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Deep neural network analyses of 
spirometry for structural phenotyping of 
chronic obstructive pulmonary disease
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BACKGROUND. Currently recommended traditional spirometry outputs do not reflect the relative 
contributions of emphysema and airway disease to airflow obstruction. We hypothesized that 
machine-learning algorithms can be trained on spirometry data to identify these structural 
phenotypes.

METHODS. Participants enrolled in a large multicenter study (COPDGene) were included. The 
data points from expiratory flow-volume curves were trained using a deep-learning model to 
predict structural phenotypes of chronic obstructive pulmonary disease (COPD) on CT, and results 
were compared with traditional spirometry metrics and an optimized random forest classifier. 
Area under the receiver operating characteristic curve (AUC) and weighted F-score were used 
to measure the discriminative accuracy of a fully convolutional neural network, random forest, 
and traditional spirometry metrics to phenotype CT as normal, emphysema-predominant (>5% 
emphysema), airway-predominant (Pi10 > median), and mixed phenotypes. Similar comparisons 
were made for the detection of functional small airway disease phenotype (>20% on parametric 
response mapping).

RESULTS. Among 8980 individuals, the neural network was more accurate in discriminating 
predominant emphysema/airway phenotypes (AUC 0.80, 95%CI 0.79–0.81) compared with 
traditional measures of spirometry, FEV1/FVC (AUC 0.71, 95%CI 0.69–0.71), FEV1% predicted 
(AUC 0.70, 95%CI 0.68–0.71), and random forest classifier (AUC 0.78, 95%CI 0.77–0.79). The 
neural network was also more accurate in discriminating predominant emphysema/small airway 
phenotypes (AUC 0.91, 95%CI 0.90–0.92) compared with FEV1/FVC (AUC 0.80, 95%CI 0.78–0.82), 
FEV1% predicted (AUC 0.83, 95%CI 0.80–0.84), and with comparable accuracy with random forest 
classifier (AUC 0.90, 95%CI 0.88–0.91).

CONCLUSIONS. Structural phenotypes of COPD can be identified from spirometry using deep-
learning and machine-learning approaches, demonstrating their potential to identify individuals for 
targeted therapies.

TRIAL REGISTRATION. ClinicalTrials.gov NCT00608764.

FUNDING. This study was supported by NIH grants K23 HL133438 and R21EB027891 and an 
American Thoracic Foundation 2018 Unrestricted Research Grant. The COPDGene study is 
supported by NIH grants NHLBI U01 HL089897 and U01 HL089856. The COPDGene study 
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Introduction
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease of  the lungs that is associ-
ated with substantial respiratory morbidity and health care costs and is now the fourth leading cause 
of  death in the United States (1). COPD is defined by persistent airflow obstruction on spirometry, 
the result of  a combination of  2 distinct structural processes: emphysema characterized by alveolar 
destruction and poor elastic recoil of  the lungs as well as airway disease characterized by airway nar-
rowing and remodeling (2, 3). Although spirometric measures of  airflow obstruction correlate strongly 
with CT measures of  both emphysema and airway disease, spirometry does not discern the relative 
contributions of  these structural disease processes to overall airflow obstruction. Furthermore, recent 
studies demonstrate that approximately half  of  current and former smokers, with no evidence of  spi-
rometric airflow obstruction according to traditional criteria, have evidence of  emphysema and/or air-
way disease (4, 5). These findings suggest that the existing spirometry criteria for airflow obstruction 
are not sensitive to the contributory structural changes.

The inability to accurately and easily differentiate predominant emphysema from predominant air-
way disease hinders the development of  targeted therapies (6). Furthermore, these structural changes 
have significant consequences beyond those due to lung function impairment. The degree of  emphysema 
and airway wall thickening on CT are both independently associated with worse respiratory quality of  
life, dyspnea, and mortality (7–13). Despite these associations, CT is often not recommended for diag-
nosis in clinical practice due to concerns about high costs and risk of  radiation. There are currently no 
low-cost, low-risk tools to phenotype the structural components of  COPD, and even its diagnosis relies 
on demonstrating abnormalities in discrete components of  spirometry, such as the forced expiratory 
volume in first second (FEV1) and the ratio of  FEV1 to the forced vital capacity (FEV1/FVC). Specific 
components of  the spirometric flow-volume and volume-time curves have been analyzed to identify early 
and mild COPD but have not been successful in distinguishing emphysema-predominant disease from 
airway disease predominance (14–20).

We hypothesized that machine-learning approaches trained on all the data points contained in the 
expiratory flow-volume curve would accurately distinguish individuals with predominant emphysema from 
those with predominant airway disease. We used fully convolutional network (FCN) and random forest 
classifier to test our hypothesis.

Results

Participant characteristics
After exclusions (Figure 1), the expiratory flow-volume curves of  8980 participants were included in the 
analyses (Table 1). The mean (SD) age was 57.8 years (8.4 years); 4177 participants (39%) were female, 
6085 participants (67.7%) were non-Hispanic white, and 2895 participants (32.3%) were African Ameri-
cans. 4705 participants (52.9%) were active smokers at enrollment. The cohort included 3926 participants 
(44.1%) without airflow obstruction (GOLD 0) and 3901 participants (43.4%) with airflow obstruction, 
including 724 (8.1%), 1696 (19.1%), 984 (11.1%), and 497 (5.6%) with GOLD stages 1–4, respectively. 1066 
participants (11.9%) had preserved ratio impaired spirometry (PRISm).

Structurally normal CT scans were seen in 3085 participants (34.3%). Airway-predominant disease, 
defined by Pi10, was seen in 3207 participants (35.7%), emphysema-predominant disease was seen in 1390 
participants (15.4%), and a mixed phenotype was seen in 1298 participants (14.4%) (Table 1). Airway-pre-
dominant disease, defined by functional small airway disease, was seen in 826 participants (10.25%), 
emphysema-predominant disease was seen in 200 participants (2.54%), and a mixed phenotype was seen 
in 1636 participants (20.79%).

(NCT00608764) is also supported by the COPD Foundation through contributions made to an 
Industry Advisory Committee comprising AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, 
Novartis, and Sunovion.
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Classification results for phenotyping emphysema/airway disease
Training. Results presented here are aggregated means from 10 replications of  Monte-Carlo cross-valida-
tion in the training data set. The average out-of-the-bag error for the random forest model was 0.45 (95%CI 
0.44 to 0.46), whereas the average validation loss for the neural network was 1.01 (95%CI 1.00 to 1.02). The 
parameters and weights of  the model with minimum validation loss (neural network) and minimum out-
of-the-bag error (random forest) among the 10 training/validation splits were used to evaluate the model 
performance on the held-out test set.

Held-out test data set. In the test data (20% of  cohort), (1796 participants), 617 participants (34.3%) were 
normal, 641 participants (35.6%) had predominant airway disease, 278 participants (15.4%) had emphy-
sema predominant disease, and 260 participants (14.4%) participants had a mixed phenotype. For the pre-
diction of  structural phenotypes, the AUCs for FEV1% predicted and FEV1/FVC were 0.70 (95%CI 0.68 
to 0.71) and 0.71 (95%CI 0.69 to 0.71), respectively. The area under the receiver operating characteristic 
curve (AUC) for the random forest classification was 0.78 (95%CI 0.77 to 0.79). The neural network out-
performed traditional measures of  spirometry and also the optimized random forest classifier with AUC 
of  0.80 (95%CI 0.79 to 0.81) (Table 2). The F1 score for the neural network was 0.56 compared with 0.45, 
0.43, and 0.54 for FEV1% predicted, FEV1/FVC, and random forest classifier, respectively (Figure 2 and 
Figure 3). Within each structural disease class, neural network again outperformed the traditional spirome-
try measures for classification (Table 2 and Figures 2 and 3). Results for feature importance using SHapley 
Additive exPlanation (SHAP) values are shown in Supplemental Figures 1 and 2 (supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.132781DS1).

Figure 1. CONSORT diagram.

https://doi.org/10.1172/jci.insight.132781
https://insight.jci.org/articles/view/132781#sd
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Classification results for phenotyping emphysema/functional small airway disease
Training. The average out-of-the-bag error for the random forest model was 0.19 (95%CI 0.20 to 0.18), 
whereas the average validation loss for the neural network was 0.57 (95%CI 0.55 to 0.59).

Held out test data set. In the test data (20% of  cohort), (1574 participants), 1041 (66.1%) were normal, 
165 (10.4%) had predominant small airway disease, 40 (2.5%) had emphysema predominant disease, and 
328 (20.8%) participants had a mixed phenotype. For the prediction of  structural phenotypes, the AUCs for 
FEV1% predicted and FEV1/FVC were 0.83 (95%CI 0.80 to 0.84) and 0.80 (95%CI0.78 to 0.82), respective-
ly. The AUC for the random forest classification was 0.90 (95%CI 0.88 to 0.91). The neural network out-
performed traditional measures of  spirometry and had similar discrimination compared with the random 
forest classifier with AUC of  0.91 (95%CI 0.90 to 0.92) (Table 3). The F1 score for the neural network was 
0.79 compared with 0.73, 0.71, and 0.76 for FEV1% predicted, FEV1/FVC, and random forest classifier, 
respectively (Figure 4 and Figure 5). Within each structural disease class, FCN again outperformed the 
traditional spirometry measures for classification (Table 3 and Figures 4 and 5).

Discussion
In a large multicenter cohort of  current and former smokers, machine-learning approaches, including 
deep-learning methods, trained on spirometry data outperformed traditional spirometry measures for the 
phenotyping of  COPD into its structural components, including predominant small airway disease, and 
provided flow-volume curve signatures for predominant structural disease categories. These results will 
enhance patient identification for phenotypic characterization and targeting therapies.

Spirometric impairment is a summary metric, and the development of  targeted therapies is hindered by 
the inability to identify predominant COPD phenotypes. Existing threshold-based spirometry criteria are 
also insensitive to early and mild damage in the lungs. As much as 20%–25% of  the lung may be affected by 
emphysema before these changes manifest on spirometry (21). Substantial airway remodeling and loss also 

Table 1. Baseline characteristics of participants in each structural phenotype

Normal Emphysema predominant Airway disease predominant Mixed phenotype
No. of subjects 3085 1390 3207 1298
Age, years 57.8 (8.4) 63.1 (8.2) 57.3 (8.5) 65.5 (8.1)
Sex, n (%)
 Female 1210 (39.2%)  438 (31.5%) 1938 (60.4%) 591 (45.5%)
 Male 1875 (60.8%) 952 (68.5%) 1269 (29.6%) 707 (54.5%)
Race/ethnicity, n (%)
Non-Hispanic White 2114 (68.6%) 1160 (83.5%) 1766 (55.1%) 1045 (80.6%)
Non-Hispanic Black 971 (31.4%) 230 (16.5%) 1441 (44.9%) 253 (19.4%)
BMI (kg/m2) 28.5 (5.3) 27.2 (5.6) 30.2 (6.8) 26.6 (5.6)
Smoking pack-years 39.8 (21.2) 49.3 (26.3) 41.4 (23.4) 55.3 (29.9)
Current smokers, n (%) 1757 (56.9%) 413 (29.7%) 2155 (67.1%) 380 (29.2%)
FEV1, L 2.8 (0.7) 2.1 (0.9) 2.2 (0.7) 1.2 (0.7)
FEV1% predicted 90.9 (16.3) 68.9 (27.1) 80.2 (20.0) 47.0 (23.7)
FEV1/FVC 0.74 (0.0) 0.56 (0.1) 0.73 (0.1) 0.45 (0.1)
GOLD stage, n (%)
 Nonsmokers 58 (66.6%) 5 (0.05%) 21 (24.1%) 3 (0.03%)
 PRISm 313 (29.3%) 39 (0.03%) 689 (64.6%) 25 (0.02%)
 GOLD 0 2018 (51.4%) 328 (8.3%) 1499 (38.1%) 81 (2.0%)
 GOLD 1 295 (40.7%) 203 (28.0%) 173 (23.8%) 53 (7.3%)
 GOLD 2 368 (21.6%) 417 (24.5%) 585 (34.4%) 326 (19.2%)
 GOLD 3 29 (2.9%) 281 (28.5%) 210 (21.3%) 464 (47.1%)
 GOLD 4 4 (0.08%) 117 (23.5%) 30 (6.0%) 346 (69.6%)
Percentage emphysema on CT 1.6 (1.3) 15.3 (10.9) 1.1 (1.2) 18.7 (11.7)
Pi10 3.5 (0.0) 3.5 (0.0) 3.7 (0.1) 3.7 (0.1)

All values are expressed as mean (SD) unless specified otherwise. FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; GOLD, 
Global Initiative for Chronic Obstructive Lung Disease; PRISm, preserved ratio impaired spirometry; Pi10, square root of wall area of a theoretical airway 
with 10-mm luminal perimeter.

https://doi.org/10.1172/jci.insight.132781
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occur before the development of  significant spirometric impairment (22, 23). Because airflow in the middle 
part of  the flow-volume curve disproportionately results from flow in the small airways, multiple studies 
have evaluated various methods of  analyzing the mid and distal parts of  the curve. These include the forced 
expiratory flow in the 25th to the 75th percentile, forced expiratory flow in the first 3 seconds, the shape of  
the maximum expiratory curve, and change in angle of  flow during forced exhalation (14–20, 24–29). None 
of  these studies, however, validated their measures against structural lung disease and, hence, were unable 
to separate emphysema from airway predominant disease.

Distinguishing predominant emphysema and airway disease is relevant for optimizing and advancing clin-
ical care. Current therapy for COPD includes bronchodilators and inhaled corticosteroids, and only half  of  
patients treated with these medications have a clinically meaningful improvement in their respiratory quality 
of life (30). These therapies target airway tone and inflammation and do not target emphysema. Although no 
specific pharmacologic therapies are currently approved that separately target emphysema and airway disease, 
interventional and pharmacologic therapies are being developed that are likely to benefit carefully phenotyped 
and selected individuals. Surgical and bronchoscopic lung volume reduction procedures are approved for severe 
emphysema. New interventions that target chronic bronchitis and airway remodeling are being developed, and 
there are ongoing trials that specifically target emphysema (NCT02696564). The results of this study can help 
identify these patients for clinical trials and eventually therapy.

Several aspects related to deep learning that are pertinent to this study should be considered. The pre-
diction of  structural lung disease from a sequence of  flow values derived from a forced expiratory effort is 
effectively a sequence classification task. Capitalizing on recent advances in deep learning, several studies 
implemented convolutional neural networks and long short-term memory models to classify sequential 
data from natural language processing and speech recognition tasks. In the current study, we applied a fully 
convolutional network (FCN) as well as a random forest classifier on flow sequence generated from the 
expiratory flow-volume curve to phenotype structural lung disease as the outcome. Wang et al. proposed 
the use of  FCNs to analyze sequential data and achieved robust results on several data sets from the Univer-
sity of  California, Riverside, time series classification archive (31, 32). The FCN architecture was initially 
proposed for semantic image segmentation tasks, where the architecture is composed of  3 computation 

Table 2. Discriminative accuracy of traditional spirometry metrics, random forest classifier, and deep-learning model for emphysema/
medium size airway disease

Normal Airway disease Emphysema Mixed

FEV1/FVC

AUC (95%CI) 0.70 (0.67, 0.72) 0.63 (0.61, 0.66) 0.73 (0.71, 0.75) 0.89 (0.88, 0.90)
Δ AUCA(95%CI) –0.10 (–0.12, –0.07) –0.15 (–0.17, –0.12) –0.05 (–0.06, –0.01) –0.01 (–0.02, –0.01)

Sensitivity (95%CI) 0.90 (0.88, 0.93) 0.92 (0.90, 0.95) 0.69 (0.63, 0.74) 0.85 (0.80, 0.89)
Specificity (95%CI) 0.47 (0.44, 0.50) 0.30 (0.28, 0.33) 0.68 (0.66, 0.70) 0.84 (0.82, 0.86)

Youden index (95%CI) 0.37 (0.33, 0.40) 0.23 (0.19, 0.26) 0.37 (0.30, 0.42) 0.68 (0.63, 0.72)

FEV1% predicted

AUC (95%CI) 0.74 (0.72, 0.76) 0.63 (0.58, 0.62) 0.60 (0.58, 0.62) 0.87 (0.84, 0.89)
Δ AUCA (95%CI) –0.06 (–0.07, –0.03) –0.15 (–0.12, –0.18) –0.18 (–0.20, –0.13) –0.03 (–0.05, –0.02)

Sensitivity (95%CI) 0.82 (0.80, 0.86) 0.66 (0.63, 0.70) 0.46 (0.40, 0.52) 0.80 (0.74, 0.84)
Specificity (95%CI) 0.56 (0.54, 0.60) 0.53 (0.50, 0.56) 0.72 (0.70, 0.74) 0.82 (0.80, 0.84)

Youden index (95%CI) 0.39 (0.35, 0.42) 0.19 (0.14, 0.22) 0.18 (0.11, 0.23) 0.61 (0.55, 0.66)

Random forest

AUC (95%CI) 0.78 (0.76, 0.80) 0.75 (0.75, 0.79) 0.75 (0.73, 0.77) 0.90 (0.88, 0.92)
Δ AUCA (95%CI) –0.01 (–0.02, –0.00) –0.02 (–0.03, –0.01) –0.02 (–0.03, –0.01) –0.002 (–0.009, –0.004)

Sensitivity (95%CI) 0.83 (0.80, 0.86) 0.74 (0.70, 0.77) 0.76 (0.70, 0.81) 0.87 (0.82, 0.91)
Specificity (95%CI) 0.60 (0.58, 0.63) 0.64 (0.61, 0.67) 0.63 (0.61, 0.66) 0.81 (0.79, 0.83)

Youden index (95%CI) 0.43 (0.40, 0.46) 0.38 (0.33, 0.41) 0.38 (0.32, 0.42) 0.68 (0.62, 0.72)

Neural network

AUC (95%CI) 0.80 (0.78, 0.81) 0.78 (0.75, 0.79) 0.78 (0.76, 0.79) 0.91 (0.89, 0.92)
Δ AUC Reference Reference Reference Reference

Sensitivity (95%CI) 0.72 (0.68, 0.76) 0.76 (0.73, 0.80) 0.62 (0.56, 0.68) 0.89 (0.84, 0.92)
Specificity (95%CI) 0.74 (0.72, 0.77) 0.67 (0.64, 0.70) 0.79 (0.77, 0.81) 0.81 (0.79, 0.83)

Youden index (95%CI) 0.46 (0.41, 0.49) 0.43 (0.38, 0.46) 0.41 (0.31, 0.45) 0.70 (0.65, 0.73)

FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; AUC, area under the curve. AComparison of AUC using DeLong method with 
FCN as reference model.

https://doi.org/10.1172/jci.insight.132781
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blocks and each block performs convolution operations followed by batch normalization and ReLU activa-
tion layers. The resulting output from the 3 convolution operations is fed into a global average pooling layer, 
which drastically reduces the number of  training parameters and further enables the visualization of  class 
activations specific to each class. The minimal requirement for preprocessing and feature crafting before 
classification, and the visualization of  feature activations specific to each class through the pooling layer, 
make FCN an effective choice for classification of  sequential or time series data in the medical domain. 
Nonetheless, a random forest classifier with optimized parameters performed almost equally well as the 
neural network, suggesting that a number of  other machine-learning and deep-learning algorithms may 
be applied to the sequence of  raw data points that constitute the spirometry curves. Random forest relies 
on decision points and avoids correlated points, whereas FCN uses near neighbors that may be correlated.

Although further improvement in accuracy may be possible with other algorithms, the overall results 
reflect the frequently observed overlapping and interrelated structural changes in both airways and the 

Figure 2. Classification of structural phenotypes — normal and mixed emphysema/airway disease. Classification 
performance of normal (A) (emphysema <5% and medium size airway disease < median Pi10) and mixed (B) (emphyse-
ma >5% and medium size airway disease > median Pi10) groups. The results show per-class area under the curve (AUC) 
of the FCN model versus random forest classifier and logistic regression models with FEV1/FVC and FEV1% predicted 
measurements. Results shown for the hold-out test data set. FEV1, forced expiratory volume in the first second; FVC, 
forced vital capacity; FCN, fully convolutional network; Pi10, airway wall area measurement.

https://doi.org/10.1172/jci.insight.132781
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parenchyma in varying proportions that occurs in the majority of  smokers. There is considerable airway-pa-
renchymal interdependence; the presence of  emphysema can untether airways and result in a predisposi-
tion to airway collapse, and peribronchial fibrosis and airway loss can result in distal emphysema. Although 
this inherent biological complexity limits the information that can be ascertained from spirometry alone, 
the probability scores that result from the FCN model for each individual raise the likelihood of  accurately 
identifying the predominant structural category and represent a substantial advance in the identification of  
structural phenotypes in COPD.

The study has several strengths. Data from a large multicenter cohort of  participants whose disease 
spanned the range of  severity were included. Extensive CT phenotyping was performed with stringent qual-
ity control of  both CT and spirometry. The structural phenotypes were classified using quantitative CT data 

Figure 3. Classification of structural phenotypes — emphysema and airway disease. Classification performance 
of airway disease predominant (A) (emphysema <5% and medium size airway disease > median Pi10) and emphy-
sema predominant (B) (emphysema >5% and medium size airway disease < median Pi10) groups. The results 
show per-class area under the curve (AUC) of the FCN model versus random forest classifier and logistic regres-
sion models with FEV1/FVC and FEV1% predicted measurements. Results shown for the hold-out test data set. 
FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; FCN, fully convolutional network; 
Pi10, airway wall area measurement.

https://doi.org/10.1172/jci.insight.132781
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that are more objective than labels applied by experts and are less subject to variability. COPDGene (Genet-
ic Epidemiology of  COPD) included a substantial number of  African Americans and women. The training 
of  the neural network and subsequent hyperparameter optimization was performed over 10 replications of  
Monte-Carlo cross-validation to ensure robustness of  the model. The final evaluation of  the classifier was 
performed on a hold-out test data set, which was not seen by the model previously.

Limitations. The study also has several limitations. First, COPDGene included current and former smok-
ers, and hence, these results should be validated in cohorts that include nonsmokers with and at risk for 
COPD. Second, CT scans were not spirometry gated. Participants were, however, coached to reproducibly 
achieve maximal inhalation. Third, the outcome variables were numeric values for CT parameters, and it is 
not known how factors that cause variability in CT assessments, such as scanner type and field of  view, effect 
the performance of  the machine-learning models. These aspects need further analysis. Fourth, although the 
top 5 flows at a given volume that are associated with each of  the phenotypic classes were identified, we are 
unable to ascribe a physiologic explanation to these findings. The flow values in combination appear to reflect 
structural processes that are not detected when discrete single values are used. Although we used SHAP to 
identify the top features, interpretation is limited, as these features may slightly differ in a different data set, 
and hence, the inherent black box nature of  FCN remains (33). Fifth, machine-learning algorithms can be 
affected by underfitting and overfitting biases (34), but we obtained similar results in a hold-out test data set.

Conclusions. Structural phenotypes of  COPD can be identified from spirometry using a deep neural 
network and machine-learning approaches, demonstrating their potential to identify individuals for tar-
geted therapies. Further research is necessary to evaluate the applicability of  the deep-learning model 
to improve COPD outcomes.

Methods
Study population and physiologic assessments. Spirometry data from participants enrolled in the COPDGene 
study were included (35). COPDGene is a large multicenter cohort study of  current and former smokers 
aged between 45 and 80 years, with a smoking history of  at least 10-pack years; the details of  this study 
have been previously published.

Table 3. Discriminative accuracy of traditional spirometry metrics, random forest classifier, and deep-learning model for emphysema/
functional small airway disease

Normal Airway disease Emphysema Mixed

FEV1/FVC

AUC (95%CI) 0.82 (0.79, 0.84) 0.58 (0.53, 0.61) 0.59 (0.51, 0.66) 0.88 (0.85, 0.89)
Δ AUCA (95%CI) –0.10 (–0.12, –0.08) –0.19 (–0.23, –0.15) –0.21 (–0.30, –0.12) –0.07 (–0.09, –0.06)

Sensitivity (95%CI) 0.84 (0.81, 0.86) 0.82 (0.75, 0.87) 0.75 (0.59, 0.87) 0.74 (0.69, 0.78)
Specificity (95%CI) 0.69 (0.65, 0.73) 0.32 (0.30, 0.35) 0.51 (0.48, 0.53) 0.87 (0.85, 0.89)

Youden index (95%CI) 0.52 (0.47, 0.56) 0.14 (0.06, 0.18) 0.25 (0.11, 0.36) 0.61 (0.56, 0.65)

FEV1% predicted

AUC (95%CI) 0.85 (0.82, 0.86) 0.61 (0.57, 0.64) 0.67 (0.58, 0.74) 0.90 (0.87, 0.91)
Δ AUCA (95%CI) –0.08 (–0.09, –0.06) –0.16 (–0.19, –0.12) –0.14 (–0.23, –0.04) –0.06 (–0.07, –0.04)

Sensitivity (95%CI) 0.90 (0.88, 0.91) 0.59 (0.52, 0.67) 0.70 (0.54, 0.83) 0.82 (0.78, 0.86)
Specificity (95%CI) 0.67 (0.63, 0.71) 0.63 (0.60, 0.66) 0.66 (0.63, 0.68) 0.85 (0.83, 0.87)

Youden index (95%CI) 0.56 (0.51, 0.60) 0.22 (0.13, 0.28) 0.35 (0.17, 0.47) 0.67 (0.62, 0.71)

Random forest

AUC (95%CI) 0.92 (0.90, 0.92) 0.73 (0.70, 0.76) 0.72 (0.65, 0.77) 0.95 (0.93, 0.95)
Δ AUCA (95%CI) –0.01 (–0.01, –0.00) –0.04 (–0.06, –0.01) –0.08 (–0.14, –0.02) –0.009 (–0.01, –0.004)

Sensitivity (95%CI) 0.90 (0.88, 0.92) 0.75 (0.67, 0.81) 0.75 (0.59, 0.87) 0.89 (0.85, 0.92)
Specificity (95%CI) 0.80 (0.76, 0.83) 0.64 (0.61, 0.67) 0.63 (0.60, 0.66) 0.88 (0.86, 0.90)

Youden index (95%CI) 0.69 (0.65, 0.72) 0.38 (0.30, 0.43) 0.37 (0.21, 0.46) 0.76 (0.72, 0.79)

Neural network

AUC (95%CI) 0.93 (0.91, 0.93) 0.77 (0.73, 0.80) 0.81 (0.75, 0.85) 0.96 (0.94, 0.96)
Δ AUC Reference Reference Reference Reference

Sensitivity (95%CI) 0.87 (0.85, 0.90) 0.72 (0.64, 0.78) 0.75 (0.58, 0.87) 0.94 (0.90, 0.96)
Specificity (95%CI) 0.85 (0.82, 0.88) 0.70 (0.68, 0.73) 0.72 (0.70, 0.74) 0.84 (0.82, 0.86)

Youden index (95%CI) 0.72 (0.68, 0.75) 0.41 (0.33, 0.46) 0.47 (0.32, 0.55) 0.77 (0.73, 0.80)

FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; AUC, area under the curve. AComparison of AUC using DeLong method with 
FCN as reference model.
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All participants underwent a standard protocol, which included prebronchodilator and postbronchodilator 
spirometry using the New Diagnostic Design Easy-One spirometer per the American Thoracic Society criteria. 
Postbronchodilator spirometry was performed 20 minutes after administration of 180 μg albuterol HFA with 
a spacer (Aerochamber, Monaghan Medical Corporation). Quality control was performed by including only 
those spirometry efforts that met at least grade 2 ATS standards (repeatable between 100 and 150 ml). The post-
bronchodilator ratio of FEV1/FVC < 0.70 was used to confirm the presence of airflow obstruction (36), and 
FEV1% predicted was used to estimate the severity of airflow obstruction per Global initiative for Obstructive 
Lung Disease (GOLD) recommendations (37). Participants with FEV1/FVC >0.70 but with FEV1% predict-
ed <80% were categorized as having PRISm (38). We selected the postbronchodilator effort with the highest 
sum of FEV1 and FVC for the analysis as per ATS criteria. The raw data points that constitute the expiratory 
flow-volume curve were decomposed incrementally as flow data at every 30 mL volume exhaled (39, 40).

Figure 4. Classification of structural phenotypes — normal and mixed emphysema/small airway disease. Classi-
fication performance of normal (A) (emphysema <5% and small airway disease <20%) and mixed (B) (emphysema 
>5% and small airway disease >20%) groups. The results show per-class area under the curve (AUC) of the FCN model 
versus random forest classifier and logistic regression models with FEV1/FVC and FEV1% predicted measurements. 
Results shown for the hold-out test data set. FEV1, forced expiratory volume in the first second; FVC, forced vital 
capacity; FCN, fully convolutional network. Small airway disease was defined by parametric response mapping.
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CT-based phenotyping. Quantitative CT scans were acquired at maximal inspiration (total lung capacity). 
Emphysema was quantified on inspiratory CT as the percentage of  low attenuation areas <–950 Hounsfield 
units using Slicer 3D software (11). Clinically significant emphysema was defined as ≥5% low attenuation 
areas. This threshold was selected as there appears to be an inflection point at 5%, above which the frequen-
cy of  exacerbations and mortality increases considerably (12). Large and medium size airway disease was 
quantified by the Pi10, the square root of  the wall area of  a hypothetical airway with internal perimeter of  
10 mm, using Apollo Software (VIDA Diagnostics) (11). Because there is no established threshold for clin-
ically significant airway wall disease, Pi10 > median in the COPDGene cohort was used for categorization 
as significant airway disease. Functional small airway disease (fSAD) phenotype was quantified by >20% 
lung affected by small airway disease measured on parametric response mapping, where fSAD is nonem-
physematous air trapping and, hence, an indirect measure of  small airway disease (41, 42).

Figure 5. Classification of structural phenotypes — emphysema and small airway disease. Classification performance 
of airway disease predominant (A) (emphysema <5% and small airway disease >20%) and emphysema predominant (B) 
(emphysema >5% and small airway disease <20%) groups. The results show per-class area under the curve (AUC) of the 
FCN model versus random forest classifier and logistic regression models with FEV1/FVC and FEV1% predicted measure-
ments. Results shown for the hold-out test data set. FEV1, forced expiratory volume in the first second; FVC, forced vital 
capacity; FCN, fully convolutional network. Small airway disease was defined by parametric response mapping.
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Using these emphysema and Pi10 thresholds, we classified participants into 1 of 4 CT categories: normal, 
<5% emphysema and < median Pi10; airway predominant, <5% emphysema but with Pi10 ≥ median; emphy-
sema predominant, ≥5% emphysema and Pi10 < median; and mixed emphysema/airway, ≥5% emphysema 
and ≥ median Pi10. We also classified participants into 4 groups based on fSAD: normal, <5% emphysema 
and <20% fSAD; airway predominant, <5% emphysema but with fSAD ≥20%; emphysema predominant, 
≥5% emphysema and fSAD <20%; and mixed emphysema/airway, ≥5% emphysema and fSAD ≥20%.

Deep neural network. FCN was developed for image segmentation tasks and has shown significant 
improvements in efficiency and overall performance as compared with traditional deep convolutional net-
works. In this study, we used FCN as a feature extractor of  a time series (or sequential) data, where these 
features were further fed into a global average pooling layer and a soft-max layer to classify the sequences 
into different labels. The basic architecture of  FCN includes 3 stacked computation blocks, where each 
block consists of  1D convolutional layer followed by a batch normalization layer and a rectified linear 
unit activation layer (Supplemental Figure 3). Convolution on the 1D input sequence was performed by 
the convolutional layers followed by the batch normalization layer to improve generalizability and faster 
convergence. The penultimate global average pooling layer reduces the number of  weights and prevents 
overfitting. This FCN architecture has been previously shown to achieve superior performance in several 
1D sequence classification tasks.

Model training and evaluation. The flow data points in each expiratory flow-volume curve were used as a 
1D input sequence, and each sequence was standardized to have a length of  200 points using data padding 
with zeros at the end of  the sequence. The expiratory flow data was divided into input (80%) and hold-out 
test (20%) data sets. All possible combinations of  number of  filters (32, 64, 128, 256 filters) in the convolu-
tional layers, learning rate in the range of  0.00001–0.1, and batch sizes of  64, 128, and 256 were evaluated 
on the training set to select the best hyperparameters. The hyperparameter tuning was performed using 
TALOS library in Python. The model with the best hyperparameters, where the 3 convolutional layers 
with filter sizes of  128, 256, and 128, corresponding kernel sizes of  9, 5, and 3, at a learning rate of  0.0001, 
with batch size of  64 over 100 epochs, was selected for further evaluation. The input data set was further 
divided into 10 random splits of  training (80%) and validation (20%) to train the FCN model. The weights 
of  the neural network with minimum loss on the validation set were used for subsequent evaluation on the 
hold-out test data set. Early stopping of  the training was implemented when there was no decline in the 
validation loss for at least 25 epochs. The learning rate was reduced by a factor of  0.01 after 15 epochs of  
no decline in the validation loss. The primary outcome was classification of  each participant into 1 of  the 4 
structural disease categories on quantitative CT. Supplemental Figure 4 shows the visualization of  the FCN 
training process with the chosen hyperparameters to classify spirometry data into the 4 different structural 
COPD phenotypes. The performance of  the FCN was compared by implementing optimized random for-
est model (parameters were chosen by 5-fold cross validation and selected the model with minimum out-
of-the-bag error) on the same input sequences and also with the performance of  the traditional spirometry 
variables (FEV1/FVC and FEV1% predicted). Computation of  feature importance using SHAP values is 
described in the Supplemental Methods.

Statistics. AUC analyses were computed to evaluate the accuracy of  the FCN and the random for-
est classifier. Their discriminative accuracies were compared with 2 traditional spirometry measurements 
(FEV1/FVC and FEV1% predicted) based on logistic regression. Sensitivity, specificity, Youden index (sen-
sitivity + specificity −1), and F1 score for structural disease classification were tested for each model (43). 
The nonparametric DeLong test was used to compare AUCs between the models (44). A 2-tailed P value of  
< 0.05 was considered significant for all analyses. Analyses were performed using Python ≥ 3.0, R version 
≥ 3.6.0 (R Project for Statistical Computing), and MedCalc Statistical Software.

Study approval. All participants provided written informed consent before enrollment, and the COPD-
Gene study protocol was approved by the University of  Alabama at Birmingham Institutional Review Board 
(IRB) for human use (F070712014). The COPDGene study was approved by the IRBs of  all 21 participat-
ing clinical centers: Ann Arbor VA Medical Center IRB (no. 2014-060462), Ann Arbor, Michigan, USA;  
Baylor College of  Medicine IRB (H-22209); Brigham and Women’s Hospital Partners Human Research 
Committee (no. 2007P000554); Columbia University IRB (AAAC9324), New York, New York, USA; 
Duke University Health System IRB (no. Pro00004464), Durham, North Carolina, USA; Johns Hopkins 
Medicine IRB (NA_00011524), Baltimore, Maryland, USA; Los Angeles Biomedical Research Institute 
Human Subjects Committee (no. 12756-03), Torrance, California, USA; Michael E. DeBakey VA Medical 
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Center IRB (no. H-22202), Houston, Texas, USA; Minneapolis VA Health Care System Minnesota (no. 
4128-A), Minneapolis, Minnesota, USA; Health Partners Twin Cities IRB, (no. 07-127) Minneapolis–Saint 
Paul, Minnesota, USA; Morehouse School of  Medicine IRB (no. 97826), Atlanta, Georgia, USA; National 
Jewish Health IRB (no. 1883a); Reliant Medical Group IRB (Fallon) (no. 1441), Worcester, Massachusetts, 
USA; Temple University IRB (no. 21659), Philadelphia, Pennsylvania, USA; University California, San 
Diego, Human Research Protections Program (no. 140070), San Diego, California, USA; University of  
Iowa IRB (no. 200710717); University of  Michigan Medical School IRB (HUM00014973), Ann Arbor, 
Michigan, USA; University of  Minnesota IRB Human Subjects Committee (no. 0801M24949), Minneapo-
lis, Minnesota, USA; University of  Pittsburgh IRB (no. 07120059); and University of  Texas Health Science 
Center at San Antonio IRB (HSC20070644H), San Antonio, Texas, USA.
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