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Mapping Individual Variationsin L earning Capacity

Eduardo Mercado I 11
University at Buffalo, The State University of NeVork, U.S.A.

Individual differences in learning capacity are derit in humans and most other animals.
Traditionally, such differences are described imgeof variations along a relatively small numbgér o
psychological dimensions corresponding to behalitraits. Here, an alternative approach is
considered in which individual differences in ldagcapacity are characterized by spatially sorting
behavioral patterns. To illustrate this approachwa-dimensional self-organizing feature map was
used to analyze patterns in the performances aétimnd cortically-lesioned rats engaged in mutipl
learning tasks. After training, the spatial struetwf the map revealed systematic variations in
learning across rats that were related to the degirérain damage. Individual nodes within the map
described prototypical performance profiles thatesponded closely to patterns of learning seen in
individual rats, including individuals with idiosgratic profiles. Techniques that automatically
identify modal patterns of performance during l&agrmmay provide new insights into the processes
that determine what an individual organism canriear

What do intelligence, strength, dexterity, charisncanstitution, and
wisdom have in common? They are all descriptorscludiracteristics that an
organism may possess that are predictive of thés fdat the organism can
achieve. A strong animal can move objects a weakinal cannot. A wise human
can understand complex situations in ways thatualess person would never
grasp. These descriptors also all share the psopéxtarying along a quantifiable
continuum. An individual’s strength can be measureterms of the number of
kilograms they can lift; her charisma can be ediahébased on the number of
friends she has. This intuitive framework for désiag individual differences is
aptly captured by the role-playing game Dungeon®m@agons. In this game, a
player’'s capacities are defined in terms of specifimbers associated with each of
the six descriptors noted above; a player's “tegibres” shape the outcome of
almost every important event in the game. Similarythe real world quantitative
assessments of aptitude or personality can determiho gets to attend the top
universities and which individuals are identifiesl @ perfect match by a dating
website. But, do such descriptors really correspmngroperties of individuals?
Or, are they just a useful way of summarizing a ektsalient behavioral
observations? Might there be ways to preciselgmilgs individual variations that
do not rely so heavily on intuitive notions abotk tqualities that define an
individual, and that more closely relate to the h@tisms underlying those
variations?

The goal of the current paper is to develop anaagugr for characterizing
individual differences that depends less on ratamgindividual's abilities (or
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proclivities) relative to conspecifics, and thatoms using existing verbal
descriptors to classify and evaluate such diffeeendhis approach is applied to
the analysis of individual variations in learningpacity, a property that varies
within and across individuals of many different gps. The following sections
review: (1) current hypotheses about the mechanignerlying variations in
learning capacity within and across humans andrahamals; (2) methods for
characterizing individual differences in learnirgpacity and intellectual ability in
terms of behavioral traits; and (3) methods tharatterize these variations in
terms of behavioral patterns. An alternative statéor analyzing individual
variations in learning capacity is then presentdds strategy avoids some
limitations of past approaches. The tentative amioh reached is that traditional
trait-based approaches are not well suited for tfyarg variations in learning
capacity. The complex and dynamic nature of legrmiarrants the development
of more flexible tools for exploring why some iniiuals are more successful
learners than others.

The Nature and Origins of L ear ning Capacity

The termdearning capacity andlearning potential are used here to mean
the ability to change one’s abilities or knowledheough experience. It is simply
meant to convey that organisms are able to leamething enables them to do so,
and this something (which is actually a multitudé things) varies across
individuals. Estes (1970) used the terms to reder‘any source of individual
differences, determined either genetically or bynsocombination of genetic
factors and developmental processes which are émdimt of previous learning”
(p- 30). He also noted, however, that “except @eshn infancy, a great part of the
variance in rates of learning between individualstibe attributable to differences
in the results of past learning” (p. 31). In fatiany experiences may impact an
individual’s learning capacity, including prenatekperiences (e.g., Lemaire,
Koehl, Le Moal, & Abrous, 2000). Estes’s requiremntrat sources of individual
differences in learning capacity must be “expermeimtdependent” might easily
exclude many basic mechanisms thought to contribmteariations in learning
abilities (e.g., sensory abilities and neural jtity). Here, the term learning
capacity is used to refer to sources of individakifferences in learning
mechanisms determined by some combination of geleeglopmental processes,
and experience.

Learning capacity has received less scientificnéitte than psychological
dimensions such as intelligence, personality, @gi; and cognitive abilities.
Some psychometricians have suggested that vamsationlearning ability are
intimately linked to individual differences in itligence (Duncanson, 1964;
Jensen, 1989). The relationship between intelligeacd learning capacity has
been notoriously difficult to pin down, however @&, 1967, 1989; Hundal &
Horn, 1977; Lohman, 1999; Woodrow, 1946). Mercad00g8, 2009) suggested
that variations in intellectual capacity partly leet how well individuals
distinguish events, which is known to be learniegehdent. From this



perspective, measures of intelligence are indieativan individual's capacity to
learn cognitive skills, and variations in learnicepacity contribute to (but are not
equivalent to) variations in intellectual abilitieBecause so few studies directly
examine individual variations in learning capacityich of the discussion below
focuses on variations in measures of intelligeficis. important to keep in mind,
however, that intelligence tests usually measuréopeance rather than learning
capacity.

A talent for learning

Current evolutionary models of individual variatibaavily emphasize the
genetic origins of abilities, assigning only a minmle to learning or other
experiences (Bolnick et al., 2003; Hayes & Jenkit@97). Researchers have
debated the relative contributions of genes (orediey) and experience to
individual differences in mental abilities for wadlser a hundred years (Chabris,
2007; Fuller & Thompson, 1978; Galton, 1883; Gray i8&ompson, 2004; Plomin,
2001; Plomin & Spinath, 2002). As illustrated bye tquote from Estes (1970)
above, learning capacity has often been portraygda agenetic endowment
analogous to growth potential (see also Hull, 19&glton (1883) was one of the
first to seriously explore the idea that intelledtabilities were traits that could be
inherited. He tested this hypothesis and foundetational evidence consistent
with this idea. Later experimental studies confidntigat learning capacity could be
manipulated using artificial selection techniquesviewed by Dukas, 2004;
Wabhisten, 1978). The earliest work of this kindwhd that rats could be bred so
that subpopulations were faster or slower at legrmparticular kinds of mazes
(Heron, 1935; Tolman, 1924; Tryon, 1929, 1942). & aecent work with
genetically engineered flies and mice also shoved this possible to create
individuals that learn certain tasks faster or gothan the norm (Dubnau, Chiang,
& Tully, 2003; Skoulakis & Grammenoudi, 2006; Taagal., 1999; Waddell &
Quinn, 2001).

Within comparative psychology, adaptive specialoret for learning have
been discussed in relation to the evolution of @dependent strategies or abilities
(e.g., song learning) in a particular species (Bsll& Macphail, 2001; Dwyer &
Clayton, 2002; Macphail & Bolhuis, 2001; Shettlettrl998; Timberlake, 2001).
It is not immediately obvious how individual vai@ts in learning capacity might
relate to such specializations (see Bolnick, et 2003, for some possibilities).
However, biologists and educational psychologistgdasingly are emphasizing
that “trait-like” differences between individualarc strongly affect how those
individuals learn (Chen, Gully, Whiteman, & Kilceti, 2000; Chiappe &
MacDonald, 2005; Dugatkin & Alfieri, 2003; Sih & Be2008; Sih, Bell, Johnson,
& Ziemba, 2004).

Recent work on the evolution of neural mechanisridearning has
revealed subtle cross-species differences, as agelmany similarities, in the
processes that give rise to synaptic changes (Quyletaal., 2003; Dukas, 2004,
Matzel & Gandhi, 2000; Ryan & Grant, 2009; Wrightirschman, Rozen, &



Maynard, 1996). Variations in synaptic plasticitgchanisms across individuals
within a species are also known to impact learmi@gacity (Rankin, 2004). These
differences undoubtedly impact how organisms leBrrelutionary psychologists

(Kanazawa, 2004), and comparative neuroanatont&ki¢, 2009), have argued
for special adaptations in human brains that coefdranced learning abilities.
But, the evidence for unique enhancements in theahesubstrates of human
learning remains questionable (Borshoom & DolanQ&)0 Both natural and

artificial genetic variation can contribute to iwidiual differences in learning

capacity, but this does not preclude modulationamtrol of these mechanisms by
environmental variables, including learning expeces and neural activity
(Dukas, 2004).

Constructing learning mechanisms

As an organism’s brain develops, certain chainsveits are experienced
that trigger predictable outcomes in neural cisuitor example, when an infant is
born, novel excitation associated with respirataord the reception of light will
begin to change the way that neural circuits redpgonsuch events. Since these
events are typical of birth, the kinds of chandest twill occur are relatively
stereotyped across individuals. This basic procealed experience-expectant
plasticity (Fahrbach, Moore, Capaldi, Farris, & Rwon, 1998; Greenough,
Black, & Wallace, 1987), provides a loose accouhtwdy one might see
developmental progression in capacity occurringipredictable sequence, and
why a neglected infant might show reduced abiliiespared to an infant that is
engaged by its parents. Experience-expectant gilgsis associated with the
whittling down of neural connections to assimilaevironmental information
common to all members of a particular species;ie@ygxperiences can lead to
abnormal neural circuits. This process generategsrahechanges that can
dramatically impact learning processes, and thabine increasingly difficult to
reverse over time (Greenough et al., 1987).

Some developmental theorists have discussed gnidted changes in
learning capacity in terms of the experience-depehdestructuring of perceptual
and cognitive processes (Hebb, 1949; Quartz & Segkip 1997; Vygotsky,
1978). For example, the neural constructivist pegipe on cognitive
development suggests that an individual’'s brainuaeg the ability to represent
events through exposure to the environment (He®#49:1Quartz, 1999; Quartz &
Sejnowski, 1997, 2000). In this framework, what thdividual is able to learn
depends on which constructed representations aadable (Mercado, 2008).
Consequently, variations in an individual's leaginapacity are not simply a
consequence of genetically-specified differencesamputational power, but are
also a function of experience-dependent neural grofurthermore, changes in
the learning mechanisms of an individual follow oglncratic trajectories
throughout the lifespan (Baltes, Reuter-Lorenz, &sRr, 2006). Variations in
these trajectories are likely a major contributomidividual differences in learning
capacity and intelligence (Shaw et al., 2006; Tinel®90).



Expert learners

Learning capacity is a peculiar characteristic tmstder in terms of
genetic origins because learning could be viewed piocess that picks up where
evolution left off, serving to refine and customiae individual’'s behavior to
accommodate its particular circumstances. Someresers hold that no amount
of experience can overcome the boundaries on eatellset by genetic
predispositions (Jensen, 1998), whereas othersestgtat individuals who
achieve the highest levels of performance in aiqaar intellectual domain are
those that have the greatest quantity and qudlityaming and practice (Ericsson
& Lehmann, 1996). Hebb’s (1949) report that raisa@ by his children as pets
showed greater learning capacity than laboratoayeck rats, provided some
indication that experience was a critical componeitearning capacity. This
observation sparked a series of studies on theteftd enriched environments on
the learning abilities of rodents, many of whiclowed that non-specific learning
opportunities could amplify individual differenceslearning capacity (Cooper &
Zubek, 1958; Dukas, 2004; Nithianantharajah & Hanr#®06). Directed practice
and more active learning experiences lead to sintlenges. These kinds of
environmentally-driven changes in ability are ddsmt as experience-dependent
plasticity. Experience-dependent plasticity is agged with the formation of new
or stronger neural connections. Genetic codes rdateronly rough patterns of
neural connectivity (Udin & Grant, 1999); differaituse of networks determines
how these circuits are refined.

Environmental (including cultural) contributions twariability in
intellectual abilities have received increasingutibn (Baltes et al., 2006; Ceci &
Bruck, 1994; Flynn, 2007). For instance, recentkwon lifespan development
emphasizes reciprocal interactions between theals@rivironment and brain
development (termed biocultural co-constructivisiemd proposes that multiple
experience-driven neural plasticity mechanisms afgeon multiple time scales
(evolutionary, developmental, and situational) ébedmine an individual’s abilities
(Li, 2003). Many of these proposed plasticity methins likely also contribute to
learning capacity (Mercado, 2008).

State-dependent variations in learning capacity

The genetic, developmental, and environmental facttescribed above
directly impact an individual’'s learning capacityhere are also other more
indirect sources of variation in learning, howewarch as individual differences in
personality or temperament (Bell, Hankison, & Laskki, 2009; Gosling, 2001;
Reale, Reader, Sol, McDougall, & Dingemanse, 200f)ych of the research
examining links between temperament or personalitg learning capacity has
been conducted with non-humans (Coleman, Tully, &Mlan, 2005; Moreira,
Pulman, & Pottinger, 2004; Range, Bugnyar, Schlo&gl Kotrschal, 2006;
Toxopeus, Sterck, van Hooff, Spruijt, & Heeren, 20@avlov (1927) was one of
the first to note the impact of temperament on ahitearning. He reported



dramatic differences in conditioning between whatlescribed as sanguine versus
melancholic dogs. More recent work has noted smilifferences in learning
between bold versus cautious animals and betwesalés and males (Agar,
Drummond, Tiegs, & Gunson, 1954; Guillette, Redddunyd, & Sturdy, 2009;
Sneddon, 2003). Coping style theory suggests tbat proactive individuals have
advantages learning simple discrimination taskd, disadvantages when learning
other more complex tasks (Koolhaas et al., 1999z-Biomez et al., 2008). As
with maze learning, temperament differences witimbpopulations can be
increased through selective breeding (Groothuis &e@, 2005). Animals that
have been bred to be more or less bold differ amnlieg capacity (Dugatkin &
Alfieri, 2003).

Individual differences in temperament can be viewsdvariations in the
likelihood that certain motivational or emotionaates will occur. Dynamic
changes in such states within each individual alsour daily. These intra-
individual variations are known to impact learnicapacity. For example, certain
oscillatory states in the brain facilitate claskicanditioning in rabbits (Griffin,
Asaka, Darling, & Berry, 2004; Hoffmann & Berry, @®, Seager, Johnson,
Chabot, Asaka, & Berry, 2002). Similarly, gammailbstions in the human brain
are associated with better encoding and recallastiwsts (Sederberg et al., 2004).
Diurnal cycles of neural states also predict cagmiperformance (Mackenberg,
Broverman, Vogel, & Klaiber, 1974) and modulatertéag (Lyons, Green, &
Eskin, 2008). Collectively, these findings suggbsit learning capacity can vary
substantially within and across individuals as acfion of global variations in
brain state occurring over multiple time scales.

Ultimately, individual differences in learning cajitgt reflect differences
in neural states and dynamics that are stronglgrawhed by the structure and
function of circuits constructed through accumwag&periences. The progressive,
experience-dependent nature of brain circuit caottn suggests that learning
capacity may change considerably across the lifespad that changes may
progress differently depending on an individualjgedfic environmental and
physical conditions. In contrast, many past andemirapproaches to describing
individual differences presume that the psycholalgitmensions being measured
correspond to relatively stable, innate featureisdividuals.

Methodsfor Characterizing Variationsin L ear ning Capacity

Despite clear and evident data proving that genetic factors
and adjustments to stimulating situations are extremely
numerous and complex in determining behavior variations,
we psychologists, like people generally, find it difficult to
face theserealities. (Tryon, 1958, p. 478)

Current strategies for characterizing individuaifedtences generally do
not attempt to relate scales or metrics to the tyidg mechanisms that give rise
to these variations. The foundation for these agghres is instead human language



and intuitions about how well labels capture theease of the phenomena being
labeled. The hundreds of words present in eachuksgey that describe people
represent a synthetic, communicable understandindiosv individuals vary.
Although the existing lexicon provides a reasonaiéeting point for developing
simpler schemes for describing individual variatigxshton & Lee, 2005), this
intuitive approach leaves several critical questionanswered. Do lexically-based
psychometric approaches characterize how individaetually vary? Or, do they
simply reflect how humans communicate their congaltations of individuals?
Does the quantification of psychological attributeflect systematic, continuous
variation in some property of individuals? Or, decls scales correspond to the
likelihood that a particular label will be used describe a particular behavior?
Can words adequately describe variations in théitepsaof individuals, and if not,
what are the alternatives? The following subsestidiscuss past attempts at
characterizing individual differences in learningpacity and intelligence,
distinguishing efforts to identify variations inHmevioral traits from those seeking
to identify systematic patterns of individual diéaces in performance.

Locating individuals in trait space

The development of various assessment tests andesschy
psychometricians can be viewed as an attempt tctbgly identify individuals’
positions along one or more psychological dimersimrresponding to behavioral
traits (Anastasi, 1948; Carroll & Maxwell, 1979; io& Masunaga, 2006;
Lubinski, 2000). The value of a particular quaritifytest or metric depends on its
reliability and validity, which correspond roughly consistency across repetitions
and interpretability/utility respectively. An implt assumption of these criteria is
that an individual's position along a particulamension is relatively stable over
time. Otherwise, the measures would not be comsisieross repetitions (i.e.,
unreliable), and thus of little use. The psychatagidimensions that have been
studied most extensively are bounded by familiapemts (e.g, dullard to genius;
aloof to amiable), suggesting that the validitytleé metrics developed to measure
variations along these dimensions depend on thexisting lexicon. Relative to
simple labeling, however, the quantification of @sglogical dimensions
represents a major advance in the measuremerdiefdnal differences.

Standard approaches to quantifying individual défees in intellectual
capacity depend heavily on factor analysis andedlgechniques such as principal
components analysis. Factor analysis uses cooefatbetween performance
measures to identify simpler ways of accounting tfug relationships between
those measures. The factors correspond to axes widanensional subspace of
the space defined by the data (Wickens, 1995). Gdmc premise underlying
factor analytic approaches to describing individeiation is that there are semi-
independent, latent sources of variance acrossuresasf ability, and that these
sources can be effectively described in a loweredsional space than the one
defined by the original measures. Decreasing tmeexsionality of a data set
simplifies the quantification of individual diffemees and focuses attention on the
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largest systematic variations across individualgnddsions identified through
factor analysis that correspond to verbalizablelites (e.g., mathematical or
spatial abilities) are pragmatically the most ukeflihe main criterion for

successful descriptors derived through factor aigig that they explain the most
variation with the least dimensions. Dimensionst theeet this criterion are

considered to be the most relevant for understgnttie nature of individual

differences. Although the psychological dimensiaentified via factor analyses
do not necessarily correspond to behavioral trditsis often assumed that
something like traits map onto these dimensionkéAnan & Heggestad, 1997,
Horn & Masunaga, 2006).

Factor analysis provides a descriptive framewodt th principle allows
for the parameterization of the intellectual capaof any human in terms of a
small number of dimensions. This framework matctved with intuitive ideas
about individual differences in intellectual talerfe.g., the whiz kids in the class
will be better at most academic tasks, but somehaile a gift for words, whereas
others will be endowed with superior mathematidailitees). Opinions differ,
however, as to the relative importance and nat@imifterent factors, which has
resulted in different camps of researchers endgdifierent sets of dimensions as
being important for understanding intelligence @ser et al., 1996). When factor
analyses are applied to multiple measures of huntatiectual performance, one
factor called they factor is often found that links performance asrosiltiple test
measures. Thg factor is associated with general intelligenceriogt(e.g., 1Q),
has relatively high heritability (Gray & Thompsa2004; Plomin, 2001), and is
viewed by some as indicative of a unitary capacitderlying variations in
intellect (Jensen, 1998). Other researchers suduyasever, that there are multiple
dimensions of intellect that must be consideredassply to gain a complete
picture of individual variation in intelligence (8wvn & Thomson, 1925; Gardner,
1999; Sternberg, 1977; Thorndike, 1926).

General intelligence in rodents The factor analytic frameworks
developed to describe individual differences in hunntelligence have also been
used to measure variation in the learning abilideson-humans (Anastasi, Fuller,
Scott, & Schmitt, 1955; Banerjee et al., 2009; @pnl1933; Harrington, 1968,
1988; Herrmann, Hernandez-Lloreda, Call, Hare, &naseello, 2010; McCullock,
1935; Tomlin & Stone, 1934; Van Steenberg, 1938yl\Estudies with rats found
little evidence of general intelligence comparalite that seen in human
intelligence tests (Campbell, 1935; Commins, McNerfaStone, 1932; Livesey,
1970; Loevinger, 1938; Searle, 1949; Tomlin & Stod®34; Tryon, 1942;
Wabhlsten, 1978; Warren, 1961). For example, it ingsossible to predict which
rats would learn a discrimination task the fasbested on their performance in a
maze task (Rajalakshi & Jeeves, 1968; Tolman & HRetc1943; Tryon, 1942).
There are, however, consistent reports of indiiddéferences in learning
capacity within a particular domain (Anderson, 19@»mmins, et al., 1932;
Davids & Tolman, 1924; Liggett, 1925; Tryon, 193\Vhen the range of
performance was increased, for example by includinignals with brain lesions
(Crinella, 1993; Crinella & Yu, 1995; Locurto, 199Fhompson, Crinella, & Yu,
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1990; Yu, Thompson, Huestis, Bjelajac, & Crinell®89), or of different strains
(Harrington, 1988; Locurto & Scanlon, 1998), state factors associated with
general intelligence were found. Efforts to measndévidual differences in rodent
intelligence recently have resurged due in partht availability of genetically
modified individuals (mice) and new methods for ntiiying the neural and
genetic sources of variability in behavior (Anders@993, 1995, 2000; Brooks,
Pask, Jones, & Dunnett, 2005; Galsworthy, et #1052 Galsworthy, Paya-Cano,
Monleon, & Plomin, 2002; Grossman, et al., 2007lata Light, Grossman, Hale,
& Matzel, 2007; Kolata, Light, & Matzel, 2008; Ka&et al., 2004; Light, Kolata,
Hale, Grossman, & Matzel, 2008; Locurto, BenoitoWley, & Miele, 2006;
Locurto, Fortin, & Sullivan, 2003; Matzel, Grossméaight, Townsend, & Kolata,
2008; Matzel, et al., 2003). Although none of twisrk directly measures learning
capacity, differences in performance are often etated with individual
differences in learning capacity (Lashley, 1929 d@, Mercado, Gluck, &
Merzenich, 2005).

Researchers occasionally have interpreted resulis factor analyses of
non-human intelligence as evidence that the dinsessunderlying non-human
intellect differ qualitatively from those of nondmans (e.g., Herrmann et al.,
2010). It has even been suggested that there arecéenmon psychological
dimensions across species, because each specieevesped abilities that are
specialized to meet the needs of a specific eccdbgiiche (Shettleworth, 1998,
2009). Following this reasoning, one might prediat different sets of factors
would be needed to adequately describe individwiation in the learning
abilities of each species. Consistent with thisajdeifferent species of\plysia
show different learning abilities, as well as vadas in neural circuits that are
correlated with these differences in learning (Mesco, Duran, & Wright, 2003;
Wright et al., 1996). At the other extreme, Macplia®90) argues that there is no
clear evidence of any individual or species diffes in the intellectual abilities
of non-humans. Differences in testing conditionskenat difficult to assess
whether variation in the abilities of rodents oryasther non-human species is
comparable to what has been observed in humanexaonple, the tasks used to
measure rodent intelligence have been limited ¢sdhthat naive rats or mice can
learn in a few sessions (Hebb & Williams, 1946; wao, et al., 2006). This
situation differs greatly from standardized testiidiumans, which depends upon
numerous pre-existing cognitive skills (e.g., laage, problem solving, writing,
mathematical training, etc.). Additionally, testshumans have been extensively
developed specifically to reveal individual diffaoes in intellectual performance,
whereas those used to tests rodents were develtpeadinimize individual
differences. Recent factor analytic work comparindjvidual differences in the
cognitive capacities of chimpanzees and childres d&igempted to address this
issue by testing both species with similar tasksl am similar conditions
(Herrmann, et al., 2010). Interestingly, this stddifed to find evidence of an
overarchingg factor in either species, consistent with the ithed the presence or
absence of particular factors may depend on thimgesonditions (Banerjee et al.,
2009; Locurto et al., 2006).
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Dynamic testing Although studies of individual differences in inésitual
performance are much more common, there have mea studies that directly
measured individual differences in learning potntiThis approach, called
dynamic testing, involves repeated measures oftygbilften with feedback and
practice between testing sessions (Feuerstein, ,RBrgen, Kaniel, & Tzuriel,
1987; Grigorenko & Sternberg, 1998; Lidz, 1987;r8terg & Grigorenko, 2002).
The basic goal of these measures is to identifp@inidual’s rate of improvement,
and to use this as a measure of underlying capéedtyerstein et al., 1987), or of
an individual’'s zone of proximal development (Vygjot, 1978). In some cases,
results from tests of learning potential appeabe&ouncoupled from standard 1Q
measures (Hundal & Horn, 1977), but in others angfrcorrelation between
learning and intellectual performance is evidemhieetson, 1992). Dynamic tests
are more cumbersome than standard intelligences,temtd they are not
significantly better at predicting future perfornsanwhich may explain why they
are less popular. If the goal is simply to diffdiete individuals and predict what
they can do, then factors extracted from a stanitéetligence test are as useful as
those extracted from a dynamic test.

Despite their limitations, dynamic tests illustratee way in which factor
analyses can be used to quantitatively measurerelif€es in learning capacity.
The dynamic testing approach rejects the assumgtainindividual differences in
performance reflect stable differences in innatataleabilities. Instead, it assumes
that abilities are malleable and that changes iffopeance are indicators of
developing expertise resulting from practice (BBmws & Lehmann, 1996;
Sternberg & Grigorenko, 2002). Dynamic tests revadividual differences in
learning trajectories during the acquisition ofliskin multiple domains, link
intelligence to expertise, and focus on the poatfdr improvement rather than on
an individual’s intellectual talents.

Criticisms of the factor analytic approachn developmental research, the
factor analytic approach to characterizing indiabdwifferences is sometimes
referred to as the “variable approach” becausedtiges on single variables or
combinations of variables and their interrelatigBergman, Cairns, Nilsson, &
Nystedt, 2000; Cairns, Bergman, & Kagan, 1998). attequacy of factor analytic
models for describing individual variations in legsg capacity rests on several
basic assumptions: (1) individuals differ quaniitelty along psychological
dimensions; (2) individuals can be compared quatinély using such dimensions;
(3) relationships between dimensions are equivaleross individuals and
situations; (4) these relationships can be usednterstand how the variables
relate to an individual's performance; and (5) th&/chological meaning of
dimensions is independent of the individual’'s ager§boom, Mellenbergh, & van
Heerden, 2003; Magnusson, 1998). A major critigdettee factor analytic
approach is that the dynamic, complex features xrperence-dependent
development make it difficult to understand or jicethe impacts of any single
psychological dimension independent of the contexdividual’'s age, and other
dimensions (Mischel, 1973; Tryon, 1958). This que seems particularly
applicable in the case of characterizing learniagacity, which undoubtedly
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varies across the life span in complex ways (Hhlt$¢esselroade, & Plemons,
1976). Factor analyses are ill-suited for descghmdividual variations in ability

that are dynamic, experience-dependent, or idiosyicc More generally, any
metrics that presume a fixed, unidimensional lewrnpotential throughout the
lifespan can only provide a limited view of indivia variation, and one that
necessarily does not reflect the complexity of thechanisms that give rise to
these variations.

Identifying components of abilities

A few comparative and developmental researcherg lestioned the
usefulness of characterizing individual differenoegerms of their “least common
factors,” instead arguing that descriptions of widlial variation should reflect the
psychological complexity of the individual's penfoance (Bergman, 1998, 2000;
Magnusson, 1998; Tryon, 1940, 1958). They haveeaatdhat there is not a strict
divide between intellectual, emotional, motivatibrend physical contributors to
individual differences (see also Ackerman, 1996ather, these psychological
factors all impact an individual's abilities in @ustion-dependent manner (Ceci &
Bruck, 1994; Davison, Kuang, & Kim, 1999).

In comparative psychology, one of the strongedygaoponents of this
viewpoint was Tryon (1940, 1958). He argued that ftychological components
that contribute to individual differences in leargiof a particular task can only be
safely inferred from analyzing how animals perfamthat task. Tryon illustrated
this by analyzing the performance of ~1,000 ratthag learned to make their way
through a specific kind of maze (Tryon, 1940). dsacombination of statistical
analyses and his own behavioral observations, fesréa ten components that
contributed to a rat's performance in the maze.s&€heomponents correspond
more closely to frequent strategies, hypothesematinations than to the sorts of
dimensions or behavioral traits identified throdgbtor analysis. Tryon expanded
this approach into a general theory of individuatiation in which performance
reflects the engagement of a dynamic set of pspgicdl components In this
theory, the set of psychological components thaérddne performance is not
fixed, but varies with experience; not all compdseact at all times and some may
even compete for control. Furthermore, this thesssumes that the content, form,
and utility of these psychological components cleamgth experience. In this
framework, individual differences reflect constgbias of interacting components
rather than different levels of a universal fador set of factors) that acts in all
individuals to determine capacity.

Data from maze learning experiments can readilghmacterized using
factor analysis to create a smaller set of threedfiorthogonal dimensions that
predicts errors as well as Tryon's ten compone¥therry, 1941). The issue,

Thorndike (1926) and Brown and Thomson (1925) pseposimilar frameworks for
assessing intellectual abilities in human
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however, is not how efficiently the data set candescribed, but whether these
factors actually map onto sources of variationndividual rats. Tryon’s (1940)

claim was that despite their predictive power, ¢hésed factors poorly captured
what a researcher would likely observe after pgténnaive rat into a maze. He
argued that the components involved were not fixaer time, and that

consequently using fixed dimensions obscured thecgsses underlying

performance. This claim was actually supporteddnydr analyses, which showed
that the identified factors were not stable dutearning (Wherry, 1941).

Subsequent attempts to characterize individualefices in learning
capacity have largely discounted or ignored Trydt®40, 1958) proposals. This
is probably because one implication of his thearythat different components
would need to be identified for every task and ssretages of learning. Even
performance in different classes of maze would ireqseparate analyses.
Additionally, the subjective elements of Tryon's papach make the
implementation of this approach impractical. Tryess aware of these limitations,
but felt that the complexity of the phenomena stionbt be ignored simply
because of methodological inconveniences. Despgedisadvantages, a key
strength of the componential approach is its gtititidentify sources of individual
variation that directly reflect the behavior of imiduals and to account for changes
in these sources over time.

Methods for characterizing individual differencéstt capture situational,
learning-dependent changes in performance havelygiegpacted recent studies
of personality and social psychology (e.g., Misch2009; Mischel & Shoda,
1995). For example, the Cognitive-Affective Systdheory of personality
proposes that individuals differ in (1) the easahwivhich they can engage
psychological processes (components) in a givamtsin, and (2) how these
processes interact with each other given the cistances (Mischel & Shoda,
1995). In this framework, the goal is to identifsepalent behavioral patterns, as
well as the dynamics of the interactions betweempmments that underlie these
patterns. The role of situation in this persondiitgory is equivalent to the role of
task in Tryon's (1940) theory. Similarly, the irdetions between mediating
psychological processes are comparable to theatttens between components
that Tryon hypothesized were determining the astiohrats in mazes. Mischel
and Shoda (1995) went a step further, however,dmgpeitationally instantiating
their theory as a neural network. Within this nateydndividual differences in
interactions between components were representeddifferences between
connection weights. The neural network made it iptssso simulate the effects of
individual variations on both situation-dependend averall performance trends,
and to show how interactions of psychological congris can give rise to both
behavioral traits and idiosyncratic, situation-degent, behavioral profiles. This
framework also provided a way to conceptualize hewvironment-gene
interactions might impact individual differencesg(e connection weights may be
differentially adjusted by experience dependingtiogir initial values). Although
Mischel and Shoda’s theory was developed to accémmvariations in social
behavior rather than variations in learning capacit illustrates how the
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limitations of earlier components-based approachi&gt be overcome through
the use of computational models.

Identifying Prototypical Individual Differencesin Learning

All of the approaches described above attempt tzisatly characterize
individual variations, but with different emphasé&ctor analysis captures key
differences between individuals with as few dimensi as possible. These
dimensions have been related to latent behavioadts tthat are analogous to
physical traits. Component analyses instead emphasiontext-dependent
descriptions of behavioral dynamics. This approashumes that the processes
underlying individual variation are extremely numes and complex in their
relation to observed behavior, and that numerousnastos could lead to
correlations that do not depend on behavioralstrait

Given the hundreds of thousands of genes that emisthe animal
kingdom, the complex effects that the differencew#n a single gene can have on
an individual, and the fact that most variationsn@ural connections are not
directly controlled by genes, the sources of irdial differences in learning
capacity are likely to be numerous. On the othendhaimilarities in neural
organization and synaptic mechanisms across supgrofi organisms, such as
mammals, provide some hope that systematic pattéeriation in the sources of
learning capacity exist. Similarly, the generatifymany conditioning phenomena
across species suggests that certain constrainteasning are shared across
species.

Mapping recurrent patterns

Rather than arguing that one descriptive frameviobetter or worse than
another for characterizing individual differenceslearning capacity, the goal of
this section is to further explore ways of overcognipast limitations of the
components approach to characterizing individuiédinces in learning capacity.
Although this approach lacks the mathematical rigamplicity, and elegance of
factor analysis, it has the advantage that it dusassume that psychological
dimensions are fixed, universal, or few in numi@mponents-based analyses are
thus better able to accommodate processes like rierpe-expectant and
experience-dependent plasticity that can change nidtgre of how learning
proceeds.

As noted above, Tryon's (1940) approach to ideimtgfycomponents was
to combine statistical regularities in position-degent maze errors with his
personal experiences watching rats perform in ma&eth sources of information
reflect the regularity of behavior: statistics ralveepetitions across rats, and
personal observations reveal repetitions of saketipns exhibited by many rats.
Tryon’s approach suggests a more general way laftisg regularities in behavior
across individuals that emphasizes frequency afimence rather than correlations
between variables. The goal of such a descriptisendwork would not be to
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isolate “common causes” of correlated measurestdatganize the full range of
observed outcomes in such a way that recurrenterpattof behavior and
behavioral change can be related to one another.

A classic example of this approach is the develaoyprogthe periodic table
of elements, which maps recurrent patterns in tiopgrties of matter onto a two
dimensional grid. Early versions of the periodibléadid not identify unifying
principles or overarching dimensions that linkddatter, but simply summarized
the fundamental forms of matter that were known sapdtially organized them
based on similarities in qualities. The “elementainponents of learning capacity
remain unknown, and how variations in these comptnanight engender
individual differences in learning capacity is damiy unclear (however, see Hull,
1945; Mercado, 2008). Nevertheless, assuming thetetare such elemental
components, one would expect that their variatiboukl lead to predictable,
systematic patterns of individual differences iarténg capacity.

The approach proposed here for identifying pattefrisdividual variation
in learning capacity discards the assumption thatponents or factors underlying
individual variation are independent, as well a® tassumption that their
interacting effects can be adequately conceptuhlizéerms of linear summations.
It seeks to identify regularities in quantitativeasures of learning capacity and
examine relationships between these regularitiegs approach of course has its
own limitations, including the lack of any theoogti criteria for selecting the
behavioral tasks and measures used to searchdorasgularities.

Lashley’s learning profiles

Human metrics for assessing individual differeniceimtellectual capacity
or learning potential usually require responsesexbalizable test items. This is
true for both static and dynamic testing methodd for both intelligence and
personality metrics. Because these sorts of mesguee useless for comparative
purposes, the focus here is on measures of leanglgcted from non-humans,
specifically rats. The main data Tryon (1940) ufmdidentifying components of
maze learning ability were specific types of errbiat rats made within a complex
maze at different stages of learning. Simpler perémce measures will be used
here to illustrate an alternative implementatioth&f components-based approach,
but almost any measure of learning or behaviomdua task could in principle be
used. The basic goals of the current analysis veedetermine whether there were
regularities in individual rats’ patterns of permnce, and if so, what those
patterns were like.

In this analysis, learning capacity was operatiaedl as the performance
of rats in several tasks, as reported by Lashl@29) in his classic studies
examining the neural mechanisms of learning. Lgsbbdlected measures from 59
rats (including 37 with cortical damage) performiten tasks; these measures
included the time each rat required to reach aopmdnce criterion, the number of
trials to reach criterion, and the number of errdtive of these tasks involved
training (in a maze or in a visual discriminatiask); the other five were memory,
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generalization, or motor control tasks. | restdctay data analyses to rats that
completed at least four of the five training tagksirteen of Lashley’s rats died
before completing all tasks). Measures of speeda&edracy for learning in each
task were computed by dividing trial and error dsuy total time tested, yielding
thirteen performance measures for 43 rats; misdatg points were replaced by
mean values. In this way, a 13-element vector veasstcucted corresponding to
each rats’ performance across several tasks. Thesures used in the current
analysis do not capture variations in learning ettjries over time. It is
straightforward, however, to expand the space s€mjetors used to describe each
individual so that they include such measures wtheg are available, or to treat
individuals measured at different times as sepauaitas in the input space.

Rats’ performance profiles were used to train &aglanizing feature map
created with the data mining program Orange (Den&apan, Leban, & Curk,
2004). The self-organizing map is a type of unsuiped neural network that
adjusts its response properties so that nodes nwitié map have connection
weight vectors similar to the most frequent inpatters (Kohonen, 2001). With
training, the map becomes spatially organized dhel nodes that are closest
together respond to similar inputs. The map praviagraphical representation of
inputs that characterizes both the prevalence @erdint input vectors, and
systematic relationships between inputs. Maps arsupervised in that no
predefined classes constrain the spatial organizadf the map or connection
weight values. Instead, map nodes acquire the@cBeity to certain inputs by
competing to match an input, and then adjustingwibights of the winner node
and its neighbors to increase their similarity teatching” inputs (by minimizing
the Euclidean distance between the input and waeigbtors). In this way, map
nodes effectively generate prototypes of inputsh@dgh self-organizing maps are
unsupervised, many parameters impact the finalctstre of the map. Unlike
classical statistical approaches, the details qf steucture and weight values may
vary each time a simulation is performed. Despitis tvariability, consistent
prototypes and spatial organizations typically eyaer

Figure 1 shows a map that was trained with the e&®opnance profiles
from Lashley’s rats. Each hexagon correspondsrtode in the map, and the size
of the circle within each hexagon indicates the benof inputs that best matched
a particular node (the smallest circle correspaiadsne rat, and the largest to
seven rats). To reveal the structure of the mapless were color-coded
corresponding to whether the matching rats weractnplue), or had lesions to
more (ed or less (reer) than 25% of their cortices. The pie charts shbe t
proportion of rats from each of these three gragsociated with each map node.
Note that without any explicit information aboutabr damage being provided to
the self-organizing map, the map has become slyatiedanized such that intact
rats are associated with the upper right corngéh®fmap, rats with major damage
are associated with the bottom of the map, andwdksintermediate damage are
in the middle. The map has “discovered” a systendifference in learning
capacity between individual rats that correspomdgyhly to the amount of intact
cortex. This is the same relationship that Lash{@p29) found through
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correlational analyses, and subsequently usededsatis for his theory of cortical
equipotentiality.

Figure 1. Best matching nodes of a 5x5 self-organizing refsgr training with performance profiles
from 43 rats. Each hexagon corresponds to a notteimap. The size of the circle within each node
indicates the number of rats that best matchedrtbdé (the smallest circles correspond to a single
rat). The pie chart within each circle shows thepprtion of best matching rats that had brain
damage: blue = intact; green = minor damage; rethjor damage.

Analyses of spatially contiguous nodes within thegorprovide a profile of
the prototypical rat from each of the three lewa#fi$rain damage (Fig. 2). These
performance profiles once again reveal the clasHiect of cortical damage on
maze accuracy and the time required to reach ionteBut, the profiles also
suggest a surprising contrast between maze leamninyg visual discrimination
learning that wasiot noted by Lashley (1929). Specifically, as accuriacynaze
learning decreases with damage, accuracy in leguaivisual discrimination task
appears to increase. In other words, the morecabdamage a rat had, the better it
learned to perform the visual discrimination taskhough the nature of these
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analyses precludes tests of the statistical sianifie of this effect, it qualitatively
appears comparable in magnitude to the deleterdigets of brain damage on
maze learning, and is much more counterintuitiveh@dugh a similar negative
relationship between complex and simple learningkdahas previously been
observed in intact humans (Broverman & Klaiber, 996eports of brain damage
increasing learning capacity in humans or othemats are relatively rare. This
result fortuitously illustrates one way in whichlfserganized, spatial sorting of
learning-related behavioral profiles can potentigiénerate new insights into the
mechanisms underlying variations in learning. Thereo prima facie reason to
expect that the mechanisms that enable rats to i@azes might interfere with
their ability to learn visual discriminations, ohat weakening rats’ “spatial
abilities” through structural damage might simuéansly increase their “visual
abilities.” The behavioral patterns revealed by self-organizing map analysis,
however, suggest that this may have happened inléyds rats. It can, of course,
be argued that appropriately designed factor aaalysuld also have revealed this
pattern. This begs the question of how one detesnian appropriate design
without knowing in advance what the psychologicadiievant patterns are.

0.9
0.8

0.6 1 | CJINTACT
0.5 ] E MINOR

0.4 4 H MAJOR

Performance metric
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o ]

Maze Speed Maze Accuracy Total Time Visual Accuracy

Figure 2. Mean values from self-organizing map nodes (acrustes and tasks) after training for
those nodes that responded selectively to perfacenameasures from rats with either no cortical
damage (intact - white), less than 25% of cortemawed (minor damage - gray), or greater than 25%
of cortex removed (major damage - black). More dgenaas associated with lower accuracy and
longer training times in maze tasks, but greateuicy in a visual discrimination task.

The focus on prototypical performance profiles mpdssible by the self-
organizing map effectively emphasizes systematiferdinces between profiles,
and minimizes overlapping features, in much the esamay as analyses of
extremes in statistical distributions (BrovermarK&iber, 1969; Kagan, Snidman,
& Arcus, 1998). This approach thus can reveal padtéhat might be obscured by
more global correlational approaches (Broverman l&lyér, 1969). Furthermore,
the map preserves the heterogeneity of behaviooéilgs from individual rats. For
example, although most rats with large lesions m#te prototypical profile, three
rats (associated with the upper left corner of thap) appear to diverge

-20 -



systematically from this profile. These three ratsy represent a distinct subgroup
in which either the specific location of corticalrdage made a difference, or they
might be rats whose compensatory mechanisms wgpeat Regardless, the map
avoids the oddity of describing individuals witlida lesions in terms of summary
statistics (or latent variables) that might notrepresentative of any individual in
the sample (see Magnusson, 1998, for further cssmuof this issue). Behavioral
profile maps can potentially aid in identifying esfally interesting individuals or
groups with extraordinary potential for clarifyimgechanisms of learning. For
example, the amnesic patient H.M. was unique amodiyiduals that received
surgical brain lesions as a treatment for epilepgyg, it was his unique behavioral
profile that made him invaluable to memory resed8tuire, 2009).

As noted earlier, the purpose of this simulatiors wat to demonstrate that
components-based, neural network analyses of ohaividifferences are superior
to factor analytic approaches, but to explore wdetheural networks might
facilitate the quantitative analysis of complex d&ébral patterns. The example
simulation shows that much of the information ticain be obtained through
traditional correlational analyses is also revedledugh frequency-based sorting
of behavioral profile patterns. It also illustratesw self-organized “clustering” of
behavioral profiles can reveal potentially impottpatterns of individual variation
that would be difficult to discern using factor i@ approaches. Finally, the
simulation shows that individual variations in Ieimg capacity can be
systematically and objectively characterized in svdaiiat do not require any
correspondence between existing psychological teamd statistically-derived
dimensions in trait space.

Investigating Differencesin Lear ning: Expanding the Scope

Describing a person as intelligent is as reasonabldescribing them as
strong or tall. All of these descriptors can previgseful information about what a
person is like relative to others. Such terms dao be usefully applied to animals
other than humans, but unlike strength or heigh, telative intelligence of
different animals is open to interpretation. Simjlawhen detailed comparisons of
peoples’ intellectual abilities are attempted, covrsies often arise. Why is this?
In everyday usage, the word intelligence oftenrsete one’s impression of an
individual's actions (similar to “niceness” or “wdness”). The likelihood that
someone is described as intelligent depends on thlegtachieve. It is thus natural
to infer that the likelihood that someone will besdribed as intelligent depends on
how intelligent they actually are. However, thisapefrom label to quality is
precarious. For instance, the likelihood that sameewill be described as blessed
also varies, but few scientists would infer fronstthat some quality or trait of
blessedness within individuals accounts for thisagin.

Current psychometric frameworks for describing wulial differences in
intelligence parallel pre-existing intuitive not®rabout the mental abilities of
humans, as evidenced by the lexicon. Whether sattradistic conceptions of
intelligence are an adequate foundation for undedihg individual variation in
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mental abilities remains unclear. These intuitigmatentially could obscure
understanding of individual differences in the samay that visual perception in
daily life distorted understanding of the solartsyss structure and misled people
about the nature of matter. For example, Aristddecribed variations in matter as
resulting from different combinations of the elentseof fire, earth, air, and water.
This dimensionalization of physical properties pdeg a convenient system for
classifying matter, but is inadequate for descghdifferences in atomic structure.
Factor analyses of intelligence measures have proseful in describing and
ranking individuals along various psychological dmsions, as well as for
predicting future performance in certain circumstm Nevertheless, the fact that
guantitative scales can be developed that assigituds scores to individuals
provides no evidence that intelligence refers te on more traits possessed by
individuals. Techniques that search for structarbehavioral patterns without the
need to conform to existing trait labels may previgcew insights into the qualities
and processes that underlie individual differenioemtellectual abilities (Lee &
Webb, 2005; Mercado, 2008).

Beyond trait space

There is increasing awareness among researchedyirgfu human
individual differences that statistical dimensionafion of one-shot performance
measures collected from groups of individuals ptesian incomplete view of how
individual’s abilities vary (Borsboom et al., 2008pfmann, Jacobs, & Gerras,
1992; Hultsch et al., 1976; Nesselroade, Gersttafdy, & Ram, 2007; Sternberg
& Grigorenko, 2002; Thelen, 1990). For example, ieeson-centered approach to
understanding individual differences during develept focuses on analyzing
patterns across multiple descriptors of an indildBergman, 1998, 2000), and
emphasizes that the context of the measures igok@yerpreting their relevance
(Hinde, 1998; Lau & Roeser, 2008; Magnusson, 19%ilarly, Shoda and
Mischel (2000) suggest that dynamic, situation-aepat patterns of responding
that are stable within an individual (called “betluaal signatures”) provide a more
comprehensive way of characterizing individual &aoins in personality than the
more traditional five-dimensional space of persityataits derived through factor
analyses. These approaches, which closely parthtede advocated by Tryon
(1940) in animal studies and Brown and Thomson %192 human intelligence
research, suggest that more flexible methods faoaradterizing individual
differences in intellectual abilities are feasible.

The self-organizing neural network analysis désadtiabove is just one
example of how automated, nonlinear, numericalsdiaation techniques can be
used to characterize individual differences in neay capacity (Clifford &
Stephenson, 1975; Dunn & Everitt, 1982; Thelen,0)99his approach can be
viewed as an extension of more traditional clusteranalyses (Green, 1990;
Tryon, 1958). A major advantage of this kind of Issis is that it reveals patterns
and trajectories of patterns without relying on gorceptions about how the
patterns should look, how stable they should behaw different aspects of the
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patterns should interact. Self-organizing mapgairticular, are not constrained to
grouping patterns based on a small number of rezalgie features or to creating
hierarchical clusters or taxonomies of patterns.chielogical advances
comparable to those made in sequencing and congpBNA across species may
increase the ease and precision with which indalidariations in learning can be
analyzed. With suitable analytical frameworks fdnakacterizing individual
differences in learning capacity, neural or psyobmal components contributing
to individual differences might be mapped out fiashion analogous to the human
genome or the periodic table of elements. Of cquose disadvantage of the
periodic table relative to Aristotle’s dimensiorm#@scription of matter is that it is
less intuitive, and therefore more unwieldy. Everydias some experience with
fire and water, but few people have any intuitittow@t what Indium, Cerium, or
Scandium are like. Techniques for sorting behaViprafiles may similarly reveal
patterns that bear little relation to existing tagmies of mental dimensions. The
extent to which such patterns can provide noveégirs into the origins and nature
of individual variations in learning capacity is ampirical question that can only
be answered by expanding beyond traditional trasteld psychometric
frameworks.

From intelligence to learning capacity

Learning capacity may vary systematically withindascross species in
ways that directly relate to the neural substratdearning (Mercado, 2008), and
may also vary as a function of the complexity of tlask to be learned. For
example, the learning mechanisms subserving peraieptotor learning capacity
may vary more (or less) across individuals thars¢hmvolved in cognitive skill
learning. Recent work on intelligence measuresréasaled that the ubiquitogs
factor may be the outcome of multiple componentcesses interacting during
development rather than some unitary trait acrdssiwindividuals vary (van der
Maas et al., 2006). These component processes tifim the semi-independent
faculties presumed to underlie “multiple intelligess,” which correspond more
directly to intuitive notions about what people cda intellectually (Gardner,
1999). These processes have been conceptualizetbgastive abilities like
working memory, or decision and reasoning proceéStsrnberg, 1977; van der
Maas et al., 2006), but could just as easily cpord to learning mechanisms
(Mercado, 2008). For example, Hebb (1949) theoritkedt perceptual and
cognitive abilities acquired through learning exgeces can increase learning
potential, which can in turn facilitate the acquisi of new intellectual
competencies. From this perspective, intellectimliti?s are a consequence of
learning capacity, and intelligence tests measym®aduct rather than a trait.

Intelligence tests are useful tools for rankingividlials and making
educational decisions, but their potential for ifyamg the processes that give rise
to variations in intellectual abilities is limiteth particular, they currently preclude
comparisons across species and limit developmeotaparisons, both of which
are critical to understanding the origins of merahllities. New techniques for
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characterizing individual differences in the leagabilities of non-humans could
provide a way to break away from the intuitive dive@nalization of latent traits,
and would make it possible to experimentally explttre mechanisms underlying
that variation in ways that will never be feasiblith humans (Harrington, 1988).
For example, researchers could examine precisely difierent genetic, neural,
and environmental treatments impact learning cépaand cognitive abilities
during adulthood. Such studies can provide newgirisi not only into the
mechanisms driving variation, but also into theumatof the processes that give
rise to various intellectual abilities (Mercado0802009).

Future Directionsin Compar ative Assessments of L ear ning Capacity

Anyone who has ever trained animals is well awhas individuals often
vary in the speed with which they improve and irithultimate performance
levels. Kohler (1927) noted the superior abilitiek Sultan relative to other
chimpanzees he studied, and Premack reported Wifterences between the
competencies of different chimpanzees (Premackg;1®femack & Premack,
1983). Similar intra-species variations in cogrtakill learning capacity have also
been reported in monkeys (Smith, Beran, RedfordWwé&shburn, 2006; Smith,
Shields, Schull, & Washburn, 1997), dolphins (Me@aMurray, Uyeyama, Pack,
& Herman, 1998), and dogs (Coren, 1994). Theserdiffces in learning capacity
correspond closely to what a layperson would desas variations in intelligence
- pets that can learn tricks quickly are descrilbsdclever, whereas those that
cannot are “slow.”

The prevalence and relevance of individual varietiom learning capacity
were recognized early on in the development of aatpve psychology (Maier &
Schneirla, 1935; Mills, 1898; Washburn, 1913). he tlassic textPrinciples of
Animal Psychology, Maier and Schneirla (1935) proposed that studinddgidual
variations was one of five necessary steps requareshderstand animal behavior.
Nevertheless, there are few detailed scientifiorespof how learning capacity or
intellectual ability varies within any non-humaresfes. Why have scientists given
so little attention to analyzing individual variais in the learning capacity or
intelligence of animals other than humans? In,gars neglect may reflect the
Cartesian perspective that human intellectual tedsliarise from reasoning minds,
whereas other animals’ abilities reflect mindlesarhing or genetic algorithms
(Jensen, 1985; Macphail, 1990). However, it may &s a consequence of the
emphasis early experimental psychologists placedi@mntifying universal laws of
behavior. For example, Thorndike (1898) suggesteat Even cross-species
differences in learning capacity, though clearlyegent, were of minimal
theoretical importance. He and many other promiheaining theorists believed
that the core scientific problem was to identifarileng laws that applied to all
organisms in all contexts. Ecologically-minded camgtive psychologists
eventually rejected the assumption that speciderdiices were irrelevant to
understanding how animals learn (Healy, Bacon, kadgarris, & Kelley, 2009;
Shettleworth, 1998, 2009; Timberlake, 1994, 200Nevertheless, most
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comparative research continues to emphasize pattérabilities prevalent across
groups of subjects, treating individual differendeslearning capacity within
species like variations in the shape of gold —aidental feature that reveals little
of importance.

Future development of objective methods for expentally
differentiating animal geniuses from dullards wouldcilitate more direct
comparisons between learning mechanisms, learnamaaity, and intellectual
variability in humans and other animals. While thesiethods may include
traditional factor analytic approaches, the compjewf learning mechanisms
suggests that techniques for sorting behaviorakpet may be better suited for
identifying and understanding the processes that gse to variations. Even more
important to future progress, however, is the dgwelent of new experimental
designs that focus on revealing and understandidgidual differences rather
than on minimizing them. Just as studying a broaglege of species can provide
new insights into the behavior of all species (idohg humans), so too can
studying a broader range of individuals within eaphcies.
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