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The elliptical instability is a generic instability which takes place in any rotating flow
whose streamlines are elliptically deformed. Up to now, it has been widely studied in
the case of a constant, non-zero differential rotation between the fluid and the elliptical
distortion with applications in turbulence, aeronautics, planetology, and astrophysics.
In this letter, we extend previous analytical studies and report the first numerical and
experimental evidence that elliptical instability can also be driven by libration, i.e.,
periodic oscillations of the differential rotation between the fluid and the elliptical
distortion, with a zero mean value. Our results suggest that intermittent, space-filling
turbulence due to this instability can exist in the liquid cores and subsurface oceans
of so-called synchronized planets and moons. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4729296]

The longitudinal libration of a so-called synchronized planet or moon, i.e., the oscillation of its
axial rotation rate whose mean value is otherwise equal to the orbital rotation rate, arises through
its gravitational coupling with its closest neighbors.1, 2 In the body interior, the interaction of a
fluid layer (e.g., an iron rich liquid core or a subsurface ocean) with the surrounding librating
solid shell resulting from viscous, topographic, gravitational, or electromagnetic coupling, leads
to energy dissipation and angular momentum transfer that need to be accounted for in the planet
thermal history and orbital dynamics, and possibly in its magnetic state.3 A number of studies
have been devoted to libration-driven flows in axisymmetric containers to investigate the role of the
viscous coupling. The longitudinal libration in an axisymmetric container can drive inertial waves
in the bulk of the fluid as well as boundary layer centrifugal instabilities in the form of Taylor-
Görtler rolls.4–9 In addition, laboratory and numerical studies9–12 have corroborated the analytically
predicted generation of a mainly retrograde axisymmetric and stationary zonal flow in the bulk, based
upon nonlinear interactions within the Ekman boundary layers.9–11, 13, 14 Although practical to isolate
the effect of viscous coupling, the spherical approximation of the core-mantle or ice shell-subsurface
ocean boundaries, herein generically called the CMB, is not fully accurate from a planetary point of
view and very restrictive from a fluid dynamics standpoint. Indeed, due to the rotation of the planet,
the gravitational interactions with companion bodies and the low order spin-orbit resonance of the
librating planets we are considering, the general figure of the CMB must be ellipsoidal with a polar
flattening and a tidal bulge pointing on average toward the main gravitational partner.15

The fluid dynamics that occurs in a rapidly rotating ellipsoidal cavity has been widely studied
in the case of constant but different rotation rates of the fluid and the elliptical distortion. This
corresponds in geophysical terms to a non-synchronized body with a constant spin rate �0, subject
to dynamical tides rotating at the constant orbital rotation rate �orb. In particular, it has been shown
that this elliptically deformed base flow can be destabilized by the so-called tidally-driven elliptical
instability (TDEI).16, 17 The elliptical instability can be seen as the local instability of elliptical
streamlines,18–20 or as the parametric resonance between two free inertial waves (resp. modes) of
the rotating unbounded (resp. bounded) fluid and an elliptical strain, which is not an inertial wave
or mode.21, 22 Such a resonance mechanism, confirmed by numerous works in elliptically deformed
cylinders23–25 and ellipsoids,26–28 also operates for triadic resonance of three inertial modes, proposed
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to explain the secondary instability of the elliptical instability.29, 30 This triadic resonance of three
inertial modes also applies for the inertial precessional instability in cylinders31, 32 and spheroids:33, 34

there, the base flow forced by precession is itself an inertial mode (e.g., the so-called Poincaré or
tilt-over mode in the spheroid35–38), which resonates with two inertial modes.

It has been shown that selected resonances of the TDEI are sensitive to the ratio of the rotation
rates of the fluid and the elliptical distortion.28, 39 In particular, the elliptical instability is known
to vanish in the case of synchronous rotation �0 = �orb. But theoretical arguments suggest that
oscillations around this synchronous state may be sufficient to excite elliptical instability.17, 40, 41 This
could be of fundamental importance in planetary liquid cores and subsurface oceans of synchronized
bodies, where librations are generically present. This letter thus aims at validating the existence of a
libration-driven elliptical instability, hereafter referred to as LDEI. To do so, we first extend previous
analytical studies17, 40, 41 using a local Wentzel-Kramers-Brillouin (WKB) approach that allows us
to determine a generic formula for the growth rate of LDEI. We then present the numerical and
experimental validation of the existence of the LDEI, in good agreement with the theoretical results.
Finally, implications for planets and moons are briefly discussed.

We consider a homogeneous, non-conductive, incompressible, newtonian fluid enclosed in
a librating triaxial ellipsoid (Figure 1). In the container frame of reference, the equation of the
ellipsoidal boundary is written as x2/a2 + y2/b2 + z2/c2 = 1, where (x, y, z) is a cartesian coordinate
system with its origin at the center of the ellipsoid, with x̂ along the long equatorial axis a, ŷ along
the short equatorial axis b, and ẑ along the rotation axis c. We define the ellipticity β = (a2 − b2)/(a2

+ b2) and the aspect ratio c* = c/R, where R stands for the mean equatorial radius R =
√

(a2 + b2)/2.
The motion of longitudinal libration of the container can be modeled by a time dependency of its
axial rotation rate �(t) = �d + �φ ωlsin (ωlt), where �d represents the mean rotation rate of the
container (d for diurnal), �φ the amplitude of libration in radians and ωl the angular frequency
of libration. In the frame of reference attached to the container, the equations of motion, made
dimensionless using R as the length scale and �−1

d as the time scale, become,

∂u
∂t

− u × (∇ × u) + 2 [1 + ε sin( f t)] ẑ × u = −∇	 + E ∇2u − ε f cos( f t)(ẑ × r), (1)

∇ · u = 0. (2)

In Eq. (1), 	 is the reduced pressure, which includes the time-variable centrifugal acceleration. The
Ekman number E is defined by E = ν/(�dR2), where ν is the kinematic viscosity, the dimensionless
libration frequency f is defined as f = ωl/�d, and ε is the libration forcing parameter defined by
ε = �φf. In the limit E � 1, the flow can be decomposed into an inviscid component U in the
volume and a viscous boundary layer flow ũ that satisfies the no-slip boundary condition on the
CMB. Introducing this separation40 proposed the following solution to the inviscid equations of
motion subject to the non-penetration condition at the CMB:

U = −ε sin( f t)
[
ẑ × r − β ∇(xy)

]
. (3)

It can be shown that Eq. (3) provides a solution of the inviscid form of (1) in the bulk; the inertial
forces are balanced by the pressure gradient. No net zonal flow can result from the nonlinear
interactions in the quasi-inviscid interior,13 since pressure gradients alone cannot drive net zonal
flows. However, the no-slip boundary condition is not entirely fulfilled by this solution: viscous

FIG. 1. (a) Mean rotation rates involved in our modelized planetary fluid layer: the elliptical (tidal) deformation rotates at
the mean orbital rate �orb, the external solid boundary has a constant tangential velocity imposed by the mean planetary
spin rate �d and the fluid mean rotation rate in the bulk of the fluid is �0 (possibly different from �d in a general case12).
(b) Schematic view of the oscillating triaxial ellipsoidal container.
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corrections in the Ekman boundary layer must be considered, whose nonlinear interactions generate
a zonal flow in the bulk,10, 13, 14 as observed in axisymmetric containers.9–12

In addition to these laminar and mostly two-dimensional (2D) motions, Kerswell and Malkus40

first suggested that turbulent three-dimensional (3D) motions can be excited by an elliptical insta-
bility corresponding to a parametric resonance involving two free inertial waves and strain of the
inviscid base flow (3). Since the base flow is of azimuthal wavenumber m = 2 and temporal frequency
f, this parametric resonance occurs only when ma − mb = ±m = ±2 and λa − λb = ±f, where ma,
mb are the azimuthal wavenumbers of the two resonating free inertial waves and λa, λb are their
frequencies non-dimensionalized by �d. In addition to these resonance conditions, the two waves
must have close radial and azimuthal structures to interact positively, corresponding to the principal
resonances.42 This set of rules forms the basis for a global analysis of the elliptical instability, which
thus requires an exact description of the inertial modes in the considered ellipsoidal geometry. Un-
fortunately, little is known about inertial modes for the finite values of β considered here. This makes
a characterization of the instability by global analysis presently out of reach for our simulations or
experiments.

As an alternative, a local stability analysis of the base flow (3) can be performed, independently
of the geometry of the container. Here, we make use of the results presented in Ref. 41 for the
special case f = 1, later complemented.17 The local analysis is based on the WKB method,20 which
allows an upper bound to be derived for the growth rate of the elliptical instability. In this approach,
perturbations are assumed to be sufficiently localized so as to be advected along flow trajectories.
The perturbations are sought in the form of local plane waves characterized by their wavevector
k(t), with norm k � 1, and tilted by an angle ζ to the rotation axis. Elliptical instability appears by
resonance of two identical plane waves, only differing by their direction of propagation. The inviscid
growth rate σinv is obtained by solving the Euler equations at the first order in βε:

σinv = 16 + f 2
res

64
βε, (4)

where fres �= 0 stands for a resonant forcing frequency.17 In the strict WBK limit k � 1, the dispersion
relation between the forcing frequency and the excited plane waves is fres/2 = ±2cos ζ ; hence, all
forcing frequencies between −4 and +4 should be resonant. However, by accounting for the shape
of the container and for viscous damping, similarly to the TDEI, resonances are only possible
for selected couples of inertial waves, especially at the rather large Ekman numbers accessible
to numerics.20, 28 Thus, the system resonates only for selected values of the forcing frequency.
Introducing a small detuning between the libration frequency f and a given exact resonance fres[see
Method in Ref. 20, for the standard case of TDEI] and taking into account the dominant viscous
damping in the Ekman layer, it can be shown that excitation of the instability takes place around
each resonant frequency in a band f ∈ [ fres − σinv; fres + σinv], where the typical growth rate is

σ =
√

σ 2
inv − ( fres − f )2 − K E1/2. (5)

Here, K ∈ [1; 10] depends on the excited mode. The first term on the left hand side of (5) defines the
range of unstable frequencies around a particular resonance; the second term describes the viscous
damping of the instability. Besides the strict WBK limit, we expect this equation to be generally
valid, once the specific values of the resonant frequency fres and of the damping factor K have been
determined [see validation for the case of TDEI in Ref. 28]. Since both fres and K depend on the
selected inertial waves, both values can vary with the shape of the container.

To quantitatively validate the existence of LDEI and the above analytical results, we combine
a systematic numerical study with selected laboratory experiments. We use the software Comsol
Multiphysics R© based on the finite elements method to perform our simulations. We work in the
container frame of reference where the ellipsoidal shape of the container is stationary, and we solve
the equations of motion (1) subject to no-slip boundary conditions, starting from a fluid at rest
at time t = 0. We refer the reader to Ref. 43 for more information on the numerical method. A
first series of computations has been performed in 2D to test the realization of the inviscid base
flow (3). A typical result is shown in Figure 2. After a transient behavior scaling as a typical
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FIG. 2. (a) Temporal evolution of U = |u| at the location (x = 0.5, y = 0), as calculated by the 2D version of our numerical
model for f = 0.5, ε = 0.1, β = 0.1, and E = 4 × 10−4. (b) Zoom (t > 1965) of figure (a) once the flow is established: the
continuous gray curve (red online) stands for the numerical results, and the dashed black curve for the theoretical flow (3).

viscous time in t ∼ E−1 (Figure 2(a)), the theoretical base flow (3) is indeed established in the bulk
(Figure 2(b)), whereas the corrections necessary to fulfill the tangential part of the boundary con-
ditions are restricted to the Ekman layer of depth E−1/2. In the 3D ellipsoid, the Ekman pumping
associated with the Ekman layer acts to significantly accelerate the establishment of the base flow,
and we thus expect (3) to be the starting velocity field.

Series of numerical simulations have then been performed in a triaxial ellipsoid as a func-
tion of the libration frequency f, the libration amplitude ε, and the aspect ratio c*, keeping
E = 5 × 10−4 and β = 0.44. An example of the temporal evolution of the absolute value of
the axial velocity integrated over the volume, W , is presented in Figure 3(a) for the case f = 1.76,
ε = 0.92, and c* = 0.95. Libration-driven elliptical instability is present, characterized by intense
3D motions with rich temporal dynamics on typical times much longer than the spin and libration
periods. In particular, we observe characteristic cycles of growth, saturation, collapses, and relam-
inarization towards the base flow, already observed for the classical case of TDEI.28 The typical
changes in the flow field during one cycle are illustrated in Figure 3(b) which shows the norm of the
velocity in meridional and equatorial cross sections.

The growth rate of LDEI can be obtained by fitting the growing parts of time series of the
integrated axial velocity W with an exponential function. The systematic evolution of this growth
rate with f for c* = 1 is shown in Figure 4(a), in comparison with the analytical formula (5), where
fres and K have been determined by adjusting (5) to each of the two local maxima of the numerically
determined growth rate. We observe two bands of frequency centered around fres ∼ 1.83 and
fres ∼ 1.67 where an elliptical instability grows. Good agreement is recovered for all neighboring
values of f, validating the generic Eq. (5).

(a) (b)

p1

p2

p3

p1 p2 p3

FIG. 3. (a) Time evolution of the absolute value of the axial velocity integrated over the whole container, non-dimensionalized
by the mean value between times t = 100 and t = 200 (i.e., after the spin-up and before the potential destabilization). Numerical
simulations are performed for E = 5 × 10−4, β = 0.44, f = 1.76, ε = 0.92, and c* = 0.95. (b) |u|, in a meridional cross
section and in the plane z = −0.5. The sequence shows, from left to right, the typical field |u| during the exponential growth,
at saturation and during the collapse.
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FIG. 4. Growth rate σ of the LDEI for E = 5 × 10−4, β = 0.44, ε = 0.991 (σ is set to 0 when the LDEI is not excited).
(a) As a function of the libration frequency f for c* = 1. Also shown here as a solid curve is the theoretical growth rate (5),
where fres and K is obtained by adjusting the analytical formula to each of the two local maxima of the numerical growth
rate. (b) As a function of c* for f = 1.8. Note that the LDEI is excited in spheroidal geometries (c = b or c = a).

The evolution of σ as a function of c* at a fixed resonant frequency f = 1.8 is shown in
Figure 4(b). Although less dramatically than the frequency detuning, the geometrical factor c* can
also alter σ at a given frequency. We observe that the optimal geometry at the resonant frequency
f = 1.83 is realized for c* ∼ 1, as already shown in Ref. 43 for the classical elliptical instability
(TDEI). In contrast with the TDEI studied in Ref. 43, we have no theoretical arguments that precludes
the excitation of the LDEI in spheroidal geometries (c = b or c = a). In Figure 4(b), we label these
two particular cases, showing that the growth rates in these geometries are positive. Note that this
does not refute the conclusions of Ref. 44, which show that libration in longitude cannot produce a
direct resonance of an inertial mode. Here, the resonance does not occur directly between a mode
and the forcing but between two modes and the forcing in a parametric coupling. The modes excited
in the LDEI are not at the frequency of the forcing (which would be the case for a direct forcing), it
is their frequency difference that is equal to f.

To further validate the existence of LDEI, we have also performed selected laboratory experi-
ments. These allow us to reach smaller values of E, and hence to access more chaotic flows, with the
inconvenience being the difficulty in acquiring precise quantitative measurements and in changing
the shape of the container. Except for the container, the laboratory apparatus is the same as in
Refs. 8 and 11. It consists in an oscillating tank filled with water and centered on a turntable rotating
at a constant angular velocity �d = 0.5 Hz. In order to perform quantitative measurements using
laser doppler velocimetry (LDV), the container consists in one hemi-ellipsoid computer numerical
control (CNC) machined from cast acrylic cylindrical blocks that is polished optically clear, with a
top flat lid that avoids optical distortions. This hemi-ellipsoid, does not allow modes of the LDEI
that are antisymmetric around the equator. Note also that because of manufacturing constraints, the
small axis and the rotation axis of the container are equal, with a = 127 mm, b = c = 89 mm. The
experimental parameters are then β = 0.34, c* = 0.812, and E = 2.7 × 10−5; f and ε have been
changed systematically to explore the ranges f ∈ [0.5 − 2] with ε = 1, and ε ∈ [0 − 1.6] with f = 1,
respectively. Similar to the numerical experiments, we observe a resonance band, here f ∈ [1.43 −
1.66], that is characterized by strong, intermittent, space-filling turbulence. These cases are marked
by periods dominated by strong, small-scale, shear structures, followed by relaminarization period.
These flows are not due to shear instabilities since the system does not exhibit any turbulence at
higher frequency, for which the Rossby number is larger. Since no direct resonance can occur, if
a shear instability was developing for a critical Rossby number it should remain unstable at larger
forcing, regardless of the frequency.

An example of the measured azimuthal velocity is shown in Figure 5 for f = 1.46. As mentioned
earlier, the observed chaotic behavior of the flow as well as the fact that this behavior only appears
for specific frequencies are characteristic of the elliptical instability. Assuming the existence of a
resonant peak of LDEI at f = 1.46, the WKB approach (5) yields a typical growth time 1/(σ�d)
of the instability ranging between 21s for the lower bound of the damping factor K = 1 and 37s
for the upper bound of the damping factor K = 10. As shown in Figure 5, these values are in good
agreement with measurements during each growing phase of the azimuthal flow, further validating
the interpretation of this chaotic behavior in terms of LDEI. Finally, note that even if no resonant
cases have been obtained in this work with f ≤ 1 [the relevant planetary range for f according to
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FIG. 5. Time evolution of the norm of the azimuthal velocity averaged over 10 oscillations for �φ = 0.7 rad (ε ∼ 1) with
β = 0.34 and f = 1.46 (continuous upper curve, red online); β = 0.06 and f = 1.40 (continuous upper curve, blue online).
The measurements are performed at a cylindrical radius Si = 48 mm along the short axis of the mean equatorial ellipse,
1 cm below the top flat surface. We perform a sliding window averaging over 10 oscillations with an overlap of 90%. In
addition we represent the WKB exponential growth for to two extreme values of the damping factor, K = 1 (dotted black) and
K = 10 (dashed black). The letters L and T stand for Laminar and Turbulent. The periods of turbulence, as observed in direct
visualizations, are qualitatively represented by the bands.

Ref. 8], the WKB analysis predicts unambiguously that the LDEI can be excited for an arbitrary |f|
< 4 provided that E is sufficiently small. Experiments at lower E should confirm it in the future.
But the first experimental results presented here, in addition to the numerical simulations and in
agreement with the theoretical analysis, already illustrate the generic feature of the libration-driven
elliptical instability, which appears for different geometries and various ranges of parameters.

In conclusion, studies of flows driven by longitudinal libration made using a spherical CMB
approximation suggest that purely viscous coupling does not lead to significant energy dissipation,
angular momentum transfer nor magnetic field induction at planetary settings.9 These conclusions
should be re-addressed in accounting for the specific triaxial shape of the considered planets, since
space-filling turbulence is observed in the present numerical and laboratory experiments in which
LDEI is excited. A complete understanding of the elliptical instability excited by libration in celestial
bodies requires the characterization of the inertial modes, their frequency, and their viscous decay
factor in the appropriate geometry and for the low values of E relevant to planetary applications.
Nevertheless, the relevance of a LDEI mechanism at planetary settings can be ascertained using the
theory presented here, by estimating a lower bound of the equatorial ellipticity leading to a LDEI.
Using typical values for forced longitudinal libration8 of f = 1, E ∼ 10−14, ε ∼ 10−4, a decay factor
K = 1 and assuming a perfect resonance, Eq. (5) yields to a minimum equatorial ellipticity β ∼
10−3 for excitation of LDEI. This first order estimate is qualitatively comparable with the values
expected for Mercury, Europa, or Io. Thus, the space-filling turbulence resulting from LDEI should
exist within the fluid interiors of librating planetary bodies.

For this work, D. Cébron was partially supported by the ETH Zürich Postdoctoral Fellowship
Program as well as by the Marie Curie Actions for People COFUND Program.
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