in our distributed approach, camera Ci can only alter ai, we
can write ri as a function of ai and λ given a−i.
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