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Mapping Individual Variations in Learning Capacity 

Eduardo Mercado III 
University at Buffalo, The State University of New York, U.S.A.  

 
Individual differences in learning capacity are evident in humans and most other animals. 
Traditionally, such differences are described in terms of variations along a relatively small number of 
psychological dimensions corresponding to behavioral traits. Here, an alternative approach is 
considered in which individual differences in learning capacity are characterized by spatially sorting 
behavioral patterns. To illustrate this approach, a two-dimensional self-organizing feature map was 
used to analyze patterns in the performances of intact and cortically-lesioned rats engaged in multiple 
learning tasks. After training, the spatial structure of the map revealed systematic variations in 
learning across rats that were related to the degree of brain damage. Individual nodes within the map 
described prototypical performance profiles that corresponded closely to patterns of learning seen in 
individual rats, including individuals with idiosyncratic profiles. Techniques that automatically 
identify modal patterns of performance during learning may provide new insights into the processes 
that determine what an individual organism can learn. 

 
What do intelligence, strength, dexterity, charisma, constitution, and 

wisdom have in common? They are all descriptors of characteristics that an 
organism may possess that are predictive of the feats that the organism can 
achieve. A strong animal can move objects a weaker animal cannot. A wise human 
can understand complex situations in ways that a clueless person would never 
grasp. These descriptors also all share the property of varying along a quantifiable 
continuum. An individual’s strength can be measured in terms of the number of 
kilograms they can lift; her charisma can be estimated based on the number of 
friends she has. This intuitive framework for describing individual differences is 
aptly captured by the role-playing game Dungeons & Dragons. In this game, a 
player’s capacities are defined in terms of specific numbers associated with each of 
the six descriptors noted above; a player’s “trait scores” shape the outcome of 
almost every important event in the game. Similarly, in the real world quantitative 
assessments of aptitude or personality can determine who gets to attend the top 
universities and which individuals are identified as a perfect match by a dating 
website. But, do such descriptors really correspond to properties of individuals?  
Or, are they just a useful way of summarizing a set of salient behavioral 
observations?  Might there be ways to precisely describe individual variations that 
do not rely so heavily on intuitive notions about the qualities that define an 
individual, and that more closely relate to the mechanisms underlying those 
variations? 

The goal of the current paper is to develop an approach for characterizing 
individual differences that depends less on rating an individual’s abilities (or 
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proclivities) relative to conspecifics, and that avoids using existing verbal 
descriptors to classify and evaluate such differences. This approach is applied to 
the analysis of individual variations in learning capacity, a property that varies 
within and across individuals of many different species. The following sections 
review: (1) current hypotheses about the mechanisms underlying variations in 
learning capacity within and across humans and other animals; (2) methods for 
characterizing individual differences in learning capacity and intellectual ability in 
terms of behavioral traits; and (3) methods that characterize these variations in 
terms of behavioral patterns. An alternative strategy for analyzing individual 
variations in learning capacity is then presented; this strategy avoids some 
limitations of past approaches. The tentative conclusion reached is that traditional 
trait-based approaches are not well suited for quantifying variations in learning 
capacity. The complex and dynamic nature of learning warrants the development 
of more flexible tools for exploring why some individuals are more successful 
learners than others. 

 
The Nature and Origins of Learning Capacity 

 
The terms learning capacity and learning potential are used here to mean 

the ability to change one’s abilities or knowledge through experience. It is simply 
meant to convey that organisms are able to learn, something enables them to do so, 
and this something (which is actually a multitude of things) varies across 
individuals. Estes (1970) used the terms to refer to, “any source of individual 
differences, determined either genetically or by some combination of genetic 
factors and developmental processes which are independent of previous learning” 
(p. 30).  He also noted, however, that “except perhaps in infancy, a great part of the 
variance in rates of learning between individuals must be attributable to differences 
in the results of past learning” (p. 31).  In fact, many experiences may impact an 
individual’s learning capacity, including prenatal experiences (e.g., Lemaire, 
Koehl, Le Moal, & Abrous, 2000). Estes’s requirement that sources of individual 
differences in learning capacity must be “experience-independent” might easily 
exclude many basic mechanisms thought to contribute to variations in learning 
abilities (e.g., sensory abilities and neural plasticity). Here, the term learning 
capacity is used to refer to sources of individual differences in learning 
mechanisms determined by some combination of genes, developmental processes, 
and experience. 

Learning capacity has received less scientific attention than psychological 
dimensions such as intelligence, personality, interests, and cognitive abilities. 
Some psychometricians have suggested that variations in learning ability are 
intimately linked to individual differences in intelligence (Duncanson, 1964; 
Jensen, 1989). The relationship between intelligence and learning capacity has 
been notoriously difficult to pin down, however (Gagne, 1967, 1989; Hundal & 
Horn, 1977; Lohman, 1999; Woodrow, 1946). Mercado (2008, 2009) suggested 
that variations in intellectual capacity partly reflect how well individuals 
distinguish events, which is known to be learning-dependent. From this 
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perspective, measures of intelligence are indicative of an individual’s capacity to 
learn cognitive skills, and variations in learning capacity contribute to (but are not 
equivalent to) variations in intellectual abilities. Because so few studies directly 
examine individual variations in learning capacity, much of the discussion below 
focuses on variations in measures of intelligence. It is important to keep in mind, 
however, that intelligence tests usually measure performance rather than learning 
capacity. 

 
A talent for learning 
 

Current evolutionary models of individual variation heavily emphasize the 
genetic origins of abilities, assigning only a minor role to learning or other 
experiences (Bolnick et al., 2003; Hayes & Jenkins, 1997). Researchers have 
debated the relative contributions of genes (or heredity) and experience to 
individual differences in mental abilities for well over a hundred years (Chabris, 
2007; Fuller & Thompson, 1978; Galton, 1883; Gray & Thompson, 2004; Plomin, 
2001; Plomin & Spinath, 2002). As illustrated by the quote from Estes (1970) 
above, learning capacity has often been portrayed as a genetic endowment 
analogous to growth potential (see also Hull, 1945). Galton (1883) was one of the 
first to seriously explore the idea that intellectual abilities were traits that could be 
inherited. He tested this hypothesis and found correlational evidence consistent 
with this idea. Later experimental studies confirmed that learning capacity could be 
manipulated using artificial selection techniques (reviewed by Dukas, 2004; 
Wahlsten, 1978). The earliest work of this kind showed that rats could be bred so 
that subpopulations were faster or slower at learning particular kinds of mazes 
(Heron, 1935; Tolman, 1924; Tryon, 1929, 1942). More recent work with 
genetically engineered flies and mice also shows that it is possible to create 
individuals that learn certain tasks faster or slower than the norm (Dubnau, Chiang, 
& Tully, 2003; Skoulakis & Grammenoudi, 2006; Tang et al., 1999; Waddell & 
Quinn, 2001).  

Within comparative psychology, adaptive specializations for learning have 
been discussed in relation to the evolution of niche-dependent strategies or abilities 
(e.g., song learning) in a particular species (Bolhuis & Macphail, 2001; Dwyer & 
Clayton, 2002; Macphail & Bolhuis, 2001; Shettleworth, 1998; Timberlake, 2001). 
It is not immediately obvious how individual variations in learning capacity might 
relate to such specializations (see Bolnick, et al., 2003, for some possibilities). 
However, biologists and educational psychologists increasingly are emphasizing 
that “trait-like” differences between individuals can strongly affect how those 
individuals learn (Chen, Gully, Whiteman, & Kilcullen, 2000; Chiappe & 
MacDonald, 2005; Dugatkin & Alfieri, 2003; Sih & Bell, 2008; Sih, Bell, Johnson, 
& Ziemba, 2004). 

Recent work on the evolution of neural mechanisms of learning has 
revealed subtle cross-species differences, as well as many similarities, in the 
processes that give rise to synaptic changes (Dubnau, et al., 2003; Dukas, 2004; 
Matzel & Gandhi, 2000; Ryan & Grant, 2009; Wright, Kirschman, Rozen, & 
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Maynard, 1996). Variations in synaptic plasticity mechanisms across individuals 
within a species are also known to impact learning capacity (Rankin, 2004). These 
differences undoubtedly impact how organisms learn. Evolutionary psychologists 
(Kanazawa, 2004), and comparative neuroanatomists (Rakic, 2009), have argued 
for special adaptations in human brains that confer enhanced learning abilities. 
But, the evidence for unique enhancements in the neural substrates of human 
learning remains questionable (Borsboom & Dolan, 2006). Both natural and 
artificial genetic variation can contribute to individual differences in learning 
capacity, but this does not preclude modulation or control of these mechanisms by 
environmental variables, including learning experiences and neural activity 
(Dukas, 2004). 
 
Constructing learning mechanisms 
 

As an organism’s brain develops, certain chains of events are experienced 
that trigger predictable outcomes in neural circuits. For example, when an infant is 
born, novel excitation associated with respiration and the reception of light will 
begin to change the way that neural circuits respond to such events. Since these 
events are typical of birth, the kinds of changes that will occur are relatively 
stereotyped across individuals. This basic process, called experience-expectant 
plasticity (Fahrbach, Moore, Capaldi, Farris, & Robinson, 1998; Greenough, 
Black, & Wallace, 1987), provides a loose account of why one might see 
developmental progression in capacity occurring in a predictable sequence, and 
why a neglected infant might show reduced abilities compared to an infant that is 
engaged by its parents. Experience-expectant plasticity is associated with the 
whittling down of neural connections to assimilate environmental information 
common to all members of a particular species; atypical experiences can lead to 
abnormal neural circuits. This process generates neural changes that can 
dramatically impact learning processes, and that become increasingly difficult to 
reverse over time (Greenough et al., 1987).  

Some developmental theorists have discussed growth-related changes in 
learning capacity in terms of the experience-dependent restructuring of perceptual 
and cognitive processes (Hebb, 1949; Quartz & Sejnowski, 1997; Vygotsky, 
1978). For example, the neural constructivist perspective on cognitive 
development suggests that an individual’s brain acquires the ability to represent 
events through exposure to the environment (Hebb, 1949; Quartz, 1999; Quartz & 
Sejnowski, 1997, 2000). In this framework, what the individual is able to learn 
depends on which constructed representations are available (Mercado, 2008). 
Consequently, variations in an individual’s learning capacity are not simply a 
consequence of genetically-specified differences in computational power, but are 
also a function of experience-dependent neural growth. Furthermore, changes in 
the learning mechanisms of an individual follow idiosyncratic trajectories 
throughout the lifespan (Baltes, Reuter-Lorenz, & Rosler, 2006). Variations in 
these trajectories are likely a major contributor to individual differences in learning 
capacity and intelligence (Shaw et al., 2006; Thelen, 1990). 
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Expert learners 
 

Learning capacity is a peculiar characteristic to consider in terms of 
genetic origins because learning could be viewed as a process that picks up where 
evolution left off, serving to refine and customize an individual’s behavior to 
accommodate its particular circumstances. Some researchers hold that no amount 
of experience can overcome the boundaries on intellect set by genetic 
predispositions (Jensen, 1998), whereas others suggest that individuals who 
achieve the highest levels of performance in a particular intellectual domain are 
those that have the greatest quantity and quality of training and practice (Ericsson 
& Lehmann, 1996). Hebb’s (1949) report that rats raised by his children as pets 
showed greater learning capacity than laboratory-reared rats, provided some 
indication that experience was a critical component of learning capacity. This 
observation sparked a series of studies on the effects of enriched environments on 
the learning abilities of rodents, many of which showed that non-specific learning 
opportunities could amplify individual differences in learning capacity (Cooper & 
Zubek, 1958; Dukas, 2004; Nithianantharajah & Hannan, 2006). Directed practice 
and more active learning experiences lead to similar changes. These kinds of 
environmentally-driven changes in ability are described as experience-dependent 
plasticity. Experience-dependent plasticity is associated with the formation of new 
or stronger neural connections. Genetic codes determine only rough patterns of 
neural connectivity (Udin & Grant, 1999); differential use of networks determines 
how these circuits are refined. 

Environmental (including cultural) contributions to variability in 
intellectual abilities have received increasing attention (Baltes et al., 2006; Ceci & 
Bruck, 1994; Flynn, 2007). For instance, recent work on lifespan development 
emphasizes reciprocal interactions between the social environment and brain 
development (termed biocultural co-constructivism), and proposes that multiple 
experience-driven neural plasticity mechanisms operate on multiple time scales 
(evolutionary, developmental, and situational) to determine an individual’s abilities 
(Li, 2003). Many of these proposed plasticity mechanisms likely also contribute to 
learning capacity (Mercado, 2008). 
 
State-dependent variations in learning capacity 

 
The genetic, developmental, and environmental factors described above 

directly impact an individual’s learning capacity. There are also other more 
indirect sources of variation in learning, however, such as individual differences in 
personality or temperament (Bell, Hankison, & Laskowski, 2009; Gosling, 2001; 
Reale, Reader, Sol, McDougall, & Dingemanse, 2007). Much of the research 
examining links between temperament or personality and learning capacity has 
been conducted with non-humans (Coleman, Tully, & McMillan, 2005; Moreira, 
Pulman, & Pottinger, 2004; Range, Bugnyar, Schloegl, & Kotrschal, 2006; 
Toxopeus, Sterck, van Hooff, Spruijt, & Heeren, 2005). Pavlov (1927) was one of 
the first to note the impact of temperament on animal learning. He reported 
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dramatic differences in conditioning between what he described as sanguine versus 
melancholic dogs. More recent work has noted similar differences in learning 
between bold versus cautious animals and between females and males (Agar, 
Drummond, Tiegs, & Gunson, 1954; Guillette, Reddon, Hurd, & Sturdy, 2009; 
Sneddon, 2003). Coping style theory suggests that more proactive individuals have 
advantages learning simple discrimination tasks, and disadvantages when learning 
other more complex tasks (Koolhaas et al., 1999; Ruiz-Gomez et al., 2008). As 
with maze learning, temperament differences within subpopulations can be 
increased through selective breeding (Groothuis & Carere, 2005). Animals that 
have been bred to be more or less bold differ in learning capacity (Dugatkin & 
Alfieri, 2003). 

Individual differences in temperament can be viewed as variations in the 
likelihood that certain motivational or emotional states will occur. Dynamic 
changes in such states within each individual also occur daily. These intra-
individual variations are known to impact learning capacity. For example, certain 
oscillatory states in the brain facilitate classical conditioning in rabbits (Griffin, 
Asaka, Darling, & Berry, 2004; Hoffmann & Berry, 2009; Seager, Johnson, 
Chabot, Asaka, & Berry, 2002). Similarly, gamma oscillations in the human brain 
are associated with better encoding and recall of word lists (Sederberg et al., 2004). 
Diurnal cycles of neural states also predict cognitive performance (Mackenberg, 
Broverman, Vogel, & Klaiber, 1974) and modulate learning (Lyons, Green, & 
Eskin, 2008). Collectively, these findings suggest that learning capacity can vary 
substantially within and across individuals as a function of global variations in 
brain state occurring over multiple time scales. 

Ultimately, individual differences in learning capacity reflect differences 
in neural states and dynamics that are strongly determined by the structure and 
function of circuits constructed through accumulated experiences. The progressive, 
experience-dependent nature of brain circuit construction suggests that learning 
capacity may change considerably across the lifespan, and that changes may 
progress differently depending on an individual’s specific environmental and 
physical conditions. In contrast, many past and current approaches to describing 
individual differences presume that the psychological dimensions being measured 
correspond to relatively stable, innate features of individuals.  

 
Methods for Characterizing Variations in Learning Capacity 

 
Despite clear and evident data proving that genetic factors 
and adjustments to stimulating situations are extremely 
numerous and complex in determining behavior variations, 
we psychologists, like people generally, find it difficult to 
face these realities. (Tryon, 1958, p. 478) 

 
Current strategies for characterizing individual differences generally do 

not attempt to relate scales or metrics to the underlying mechanisms that give rise 
to these variations. The foundation for these approaches is instead human language 
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and intuitions about how well labels capture the essence of the phenomena being 
labeled. The hundreds of words present in each language that describe people 
represent a synthetic, communicable understanding of how individuals vary. 
Although the existing lexicon provides a reasonable starting point for developing 
simpler schemes for describing individual variation (Ashton & Lee, 2005), this 
intuitive approach leaves several critical questions unanswered. Do lexically-based 
psychometric approaches characterize how individuals actually vary?  Or, do they 
simply reflect how humans communicate their conceptualizations of individuals?  
Does the quantification of psychological attributes reflect systematic, continuous 
variation in some property of individuals? Or, do such scales correspond to the 
likelihood that a particular label will be used to describe a particular behavior?  
Can words adequately describe variations in the qualities of individuals, and if not, 
what are the alternatives?  The following subsections discuss past attempts at 
characterizing individual differences in learning capacity and intelligence, 
distinguishing efforts to identify variations in behavioral traits from those seeking 
to identify systematic patterns of individual differences in performance.  
 
Locating individuals in trait space 

 
The development of various assessment tests and scales by 

psychometricians can be viewed as an attempt to objectively identify individuals’ 
positions along one or more psychological dimensions corresponding to behavioral 
traits (Anastasi, 1948; Carroll & Maxwell, 1979; Horn & Masunaga, 2006; 
Lubinski, 2000). The value of a particular quantifying test or metric depends on its 
reliability and validity, which correspond roughly to consistency across repetitions 
and interpretability/utility respectively. An implicit assumption of these criteria is 
that an individual’s position along a particular dimension is relatively stable over 
time. Otherwise, the measures would not be consistent across repetitions (i.e., 
unreliable), and thus of little use. The psychological dimensions that have been 
studied most extensively are bounded by familiar endpoints (e.g, dullard to genius; 
aloof to amiable), suggesting that the validity of the metrics developed to measure 
variations along these dimensions depend on the pre-existing lexicon. Relative to 
simple labeling, however, the quantification of psychological dimensions 
represents a major advance in the measurement of individual differences. 

Standard approaches to quantifying individual differences in intellectual 
capacity depend heavily on factor analysis and related techniques such as principal 
components analysis. Factor analysis uses correlations between performance 
measures to identify simpler ways of accounting for the relationships between 
those measures. The factors correspond to axes of an n-dimensional subspace of 
the space defined by the data (Wickens, 1995). The basic premise underlying 
factor analytic approaches to describing individual variation is that there are semi-
independent, latent sources of variance across measures of ability, and that these 
sources can be effectively described in a lower dimensional space than the one 
defined by the original measures. Decreasing the dimensionality of a data set 
simplifies the quantification of individual differences and focuses attention on the 



 
 

 
- 11 - 

 

largest systematic variations across individuals. Dimensions identified through 
factor analysis that correspond to verbalizable qualities (e.g., mathematical or 
spatial abilities) are pragmatically the most useful. The main criterion for 
successful descriptors derived through factor analysis is that they explain the most 
variation with the least dimensions. Dimensions that meet this criterion are 
considered to be the most relevant for understanding the nature of individual 
differences. Although the psychological dimensions identified via factor analyses 
do not necessarily correspond to behavioral traits, it is often assumed that 
something like traits map onto these dimensions (Ackerman & Heggestad, 1997; 
Horn & Masunaga, 2006).  

Factor analysis provides a descriptive framework that in principle allows 
for the parameterization of the intellectual capacity of any human in terms of a 
small number of dimensions. This framework matches well with intuitive ideas 
about individual differences in intellectual talents (e.g., the whiz kids in the class 
will be better at most academic tasks, but some will have a gift for words, whereas 
others will be endowed with superior mathematical abilities). Opinions differ, 
however, as to the relative importance and nature of different factors, which has 
resulted in different camps of researchers endorsing different sets of dimensions as 
being important for understanding intelligence (Neisser et al., 1996). When factor 
analyses are applied to multiple measures of human intellectual performance, one 
factor called the g factor is often found that links performance across multiple test 
measures. The g factor is associated with general intelligence metrics (e.g., IQ), 
has relatively high heritability (Gray & Thompson, 2004; Plomin, 2001), and is 
viewed by some as indicative of a unitary capacity underlying variations in 
intellect (Jensen, 1998). Other researchers suggest, however, that there are multiple 
dimensions of intellect that must be considered separately to gain a complete 
picture of individual variation in intelligence (Brown & Thomson, 1925; Gardner, 
1999; Sternberg, 1977; Thorndike, 1926). 

General intelligence in rodents. The factor analytic frameworks 
developed to describe individual differences in human intelligence have also been 
used to measure variation in the learning abilities of non-humans (Anastasi, Fuller, 
Scott, & Schmitt, 1955; Banerjee et al., 2009; Dunlap, 1933; Harrington, 1968, 
1988; Herrmann, Hernandez-Lloreda, Call, Hare, & Tomasello, 2010; McCullock, 
1935; Tomlin & Stone, 1934; Van Steenberg, 1939). Early studies with rats found 
little evidence of general intelligence comparable to that seen in human 
intelligence tests (Campbell, 1935; Commins, McNemar, & Stone, 1932; Livesey, 
1970; Loevinger, 1938; Searle, 1949; Tomlin & Stone, 1934; Tryon, 1942; 
Wahlsten, 1978; Warren, 1961). For example, it was impossible to predict which 
rats would learn a discrimination task the fastest based on their performance in a 
maze task (Rajalakshi & Jeeves, 1968; Tolman & Ritchie, 1943; Tryon, 1942). 
There are, however, consistent reports of individual differences in learning 
capacity within a particular domain (Anderson, 1992; Commins, et al., 1932; 
Davids & Tolman, 1924; Liggett, 1925; Tryon, 1931). When the range of 
performance was increased, for example by including animals with brain lesions 
(Crinella, 1993; Crinella & Yu, 1995; Locurto, 1997; Thompson, Crinella, & Yu, 
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1990; Yu, Thompson, Huestis, Bjelajac, & Crinella, 1989), or of different strains 
(Harrington, 1988; Locurto & Scanlon, 1998), statistical factors associated with 
general intelligence were found. Efforts to measure individual differences in rodent 
intelligence recently have resurged due in part to the availability of genetically 
modified individuals (mice) and new methods for identifying the neural and 
genetic sources of variability in behavior (Anderson, 1993, 1995, 2000; Brooks, 
Pask, Jones, & Dunnett, 2005; Galsworthy, et al., 2005; Galsworthy, Paya-Cano, 
Monleon, & Plomin, 2002; Grossman, et al., 2007; Kolata, Light, Grossman, Hale, 
& Matzel, 2007; Kolata, Light, & Matzel, 2008; Kolata et al., 2004; Light, Kolata, 
Hale, Grossman, & Matzel, 2008; Locurto, Benoit, Crowley, & Miele, 2006; 
Locurto, Fortin, & Sullivan, 2003; Matzel, Grossman, Light, Townsend, & Kolata, 
2008; Matzel, et al., 2003). Although none of this work directly measures learning 
capacity, differences in performance are often correlated with individual 
differences in learning capacity (Lashley, 1929; Orduña, Mercado, Gluck, & 
Merzenich, 2005).  

Researchers occasionally have interpreted results from factor analyses of 
non-human intelligence as evidence that the dimensions underlying non-human 
intellect differ qualitatively from those of non-humans (e.g., Herrmann et al., 
2010). It has even been suggested that there are few common psychological 
dimensions across species, because each species has developed abilities that are 
specialized to meet the needs of a specific ecological niche (Shettleworth, 1998, 
2009). Following this reasoning, one might predict that different sets of factors 
would be needed to adequately describe individual variation in the learning 
abilities of each species. Consistent with this idea, different species of Aplysia 
show different learning abilities, as well as variations in neural circuits that are 
correlated with these differences in learning (Marinesco, Duran, & Wright, 2003; 
Wright et al., 1996). At the other extreme, Macphail (1990) argues that there is no 
clear evidence of any individual or species differences in the intellectual abilities 
of non-humans. Differences in testing conditions make it difficult to assess 
whether variation in the abilities of rodents or any other non-human species is 
comparable to what has been observed in humans. For example, the tasks used to 
measure rodent intelligence have been limited to those that naïve rats or mice can 
learn in a few sessions (Hebb & Williams, 1946; Locurto, et al., 2006). This 
situation differs greatly from standardized testing of humans, which depends upon 
numerous pre-existing cognitive skills (e.g., language, problem solving, writing, 
mathematical training, etc.). Additionally, tests of humans have been extensively 
developed specifically to reveal individual differences in intellectual performance, 
whereas those used to tests rodents were developed to minimize individual 
differences. Recent factor analytic work comparing individual differences in the 
cognitive capacities of chimpanzees and children has attempted to address this 
issue by testing both species with similar tasks and in similar conditions 
(Herrmann, et al., 2010). Interestingly, this study failed to find evidence of an 
overarching g factor in either species, consistent with the idea that the presence or 
absence of particular factors may depend on the testing conditions (Banerjee et al., 
2009; Locurto et al., 2006).  
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Dynamic testing. Although studies of individual differences in intellectual 
performance are much more common, there have been some studies that directly 
measured individual differences in learning potential. This approach, called 
dynamic testing, involves repeated measures of ability, often with feedback and 
practice between testing sessions (Feuerstein, Rand, Jensen, Kaniel, & Tzuriel, 
1987; Grigorenko & Sternberg, 1998; Lidz, 1987; Sternberg & Grigorenko, 2002). 
The basic goal of these measures is to identify an individual’s rate of improvement, 
and to use this as a measure of underlying capacity (Feuerstein et al., 1987), or of 
an individual’s zone of proximal development (Vygotsky, 1978). In some cases, 
results from tests of learning potential appear to be uncoupled from standard IQ 
measures (Hundal & Horn, 1977), but in others a strong correlation between 
learning and intellectual performance is evident (Embretson, 1992). Dynamic tests 
are more cumbersome than standard intelligence tests, and they are not 
significantly better at predicting future performance, which may explain why they 
are less popular. If the goal is simply to differentiate individuals and predict what 
they can do, then factors extracted from a standard intelligence test are as useful as 
those extracted from a dynamic test.  

Despite their limitations, dynamic tests illustrate one way in which factor 
analyses can be used to quantitatively measure differences in learning capacity. 
The dynamic testing approach rejects the assumption that individual differences in 
performance reflect stable differences in innate mental abilities. Instead, it assumes 
that abilities are malleable and that changes in performance are indicators of 
developing expertise resulting from practice (Ericsson & Lehmann, 1996; 
Sternberg & Grigorenko, 2002). Dynamic tests reveal individual differences in 
learning trajectories during the acquisition of skills in multiple domains, link 
intelligence to expertise, and focus on the potential for improvement rather than on 
an individual’s intellectual talents.  

Criticisms of the factor analytic approach. In developmental research, the 
factor analytic approach to characterizing individual differences is sometimes 
referred to as the “variable approach” because it focuses on single variables or 
combinations of variables and their interrelations (Bergman, Cairns, Nilsson, & 
Nystedt, 2000; Cairns, Bergman, & Kagan, 1998). The adequacy of factor analytic 
models for describing individual variations in learning capacity rests on several 
basic assumptions: (1) individuals differ quantitatively along psychological 
dimensions; (2) individuals can be compared quantitatively using such dimensions; 
(3) relationships between dimensions are equivalent across individuals and 
situations; (4) these relationships can be used to understand how the variables 
relate to an individual’s performance; and (5) the psychological meaning of 
dimensions is independent of the individual’s age (Borsboom, Mellenbergh, & van 
Heerden, 2003; Magnusson, 1998). A major critique of the factor analytic 
approach is that the dynamic, complex features of experience-dependent 
development make it difficult to understand or predict the impacts of any single 
psychological dimension independent of the context, individual’s age, and other 
dimensions (Mischel, 1973; Tryon, 1958). This critique seems particularly 
applicable in the case of characterizing learning capacity, which undoubtedly 
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varies across the life span in complex ways (Hultsch, Nesselroade, & Plemons, 
1976). Factor analyses are ill-suited for describing individual variations in ability 
that are dynamic, experience-dependent, or idiosyncratic. More generally, any 
metrics that presume a fixed, unidimensional learning potential throughout the 
lifespan can only provide a limited view of individual variation, and one that 
necessarily does not reflect the complexity of the mechanisms that give rise to 
these variations. 
 
Identifying components of abilities 
 

A few comparative and developmental researchers have questioned the 
usefulness of characterizing individual differences in terms of their “least common 
factors,” instead arguing that descriptions of individual variation should reflect the 
psychological complexity of the individual’s performance (Bergman, 1998, 2000; 
Magnusson, 1998; Tryon, 1940, 1958). They have argued that there is not a strict 
divide between intellectual, emotional, motivational, and physical contributors to 
individual differences (see also Ackerman, 1996). Rather, these psychological 
factors all impact an individual’s abilities in a situation-dependent manner (Ceci & 
Bruck, 1994; Davison, Kuang, & Kim, 1999).  

In comparative psychology, one of the strongest early proponents of this 
viewpoint was Tryon (1940, 1958). He argued that the psychological components 
that contribute to individual differences in learning of a particular task can only be 
safely inferred from analyzing how animals perform in that task. Tryon illustrated 
this by analyzing the performance of ~1,000 rats as they learned to make their way 
through a specific kind of maze (Tryon, 1940). Using a combination of statistical 
analyses and his own behavioral observations, he inferred ten components that 
contributed to a rat’s performance in the maze. These components correspond 
more closely to frequent strategies, hypotheses, or inclinations than to the sorts of 
dimensions or behavioral traits identified through factor analysis. Tryon expanded 
this approach into a general theory of individual variation in which performance 
reflects the engagement of a dynamic set of psychological components1. In this 
theory, the set of psychological components that determine performance is not 
fixed, but varies with experience; not all components act at all times and some may 
even compete for control. Furthermore, this theory assumes that the content, form, 
and utility of these psychological components change with experience. In this 
framework, individual differences reflect constellations of interacting components 
rather than different levels of a universal factor (or set of factors) that acts in all 
individuals to determine capacity.  

Data from maze learning experiments can readily be characterized using 
factor analysis to create a smaller set of three fixed orthogonal dimensions that 
predicts errors as well as Tryon’s ten components (Wherry, 1941). The issue, 

                                                 
1Thorndike (1926) and Brown and Thomson (1925) proposed similar frameworks for 
assessing intellectual abilities in human 
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however, is not how efficiently the data set can be described, but whether these 
factors actually map onto sources of variation in individual rats. Tryon’s (1940) 
claim was that despite their predictive power, these fixed factors poorly captured 
what a researcher would likely observe after putting a naïve rat into a maze. He 
argued that the components involved were not fixed over time, and that 
consequently using fixed dimensions obscured the processes underlying 
performance. This claim was actually supported by factor analyses, which showed 
that the identified factors were not stable during learning (Wherry, 1941).  

Subsequent attempts to characterize individual differences in learning 
capacity have largely discounted or ignored Tryon’s (1940, 1958) proposals. This 
is probably because one implication of his theory is that different components 
would need to be identified for every task and across stages of learning. Even 
performance in different classes of maze would require separate analyses. 
Additionally, the subjective elements of Tryon’s approach make the 
implementation of this approach impractical. Tryon was aware of these limitations, 
but felt that the complexity of the phenomena should not be ignored simply 
because of methodological inconveniences. Despite its disadvantages, a key 
strength of the componential approach is its ability to identify sources of individual 
variation that directly reflect the behavior of individuals and to account for changes 
in these sources over time. 

Methods for characterizing individual differences that capture situational, 
learning-dependent changes in performance have greatly impacted recent studies 
of personality and social psychology (e.g., Mischel, 2009; Mischel & Shoda, 
1995). For example, the Cognitive-Affective System theory of personality 
proposes that individuals differ in (1) the ease with which they can engage 
psychological processes (components) in a given situation, and (2) how these 
processes interact with each other given the circumstances (Mischel & Shoda, 
1995). In this framework, the goal is to identify prevalent behavioral patterns, as 
well as the dynamics of the interactions between components that underlie these 
patterns. The role of situation in this personality theory is equivalent to the role of 
task in Tryon’s (1940) theory. Similarly, the interactions between mediating 
psychological processes are comparable to the interactions between components 
that Tryon hypothesized were determining the actions of rats in mazes. Mischel 
and Shoda (1995) went a step further, however, by computationally instantiating 
their theory as a neural network. Within this network, individual differences in 
interactions between components were represented as differences between 
connection weights. The neural network made it possible to simulate the effects of 
individual variations on both situation-dependent and overall performance trends, 
and to show how interactions of psychological components can give rise to both 
behavioral traits and idiosyncratic, situation-dependent, behavioral profiles. This 
framework also provided a way to conceptualize how environment-gene 
interactions might impact individual differences (e.g., connection weights may be 
differentially adjusted by experience depending on their initial values). Although 
Mischel and Shoda’s theory was developed to account for variations in social 
behavior rather than variations in learning capacity, it illustrates how the 
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limitations of earlier components-based approaches might be overcome through 
the use of computational models. 

 
Identifying Prototypical Individual Differences in Learning 

 
All of the approaches described above attempt to succinctly characterize 

individual variations, but with different emphases. Factor analysis captures key 
differences between individuals with as few dimensions as possible. These 
dimensions have been related to latent behavioral traits that are analogous to 
physical traits. Component analyses instead emphasize context-dependent 
descriptions of behavioral dynamics. This approach assumes that the processes 
underlying individual variation are extremely numerous and complex in their 
relation to observed behavior, and that numerous scenarios could lead to 
correlations that do not depend on behavioral traits.  

Given the hundreds of thousands of genes that exist in the animal 
kingdom, the complex effects that the difference of even a single gene can have on 
an individual, and the fact that most variations in neural connections are not 
directly controlled by genes, the sources of individual differences in learning 
capacity are likely to be numerous. On the other hand, similarities in neural 
organization and synaptic mechanisms across subgroups of organisms, such as 
mammals, provide some hope that systematic patterns of variation in the sources of 
learning capacity exist. Similarly, the generality of many conditioning phenomena 
across species suggests that certain constraints on learning are shared across 
species.  
 
Mapping recurrent patterns 
 

Rather than arguing that one descriptive framework is better or worse than 
another for characterizing individual differences in learning capacity, the goal of 
this section is to further explore ways of overcoming past limitations of the 
components approach to characterizing individual differences in learning capacity. 
Although this approach lacks the mathematical rigor, simplicity, and elegance of 
factor analysis, it has the advantage that it does not assume that psychological 
dimensions are fixed, universal, or few in number. Components-based analyses are 
thus better able to accommodate processes like experience-expectant and 
experience-dependent plasticity that can change the nature of how learning 
proceeds.  

As noted above, Tryon’s (1940) approach to identifying components was 
to combine statistical regularities in position-dependent maze errors with his 
personal experiences watching rats perform in mazes. Both sources of information 
reflect the regularity of behavior: statistics reveal repetitions across rats, and 
personal observations reveal repetitions of salient actions exhibited by many rats. 
Tryon’s approach suggests a more general way of isolating regularities in behavior 
across individuals that emphasizes frequency of occurrence rather than correlations 
between variables. The goal of such a descriptive framework would not be to 
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isolate “common causes” of correlated measures, but to organize the full range of 
observed outcomes in such a way that recurrent patterns of behavior and 
behavioral change can be related to one another.  

A classic example of this approach is the development of the periodic table 
of elements, which maps recurrent patterns in the properties of matter onto a two 
dimensional grid. Early versions of the periodic table did not identify unifying 
principles or overarching dimensions that linked all matter, but simply summarized 
the fundamental forms of matter that were known and spatially organized them 
based on similarities in qualities. The “elemental” components of learning capacity 
remain unknown, and how variations in these components might engender 
individual differences in learning capacity is similarly unclear (however, see Hull, 
1945; Mercado, 2008). Nevertheless, assuming that there are such elemental 
components, one would expect that their variation should lead to predictable, 
systematic patterns of individual differences in learning capacity.  

The approach proposed here for identifying patterns of individual variation 
in learning capacity discards the assumption that components or factors underlying 
individual variation are independent, as well as the assumption that their 
interacting effects can be adequately conceptualized in terms of linear summations. 
It seeks to identify regularities in quantitative measures of learning capacity and 
examine relationships between these regularities. This approach of course has its 
own limitations, including the lack of any theoretical criteria for selecting the 
behavioral tasks and measures used to search for such regularities. 
 
Lashley’s learning profiles 
 

Human metrics for assessing individual differences in intellectual capacity 
or learning potential usually require responses to verbalizable test items. This is 
true for both static and dynamic testing methods and for both intelligence and 
personality metrics. Because these sorts of measures are useless for comparative 
purposes, the focus here is on measures of learning collected from non-humans, 
specifically rats. The main data Tryon (1940) used for identifying components of 
maze learning ability were specific types of errors that rats made within a complex 
maze at different stages of learning. Simpler performance measures will be used 
here to illustrate an alternative implementation of the components-based approach, 
but almost any measure of learning or behavior during a task could in principle be 
used. The basic goals of the current analysis were to determine whether there were 
regularities in individual rats’ patterns of performance, and if so, what those 
patterns were like. 

In this analysis, learning capacity was operationalized as the performance 
of rats in several tasks, as reported by Lashley (1929) in his classic studies 
examining the neural mechanisms of learning. Lashley collected measures from 59 
rats (including 37 with cortical damage) performing ten tasks; these measures 
included the time each rat required to reach a performance criterion, the number of 
trials to reach criterion, and the number of errors. Five of these tasks involved 
training (in a maze or in a visual discrimination task); the other five were memory, 
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generalization, or motor control tasks. I restricted my data analyses to rats that 
completed at least four of the five training tasks (fourteen of Lashley’s rats died 
before completing all tasks). Measures of speed and accuracy for learning in each 
task were computed by dividing trial and error counts by total time tested, yielding 
thirteen performance measures for 43 rats; missing data points were replaced by 
mean values. In this way, a 13-element vector was constructed corresponding to 
each rats’ performance across several tasks. The measures used in the current 
analysis do not capture variations in learning trajectories over time. It is 
straightforward, however, to expand the space of descriptors used to describe each 
individual so that they include such measures when they are available, or to treat 
individuals measured at different times as separate points in the input space. 

Rats’ performance profiles were used to train a self-organizing feature map 
created with the data mining program Orange (Demsar, Zupan, Leban, & Curk, 
2004). The self-organizing map is a type of unsupervised neural network that 
adjusts its response properties so that nodes within the map have connection 
weight vectors similar to the most frequent input vectors (Kohonen, 2001). With 
training, the map becomes spatially organized such that nodes that are closest 
together respond to similar inputs. The map provides a graphical representation of 
inputs that characterizes both the prevalence of different input vectors, and 
systematic relationships between inputs. Maps are unsupervised in that no 
predefined classes constrain the spatial organization of the map or connection 
weight values. Instead, map nodes acquire their selectivity to certain inputs by 
competing to match an input, and then adjusting the weights of the winner node 
and its neighbors to increase their similarity to “matching” inputs (by minimizing 
the Euclidean distance between the input and weight vectors). In this way, map 
nodes effectively generate prototypes of inputs. Although self-organizing maps are 
unsupervised, many parameters impact the final structure of the map. Unlike 
classical statistical approaches, the details of map structure and weight values may 
vary each time a simulation is performed. Despite this variability, consistent 
prototypes and spatial organizations typically emerge. 

Figure 1 shows a map that was trained with the 43 performance profiles 
from Lashley’s rats. Each hexagon corresponds to a node in the map, and the size 
of the circle within each hexagon indicates the number of inputs that best matched 
a particular node (the smallest circle corresponds to one rat, and the largest to 
seven rats). To reveal the structure of the map, circles were color-coded 
corresponding to whether the matching rats were intact (blue), or had lesions to 
more (red) or less (green) than 25% of their cortices. The pie charts show the 
proportion of rats from each of these three groups associated with each map node. 
Note that without any explicit information about brain damage being provided to 
the self-organizing map, the map has become spatially organized such that intact 
rats are associated with the upper right corner of the map, rats with major damage 
are associated with the bottom of the map, and rats with intermediate damage are 
in the middle. The map has “discovered” a systematic difference in learning 
capacity between individual rats that corresponds roughly to the amount of intact 
cortex. This is the same relationship that Lashley (1929) found through 
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correlational analyses, and subsequently used as the basis for his theory of cortical 
equipotentiality.  

 

 
 
Figure 1. Best matching nodes of a 5x5 self-organizing map after training with performance profiles 
from 43 rats. Each hexagon corresponds to a node in the map. The size of the circle within each node 
indicates the number of rats that best matched that node (the smallest circles correspond to a single 
rat). The pie chart within each circle shows the proportion of best matching rats that had brain 
damage: blue = intact; green = minor damage; red = major damage. 

 
Analyses of spatially contiguous nodes within the map provide a profile of 

the prototypical rat from each of the three levels of brain damage (Fig. 2). These 
performance profiles once again reveal the classic effect of cortical damage on 
maze accuracy and the time required to reach criterion. But, the profiles also 
suggest a surprising contrast between maze learning and visual discrimination 
learning that was not noted by Lashley (1929). Specifically, as accuracy in maze 
learning decreases with damage, accuracy in learning a visual discrimination task 
appears to increase. In other words, the more cortical damage a rat had, the better it 
learned to perform the visual discrimination task. Although the nature of these 
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analyses precludes tests of the statistical significance of this effect, it qualitatively 
appears comparable in magnitude to the deleterious effects of brain damage on 
maze learning, and is much more counterintuitive. Although a similar negative 
relationship between complex and simple learning tasks has previously been 
observed in intact humans (Broverman & Klaiber, 1969), reports of brain damage 
increasing learning capacity in humans or other animals are relatively rare. This 
result fortuitously illustrates one way in which self-organized, spatial sorting of 
learning-related behavioral profiles can potentially generate new insights into the 
mechanisms underlying variations in learning. There is no prima facie reason to 
expect that the mechanisms that enable rats to learn mazes might interfere with 
their ability to learn visual discriminations, or that weakening rats’ “spatial 
abilities” through structural damage might simultaneously increase their “visual 
abilities.”  The behavioral patterns revealed by the self-organizing map analysis, 
however, suggest that this may have happened in Lashley’s rats. It can, of course, 
be argued that appropriately designed factor analyses would also have revealed this 
pattern. This begs the question of how one determines an appropriate design 
without knowing in advance what the psychologically relevant patterns are.  
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Figure 2. Mean values from self-organizing map nodes (across nodes and tasks) after training for 
those nodes that responded selectively to performance measures from rats with either no cortical 
damage (intact - white), less than 25% of cortex removed (minor damage - gray), or greater than 25% 
of cortex removed (major damage - black). More damage was associated with lower accuracy and 
longer training times in maze tasks, but greater accuracy in a visual discrimination task. 

 
The focus on prototypical performance profiles made possible by the self-

organizing map effectively emphasizes systematic differences between profiles, 
and minimizes overlapping features, in much the same way as analyses of 
extremes in statistical distributions (Broverman & Klaiber, 1969; Kagan, Snidman, 
& Arcus, 1998). This approach thus can reveal patterns that might be obscured by 
more global correlational approaches (Broverman & Klaiber, 1969). Furthermore, 
the map preserves the heterogeneity of behavioral profiles from individual rats. For 
example, although most rats with large lesions match the prototypical profile, three 
rats (associated with the upper left corner of the map) appear to diverge 
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systematically from this profile. These three rats may represent a distinct subgroup 
in which either the specific location of cortical damage made a difference, or they 
might be rats whose compensatory mechanisms were atypical. Regardless, the map 
avoids the oddity of describing individuals with large lesions in terms of summary 
statistics (or latent variables) that might not be representative of any individual in 
the sample (see Magnusson, 1998, for further discussion of this issue). Behavioral 
profile maps can potentially aid in identifying especially interesting individuals or 
groups with extraordinary potential for clarifying mechanisms of learning. For 
example, the amnesic patient H.M. was unique among individuals that received 
surgical brain lesions as a treatment for epilepsy, and it was his unique behavioral 
profile that made him invaluable to memory research (Squire, 2009). 

As noted earlier, the purpose of this simulation was not to demonstrate that 
components-based, neural network analyses of individual differences are superior 
to factor analytic approaches, but to explore whether neural networks might 
facilitate the quantitative analysis of complex behavioral patterns. The example 
simulation shows that much of the information that can be obtained through 
traditional correlational analyses is also revealed through frequency-based sorting 
of behavioral profile patterns. It also illustrates how self-organized “clustering” of 
behavioral profiles can reveal potentially important patterns of individual variation 
that would be difficult to discern using factor analytic approaches. Finally, the 
simulation shows that individual variations in learning capacity can be 
systematically and objectively characterized in ways that do not require any 
correspondence between existing psychological terms and statistically-derived 
dimensions in trait space.  

 
Investigating Differences in Learning: Expanding the Scope 

 
Describing a person as intelligent is as reasonable as describing them as 

strong or tall. All of these descriptors can provide useful information about what a 
person is like relative to others. Such terms can also be usefully applied to animals 
other than humans, but unlike strength or height, the relative intelligence of 
different animals is open to interpretation. Similarly, when detailed comparisons of 
peoples’ intellectual abilities are attempted, controversies often arise. Why is this?  
In everyday usage, the word intelligence often refers to one’s impression of an 
individual’s actions (similar to “niceness” or “weirdness”). The likelihood that 
someone is described as intelligent depends on what they achieve. It is thus natural 
to infer that the likelihood that someone will be described as intelligent depends on 
how intelligent they actually are. However, this leap from label to quality is 
precarious. For instance, the likelihood that someone will be described as blessed 
also varies, but few scientists would infer from this that some quality or trait of 
blessedness within individuals accounts for this variation.  

Current psychometric frameworks for describing individual differences in 
intelligence parallel pre-existing intuitive notions about the mental abilities of 
humans, as evidenced by the lexicon. Whether such naturalistic conceptions of 
intelligence are an adequate foundation for understanding individual variation in 
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mental abilities remains unclear. These intuitions potentially could obscure 
understanding of individual differences in the same way that visual perception in 
daily life distorted understanding of the solar system’s structure and misled people 
about the nature of matter. For example, Aristotle described variations in matter as 
resulting from different combinations of the elements of fire, earth, air, and water. 
This dimensionalization of physical properties provides a convenient system for 
classifying matter, but is inadequate for describing differences in atomic structure. 
Factor analyses of intelligence measures have proven useful in describing and 
ranking individuals along various psychological dimensions, as well as for 
predicting future performance in certain circumstances. Nevertheless, the fact that 
quantitative scales can be developed that assign aptitude scores to individuals 
provides no evidence that intelligence refers to one or more traits possessed by 
individuals. Techniques that search for structure in behavioral patterns without the 
need to conform to existing trait labels may provide new insights into the qualities 
and processes that underlie individual differences in intellectual abilities (Lee & 
Webb, 2005; Mercado, 2008).  
 
Beyond trait space 

 
There is increasing awareness among researchers studying human 

individual differences that statistical dimensionalization of one-shot performance 
measures collected from groups of individuals provides an incomplete view of how 
individual’s abilities vary (Borsboom et al., 2003; Hofmann, Jacobs, & Gerras, 
1992; Hultsch et al., 1976; Nesselroade, Gerstorf, Hardy, & Ram, 2007; Sternberg 
& Grigorenko, 2002; Thelen, 1990). For example, the person-centered approach to 
understanding individual differences during development focuses on analyzing 
patterns across multiple descriptors of an individual (Bergman, 1998, 2000), and 
emphasizes that the context of the measures is key to interpreting their relevance 
(Hinde, 1998; Lau & Roeser, 2008; Magnusson, 1998). Similarly, Shoda and 
Mischel (2000) suggest that dynamic, situation-dependent patterns of responding 
that are stable within an individual (called “behavioral signatures”) provide a more 
comprehensive way of characterizing individual variations in personality than the 
more traditional five-dimensional space of personality traits derived through factor 
analyses. These approaches, which closely parallel those advocated by Tryon 
(1940) in animal studies and Brown and Thomson (1925) in human intelligence 
research, suggest that more flexible methods for characterizing individual 
differences in intellectual abilities are feasible. 

 The self-organizing neural network analysis described above is just one 
example of how automated, nonlinear, numerical classification techniques can be 
used to characterize individual differences in learning capacity (Clifford & 
Stephenson, 1975; Dunn & Everitt, 1982; Thelen, 1990). This approach can be 
viewed as an extension of more traditional clustering analyses (Green, 1990; 
Tryon, 1958). A major advantage of this kind of analysis is that it reveals patterns 
and trajectories of patterns without relying on preconceptions about how the 
patterns should look, how stable they should be, or how different aspects of the 
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patterns should interact. Self-organizing maps, in particular, are not constrained to 
grouping patterns based on a small number of recognizable features or to creating 
hierarchical clusters or taxonomies of patterns. Technological advances 
comparable to those made in sequencing and comparing DNA across species may 
increase the ease and precision with which individual variations in learning can be 
analyzed. With suitable analytical frameworks for characterizing individual 
differences in learning capacity, neural or psychological components contributing 
to individual differences might be mapped out in a fashion analogous to the human 
genome or the periodic table of elements. Of course, one disadvantage of the 
periodic table relative to Aristotle’s dimensional description of matter is that it is 
less intuitive, and therefore more unwieldy. Everyone has some experience with 
fire and water, but few people have any intuition about what Indium, Cerium, or 
Scandium are like. Techniques for sorting behavioral profiles may similarly reveal 
patterns that bear little relation to existing taxonomies of mental dimensions. The 
extent to which such patterns can provide novel insights into the origins and nature 
of individual variations in learning capacity is an empirical question that can only 
be answered by expanding beyond traditional trait-based psychometric 
frameworks.  
 
From intelligence to learning capacity 
 

Learning capacity may vary systematically within and across species in 
ways that directly relate to the neural substrates of learning (Mercado, 2008), and 
may also vary as a function of the complexity of the task to be learned. For 
example, the learning mechanisms subserving perceptual-motor learning capacity 
may vary more (or less) across individuals than those involved in cognitive skill 
learning. Recent work on intelligence measures has revealed that the ubiquitous g 
factor may be the outcome of multiple component processes interacting during 
development rather than some unitary trait across which individuals vary (van der 
Maas et al., 2006). These component processes differ from the semi-independent 
faculties presumed to underlie “multiple intelligences,” which correspond more 
directly to intuitive notions about what people can do intellectually (Gardner, 
1999). These processes have been conceptualized as cognitive abilities like 
working memory, or decision and reasoning processes (Sternberg, 1977; van der 
Maas et al., 2006), but could just as easily correspond to learning mechanisms 
(Mercado, 2008). For example, Hebb (1949) theorized that perceptual and 
cognitive abilities acquired through learning experiences can increase learning 
potential, which can in turn facilitate the acquisition of new intellectual 
competencies. From this perspective, intellectual abilities are a consequence of 
learning capacity, and intelligence tests measure a product rather than a trait.  

Intelligence tests are useful tools for ranking individuals and making 
educational decisions, but their potential for clarifying the processes that give rise 
to variations in intellectual abilities is limited. In particular, they currently preclude 
comparisons across species and limit developmental comparisons, both of which 
are critical to understanding the origins of mental abilities. New techniques for 
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characterizing individual differences in the learning abilities of non-humans could 
provide a way to break away from the intuitive dimensionalization of latent traits, 
and would make it possible to experimentally explore the mechanisms underlying 
that variation in ways that will never be feasible with humans (Harrington, 1988). 
For example, researchers could examine precisely how different genetic, neural, 
and environmental treatments impact learning capacity and cognitive abilities 
during adulthood. Such studies can provide new insights not only into the 
mechanisms driving variation, but also into the nature of the processes that give 
rise to various intellectual abilities (Mercado, 2008, 2009).  
 

Future Directions in Comparative Assessments of Learning Capacity 
 
Anyone who has ever trained animals is well aware that individuals often 

vary in the speed with which they improve and in their ultimate performance 
levels. Kohler (1927) noted the superior abilities of Sultan relative to other 
chimpanzees he studied, and Premack reported large differences between the 
competencies of different chimpanzees (Premack, 1976; Premack & Premack, 
1983). Similar intra-species variations in cognitive skill learning capacity have also 
been reported in monkeys (Smith, Beran, Redford, & Washburn, 2006; Smith, 
Shields, Schull, & Washburn, 1997), dolphins (Mercado, Murray, Uyeyama, Pack, 
& Herman, 1998), and dogs (Coren, 1994). These differences in learning capacity 
correspond closely to what a layperson would describe as variations in intelligence 
- pets that can learn tricks quickly are described as clever, whereas those that 
cannot are “slow.”  

The prevalence and relevance of individual variations in learning capacity 
were recognized early on in the development of comparative psychology (Maier & 
Schneirla, 1935; Mills, 1898; Washburn, 1913). In the classic text, Principles of 
Animal Psychology, Maier and Schneirla (1935) proposed that studying individual 
variations was one of five necessary steps required to understand animal behavior. 
Nevertheless, there are few detailed scientific reports of how learning capacity or 
intellectual ability varies within any non-human species. Why have scientists given 
so little attention to analyzing individual variations in the learning capacity or 
intelligence of animals other than humans?  In part, this neglect may reflect the 
Cartesian perspective that human intellectual abilities arise from reasoning minds, 
whereas other animals’ abilities reflect mindless learning or genetic algorithms 
(Jensen, 1985; Macphail, 1990). However, it may also be a consequence of the 
emphasis early experimental psychologists placed on identifying universal laws of 
behavior. For example, Thorndike (1898) suggested that even cross-species 
differences in learning capacity, though clearly present, were of minimal 
theoretical importance. He and many other prominent learning theorists believed 
that the core scientific problem was to identify learning laws that applied to all 
organisms in all contexts. Ecologically-minded comparative psychologists 
eventually rejected the assumption that species-differences were irrelevant to 
understanding how animals learn (Healy, Bacon, Haggis, Harris, & Kelley, 2009; 
Shettleworth, 1998, 2009; Timberlake, 1994, 2001). Nevertheless, most 
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comparative research continues to emphasize patterns of abilities prevalent across 
groups of subjects, treating individual differences in learning capacity within 
species like variations in the shape of gold – an incidental feature that reveals little 
of importance.  

Future development of objective methods for experimentally 
differentiating animal geniuses from dullards would facilitate more direct 
comparisons between learning mechanisms, learning capacity, and intellectual 
variability in humans and other animals. While these methods may include 
traditional factor analytic approaches, the complexity of learning mechanisms 
suggests that techniques for sorting behavioral patterns may be better suited for 
identifying and understanding the processes that give rise to variations. Even more 
important to future progress, however, is the development of new experimental 
designs that focus on revealing and understanding individual differences rather 
than on minimizing them. Just as studying a broader range of species can provide 
new insights into the behavior of all species (including humans), so too can 
studying a broader range of individuals within each species. 
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