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Abstract of the Dissertation

Modeling and Anpalysis of Concurrent Systems

using Contour/Transition-Nets

by
Marshall Toufic Rose

Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1984
Professor Rami R. Razouk, Chair

This dissertation introduces a model for parallel computation, the
Contour/Transition model, which blends the strengths of transition-based systems
(concurrency, conflict, and synchronization) with the strengths of contour-based
systems (control and data abstraction). By using contour/transition-nets to model
computer communication protocols, a basis is provided for the formal modeling

and analysis of concurrent systems.

The contour/transition model adds three notions to Petri net theory:
invocations which correspond to Petri net procedures: colors which model multiple
instantiations of nets; and contours which permit scoping mechanisms. This
dissertation develops an extension to Keller's invariant-method for parallel
computation that is useful for proving properties of contour/transition-nets.
The usefulness of contour/transition-nets is demonstrated by a model of initial
connection bandling (a three-way handshake) for a protocol that offers virtual-
circuit service (the DoD Transmission Control Protocol).



CHAPTER 1
introduction

Computer communication networks are an important type of distributed
system. The services that these networks can offer to their users are quite powerful
and extensive: virtual terminal emulation, remote command execution, file transfer
facilities, electronic mail, and so forth. The rapid proliferation of these networks
into the research, office, and industrial environments demonstrates that computer

communication networks have a wide-range of communication services that are

useful to a variety of clients.
All of these services are based on a well defined communications hierarchy
that allows processes op different hosts in a network or inter-network to interact in a
“useful fashion. At the very heart of this hierarchy is the notion of a protocol-entity.

Protocols
Computer communication networks are often viewed as consisting of protocol-

entities or (N)-peers. Computer network protocols are viewed as existing between
peers in a layered system A particular layer is described by four specifications:
the (N)-service specification, which describes the services that the layer offers to
the laver above; the (N)-interface specification, which describes the rules to be
used to access these services; the (N-1)-service specification, which describes what
services are expected from the layer below; and, the (N)-protocol specification,
which describes how the peers at that level co-operate. This dissertation focuses
on this final specification: the rules by which the protocol-entities interact.

In this hierarchy, the (N)-peer can be viewed as providing a set of services
to the (N+1)-peer above, using two resources: the services provided by the (N-
1)-peer, and a protocol to direct interaction with one or more other (N)-peers.
From an alternate perspective, the (N)-protocol is used to achieve the services
listed in the (N)-service specification by using the services provided in the (N-1)
service specification and by co-operating with one or more (N)-peers. From a



Fo-----=---- )
! I
: i
(N+1)-peer ! !
] ]
[ I ]
[ gmm———- J

N-service :

i

;

N-interface !
r----- dovee- 1
] ]
. ' )
N-peer N-protocol { ,:
I ]
] 1
| S -

'

(N-1}-service i

]

1

]

(N-1}-interface |
re=---- doonn-- 1
t '
; )
(N-1)-peer ! !
; |
L] 1
[, 4

Figure 1

Protocol-Entities

third perspective, each layer in the system can be considered an abstract machine:
the (N)-service specification defines the semantics of the services performed by
the machine, the (N)-interface specification defines the syntax of those services,
and the (N)-protocol defines its (internal) operating behavior. Figure 1 illustrates
this hierarchy of protocol-entities. This hierarchical approach is widely-used. For
example, the International Standards Organization’s reference model of Open
Systems Interconnection[OS1] is a protocol hierarchy defined in seven layers, while
the ARPAnet reference model[PADL82] does not assign fixed layers. Cohen and
Postel[CoHE83] demonstrate that the number of layers in a system is neither
bounded above or below the seven OSI layers, and argues instead for emphasis on
the merits of layering (logical decomposition of functionality) rather than leveling
(arbitrary decomposition into a fixed number of layers).

Extending these perspectives further, the end-users can themselves be seen
as entities in the system, which are using the services provided to them by



other protocol-entities. Since the users of computer communication petworks
find the services offered by these networks to be useful, the protocols that make
these services possible are considered to be important as they make possible
useful services. In particular, note that for networks and bosts to inter-operate
and provide useful services, different implementations of protocol-entities must
correctly communicate. It is hoped that by clearly describing the behavior of a
protocol different implementors will build protocol-entities that behave properly.
In order to achieve this, accurate methods of describing protocols and verifying

their bebavior must be derived.

Specification of Protocols

Our focus now narrows to examining how these protocols are described, an
activity known as protocol specification.

The nature of specification is based on two primary tenets, which are always
in conflict with each other. At one extreme, a specification should unambiguously
~convey the characteristics of the system it is describing. It should state how the

system acts, or say “what to do.” At the other extreme, a specification should not
restrict any ensuing implementations of the system it is describing. It should not
state how the system is implemented, or say “how to do it.” The justification for
these goals is beyond the scope of this dissertation. It should be noted though,
that from our perspective, the “bottom-line” is that it must be guaranteed that
all implementations of a given protocol can “talk” to each other. and that they
co-operate in the way in which the protocol designer expects them to. In this sense.
an unambiguous description that does not restrict implementation is thought to be
the best way to achieve our objective.

In addition to these two primary objectives, there are several other qualities
that a specification technique should exhibit, several of which receive brief mention
bere. One important consideration is that the specifications made using a particular
technique be readable. Although the readability of a given specification may largely
depend on the protocol designer, a specification technique should be capable of
expressing the nature of the protocol in a straightforward and “natural” way.
Clearly the capability to express protocol bebavior in a eoncise fashion is desirable
as a part of this, although a concise method may very well reduce the readability of
a specification. Related to this, a technique should be writable as well. A protocol



designer should find the technique easy to use and easy to write specifications
with. Ap automated, or semi-automated, method of proving that the protocol
specification can achieve the service specification based on the underlying services
specification would be useful in verifying that the protocol specification is correct
and complete. Similarly, an automated, or semi-automated, method of producing
an smplementation from the specification would be advantageous. Following
along these lines, another desirable capability would be the ability to ezecufe the
specification prior to its implementation. This would allow the designer to observe
the behavior of the protocol as it has been specified, and bopefully permit a greater
understanding. Similarly, it would also be desirable to be able to provide some

semi-automatic method for festing specifications written using the technique.

Formal Specification of Protocols
It is important that formal specification techniques be used when describing

the behavior of protocol-entities|Sunszg]. Without formal methods, it is not
possible for designers to achieve many of these desired objectives in their
specifications. As previously noted, a protocol-entity may be implemented by
different organizations and individuals for use at different sites and it is unlikely
that without a rigorous method of describing the behavior of a protocol that these
different implementations will be able to co-operate correctly. Hence, a formal
method is sought whick embodies the characteristics tersely presented above: a
method that can describe a protocol-entity unambiguously, in a readable but
concise and straightforward way, which is easy for a protocol dai-gner to use to
capture the spirit of the protocol, which produces descriptions that can be analyzed
and tested prior to implementation, and which does not hinder the implementation
of the protocol-entity. It is ab unfortunpate circumstance that the techniques
currently in use are sorely inadequate in most (or all) of these concerns. The most
common technique, natural language is inherently ambiguous and poorly suited to
automatic processing. As a result, a more formal method is required to specify
protocols, and this area remains open to new research.

One approach to developing a formal method for the description of a protocol
is to develop a representation language that is powerful enough to capture the
essence of the protocol-entity’s behavior and to present that behavior to the reader
in such a way as to be consistent with the specification objectives described above.
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Communication protocols present several challenges for a representation language.
Traditional methods of specification, intended primarily for the design of sequential
software, do not address the issues of timing, uncertainty, failure, and recovery

which are the central focus of many paralle] applications, and in particular, network

protocols.

Related Research

The breadth of methods proposed to specify protocols can be seen as
ranging from state-encoded techniques at one end, to history-encoded techniques
at the other|ScHwAR83]. State-encoded techniques tend to simplify the bridge
to implementation, while history-encoded methods tend to permit more elegant
proofs of correctness. Rather than viewing these techniques as alternatives to one

another, many of the techniques are viewed as complementing each other in going
from more abstract specifications to implementation.

History-encoded methods concern themselves with sequences of events and
their relation in time. Ap example of a history-encoded method is temporal
logic[SchwaRr81]. In contrast, state-encoded methods concern themselves with
the context of a system in terms of the values of variables, simply described as
state information. The history of the system is encoded as state information. At
a particular instant, for example, each node in the system may have a different
understanding of the system, based on the contents of its memory component.
Examples of state-encoded methods include finite state automata, Petri pets, and
algorithmic representation languages. Note that at the state-encoded extreme,

there is no concept of the ordering of states with respect to time. Below, these

techniques are briefly discussed.

Finite State Automata
The use of finite state machines to represent protocol-entities is common.

In the general case, a state machine is used to represent each protocol-entity
participating, and possibly, ar additional machine is used to represent the
underlying layer. In concept, a machine reacts to an event (receiving an input) in
a particular context (state) by producing a response (generating an output) and
updating its context (state). Danthine|DANT80] presents a discussion of the use of

finite state machines for protocol modeling.
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The technique may be significantly augmented by supporting hierarchy with
the addition of named machines, with single initial and final states. Furthermore,
" state encoded information may be replaced with contextual information by
introducing simple data types which are manipulated during transitions between
states. Bochmann|BocH8oB] presents an example of such an extended technique.

The basic finite state model is not suited for specifying complicated protocols
due to its simplicity. When extensions are added, the technique is more than
adequate in terms of readability. Several extensions to the approach have been
suggested (e.g., Simon and Kaufman|[SmM082}), and many of these have proven
successful. The CCITT X.21 interface[X.21], which is a reasonably complex
entity. can be described using a method which is an extended finite state
technique[WEsT78]). Without extensions to permit hierarchical decomposition,
the finite state technique suffers greatly when it attempts to promote abstraction.
Fortunately, the use of named machines and associated data bandling power
permits the designer to hide details. Finally, there have been extensive research
- efforts to devise methodologies for the synthesis of protocols using finite state

machines (e.g., Zafiropulo, et. al.[ZAF180]).

Petri Nets
A Petri net|PETR62) is another specification method that is based op

transitions. A Petri pet is a directed graph populated with two types of nodes:
places and transitions. Places hold tokens, which represent abstract resources
in the system, while transitions, which map input places (by absorbing tokens)
to output places (by producing tokens), represent events in the svstem. The
fundamental basis of Petri net theory is that transitions fire atomically, and if
more than one transition is enabled, the choice as to which transition actually gets
to fire is made non-deterministically.

As with the finite state approach, many advantages can be seen for the use
of Petri nets in specification. The configuration of tokens on the pet at a given
instant, the Petri net’s marking, clearly denotes the state of a system or entity.
Enabled transitions correspond to events which may occur at the next instant
in time. Finally, the ease with which such phenomena as resource contention
and concurrent activity can be described makes Petri nets a powerful method for

specifying a peer in a distributed system.
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Unaugmented Petri net models suffer from some major drawbacks however.
First, data manipulation is difficult. Since the fundamental unit in the net is the
token, arithmetic and boolean computations are very tedious to represent. Second,
since these tokens are considered to be of indistinguishable identity, and bave a
very simple semantic value, the net cannot take advantage of baving enabling/firing
rules which make decisions on the basis on a given token’s value. Third, as a result
of both of these, the only information which can be encoded in a Petri pet is
that information which can be represented in a marking at a given instant. Many
augmentations bave been suggested for Petri nets, both to solve these problems
and to extend the specification power of unaugmented Petri nets. One particular
Petri net extension, is the pumerical Petri net[SymMo80a]. By adding processors
and memory, pumerical Petri nets are able to easily perform most types of data

manipulation, and can be seen to have uses for protocol design|SYMO8oB].

In the next chapter, the Petri net approach is examined in greater detail.

Programming Languages

Another popular specification technique which has received wide use for
the presentation of protocol-entities, is the algorithmic approach. This method
uses a programming language, usually one specifically designed for representing
concurrent processes, as the specification language.

The algorithmic approach bhas some difficultly in accurately representing the
true nature of a protocol-entity, depending on the programming language selected.
Ease of use also depends quite heavily on the language used for the specification.
Verification for the algorithmic approach can take several forms, including symbolic
execution[BRAN83], and path analysis[Schu8o], to note two common techniques.

Hailpern|[HaIL81] presents a good survey of efforts in this area.

It is usually very easy to go from a system described using the algorithmic
approach to an implementation. After all, the specification usually ss an
implementation. As a result, the algorithmic approach may be accurately
referred to as “specification by example.” A common criticism of the algorithmic
approach is that it shifts the emphasis of design from the protocol to the nuances
of the programming language. For these reasons, designers using the algorithmic
approach produce specifications that tend to suffer from over-specification.



Temporal Logic
Temporal logic is a relatively new logic system which is well-suited to proofs

involving sequences of events and their relation in time[PNuE77]. In addition
to the standard operations of conjunction, disjunction, and negation, temporal
logic introduces the notion of the Aenceforth, eventually, and until operations (to
mention the most common).

There are several ways to proceed when using temporal logic as the
specification technique, depending on the amount of state information one
wishes to introduce into the specification. Schwartz and Melliar-Smith|[ScHwaRr82]
presents several specifications using the temporal logic technique, which develop
different specifications (and verification proofs) based on the desired amount of

state information.
It is difficult to evaluate the success that temporal logic has in explaining the
actions of the protocol. In terms of presenting a set of rules which describe the

time relations of actions in the protocol, temporal logic does very well.

Verification is the strong-point for the temporal logic technique. Typically,
one presents a temporal logic specification in two parts — the safety part and the
liveness part. Safety properties focus on undesirable behavior (such as deadlock),
while liveness properties deal with desirable behavior (such as progress). This means
that the initial work common to verification efforts for most other specification
techniques is in fact already done during specification. This method of design also
raises an interesting point: Designers using temporal logic must view a protocol
in an entirely different way from designers using other techniques. Temporal logic
forces the designer to pay careful attention to the definition of correctness of the
protocol, since that definition forms the basis of the specification. One might
view temporal logic as an agent that belps the designer express the nature of the
protocol in such a way so as to closely embody the service-specification. The actual
verification of specifications using the temporal logic technique is straight-forward,
although one may need an extensive background in logic in order to prove some of
the assertions.

Temporal logic bas been suggested and used for concurrent systems|PNUES) ]
in general and for protocol specification|ScHWARS81]. Kurose[KUR082] uses temporal
logic to specify and verify a connection establishment protocol, while Sabnani and



Schwartz|SABN832] make use of temporal logic to present and analyze a multi-

destinational protocol.

Method of Attack
It is important to emphasize the difference between specificatson methods and

design methods. Although the discussion thus far has concentrated on specification
techniques, it is necessary to view things in a somewhat larger picture in order to
appreciate the scope of this dissertation. In the broadest sense, the path that a
protocol-entity takes from its initial conceptualization to a final implementation is
a continuum. During this process, models are used to represent the protocol-entity
at various levels of abstraction. At first, when the protocol-entity is abstractly
presented. the protocol might be represented using a requirements definition
language. Later on, when an implementation of the protocol is completed, a
programming language is used as the language for representing the protocol-entity.
In both cases the description of the protocol-entity forms a model of the protocol.
This work concerns itsell with a middle ground between these two extrema. In
particular, the models which are interesting are those that are used to represent
protocol-entities (and other types of concurrent software) when they are sufficiently
concrete so as to be expressed unambiguously, but prior to their realization in an
implemented form. That is, it is desirable to be able to model a protocol when it
can be expressed formally as a design.

This dissertation focuses on the state-encoded approach to the modeling of
protocol-entities and other forms of concurrent systems, and in particular the Petri
net model[PETE7 7). This approach was chosen for two reasons: first, state-encoded
techniques tend to ease the bridge to implementation, and, second, Petri nets are
well suited for representing powerful concurrency notions with simple constructs
and semantics thereby.

Petri pets have been used successfully for describing hardware sys-
tems[Mist73) and in modeling many types of simple concurrent software sys-
tems|AGER7g). Petri pets and their derivatives have long been considered useful
in describing and verifying communications protocols|PosT74]. Because of their

theoretical foundations, Petri nets tend to lend themselves well to automated

analysis.
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Many authors have proposed extensions to the basic Petri net model. Memory
and processors have been added to the Petri net models: by Mekly and Yau|MEkL80)
to introduce AP-nets, a restricted form of Petri net; by Vernon|VERN82) for use with
the UCLA Graph Model of Behavior; by Symons|SymMo804] to introduce numerical
Petri nets; by Azema, et. al.[Azem84] for use with Prolog interpreted Petri pets;
and by Yau and Caglayan[Yau83] for use with “modified” Petri nets. Timing has
been added to the Petri net models: by Ramchandani|RAMc74] to introduce fixed
timing delays; by Merlin[MERL74] to introduce ranges of delays to model recoverable
systems; by Sifakis[SiFa77] to introduce processing time to places; and by Razouk
and Phelps|Razo83a] to introduce a fixed enabling delay and a firing delay to
each transition. Researchers have further demonstrated the nature of correctness
proofs of systems described by Petri nets. For example, the research presented
by Berthomieu and Menasche|BERTHO83] concerned itself with systems modeled
with the time Petri nets presented by Merlin and Farber|MErL76B]. Many authors
bave demonstrated the use of various models to achieve performance analysis: by
. Ramamoorthy[RAMAMO80] to analyze the performance of a restricted subset of
the timed Petri nets of Ramchandani|RAMc74); by Zuberek|[ZuBE8o] to analyze
the performance of a larger class of nets; and by Razouk and Phelps|RAzo834]
to analyze the performance of timed Petri nets, a variation of those described by

Zuberek|[ZUBEBo].

When viewed with these extensions in mind, Petri nets continue to suffer
from some inherent weaknesses. First, Petri pets are not hierarchical in nature,
and do not decompose into smaller, more manageable and less cluttered structures.
Traditionally, the only unit of representation is a single net. Hence, the notion
of abstraction of detail is lost. As a result, Petri nets generally require a strict
one-to-one mapping between nets and components in the system, e.g., if you wish
to model several nodes, then usually a single, separate net is required for each
node, along with some interconnection structure.

Second, Petri nets are a very stafic representational technique. Without
augmentations, they are very good at describing systems with small state spaces,
and very bad at describing dynamic systems with a potentially infinite number
of complex, intertwined states. The concepts of scoping, procedure calls, and
recursion, which are taken completely for granted by software designers, are
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completely absent from the Petri net model. This is a particularly unfortunate
situation as all of these are useful mechanisms of abstraction.

It is the position of this dissertation that these weaknesses ca.n be addr&sed
by the introduction of contour/transition-nets and that this extension provides
a useful method of modeling concurrent systems. The contour/transition model
introduces three notions towards these ends: the notion of snvocations which
correspond to Petri net procedures; the notion of color which model multiple
instantiations of nets; and the notion of contours which permit modeling dynamic

scoping mechanisms.

It is the hypothesis of this work that the methods traditionally used for
the modeling and design of communications protocols rely too much op an
underlying seguential model of computation. In contrast, the Petri net method
is inherently well-suited for representing concurrent systems, but, due to some
unfortunate notational weaknesses, is unable to represent concurrent software well.
Contour/transition-nets are proposed as a useful bybrid which allows concurrent
software to be modeled, while maintaining a strong basis in Petri net theory. It
must be noted that the contour/transition model is not proposed as a specification
technique per se. Rather, contour/transition-nets are suggested as being useful for
modeling the bebavior of a concurrent system at various levels of abstraction and

detail.

Contributions
The foremost contribution of this dissertation is the development of the

contour/transition model. Contour/transition-nets are able to represent complex
concurrency mechanisms using conceptually simple constructs, while at the same
time permitting conventional data manipulation capabilities.

The Contour/ Transition Model
One contribution is to introduce and develop the theoretical foundation of

contour/transition-nets. This dissertation presents a definition of the semantics of
the contour/transition model and a methodology for using contour/transition-nets
to model concurrent systems. This methodology identifies what are believed to be
the best uses of the added extensions.
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Analysis of Contour/Transition-Nets
Proving a system expressed with the contour/transition model correct should

be no more difficult than proving a concurrent program correct. Although methods
and tools exist for verifving and testing concurrent software, and other methods
and tools also exist for analyzing simple Petri net models, there are no such
techniques developed for hybrid approaches such as the contour/transition model.
This dissertation presents a hierarchically based proof metbodology for analyzing
properties of contour/transition-nets which is based, in part, on the work presented

by Keller[KELL76] and Razouk[RAz081].

Experimental Evaluation
Although not a contribution per se, this dissertation contains an experimental

evaluation of the technique. A model is built of the connection establishment pbase
of the Transmission Control Protocol, which represents a significant portion of
a complicated protocol. Researchers in the field have used other techniques to
model the three-way handshake used by the Transmission Control Protocol (e.g.,

Umbaugh, et. al.[UMBA82B]).

Outline of the Dissertation
This dissertation is organized into six parts: this first part, which motivates

the reader as to why the problem should be examined and solved has been presented.
Next, in Chapter 2, a survey of related work in the problem area is given. In
Chapter 3, a detailed definition of the contour/transition model is presented. In
Chapter 4, a proof method for apalyzing properties of contour/transition-nets is
developed. In Chapter 5, a model of initial connection establishment in TCP is
given. Finally, in Chapter 6 a summary of possible future research to be done with

the contour/transition model and in the problem area is given.



CHAPTER 2
Related Research

Various models have been proposed to represent concurrent processes. The
focus in this chapter is primarily on those methods which are based on transition

svstems.

Petri Net Models
In order to present the reader with a consistent naming scheme, a single

terminology is used, i.e., that of Diaz[Diaz82). Initially, the simplest Petri net
model, place/transition-nets, is described. Then the various extensions that have
been made to this simple model are discussed. This chapter concludes by discussing

analysis methods which can be applied to the various models.

Place/Transition-Nets
A Petri net[PETR62] is a transition-based approach to modeling. The pet

itself is a directed graph with two types of nodes: places and transitions. The arcs
i the graph connect nodes of different types. Arcs which start at a place are called
inpul arcs. while those which start at a transition are called oufput arcs. Tokens
move along the graph from place to place according to strict enabling and firing
rules. A transition is enabled (said to “have concession”) when each of the places
on its input arcs has at least ope token. When a transition fires, a single token
is placed on each of the places on the transition’s output arcs and a single token
is removed from each of the places on the transition’s input arcs. In addition,
only one transition in the net may fire during a given instant. If more than one
transition is enabled (i.e., can fire), then the choice of which of the transitions does
actually fire is pon-deterministic.

The marking of a Petri net at a given instant is the distribution (location
and number) of tokens on the net’s places. The instial state of a Petri net is called
its initial marking. A given marking, M, is considered to be a home-state if for
all markings reachable from the initial state, M is reachable from those markings.

13
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Conceptually, a home-state corresponds to a final sfate in a finite state automaton.
A given marking. M, is considered to be live if for all markings reachable from M,
at least one transition may fire. The Petri net itself is considered live if the initial
marking is live. A given place in a Petri net is said to be bounded at L if the place
cap pever contain more than k tokens for every marking reachable from the initial
marking. The notion of a given place being safe can be thought of as that place

being bounded at unity. Along these lines, a safe net is one in which each place ip
the net is safe. A similar definition exists for a bounded net.

A large amount of research has been devoted to analyzing Petri nets and
various restricted classes of Petri nets|PETES1], which has led to a pumber of
powerful analysis techniques for systems represented by place/transition-nets. In
particular, a system represented by a place/transition-net can be expressed in terms
of an sneidence matriz which, after the proper linear algebraic manipulation, yields
invariants as to the bebavior of the system. This capability is a very attractive

feature of unaugmented Petri net model.

Unfortunately, place/transition-nets are not particularly well-suited for
representing concurrent systems as they lack several important features that have
been found to be useful for modeling software. In response to these weaknesses,
many extensions have been proposed to the Petri net model. The remainder of

this chapter presents a representative sample of these extensions.

Place/Coloured-Nets
Coloured Petri nets[Scui78] (or place/coloured-nets in the terminology of

Diaz[Diaz82]) are one attempt to increase the modeling ease of place/transition-
nets while retaining the analysis results mentioned previously. In short, tokens are
said to have a colour, which identifies them as a member of a set of tokens. The
system consists of a number of sets. In the solution to the “dining philosophers’”
problem given by Jensen[JEns81], for example, the system contains two sets: the
set of philosophers and the set of forks. Each philosopher and fork in the system is
represented by a single token. Furthermore, places are labelled with the types of
colors that they can bold, while transitions are labelled with a mapping function
describing the type of colors acceptable on each input arc, the relation that must
hold between these tokens for the transition to fire, and the colors generated on
each output arc. Hence, in the place/coloured-net model, colors interact. Finally,
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the totality of each set of colors must be fully identified (e.g., for the dining
philosophers’ problem, five philosophers and forks are identified).

Place/coloured-pets do not have additional repmentationﬂ power than
place/transition-nets, but they generally produce a more compact model of the
system. For example, given 5 philosopbers, the place/transition-net solution to
the problem has 15 places and 10 transitions with a complicated interconnection
structure. In contrast the coloured Petri net solution has three places and 2
transitions with a very simple set of arcs connecting the places and transitions.

Predicate/ Transition-Nets
The predicate/transition-net model|GENR81, GENR78] bas been introduced

in the hope of increasing the modeling ease of place/transition-nets while
retaining previously achieved analysis results. Predicate/transition-nets are
concise abbreviations for place/transition-nets: a place in a predicate/transition-
pet corresponds to a set of places in a place/transition-net; and, a tramnsition in a
predicate/transition-net corresponds to a set of transitions in a place/transition-net.
Tokens are multi-valued, containing an ordered tuple of parameters. Transitions
map tuples on their input arcs to tuples on their output arcs, but do so in a
wholly local context (which directly results from the fact that predicate/transition-
nets are abbreviations for place/transition-nets). The facilities provided by
the resulting economy of expression can be quite helpful in modeling complex
systems. Voss|Voss8o], for example, models a database management system using
predicate/transition-nets.

As with the place/coloured-net model, once the totality of the values
that tuples can take on is known, there is a straightforward mapping between
place/transition-nets and predicate/transition-nets. Hence, predicate/transition-
pets do not have additional modeling power, though like place/coloured-nets, they

permit more concise descriptions of concurrent systems.

The Graph Model of Behavior

Another model of concurrent computation, similar in graphic nature to
Petri nets, though developed independently, is the UCLA Graph Model of
Behavior[PosT74). A control structure in the GMB (sometimes referred to as a

UCLA graph, or a complex bi-logic directed graph) is, in many senses, an inverted
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place/transition-net. Tokens flow along multi-arcs, which feed and are fed by nodes.
The nodes in the GMB correspond to transitions where activity occurs, while the
multi-arcs, which hold tokens, correspond to places in ].Jlace/transition-nets In
addition. a complex boolean decision logic is permitted to exist between nodes apd
multi-arcs. Hence, a GMB representation of a system is often more concise than a
representation using a place/transition-net.

When only the control structure of the GMB is viewed, the model is identical
in power to place/transition-nets. Several extensions have been made to the
GMB though to extend the model to encompassing three domains|RAz08:): a
control domain (the control portion previously discussed), a data domain, and a
interprelation domain. The data domain describes the flow of data in the system by
identifying the relation between nodes and the type of access they have to datasets
(i.e., read. write, or read/write). The interpretation domain determines the data-
dependent paths taken by the control domain and also performs transformations
on the data domain. For example, if an OR output logic is present between
a node and two multi-arcs, the interpretation domain decides which multi-arc
of the data-dependent path receives a token based on the value of the datasets
readable by the multi-arc. With these (and other) powerful extensions, the GMB
is well-suited for simulating hardware and software systems. For example, in order
to allow the GMB and SARA to better model software systems, Penedo|PENES)]
presented a module interconnection language to support instantiations of processes
and data types. In other work, Razouk and Estrin[RAzo80A] uses the GMB and the
SARA system to model and analyze X.21. This analysis, like the results of other
researchers (e.g., Umbaugh and Liu[UMBA824], and West and Zafiropulo[WEsT78]),
found several errors in the CCITT X.21 specification[X.21].

AP-Nets
Mekly and Yau|MEKL80] introduce Abstract Process networks (AP-nets) as

a solution to some of the problems found in software development. In particular,
the AP-net is proposed as the basis of the design phase, and it is further proposed
that these AP-pets act as engineering blueprints for software designs.

An abstract process schema is represented as a 5-tuple consisting of an

initial state set, an input set, a process function, an output set and a final state
set. Mekly and Yau[MEkL80o] formally develop an analysis showing how abstract
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processes can be used as building blocks for the control constructs of structured
programming, and demonstrate sequential, selective, and iterative derivations.
Finally. construction and implementation techniques are discussed. AP-nets are
graphically realized as Petri nets with the restriction that safeness (no more than
ope token ip any place) and liveness (at least one transition bas concession) always
be preserved. Furthermore, the nets are required to always be conflict-free (no two
transitions in the net may have their input arcs originating at the same place).

AP-nets bave several good qualities. They are easily decomposed into smaller
AP-pets. This hierarchical structure makes possible the derivation of compact
algebraic summaries of an AP-net. The analysis of AP-pets is straightforward.
Since AP-nets are free of conflicts, the majority of problems found in examining
more complicated forms of Petri nets either are not present or are reduced to much
simpler proportions. AP-nets bear a close resemblance to other forms of graphical

representation and can be used to represent concurrent processes.

AP-pets also have several disadvantages. Intuitively, it is difficult to see how
AP-pets can be used to model complicated decision structures if the resulting
Petri net representations are forced to be free of conflict. While simple algorithms
can probably be demonstrated using the AP-net approach, there is doubt as to
the usefulness of AP-pets in complex designs. Other Petri net based methods,
such as numerical Petri pets are much more robust in the control structures
that are permitted to be represented. AP-pets, in contrast, seem determined to
minimize the non-deterministic nature of Petri nets. Furthermore, one issue that
is relatively untouched by AP-nets are the considerations given to the scoping of
data components. Despite the good hierarchical structure enjoyed by the control
logic portion of an AP-net, no consideration is given to a similar semantics for
variables. Fipally, although AP-nets are kighly decomposable, no provision for the
support of invocations (and related issues, such as parameters) is made.

‘Modified” Petn nets
Another approach to software design of concurrent processes is the “modified”

Petri pets as suggsted by Yau and Caglayan|YAu83]. A “modified” Petri net consists
of three components: a set of control state variables (similar to nodes in a GMB
control structure), a set of data objects which contain objects defined as abstract
data types (similar to the data domair of the GMB), and a set of software
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components which can be viewed as non-primitive trausitions, but which are, in
fact, delimited sub-graphs. The interconnection structure for a “modified” Petri
pet denotes the input/output relations between the places (control state variables) .
and the data objects, using a notation similar to the complex bi-logic notation
used in the GMB.! Unlike the GMB however, there is nothing equivalent to an
interpretation domain in the “modified” Petri net model. That is, although a
software component ip a “modified” Petri net may produce a token on one of two
output arcs, the effect of the data objects read by the software component upon
making this decision are nof represented.

Although the “modified” Petri net theory does introduce a distinction between
the external and internal view of a software component, note that true hierarchy,
in the sense of general control abstraction (e.g., recursion), is not possible since the
external input/output specification of a software component refers to the places
and data objects of the “outer” software component which passed control to it.
Hence, a software component can not really be used by more than one “outer”

software component, nor can it be used by that one “outer” component more than

once.
Yau and Caglayan show how the concise bi-logic relation between places and
software components can be transformed into a place/transition-net representation
and then discusses how “modified” Petri nets can be analyzed using standard
place/transition-net analysis (which is discussed in some detail in a later chapter)
to determine the nature of the control aspect of the system. They concede that
the barder questions concerning the data aspect of the system and the additional
complexity that arises when timing augmentations are also considered, are not
presently addressed by this type of analysis. In contrast, note that in terms of
the GMB, the SARA system has achieved considerable success in examining these

issues.

Numerical Petri nets
Numerical Petri nets|Symo8oa] extend the place/transition-net model by

adding some interesting features. First, tokens may be unique and may be
identified as such in both enabling conditions and firing rules. Enabling conditions

1 A a result, the author speculates that if one were to coalesce the arcs and places into multi-
arcs, a graph intertwining the control and data domains of the GMB would result.
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R
Tu. survey of analysis methods begins by discussing the properties which

- ..it Lo interested in proving about a protocol. Petri net properties are then

review:d and an examination is made as to how these theoretical properties relate

to protocol properties.

Protocol Specifications
In the largest sense, protocol verification refers to proving that the

specification of a protocol is able to achieve the properties listed in its associated
service specification given a set of properties listed in an underlying service
specification. It should be noted that although proving properties of the service
specification is the end-goal of the specification process, this activity is not
directly addressed. Instead, procedures are presented to prove that the protocol
specification can achieve the service specification. No statement is made as to the

correctness, completeness, or consistency of the service specification itself.

The properties that verification methods seek to establish fall into two
categories: ¢z/cfy and liveness|[BocH8oa). Safety properties ensure that any
actions taken by the system are correct actions while liveness properties ensure
that the system will eventually perform these actions. For example, in the
case of a connection establishment protocol, safety properties state that if the
protocol reaches its “established”™ state, then both end-points of the connection are
syochronized and cognizant of the state of the connection. In contrast, liveness
properties state that the protocol will actually reach the “established™ state.

There are several other related properties (to name a few): completeness,
which deals with the ability of the protocol to cope with all possible situations
(usvally stated as “all possible inputs”); deadlock-freeness, and progress, which
ensures that the protocol advances towards a goal state. The first two properties
involve safety. while the latter property is concerned with liveness. In addition,
properties specif to the protocol being examined may be verified as well. For
erzrile in the Lase of a file transfer protocol, a property to be proven might
irchude that translations between ASCII and EBCDIC encodings of characters
occur correctly. As expected, analysis of these properties require an in-depth

knowledge of the protocol and can not be so easily verified.
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Finally, it should be pointed out that regardless of the protocol specification,
it may not be possible to achieve the service specification due to an incorrect
service specification or a faulty underlying service specification. For example, in
the case of a packet voice system, if the underlying transport specification does not
guarantee delivery of packets within a certain time, then a protocol relying on this
underlying service will pot be able to provide a high-quality of voice transmission.

As pointed out by Bochmann and Sunshine[Boci83B), protocol specification
techniques tend to fall into two types of representation: afafe-fransition models and
programming language models (algorithmic methods). Not surprisingly, approaches
to protocol verification also fall into two categories: reachability analysie for
transition-based techniques and program proofs for algorithmic techniques.

Verification by program proofs is achieved by deriving assertions about
the operation of the protocol in terms of the state variables which compose the
programs that specify the protocol. This approach to analysis can be used to prove
statements about specific characteristics of the protocol, provided that concise
assertions representing those characteristics can be stated. There has been some
success in automating program proofs (e.g., GYPSY[Goop78]). This reduces the
time required to perform such proofs and, to a lesser extent, reduces the amount
of designer guidance required during the proof process. There has also been
considerable success in automating proofs based on the axiomatic properties of
abstract data types in order to perform theorem proving (e.g.. AFFIRM|Suns82a)).

Verification by reachability analysis is achieved by building a graph of all
states reachable for the protocol (known as state-space exploration) and is useful
for verifying both safety and liveness properties. With the entire reachability graph
built, the protocol can be checked for completeness by examining the graph for
absence of states that could arise based on an input (e.g., message arrival, user
request, or time-out}). Similarly, terminal states in the graph can be marked as
either final states (correct termination) or deadlock states. If no deadlock states
are found, then the system is live. Similarly, if no states in the reachability graph
represent undesirable states, then the system is “safe”. Hence, reachability analysis
is useful for verifying the general characteristics of a protocol. In order to perform
complete analysis of this type however, the entire reachability graph must be
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constructed. This introduces the problem of state-space ezplosion, which can make
analysis quite expensive.

Several “sﬁort-cuts” bave been suggested to reduce the state-space explosion
problem. One approach is simply to specify less of the protocol and perform
analysis on that smaller specification. In a similar vein, a knowledgeable protocol
designer might personally direct the state-space exploration by indicating to a
‘semi-automated verification system (such as SARA[RAz08.]) a particular path
of the graph to explore. These approaches suffer from the drawback that they
do not verify properties across the entire specification but, with proper designer
guidance, can perbaps verify important properties along critical paths. Of course,
this leads us to the second drawback, namely that verification tools using this style
of reducing the size of the state-space can never be fully automated as they require
an intimate knowledge of the bebavior of the protocol.

A second approach is to group states and hence reduce the resulting state-
space. If the specification technique supports ezplicit hierarchy (e.g., some form of
control abstraction), then this grouping can occur quite naturally. For example,
the CCITT often presents its specifications as finite state machines in which a
single node may actually refer to another automaton. In contrast to the previous
style of attacking the state-space explosion problem, this approach makes use of
the (hopefully) natural organization of the protocol specification and can be more
fully automated. A possible disadvantage though is that any tool which uses
this approach must support a hierarchically based proof mechanism. In addition,
depending on the structure of the specification, the grouping present may pot
be useful for determining certain properties of the system. That is, although
properties local to a particular group may be easier to prove, nothing may be
gained in terms of proving global properties.

Hf explicit hierarchy is not present, then the protocol designer must indicate
which states can be coalesced into larger states (or sets of states) for the purpose of
analyzing a particular property. It might be noted that states might be combined
differently depending on the property to be verified. One approach for the designer
to take, in order to aid the analysis process, is to group states together based on
an associated global assertion. That is, the criterion for a state being added to a
set of states is whether the assertion should be true when the protocol is in that
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state. As expected, this can significantly reduce the state-space but agaibn requires
a great deal of knowledge of the protocol’s behavior.

Properties of Petri net models
As suggested by Peterson[PETES)], there are six general properties to consider

when analyzing a Petri net:
1. Boundedness

If one views a correspondence between conditions in a system and places
in a Petri pet, such that a token resting in a place indicates that a certain
condition is true. then it often makes no sense to state that more than one
token can rest in that place. The property of k-boundedness is used to ensure
that the number of tokens found in any given place at no time exceeds ¥,
where k is usually 1.
It is an unfortunate coincidence that a I-bounded place is in Petri net
terminology is called a safe place. This type of safeness has little to do with
safety in the verification sense. To avoid confusion, this dissertation uses the
term boundedness to refer to properties of Petri nets and the term safety to
refer to verification properties.
In terms of verification properties, boundedness of a place (or, in general, a
pet) is a correctness issue. If one chooses to model conditions as places. then

boundedness is important if those conditions are to have meaning.

2. Conservation
H one views a correspondence between resources in a system and tokens

in a Petri net, then the number of tokens are often comstant since the
corresponding resources often are. To illustrate how boundedness differs from
conservation, consider two opposing examples: In the first, a transmission
medium may be bounded in the number of messages that it can have in
transit simultaneously (the resources in the system are finite, and hence
bounded). In contrast, consider a system which buffers information. In this
case, a buffer is either free or busy and does not “disappear” (the resources
in the system are constant, and hence conserved).

As with boundedness, conservation is a correctness issue of the specification.



24

3. Reachability
When fully analyzing a system, it is useful to know if it possible to reach

a particular marking from a given initial marking. From our persbective, it
might be instructive when trying to understand the nature of the protocol to
be able to ascertain the reachability of one marking from another.

Reachability of the net is related to the safety of the system. By examining
the states that the system cap reach, all states which violate safety properties
of the system can be found. Hence, knowing the reachability of the net can
aid ip proving safety properties of the system.
4. Liveness

It is important that a net always be live with respect to its initial marking.
A dead transition, one which will never fire regardless of the sequence of
transitions which fire in the system from an initial marking, represents an
anomaly in the system. A marking for a net in which all transitions are dead
represents a deadlock state, as discussed earlier. In addition, pote that dead

transitions may point to potentially serious design errors.

Again, ap unfortunate collision occurs between terms in verification and
Petri net theory. To compound matters, liveness in the sense of a Petri pet
is strongly related to safety in the sense of verifying the behavior of the
system. Early research in Petri net theory has shown that the problem of
determining the reachability of states in a system is equivalent to the problem
of determining the liveness of the net. Hence, knowing the liveness of the net
can aid in proving safety properties of the system.

5. Firing Sequences
If one considers the sequence in which transitions fired, rather than the
sequences in which states are entered, then it is useful to ask if a given
sequence of transition firings is possible.
Having information as to the sequence of firings in the net can be useful
in proving liveness properties of the system. For instance, if a cyclic firing
sequence can be shown that always returns the net to a particular marking,
then that marking can be viewed as a homing-state for the system.
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6. Equivalence
It might be very useful to perform transformations on contour/transition-

nets in order to achieve optimization with respect to a particular set of
criteria while stilling retain certain key properties. The capability to perform
such transformations might prove useful for validating implementations or
experimenting with slightly differing specifications of the same protocol. In
both of these cases, it may be desirable to prove that only certain properties
remain consistent across the transformation.
Finally, it should be noted that nothing has been said about how these
properties are proven. As suggested earlier, the standard approach is to build a

reachability grapb and then examine that graph for the desired information or

behavior.

Methods of Analysis

Several different methods of analyzing concurrent systems are now reviewed.
In the survey and discussion that follows all analysis techniques are not exhaustively
examined. Rather, focus is on those techniques which bave been found to be
particularly suitable for transition-based systems. In particular, the techniques

chosen are:

State-Space Analysis

Structural Analysis

e Inductive Analysis

Hybrid Approaches

To highlight the differences between the techniques discussed, a common
example is used, i.e., a small example of a concurrent system which enforces two
access mechanisms. Given n co-operating processes, two types of access to a
common resource are permitted: shared access, in which more than one process
may manipulate the resource simultaneously; and ezclusive access, in which only
one process may manipulate the resource. This is, of course, the “readers and

writers” problem.
In the simple solution presented, the issues of indefinite postponement and
Jairness are ignored. Rather, the properties to be proven are:
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Figure 2

Place/Transition-net

e If at least one reader is active, then any processes wishing to read may
immediately do so, and all processes wishing to write are blocked.

e If a writer is active, then all processes wishing to read or wishing to
write are blocked.

e Providing that all processes spend a finite amount of time either reading
or writing, the system will not deadlock.

A representation of the system modeled with a place/transition-net is shown
in Figure 2. From the initial marking, each of the n tokens in place H (the bome
state for the process) represents a process in the system. A token which fires
transition ¢; is designated as a reader and proceeds to place WR (waiting to read).
When at least one token is free in place S, then ¢, can fire and the process enters
the reading state at place R. Sometime later the process completes its reading and
fires transition t3. As a result of firing t3, a token is returned to place S, and the
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process enters the done state (place D). This eventually leads back to the home
state. Similarly, a token which fires transition ¢, is designated as a writer and
proceeds to place WW (waiting to write). When all n tokens are present ip place S,
then f5 can fire absorbing n tokens and placing the process in the writing state at
place W. When the process finishes writing, it fires transition ¢ which returns the
n tokens to place S and causes the process to enter the done state. This simple
et can model the minimal readers and writers system sketched above. It should
be noted though that for this to be a “true” place/transition-net, n should be

replaced by a constant.

1. State-Space Analysis
The survey begins by examining techniques that explore the state-space of

the system. Two examples are presented, one applied to place/transition-nets, and

the other applied to a “bybrid” model.

Place/Transition-Nets
Reachability analysis[PETE77] consists of building a graph of all states that

can be reached by the system. In place/transition nets, the ezplicst marking
(token distribution) of the net is the state of the system. Hence, the nodes of
the reachability grapb for a net containing n places can be seen as n-tuples.
Construction of the reachability graph begins with the initial marking of the net
(represented as a single node). For each transition that is enabled in this state. a
new edge carrying the name of the transition is added to the graph. The value of
the node at the end of each edge, called frontier nodes, is the representation of the
net’s marking after the transition has fired. Before adding the pode, a test must be
made to determine if it already exists elsewhere in the graph. If so, then an edge
is added to the already existing node (a frontier node is not introduced). States
from which no transition is enabled are terminal nodes of the graph. This process
1s repeated for each frontier node created.

Hopefully, this process will stop when no frontier nodes remain. If the
state-space for the net is infinite, then the reachability graph is infinite. Such nets
are not k-bounded for arbitrarily large k. Unbounded places can be identified
while building the graph. An incomplete reachability graph can still be built by
replacing the unbounded component of the n-tuple with the special symbol w.
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Table 1
Summary of Reachability Analysis for Figure 2

Once a finite reachability graph has been constructed, properties of the
place/transition net (and hence the system represented by the net) can be analyzed.
Boundedness can be determined by examining each node for a component with
value w. If no such node (state) exists, the net is known to be k-bounded for the
largest value of k found while traversing the tree. Conservation questions can be
answered by comparing the total number of tokens in each state to the number of
tokens in the initial state.

Of course, the most interesting properties are liveness and reachability.
Providing that the value w does not occur as a component of a node, then
the complete state-space is known for the place/transition-net being analyzed.
Terminal nodes can then be examined to determine if they represent proper ’
termination of the system or if they represent deadlocks. Similarly, if no branches
in the tree are labeled with the name of a given transition, then that transition
will never fire. This usually indicates a design problem in the system represented
by the net. Since the presence of w indicates an infinite number of states which are
represented by a single node, there is not a one-to-one correspondence between the
state-space of the net and its corresponding reachability tree. In such cases, the
complete state-space for the net is not known, and some reachability questions are

undecidable.

In order to build a reachability graph for the model shown above, the value
of n must be fixed. Table 1 shows how the number of states grows as a function of
n. For large values of n, the reachability graph, although finite, is unmanageable.
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H -1 -1 ) 1 n 1
WR 1 -1 1
R 1 -1 | 1
WW 1 -1 1
w 1 -1 1 n
D f 1 1 -1 1
) -1 1 -n n n 1
Table 2

Incidence Matrix and Invariants for Figure 2

2 Structural Analysis
The next method examined does not enumerate the state-space of the system

but rather attempts to derive invariants about the system’s behavior from its
structure. First, matrix analysis is presented and applied to place/transition-nets.
Then it is show how this technique can be applied to various Petri net models.
Finally. ways to transform the structure of a system in order to facilitate the

analysis Is discussed.

Place/Transition-Nets
A place/transition-net can be represented as an sncidence matrix. The rows

~f the matrix refer to places in the net while the columns refer to transitions in
~~ ret Ap entry in the incidence matrix, [F; t;], indicates the change in the
rumber of tokens present in place F; when transition ¢, fires. A weakness of this
representatior is that self-loops can not be shown in the incidence matrix. A
self-loop is a transition which is connected to a place by both input and output
arcs. The input and output arcs negate each other, usually resulting in a zero entry
in the matrix. A pet with self-loops can be correctly represented by the incidence

matrix if additional places and transitions are added to the original net.

The incidence matrix in Table 2 corresponds precisely to the net in Figure 2.
Table 2. in addition to containing the incidence matrix for the net in Figure 2, also
has a column (labeled Mp) to indicate the initial marking of the system along with
two columns marked “Invariants.” After the incidence matrix has been constructed,
invariant aspects of the behavior of the system can be determined by applying some
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straightforward linear algebra manipulations to the matrix. Two invariants, ¢;, and
i2, can be derived.? By forming the product of the initial marking, M, with each
invariant, equations can be derived which ‘describe the invariant behavior of the

system. In expressing invariant equations, m(F;) refers to the marking of place P;.
In the case of place/transition-nets, m(F;) is a non-negative integer referring to the
number of tokens in F;. In Petri net models in which tokens are distinguishable,

m(F;) is the orthogonal sum of the tokens present it P;, and |m(P;)| refers to the

ordinality of the tokens in place P;.

The first invariant,
m(H)+ m(WR)+m(R)+ m(WW) 4+ m(W)+m(D) = n, (1)

is interpreted as meaning that there are always n processes in the system. The

second invariant,
m(R) +ns m(W) +m(S) = n, (i2)

bas a more detailed meaning: if there are no processes writing, then up to n

processes can be reading; otherwise, if one process is writing. then no other process
can be reading or writing. To complete the proof, the system must be shown to be
free from deadlock. Using the two invariants, the proof is quite simple: Consider

the sum
m(H) + m(R) + m(W) + m(D).

There are two cases. For the first case,
case I: m(H) + m(R) + m(W) + m(D) > 0,
at Jeast one of transitions {;, 83, t4, te, or {7 is firable. For the second case,
case 2: . m(H)+ m(R)+ m(W)+m(D) =0,
from equation (1), it is known that
m(WR) + m(WW) = n,
and from equation (52), it is known that

m(S) = n.

2 Actuoally, any linear combination of these two invariants is an invariant of the system.
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Figure 3

Predicate/Transition-net

These two conditions imply that either tramsition tz or transition t5 is firable.
Hence. regardless of the state of the system, at least one transition is firable which

means that the system cannot deadlock.

Predicate/Transition-Nets
Genrich and Lautenbach[GENR81] derives an approach using S-invariants

based on linear algebra techniques to prove invariants about predicate/transition-
pets. The generality of the method is established by applying it to successively
more detailed predicate/transition-net representations of the same system. In
short. it is demonstrated how to introduce variables representing sets of values
and quantifiable variables into the equivalent incidence matrix representation of a
Petri net model and how invariants of the net can be derived based on the more

complicated incidence matrix.

To return to our short example, let us now suppose that three specific
processes are to be modeled, @, b, and ¢, which are reading and writing. The
predicate/transition-net in Figure 3 models the system using two quantities:
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Table 3

Incidence Matrix and Invariants for Figure 3

which refers to a particular process (a, b, or ¢), and (u,v) which refers to a
particular process that has decided to use the access denoted by v (either reading
or writing). Each edge of the net is labeled with one of these quantifiers. From
the initial marking. all three processes are in place H. When one of these processes
wishes to either read or write, transition #; fires, binding an access-type to v in
the pair (u, v), and the process enters the wait state (place W). When transition
t, fires, the process proceeds to place U (reading or writing, depending on v).
In order for {5 to fire, however, sufficient tokens must be present in place S. The
pumber of tokens in S required to make {; firable depends on the binding of v for
the token in place W. If the process wants to read, then a single token (denoted
by ¢) will suffice, otherwise 3¢ tokens (all the tokens that could ever be present in
place S) are required. When the process is done reading or writing, transition {3
fires which returns the appropriate number of tokens to place S. The process enters
the done state {place D). which leads back to the bome state, and in so doing,
discards the binding for v.

Table 3 shows the incidence matrix for the net in Figure 3. Since the semantics
of the net does not deal with scalar place variables (tokens are distinguishable),
the marking function m does not return a scalar, but rather a combination of the
three quantities: u, (u,v), or € (that is, m(S) may return 3 s ¢). Furthermore, the
+ and * operators do not have the same meaning as far as (v, v) and g, b, or ¢ are
concerned. » is thought of as acting as a quantification operator and + as acting

as a set union operator. The invariant equations are

(v,v)sm(H)+usm(W)+usm(U)+usm(D)=(u,v)s(a+b+¢), (jI)
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and
J(m({U)) + m(S) = 3¢. (s2)

The first invariant is interpreted as meaning that each of the processes, a, b,
and ¢, are in one of the places H, W, U, or D, and whebp they are in the home state,
any (future) binding for v is valid. The second invariant is more complicated:
regardless of the processes involved, if no processes have v bound to writing in
place U, then any process may have v bound to reading in place U; otherwise, if a
process has v bound to wniting in place U, then no other process can be present
ip place U, regardless of the binding it bas for v. To show freeness from deadlock,

the same cases discussed above are considered for the sum
m(H)+ m(U)+ m(D).

For the first case,

case l: m(H) +m(U) + m(D) > 0,

at least one of the transitions £, ty, or {4 is firable. For the second case,
case 2: m(H) + m(U) + m(D) = 0,

from equation (y1), it is known that

usrm(W)= (v, v)s(a+b+e¢).

and from equation (y2), it is known that
m(S) = 3e.

These two conditions imply that transition ¢, is firable, and hence the system is

free from deadlock.

Place/Coloured-Nets
Jensen|[JENs81]), introduces a method for proving invariants for coloured

Petri nets. The method is similar in spirit to the invariant method reported

by Genrich and Lautenbach[GENRS:1], but differs in one important respect: the
incidence matrix and resulting invariants are expressed in terms of explicit sets
of tokens (e.g., colours) rather than individual groupings of particular types of



Figure 4

Place/Coloured-net

tokens. This is, of course, the fundamental difference between coloured Petri nets
and predicate/transition-nets.

To return to our short example, let us suppose that two kinds of processes
are to be modeled: readers and writers. The coloured Petri net in Figure 4 can be
constructed to model the system using two colour sets: J_ % which refers to the
set of all processes, and 3 ¢ which refers to the resources (counters in our context)
in the system. The further distinction will be made that each member of the set
3" = has an attribute, ID, which indicates if the process is a reader or a writer.
Finally. suppose that there be a one-to-one correspondence between the set )«
and the set 3 ¢ such that given any member of Y =, say %, one can identify the
corresponding member of 3¢, say ¢;. Each place of the net is labeled with one of
these colour sets.® From the initial marking, all processes are in place H (the home
state for the process). When one of these processes becomes active, transition {;
fires, and the process enters the wait state (place W). When transition #; fires,
the process proceeds to place U and begins to read or write, depending on its ID.

S This label occurs to the left of each place in Figure 4.
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There are two cases. For the first case,
case 1: m(H) + m(U) + m(D) > 0,
at least one of the transitions t;, ts, or 14 is firable. For the second case,
case 2: m(H) + m(U) + m(D) =0,
from equation (k1), it is known that
mW)=)
and from equation (k2), it is known that

m(S)=) «

These two conditions imply that transition {7 is firable. Since at least one tranpsition
is firable, regardless of the state of the system, the system is free from deadlock.

Graph Model of Behavior
The application of structural analysis to the UCLA Graph Model of Behavior

is considered. Much work has been devoted to proving formal properties of systems
represented by the GMB. The majority of previous research has centered on
proving aspects of the control portion of systems represented by the GMB. The
usual method relies in expressing the control graph as a system of transformation
expressions and then applying a powerful reduction algorithm to the expressions.
The control set of the system is then derived from the reduced set of transformation
expressions. This latter activity is called control-flow' analysis.

To return to our short example, the place/transition-net in Figure 2 is
converted to a GMB control structure by following a straightforward procedure:
each place in the net (and the arcs connected to it) is replaced with a multi-are,
and each transition is replaced with a node. The resulting control graph (also

known as a UCLA graph) is shown in Figure 5.4

4 The reader should note that Figure 5 does not conform to the method used by most authors
when drawing the control grapk in 3 GMB representation: mormally the podes are labeled with
pames of the form Ni, as in N1, and the arcs are labeled with names of the form Aj, as in Al.
In addition, the input and output arcs for the graph are usvally labeled S and X, respectively. Inp
order to aid the reader in understanding the mapping between the structures in Figures 2 and 5,
the pames of places/transitions and multi-arcs/nodes have been preserved.



Figure 5

Graph Model of Behavior

To verify that the system is free from deadlock. it must be shown that the
system is properly terminating (PT) when n tokens are introduced onto the starting
arc for Figure 5. In order to show that the control graph in Figure 5 is PT(n). It

is first necessary to prove that the transformation
H(n),S(r) — D(n),S(n)

holds for the control graph in Figure 5. This transformation expression indicates
that all n processes will terminate (being free from deadlock), and that the number
of internal tokens is preserved (a weaker statement than the actual properties to

be proven). The set of transformation expressions representing the structure in
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Figure 5 is: v
H—~WR

WR,S —R
R—S,D
H—WW
WW,S(n) =W
W — S(n), D (11)

Rather than prove that the control graph in Figure 5 is PT(n), it is transformed
into an equivalent SESX structure which is then proven to be PT(1). First,
the interior tokens from the system are removed by adding two transformation

expressions:
§' — H(n), S(n)
D(n),S(n) — X' (12)
and the 1/O assertion
SI — XI

must be proved.
Second, a series of strong reductions[RAzo81, pp 37-43] is performed on our
set of transformation expressions in (/1). This yields:
S' — H(n), S(n)
H—-WR
WR,S—SD
H—-WW
WW,S(n) — S(n}),D
D(n),S(n) = X' (18)
This set of transformation expressions cannot be further reduced. If the set
of transformation expressions in (/1) and (12) could be reduced to the single
expression
S'— X',
then our proof would have been done.

Since this is ot the case, an alternate approach is to derive some invariants,

based on the transformation expressions in (/1). In particular, consider

nsS'+H+WR+R+WW 4+ W + D4 ns X' =n, (4)
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and
nsS'+R+nsW+S+ns X' =n, (15)

which are quite similar to the invariants (1) and (i2) with the additions of n » S’
and n » X' to reflect our augmented set of transformation expressions. Examining
the transformation expressions in ({1) and (12), shows that if ({) bolds prior to
the application of any transformation expression in (1), then ({4) bolds after the
application of that transformation expression. The same is true for (I5). Hence,
these are invariants on the number of tokens on the multi-arcs in Figure 5.

Two points are of interest here. First, the correspondence between
places/transitions in place/transition-nets and multi-arcs/nodes in the GMB
allows us to use invariants derived from one model with the other. To the author’s
knowledge, a general invariant technique on transformation expressions has not
been developed with the same power as the linear algebra techniques on incidence
matrices. This is not really a shortcoming, though, as each transformation
expression corresponds to a column in the incidence matrix for the set of
transformation expressions describing a particular control structure in a GMB.
Second. these invariants (or derivatives of them) could not have been derived for
the transformation expressions in ({3). Although the systems represented by both
sets of transformation expressions are identical, there is a loss of information when
going from (1) to (I13). Hence, although reduction is very useful if one is applying
control flow analysis, it may actually hinder proofs that make use of invariant

properties of the control graph.

3. Inductive Analysis
An alternative to automatic derivation of invariants is to use invariants

supplied by the system’s designer. First, this method is applied to a very general
model of concurrent computation and then the method is used to augment
reachability analysis.

It is important to emphasize the difference between invariants that can be
derived automatically from the structure of a net and those invariants which a
system designer suggests. In particular, the former type of invariants describe
general properties of the system (e.g., boundedness and possibly freedom from
deadlock) and are strictly limited to equalities that can be derived from the
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incidence matrix. In contrast, the invariants proposed by the designer are usually
system-specific and can include inequalities as well (not being limited to the
incidence matrix). In most cases, these properties, owing to their specialized

pature, do not fall out of the topology of the pet.

Predicate/Action-Nets
Keller[KELL76) presents two models of parallel computation: a conceptual

model and a presentational model. The conceptual model is a transition system
which uses a binary relation to map from one state to another. Although
pot useful for modeling particular systems, the conceptual model bas sufficient
generality to be useful for high-level reasoning about general concurrent systems.
In contrast, the presentational model, or predicate/action-net in the terminology of
Diaz[Di1Az82), resembles an augmented Petri pet and can be used for representing
a concurrent system. The presentational model presented by Keller bears a strong
resemblance to the contour/transition model. In particular, since colorful tokens
in contour/transition-nets represent execution contexts, just as place variables
represent multiple instruction pointers in the presentational model, the two models
are very similar. This view is strengthened when the presentational model is
augmented with “local variables.” Although the contour/transition model has
strict rules regarding data access (contour scoping), the same notion is being
addressed by the two models.

To prove properties of the presentational model. Keller uses an induction
principle. Put simply, if a predicate holds in every state reachable from the initial
state, go. of the system, then that predicate is said to be go-tnvarsant. Furthermore,

a predicate is said to be go-inductive, if:
1. a predicate holds in the initial state of the system;

2. the predicate holds in any given state of the system implies that the
predicate holds in any state immediately reachable from that given

state.

Finally, Keller shows that if a predicate is go-inductive, then it is gy-inveriant.
This means that the invariance of a property can be proven via an inductive proof
method. This result is important since it means that the entire reachability graph

of a system need not be constructed in order to prove properties of the system.
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The principal drawback of the invariant method is that the designer must explicitly
determine what properties should be invariant in the system: the construction of
invariants requires intimate knowledge of the system.

One important augmentatiton of predicate/action-nets, which is now
considered is the “distinct process” extension to the presentational model. This
extension allows the predicate/action-net to model systems involving unique
processes with local variables. Keller purposely avoids all issues of scoping and
allocation of variables and simply classifies variables as one of two types: global
variables which are accessible by all processes present in the system; and local
variables which are identically named by all processes present in the system but
which exist uniquely for each process. Furthermore, the assumption is made that a
single token exists for each process in the system (process creation and termination
are not considered). Invariants are now expressed in terms of three quantifiers:
global variables, local variables in the context of a particular process, and tokens
representing particular processes. Proving properties using this technique follows
along the usual lines: first, specific properties of the system are isolated to be
proven; second. these properties are expressed as invariants; and third. these
invariants are then proven by showing that the invariant holds in the initial
marking for the net, and, for each transition in the net, if the invariant holds prior
to that trapsition firing, then the invariant holds after that transition has fired.

Since analysis using the presentational model is discussed in greater depth
in Chapter 4, the short example of the readers and writers is not presented again

here.

Predicate/Transition-Nets
Berthelot and Terrat|BERTHE83] use predicate/transition-nets to model parts

of the European Computer Manufacturer Association transport protocol[ECMA].
A set of invariant assertions are presented for control states in the net, which, if
proven, show that the net is free from deadlock and that data is transmitted from
one peer to another without corruption, loss, duplication, or re-ordering. These
properties are then proven by: first, deriving a set of global predicates (invariant
assertions) for the system, second, demonstrating that the predicates hold for
the initial state; and third, showing for each transition in the system that the
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transition does not alter the predicate and then using the predicates to show that
the invariants bold at the appropriate control points.

The analysis presented follows the nature of predicate/transition-nets very
well: the range of values that each variable may take is fully declared, and, since
~ the predicate/transition net is actually a highly-compacted place/trapsition net,

the values of “variables” can be considered only with respect to each transition

that refers to those variables on its input or output arcs.

4. Hybrid Approaches
Combinations of these methods have been applied to models which are more

computationally powerful that place/transition-nets. Two of these methods are

examined here.

Predicate/Action-Nets

Bochmann and Gecsei|Boch ;7] attempt to unify reachability analysis and the
assertions method by augmenting Keller’s the presentational model. In essence,
the presentational model is extended by permitting decomposition of a system
represented by the model into separate subsystems (one for each peer in the system)
and by requiring that each subsystem consider data in a context independent from
all other subsystems (i.e., each subsystem has its own “private™ collection of global
variables). To achieve communication between subsystems, the notion of the
distantly initiated action is presented. Bearing a shadowy reflection of boundary
transitions in the contour/transition model, the distantly initiated action is a form
of message passing, similar in spirit to a remote procedure call. The specifics of
distantly initiated actions is quite simple: as a part of the action of a transition
firing. the execution of a distantly initiated action, specifying the name of the
action and any value-passed parameters, is requested; the action is then executed
for the other peer some finite time later, with the one provision that the execution
of each distantly initiated action is considered an atomic operation. Note that
although requests to execute distantly initiated actions are queued in some sense,
no temporal relation exists between requests in the queue: distantly initiated
actions may be executed in a different order than the order in which they were

queued.
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The analysis technique reported by Bochmann and Gecsei seeks to prove

- the full correctness of systems by establishing the absence of deadlocks, liveness,
cyclic behavior, and partial correctness properties of the system. To ascertain
the first three properties, reachability analysis is performed to construct a single
reachability structure for the system. The analysis is based on the control structure
of each subsystem, intimate knowledge as to the order in which certain transitions
can be fired and distantly initiated actions can be executed, and also a small
number of assertions on program variables. In short, the reachability analysis is
guided by a knowledge of the expected behavior of the system. Correctness of
the system is expressed as an assertion on the state variables of the system when
the system is in a particular control state. Partial correctness is proven when the
existence of a complete state (one which implies the correctness assertion) is shown
to exist, and full correctness is proven when it can be shown that a complete state
can be reached in a finite amount of time.

At this point, note that the subsystem approach suggested by Bochmann
and Gecsei may not be particularly well-suited to modeling our short example of
the readers and writers, since the author can not think of a simple way of using
distantly initiated actions to help represent the system. As a result, the short

example of the readers and writers is not presented again here.

Graph Mode! of Behavior
Razouk|RAzo81] presents a lengthy discussion of analysis of systems

represented with the GMB, in particular computer communication protocols.
with a heavy emphasis op using SARA to mix control-flow apalysis with execution
(simulation) of the system represented by the GMB. By using control-flow analysis,
it is possible to verify proper termination (to a limited extent), boundedness, and
liveness properties of GMB systems. Control-flow analysis suffers from the same
restrictions as reachability analysis since it does not consider the relation between
the control and interpretation domains of the GMB. In short, if control-flow
analysis declares a graph to be properly terminating, then the interpretation
domain is inconsequential to this property. Otherwise, if control-flow analysis
declares a graph to lack this property, then a more comprebensive proof is required

which takes the interpretation domain into account.
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To meet this problem, Razouk[RAz081) presents an invariant method based
upon the general method reported by Keller: first, critical transitions, which
represent the system going from a desirable to an undesirable state, are identified;
second. this knowledge is used to form invariants which, if proven, show that these
critical transitions can not occur in the system; and third, these invariants are
then proven by showing that the invariants bolds for the initial state of the GMB,
and, that at each point of the interpretation domain, considered atomically, if the
invariant holds prior to the interpretation being applied, then the invariant holds
after the interpretation has been applied. Razouk then shows that by clever use
of the topology of the data domain, the nodes in the GMB which do not affect
the ipvariant can be isolated and removed from the invariant analysis. This allows

partial correctness proofs to be more easily formulated since the time to perform

the proofs has been reduced.

In contrast to the work in Razouk’s work, Shapiro|SHAP83] attempts to extend
analysis of the GMB to include the data and interpretation domains more directly.
To achieve these extensions, a system represented by the GMB is represented by an
equivalent GMB in which all iteration and parallelism present in the interpretation
domain is shifted to the control domain. This process is straightforward and can
be done without loss of generality or descriptive power in the GMB. Furthermore,
timing considerations are ignored in the interpretation domain. With these two
limitations, it is possible to view each statement in the interpretation domain
as an indivisible action, and by doing so. Shapiro is able to claim the important
advantage of true parallelism being re-introduced into the control domain for
the purposes of analysis, inasmuch as more than one node in the control domain
may be simultaneously active. Previous work on verifying properties of systems
represented by the GMB that made use of the invariant method required the
limitation that only a single node in the control domain be active at a given instant
(i.e., that nodes fire atomically).

The argument is made that using inductive invariants on the control graph
alone is insufficient for complete verification and that a proof method which
includes the data and interpretations domains is required. To introduce a basis for
this, the use of predicate transformations are proposed. In short, assertions are
placed at various control points in a system represented by the GMB. The parts of
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the interpretation domain associated with those control points are then examined,
using symbolic execution, to see how they transform the predicate. To make this
type of analysis less expensive, Shapiro proposes to exploit the natural separation

of the control and interpretation domains in the GMB.

Remarks
One theme which emerges from this discussion is that of the trade-off

between modeling power and ease of analysis. By using place/transition-nets
to model a system, very powerful invariants of that system can be automatically
generated. In contrast, using numerical Petri pets allows very complex systems with
complicated decisions structures to be represented, at the expense of introducing
tremendous complexity in terms of analysis. This phenomenon is due to the fact
that models such as numerical Petri nets and predicate/action-nets are equivalent
in computational power to Turing machines. Fortunately, the work of Keller
presents a method for proving invariants of concurrent systems expressed as
predicate/action-nets, although, unlike the analysis methods for place/transition-

nets, these invariants must be generated by the designer of the system.

Despite their differences in computational power, the models examined share
some common weaknesses which are summarized here. A central weakness is that
these models are not able to easily represent software systems since the models
are geperally static in nature while the systems are dypamic. (In contrast, these
models. and particularly Petri nets, enjoy good success in representing hardware
systems which are more static in nature.) Most of this inability arises from a
lack of good abstraction facilities. Mechanisms for abstraction of control, such as
recursion and hierarchical ordering, are not present. Similarly, mechanisms for
abstraction of data, such as scoping (and in particular “well-disciplined” scoping),
are also lacking in these models.

Having presented some of the models proposed for representing concurrent
systems and their associated analysis techniques, a new transition-based model is
pow introduced, the Contour/Transition Model. This model combines a powerful
modeling capability along with control and data abstractions to allow concise
representations and yet is still amenable to analysis techniques.



CHAPTER 3
The Contour/Transition Model

The contour/transition model combines the data-handling features of
programming languages (the contour model[Joun71]) with the control-flow features
of transition-nets (Petri net theory[PETR63)) in a hierarchical and ordered fashion.

Contour /Transition-Nets
A contour/transition-net is (yet) another extension to the place/transition-

net model.> Our discussion begins by describing the elements that compose each
net and follow this by describing other aspects of the contour/transition model.

Topology
A contour/transition-net is a directed bi-partite graph populated with

four types of nodes: places, which hold tokens; transstions, which absorb
and produce tokens; named nets, which instantiate the execution of another
coptour/transition-net; and named subnets, which denote the substitution of
another contour/transition-net. Arcs starting from a place or named net and
leading to a transition are called snput arcs, while arcs starting from a transition

and leading to a place, named net, or subnet are called output arcs.

Tokens
Tokens traverse the net. The tokens found in the contour/transition model

are not unique. Instead, all tokens have a single attribute — a color. All tokens
of the same color are indistinguishable from each other. Each color is mapped

5 In earlier research, the author used the term structured Petri nel to refer to the transition-
based model described in this chapter. After much thought, the term contour/transition model was
adopted instead. This change is not meant to slight Petri nets in any fashion. Quite the contrary:
the author has great admiration for the simple yet powerful ways that place/transition-nets use
to represent concurrency, conflict, and synchronization. However, owing to the large number of
transition-based models that incorporate the term “Petri net” into their name, the author felt that
it would be a good idea to avoid confusing the literature with another model claiming to be a close

relative of the place/transition-net model.

47
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to a contour block, which represents a private resource space for each execution
(instantiation) of a named net.

Contour blocks contain bindings for variables and a static link which is a
pointer to a previous (scoping) contour. At this point, the restriction is made that
all colors in the system are independent: there are no shared variables or shared
contours between named nets or instantiations of named nets. Hence each static
link is null. When searching for a variable in the context of a particular token,
the contour block associated with the token’s color is examined. If the variable
is present, then the binding for the variable has been ascertained. Otherwise, the

variable is undefined in the context of the token.

Colors
The color attribute of a token has an ordinal value from the set of all colors.

The above restriction may now be relaxed by stating that each N-peer has its
own color space from which colors may be generated. To permit this, each N-peer
has an associated color-generator which produces new colors for the N-peer when
the generator is sncremented. The generator has a current color value which is
set to the color produced by the last increment operation. The color-generator is

accessible by all contour/transition-nets executing for a particular N-peer.

In addition to the colors that may be produced by the generator, there is
a special color — the blank color. Tokens with the blank color differ from other
tokens in one important way: each blank token has a set of variables associated
with it and is unique. The same variable may have different values, depending
on which blank token is being used to delimit the context. The static link in the

context of a blank token is always null.

Enabling Predicates
Each transition has associated with it an enabling predicate which specifies

the condition under which that transition is permitted to fire. Only one transition
in a contour/transition-net may fire at a given instant. If more than one transition
is enabled, then a non-deterministic choice is made as to which transition is actually

permitted to fire.

A transition’s enabling predicate is a single, possibly very complex, boolean
expression. The enabling predicate may specify the number of tokens required
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on each input arc (usually 1). Only tokens with the same color are considered
when the expression is evaluated. After evaluating the enabling predicate of all
transitions in the context of all colors, a set of enabled transitions is generated
which contains pairings between particular transitions and those colors which
satisfy the enabling predicate of the transition. A non-deterministic choice is
then made as to which transition will fire and which color is permitted to initiate
the firing of that transition. Tokens which are chosen to initiate the firing of a
transition are known as eligible tokens.

In addition to considering the marking of the net, the enabling predicate is
allowed to reference variables in the context of the eligible tokens. No memory,
other than those variables considered in the context of the eligible tokens, may
be referenced by the enabling predicate. Furthermore, testing of the enabling
predicate must not promote any sort of change in state (i.e., it must be free of
side-effects). This requirement permits the enabling predicate for all transitions in
the system to be examined simultaneously, or in any order or combination, with

the same final outcome.

Firing Actions

Each trapsition has associated with it a set of firing actions. These actions
may be ordered to allow sequential processing. Although several activities occur
when a transition fires, the totality of a transition firing is considered to be atomic

(i.e., once a transition begins to fire, no other transition is considered to be

enabled).®

The firing actions of a transition compose a set of operations that perform
four tasks: first, a set of eligible tokens is removed from their input places; second,
a determination is made as to the number of tokens (zero or more) that are to
be placed on each output arc; third, these tokens are introduced onto the selected
output arcs; and, fourth, variables in the context of the introduced tokens are

modified. and the introduced tokens are moved to their output places.

Removal of Eligible Tokens
The very first action to occur is the removal of the eligible tokens from their

input places. Although these tokens are now inaccessible to all other transitions,

® Timing considerations, discussed momentarily, may modify this perception somewhat.
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during the remainder of the firing of the transition they may be referenced by the

firing actions.

Selection Rules
After the eligible tokens have been removed, the selection rule is consulted.

The selection rule is an expression which is evaluated once, in the context of the
eligible tokens. This rule specifies which of the output arcs receive introduced
tokens and the number of tokens which are introduced. Associated with each
output arc is a predicate, the selection predicate, and a constant. The selection
rule is composed of the selection predicates and associated constant for each
output arc of the transition. Normally, this is used to provide decision-logic in

a net. In addition to opposing predicates (i.e., p and —p) that specify which of
two output arcs will receive a token, the selection rule is easily able to support a
switch-decision capability, including a default path (if no cases satisfied), providing
that the selection rule evaluates all cases consistently (i.e., without side-effects).

Construction Rules
After the distribution of the introduced tokens has been specified by the

evaluation of the selection rule, these introduced tokens are constructed, according
to a construction rule, and placed on the appropriate output places. At present,
the restriction is made that the construction rules require that the introduced
tokens have the same color as the eligible tokens. Furthermore, if the transition is
fed by an entry place for a named net, the construction rules are also permitted
to introduce variables into the new contour. When transitions types are discussed,

the notion of the construction rule will be developed in greater detail.

Manipulation Rules
After the introduced tokens have been constructed, they are manipulated.

This means that the manipulation rules, a set of program statements, are executed
to change the value of variables in the context of the introduced tokens.” These

statements are allowed to reference variables in the context of the eligible tokens.
No memory, other than those variables considered in the context of the eligible or

introduced tokens, may be referenced by the firing actions.

7 Each output arc has its own set of manipulation rules. If a transition has more than one set
of non-empty manipulation rules, thep regardless of the order of execution of each set, the state of

the introduced tokens should be consistent.
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After the manipulation rules bave been completed, the introduced tokens are
moved from the output arcs to the corresponding output places, and the transition
Is considered to have fully fired.

Timing

The contour/transition model supports temporal augmentations which
further modify the behavior of transitions. In addition to an enabling predicate
and some firing actions determining if and how a transition fires, each transition

bas an enabling time and a firing time.

Enabling Times
In order for a transition to be ready to fire, it must have its enabling predicate

constantly satisfied for the amount of time indicated by its enabling time. The
transition must be continuously enabled during this period. Once the enabling
predicate fails to be satisfied, the transition is disabled. After the enabling time
has expired, the transition is ready to fire. This capability allows the notion of
time-outs and similar concepts to be represented in the contour/transition model.

Most transitions will have an enabling time of zero, i.e., as soon as the enabling
predicate is satisfied, the transition may fire.
Firing Times

After executing the manipulation rules, but prior to the movement of the
introduced tokens to their output places the firing time of the transition must
expire. This requirement forces all of the critical activities of the firing actions
(in particular the execution of the manipulation rules) to occur atomically (before
other transitions may fire and modify the state), but still permits the use of
a delay before the introduced tokens are considered part of the state of the
contour/transition-net. Most transitions will have a firing time of zero which
makes the entire firing process appear to be atomic.

To permit more interesting simulations, the enabling time and firing time of
a transition need not be constant throughout the execution of the system. Rather,
the enabling time for a particular set of eligible tokens may be calculated when the
transition is first enabled. Furthermore, once the enabling time expires and the

transition begins to fire, the firing time may be calculated immediately after the

execution of the transition’s manipulation rules.
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Transition Types
The preceeding discussion did not allow colors to be created or destroyed

nor did it permit colors to interact. Special transitions are now introduced which’
enforce rigorous rules for allowing these types of activities. These restrictions are

necessary in order to make analysis and verification possible.

There are five types of transitions used in contour/transition-nets: normal

transitions, enfry transitions, ezit tramsitions, boundary transitions, and split

transitions.

A normal transition is a transition which adheres exactly to the description
of the enabling predicates and firing actions described above. Other transition
disciplines which modify these rules somewhat are described below. Although it is
possible to combine the attributes of two or more of these types of transitions to
achieve a hybrid, in the interests of clarity the discussion that follows considers no

such possibility.

Entry Transitions
An entry transition is viewed as the preparation that occurs prior to the

call of a procedure or function in an algorithmic language. Topologically, entry
transitions usually have a single output arc which is connected to an named net
(see Figure 6). The selection rule of a entry transition is constrained to introduce
exactly one token on this arc. At the point where the token is introduced, the color
generator is incremented and the resulting current color value of the generator
is used as the color of the introduced token. The static link of this new color
is considered null. The construction rules may specify variables to be defined
ip the new context, and the manipulation rules may initialize these variables.
This achieves parameter-passing for the named net. All parameters are required
to be passed entirely by value. Finally, the eligible tokens are removed and the
introduced token is placed on the named net which causes the named net to be

instantiated.

Exit Transitions
An exit transition is viewed as the clean-up that occurs after the return of

a call to a procedure or function. Topologically, exit transitions have a single
input arc which must be connected to an named net (see Figure 6). The enabling



53

O place “pormal” transition

split transition

’

’
<
\
1 >
—7— sending . receivin(; .
< boundary transition boundary transition
l’>
—+— entry transition
Fes==== =
I ]
y — f(z) |named pet y  g{z) |named subnet
} ]
| J

exit transition

Figure 6
Building Blocks for a Contour/Transition-Net

predicate for an exit transition must require the presence of one token on its input
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place. The mechanism by which an instantiation of a named pet returns control to
the correct exit transition of the calling net is discussed later. By using the context

of the eligible and introduced tokens, the manipulation rules may make use of a

return value.

Boundary Transitions
A boundary transition is viewed as allowing the passing of information from

one N-peer to another. There are two sub-types of boundary transitions: sending
and receiving. Topologically, sending boundary transitions have a single output arc
which is graphically depicted with a dashed rather than solid line (see Figure 6).
The selection rule of a boundary transition is constrained to introduce exactly
one token on this arc, and the construction rules are required to specify that
this token have the blank color (in violation of the rules presented above). The
manipulation rules are required to completely specify the variables which one
N-peer communicates to the other. These variables have their values fully copied
to the introduced token. As a result, any information passed from one N-peer to
another is transferred to the latter’s private resource space, ensuring that each
N-peer’s resource space is private. Topologically, receiving boundary transitions
have a single input arc which is graphically depicted with a dashed rather than
solid line (see Figure 6). Each receiving boundary transition indicates the type of
information that it expects to receive.

From a practical basis, the reader should understand that boundary
transitions rely on an underlying addressing and “delivery” mechanism to achieve
their semantics. From a mechanical basis, a sending boundary transition takes
a colorful token, maps it into a colorless token, and passes that token to the
underlying delivery mechanism. Similarly, a receiving boundary transition accepts
a colorless token from the underlying delivery mechanism. Usually, information
from the colorless token is passed to a particular execution context through the
use of a split transition. From a conceptual basis, two boundary transitions for
two different peers may be thought of as “touching” at the point where the blank
token is passed, since they model a message passing mechanism. This touching is
guaranteed to limit interference and to allow the sending action to be separated

from the receiving action.
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Split Transitions
A split transition is viewed as a local synchronization method for processes

residing on the same processor. Split transitions are allowed to violate a key
tenet of the contour/transition model philosopby: they may consider different
colors when evaluating their enabling predicates. This lapse is permitted under a
very strict condition: although different colors may be considered, only one color
at a particular input arc is considered. Topologically, split transitions have the
same number of input arcs and output arcs and must have at least two of each.
Graphically, a split transition has a “notch” between each of its input arcs and
between each of its output arcs to differentiate it from a transition which has
multiple input arcs but which considers tokens of the same color when evaluating
its enabling predicate (see Figure 6). While the enabling predicate for a split
transition must require the presence of one (or more) tokens on each input place,
the selection rule is constrained to introduce at least one token on each output
arc. Each introduced token on a given output arc must have the same color as the
eligible token on the corresponding input arc.

It must be granted that the “rendezvous” semantics of the split transition is
meaningful only when the peers participating in its firing are resident in a tightly
coupled system (e.g., the same host). Any activity more complicated than this
must be performed using boundary transitions, which do not suffer this restriction.

Named nets
Named nets are references to other contour/transition-nets. Topologically,

they are similar to places but are represented with a labeled square instead of
circle (see Figure 6). For representational convenience, in addition to labeling a
named pet with its name, the parameters used when the named net is invoked may
appear also within the labeled square using the traditional parenthesized notation.

Named nets may have more than one entry place. In this case, each entry
place is named, and the contour/transition-net which instantiates the named net
must specify (in the labeled square) which entry place is to be used. A named
net needs only a single exit place although it may contain more. This is for
representational convenience only. Multiple exit places should be thought of as

leading to a single, actual exit place.
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The underlying mechanics which implement the named net semantics may
be viewed in the following fashion. A colorful token actually contains three
components. The first two, variable bindings and a static link, have already been
discussed. The third is a return pointer. When an entry transition fires, the color
generator is incremented, and the resulting context is manipulated. In addition
to “loading” parameters and making the static link empty, the return pointer of
the introduced token is initialized. This pointer consists of two components: a
location and a contezt. The location of the pointer is set to the corresponding exit
transition for the entry transition that is firing, while the context of the return
pointer is set to the color of the eligible token. Again, the reader will observe
that the contour/transition model continues to borrow from the contour model.
The introduced token, when placed on the named net, is immediately removed
and placed at the appropriate entry place for the named net. When a named net
terminates (at the exit place of the contour/transition-net), the token residing at
the exit place is removed and its return pointer examined. The exit transition
corresponding to the entry transition that instantiated the named net fires with
the correct eligible and introduced tokens. The location of the exit transition and
the color of the token that will be introduced by the exit transition are found by
examining the return pointer of the token removed from the exit place. The eligible
token for the exit transition is, of course, the token removed from the exit place.

Since all entry transitions are required to invoke the color-generator and no
transition is allowed to introduce arbitrary colors, this mechanism is fully capable
of supporting the desired semantics. The reader should note that since the static
link of a colorful token generated at an entry transition is null, a named net which
is instantiated can not “tamper” with the context of the net which invoked it.

Named nets are traditionally thought of as “single entry, single exit” nets.
As discussed above, more than one entry place and one exit place may be present.
As a further enhancement, named nets may also be specified as “single entry,
zero exit” nets. That is, once the net is instantiated, it never returns. In such
cases, the named net need not feed an input arc to a transition and may be thought
of as a “terminal” node. This is particularly useful in modeling non-terminating

processes (e.g., operating systems, network servers, and so forth).
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Named subnets
Named subnets are references to other contour/transition-nets. Topologically,

they are similar to places but are represented with a labeled square with a dashed
outline instead of a circle (see Figure 6).

Subnets are used as a representational convenience only. Subnets pever
connect to input arcs, only to output arcs. When a transition introduces a token
for a named subnet, that token is placed at the entry place of the corresponding
contour/transition-net. Hence, subnets differ from named nets because no contour

is saved or restored and token colors are preserved.

It might be noted that subnets correspond to “gotos” in the programming
language sense. In response, subnets are intended to a convenient way to generalize
the state of a particular N-peer. Rather than using “tail-recursion” to denote
state changes (where a particular state is represented by a contour/transition-net),

subnets provide a more concise description and simpler technique.

Other Aspects
Now that the basic operations of the contour/transition model have been

described, additional aspects can be considered.

Initial Markings

Each contour/transition-net has an initial marking. If the net is the main
instantiation of an N-peer, then no restrictions are made on this initial marking.
At the beginning of execution, the N-peer initializes its color generator, and the
first color is produced. The net is assigned a global contour which is given to all
tokens in the initial marking.

The initial marking of an named net is always a single token appearing on
one of the named net’s entry places. Naturally, if a named net is intended to return
control to the net that instantiated it, the former should be produced in such a
way that it (eventually) produces one token on its exit place after a token appears

on its entry place.

Graphical Conventions
The convention for drawing contour/transition-nets differs somewhat from

the standard notation used for Petri nets. When drawing a transition, text
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appearing to the left of the transition is interpreted as the enabling predicate for
the transition. Similarly, text appearing to the right of the transition is interpreted
as the firing actions for the transition. Since the firing actions consist of three

components (selection rules, construction rules, and manipulation rules), individual
components are specified by prefixing them with their name or a short abbreviation
(e.g., “sr:” for selection rule). In addition, the enabling time for the transition

may appear to the left of the transition under the enabling predicate (e.g., prefixed
with “et:”). Similarly, the firing time for the transition may appear to the right of
the transition, under the firing actions (e.g., prefixed with “ft:?). As a short-hand
notation, if the text appearing to the right of a transition is not prefixed, then the

text is presumed to be the manipulation rules for the transition.

The defaults for unspecified predicates and actions are as follows:
e enabling predicate — 1 token on each input arc (AND input logic)

e enabling time — O time

e selection rule — 1 token on each output arc (each selection predicate is
TRUE)

e construction rule — none

e manipulation rule — po change of state in the context of the introduced

tokens

e firing time — O time

For those places which feed input arcs leading to more than one transition,
a “tilde” symbol (e.g., ‘~’) may be used as the enabling predicate for one of
the trapsitions. This is a short-hand expression meaning that none of the other
transitions being fed by the place have their enabling predicates satisfied. Similarly,
for those transitions with more than one output arc, a tilde symbol may be used as
the selection rule for one of the arcs. As expected, this is a short-hand expression

meaning that none of the selection rules associated with the other output arcs
introduce any tokens.

By clever use of these conventions, the graphical representations of
contour/transition-nets can be presented in a concise fashion and kept relatively

free from clutter.
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Semantic Issves
This discussion has ignored many of the semantic issues that can arise when '

constructing a system out of contour/transition-nets. In particular, no requirement
1s made as to the programming language used in the manipulation rules of each

transition. As long as the firing of a tramnsition can occur atomically, no further

requirements are needed.

Conversion to GMB style
The extensions introduced herein can be easily applied to the Graph Model

of Behavior. Contour/transition-nets can be transformed into a GMB-like control
structure by following the rules used to translate place/transition-nets into a
GMB: each place and its associated arcs are coalesced into multi-arcs, and each

transition becomes a node. Named nets (and named subnets) are still represented

as a (dashed) square.
There is no semantic difference between the two structures, only a difference
in presentation. Since this is largely a matter of personal taste as to which form is

the most readable, the actual form used when presenting contour/transition-nets

is unimportant.

Some Examples
Below a few examples of simple concurrent systems are presented which

are described using the contour/transition model. The solutions to these simple
problems demonstrate most of the fundamental concepts of the contour/transition

model.

The Sieve of Eratosthenes
First, a system is presented which generates prime numbers by sifting a

sequence of ascending natural numbers through a set of processes as filters. Each
process in the filter has associated with it a prime number. When it receives a
number to consider, the process checks if that number is evenly divisible by the
prime number associated with it. If so, the number can not be prime and is filtered
out. If not, then the process passes the number to the next process in the filter
(which is responsible for the next larger prime number). If there is not another
process, then the number has successfully passed through all prime numbers known



60

to the system and must therefore be prime.® Stated more precisely, the composition

of the system is:

1. There are two types of processes in the system, a driver process, and
many filter processes. The driver process is the top-level process that
is instantiated to guide the system. FEach filter process represents a

particular prime number.

2. A driver process begins by starting the first of the filter processes,
with the prime number 2. Then, the driver perpetually iterates, by
incrementing the number and communicating it to its child, so as to

enumerate 3, 4, ..., and so on.

3. Each filter process begins by printing out the number with which it was
invoked. It then enters a perpetual loop. The loop begins by receiving
a number from the parent of the process. If this number is evenly
divisible by the prime number associated with the process, then this
new number is not a prime and may be discarded. If the number is not
evenly divisible, the filter checks to see if it has started a successor. If
there is a successor, the filter simply communicates that number to its
successor. If not, the number is a prime, so the filter starts another
filter process with the new number.

Three contour/transition-nets are used to model the system. The MAIN net
(Figure 7) is the driver process. When instantiated, it begins by creating a contour
for two local variables: z, which is the number currently being enumerated, and 1d,
which will be used to identify processes. Control then forks. One fork instantiates
the PNF (Prime Number Filter) net. Parameters z and fd + 1 are passed. An
important convention is that a child always has an id equal to 1 plus the ¢d of
the parent. Since PNF is a non-terminating process (a “single entry, zero exit”
net), no exit transition is required after the named net. The other fork begins
the enumeration loop, z is incremented, and then the SYNC net is instantiated at

the C entry point in order to communicate z to the immediate child of the driver

process.
The PNF net (Figure 8) models a filter process. When instantiated, it begins

by creating a contour for two local variables: ¢, a boolean which indicates if a

child has been created for this process, and z, which is used to hold communicated

8 This conclusion is true since ascending numbers, starting at 3, are given to the filter which
initially contains only one process, which is associated with the prime number 2.
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entry

int x — 2
intid — 1

PNF
(x,id+1)

Figure 7

Driver for Sieve: MAIN

pumbers. As a part of the manipulation rules, the statement print(p) is called.
This procedure prints out the value of the variable p in the current context (recall
that PNF has two formal parameters, p and n). The SYNC net is now instantiated
at the P entry point, to retrieve the next number from the parent of this process.
When the invocation returns, its return value is copied into the variable z. This
value is compared against p (the prime number associated with this process). If
z is evenly divisible by p, then control loops back. Otherwise, if 1 is FALSE,
then ¢ is set to TRUE and control forks. One fork instantiates the PNF net with
parameters z and sd + 1. The other fork loops back. If s is TRUE, then the SYNC
net is instantiated at the C entry point, to communicate z to the immediate child
of this filter process.

The SYNC net (Figure 9) is the net that synchronizes the processes. The
SYNC net has two entry points P (synchronize with parent) and C (synchronize
with child) and consists of a single split transition. The enabling conditions for this

transition specify that the value of the variable sd in the context of a token from
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entry(int p, id)

bool i ~— FALSE
int z
print(p)

(z mod p) # 0

1 =TRUE
i —TRUE
_ —y
PNF SYNC.C
(x,id+1) (x,id)

Figure 8
Prime Number Filter: PNF

place P must be equal to one more than the value of the variable ¢d in the context



P(int z, id) Clint z,1d)

(1)

exit(x) exit

(1) ep: P.id = C.id + 1
mr: P.z2e C.z2

Figure 9
Rendezvous of PNFs: SYNC

of a token from place C. When the transition fires, the value of the variable fd in
the context of the eligible token from place P is set to the value of the variable
td in the context of the eligible token from place C. After this manipulation, each
token reaches an exit place. For the token that entered at place P (a child wishing
to synchronize with its parent), the value of the communicated number is returned
at the exit place. Described simply, the SYNC net synchronizes a parent and its
child and has the parent pass an integer to the child.

This example demonstrates an interesting property of the contour/transition
model, i.e., the ability to perform horizontal- and vertical-multiplezing. Although
several PNF processes may be executing, only one contour/transition-net is
required to represent them since the colorful tokens contain all of the state
information. This is an example of horizontal-multiplexing. There are several
advantages to this type of capability. For example, when specifying a system, it is
not necessary to know before-hand the number of processes that will be running
in the system. Instead the structure of each type of process must be detailed
exactly once. In contrast, an example of vertical-multiplexing might be a system
modeled by several named nets which have instantiated each other according to
some functional hierarchy. In this case, only one process which has been divided

into several functional units is modeled.
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The Dining Philosophers
Next, a system in which an arbitrary number of philosophers attempt to think,

sleep, and eat in a co-operative fashion is bresented. Although any philosopher
may think and sleep without regard for what other philosophers are doing, the
activity of the other philosophers may interfere with a given philosopher who
wishes to eat. The n philosophers eat at a circular table. Each philosopher has an
assigned seat and cannot sit elsewhere. Between every two philosophers is a fork.
Unfortunately, a philosopher must eat with the two adjacent forks. Therefore when
one philosopher is eating, neither of the philosopher’s two neighbors may be eating
as well. Naturally, if all the philosophers were to sit down to eat at the same time
and each grabbed the fork to the left, then they will all starve as a deadlock has
developed. The system to be modeled will bave to avoid this undesirable situation.
A better system would address the problem of indefinite postponement, in which
a given philosopher could starve because at no time would both of his neighbors

not be eating (philosophers are a conspiritous bunch). Stated more precisely, the

composition of the system is:

1. There are three types of entities in the system: a driver process, n
philosophers, and an equal number of forks. The driver process initializes
the system. Each philosopher and fork has an ¢d which indicates where

that entity resides at the table.
2. A philosopher endlessly cycles through the loop: think, eat, and sleep.

3. A fork is either free or busy. Modulo n arithmetic (represented by the
€ operator) is used to relate a philosopher and two adjacent forks. For
a given philosopher with id of ¢, the fork to left has an #d of ¢, and the

fork to the right has an ¢d of 1 & 1.

Two contour/transition-nets are used to model the system. The MAIN net
(Figure 10) is the driver process. When instantiated with parameter n, it begins
by creating a contour for the local variable ¢, which it uses as a counter. It then
creates n philosophers and forks by instantiating PHILOS.P and PHILOS.F with
an ¢d of 1 to n, and then terminates control by advancing to an exit place.

The PHILOS net (Figure 11) models a common control structure for
philosophers and forks. When instantiated at the P entry place, a philosopher
is modeled. An instantiation at the F entry place starts a fork. Initially, a
philosopher is thinking (at place T), and a fork is free (at place F). When the first
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entry(int n)

PHILOS.P
(i)

PHILOS.F exit
(i,n)

Figure 10
Driver for the Philosophers: MAIN

P(int id, n)

F(int id, n)

(1) ep: Tid=Flid A T.id®1 = F2.id
(2) ep: E.id = Blid A E.id®1 = B2.id

Figure 11
The Dining Philosophers: PHILOS

split transition fires, indicating that both of the philosopher’s forks are free, the



(W)

W = nezt(B) !

(®)

Figure 12
Behavior of Stations on a Ring Network

philosopher enters the eating state (place E), and the two forks enter the busy
state (place B). When the second split transition fires, the philosopher enters the
sleeping state (place S), and the two forks enter the free state. Sometime later,

another transition fires, and the philosopher begins thinking again.

The solution to the problem of deadlock (though not indefinite postponement)
is achieved through the use of a single split transition which requires as an enabling
condition that both of a philosopher’s forks be free. Hence, a philosopher will not
be able to start eating until this condition is met, and the philosopher cannot grab
one fork and then wait for the other, (which could lead to a deadlock situation).

Token Ring Protocol
Finally, a model of the behavior of a number of stations on a ring network

is presented. In short, an arbitrary number of stations are arranged along a token
passing network with a ring topology. At any given time, one of the stations has
the token and is allowed to transmit a packet on the wire. After the packet is sent,

the token proceeds to the next station in the ring.

For the purposes of this example, only the relation between the n stations will
be modeled and the token (to avoid confusion between the token in the ring network
and the tokens in the contour/transition-nets of our model, the former object will
be called the marker). Intuitively, one can imagine some type of behavior as
described in Figure 12. Initially, one station has the marker, and its corresponding
token is in place B (the BUSY state). All stations awaiting possession of the
marker so they can transmit a packet on the network have a corresponding token
in place W (the WAIT state). The nezt() function must enforce some sort of



entry(int n)

STATION . exit
(in)

Figure 13
Driver for the Stations: MAIN

one-to-one mapping between stations, in order to ensure consistent passing of the

marker from station to station for all iterations along the network.

Our model of the system will use modulo n arithmetic to construct the
function nezxt(). The assumption is made that the number of stations in the system
is conserved at exactly n. The MAIN net (Figure 13) is the driver process. When
instantiated with parameter n, it begins by creating a contour for the local variable
¢, which it uses as a counter. It then creates n stations, by instantiating STATION

with an ¢d of I to n, and then terminates control by advancing to an exit place.

The STATION net (Figure 14) models the common control structure for all
stations. When instantiated with parameters ¢d and n, it determines if this station
should be given the marker first. If so, control proceeds to place B. Otherwise,
control proceeds to place W. Once both places W and B have tokens, the split
transition may fire. The enabling predicate states that i1d in the context of the
token from place W must be I greater (modulo n) than ¢d in the context of the
token currently. Hence the sequence of sd’s chosen from place W to satisfy the

enabling predicate form a ring (not surprisingly).
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entry(int id, n)

vd

n
=

W.id=B.id&l

Figure 14
The Stations on a Ring Network: STATION

Extensions to the Model
The previous sections in this chapter have introduced parts of the con-

tour/transition model that form the basis of the model. This section suggests some
extensions to the basis which may prove useful in modeling systems. A detailed

investigation of the merits of these extensions is left to future research.

Block Structuring
The base model allows only entry and exit transitions to have construction

rules. One obvious extension is to allow normal transitions to also have construction
rules. In this way, a pair of matched transitions can introduce a “begin-end” block
into the context of a net. Of course, a correct design must guarantee that the

transitions are in fact matched. If this extension is permitted, then the construction
rules may perform two types of operations. In the first, the color generator is

incremented, the new current color value is used as the color of the introduced

tokens, and the static link of the introduced tokens is set to the color of the eligible
tokens. In the second type of operation, the color of the introduced tokens is set to
the static link of the eligible tokens. The former operation pushes a next context
while the latter pops the current context and restores the immediately scoping one.

It should be noted that, with this extension, a named net need not exercise

great care in removing any contours introduced during its execution. When the
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exit place is reached, the underlying mechanics will notice that the eligible token

does not have an initialized return pointer and may consecutively discard contours

until one is found.

With this extension, searching for a variable in the context of a token is
somewhat more complicated. The token’s contour block is examined. If the
variable is not present, then the previous contour (found by using the static link) is
examined. This process continues until either the binding for the variable is found
or there is no previous contour (a pull static link is encountered). The latter case
indicates that the variable is undefined in the context of the original token.

Finally, regardless of the introduction of this extension, it should be noted
that the construction rules are not allowed to specify arbitrary colors for the

introduced tokens — this Is strictly prohibited.

Dynamic Scoping

A further extension is to modify the actions taken by the construction rules
of entry transitions. In particular, if the static link of the introduced token is not
required to be null but instead set it to the context of the eligible token, then a
dynamic scoping mechanism is enforced when a named net is invoked. This means
that during the execution of that net in the “new” context, the “old” context may
be modified by following static links. Although this form of scoping is found to be
extremely useful in some applications, permitting this type of data access between
instantiated nets is thought to be very harmful for several reasons. Perhaps the
most important of these is the difficulty that is introduced in the analysis of

contour/transition-nets when contertual interference between instantiated nets

becomes possible.

Remarks
It should be noted that the lack of these extensions in the base model do not

reduce the power of the invocation mechanism. Rather, they enforce a particular
modeling discipline upon the designer. Forcing the use of return values and

value-parameter passing permits a simpler analysis later.
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Comparison to Other Petri Net Models

This chapter is concluded by comparing the contour/transition model and the
other Petri net extensions discussed in the previous chapter. As the next chapter
deals with issues of analysis, only modeling power and ease of use is considered

here.
Comparisons are made with respect to the control and data aspects of the

system are represented and what interactions occur between control and data.

Place/ Transition-Nets and Abbreviations
Neither place/transition-nets nor place/coloured-nets nor predicate/transi-

tion-nets attain any level of hierarchy or modularization. In all three models, a
single pet is used to represent the entire system. Since the contour/transition
model introduces named nets and named subnets into the topology of the net, these

useful control abstraction mechanisms can be achieved by contour/transition-nets.

In terms of the data aspect of the system, place/transition-nets use colorless
(“grey”) tokens, place/coloured-nets use color sets, and predicate/transition-nets
use well-defined tuples. In the first case, any data aspect of the system must be
represented as a part of the control aspect (i.e., the marking of the net), while in
the latter two cases, the data aspect can be simulated by a priori delimiting the
totality of the values taken on by the data aspect. As a result, data abstraction is

not possible.

In terms of the interpretation aspect of the system, the mapping functions
associated with transitions in place/coloured-nets and predicate/transition-nets
do resemble the enabling predicates and firing actions of contour/transition-nets
to some degree. However, note that in the other models, the mapping functions
represent an abbreviation of the net and not a true interaction between the control
and data aspects of the system. In contrast, the use of enabling predicates and
firing actions really does establish an interaction and makes contour/transition-nets
Turing equivalent. This has a significant effect on analysis, since invariants are not
automatically generated from the topology of a contour/transition-net in contrast
to place/transition-nets, place/coloured-nets, and predicate/transition-nets.
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AP-Nets and "modified” Petri nets
As discussed in the previous chapter, the restricted nature of AP-nets prevents

control structures of a complex nature. In contrast, “modified” Petri nets and
contour/transition-nets do not suffer from this restriction. All three models permit
some degree of hierarchy. But AP-nets, as defined, cannot support recursion or
concurrent instantiation, and “modified” Petri nets, while permitting abstraction

in the input/output specification sense, do not support recursion or concurrent

instantiation.

Neither AP-nets nor “modified” Petri nets pay much attention to the data
aspect of the system. The “modified” Petri net model introduces abstract data
tvpes to define the organization of the data manipulated by the system. It also
introduces data objects to delimit the relations between components in the system
and the affected data. Owing to the static nature of both of these models, scoping
and related issues are not addressed directly. The contour/transition model
purposely avoids the issues of data types, relying on the semantics of the language

used for the manipulation rules to resolve them. The merits of this approach is

open to discussion.
AP-nets indirectly solve the problem of control and data interactions by
requiring that all transitions be conflict-free. “Modified” Petri nets do not address

this issue at all.

The Graph Model of Behavior
From the aspect of control, as the discussion above indicated, there is

little difference between the two approaches for graphically depicting the control
structure of the system. In particular, since contour/transition-nets introduce
selection rules into the net, a contour/transition-net representation of the system
1s likely to be as concise as the corresponding GMB control structure. In addition,
the GMB can support control abstraction to some extent, through the use of single
entry, single exsit (SESX) UCLA graphs. One extension to the GMB permits
replacing a safe/live node with a safe/live SESX control structure and maintaining
safeness and liveness properties. With this extension, systems may be modularized.
Owing to the static nature of the data domain, however, recursion is not supported.



72

The GMB uses two graphs to represent the control and data domains of
the system and a third segment, in the form of program code, to represent
the interpretation domain. The contour/transition model uses one graph which
explicitly represents the control and interpretation aspects. The data aspect is
represented implicitly with contours. This has both advantages and disadvantages.
To its credit, this permits recursion and concurrent instantiation of a net in a
simple fashion. Unfortunately, it does not allow us to graphically delimit the effects
of a transition on a particular data set (though the underlying contour model does
allow us discipline in accessing data). Although the ramifications of this distinction
are not presently clear, it appears to the author that it would be useful to be able

to combine these two facilities: data abstraction and data delimitation.

Predicate/Action-Nets and Numerical Petri nets
In terms of the control aspect, predicate/action-nets and numerical Petri

nets can not permit hierarchy without further extensions (the issues of scoping
and allocation must be addressed). Furthermore, note that the proof method for
the distinct process extension relies on the assumption that a single token exists
for each process in the system, while contour/transition-nets do not have this
restriction. Finally, the contour/transition model addresses the issues of process

creation and termination, while the distinct process extension does not.

In terms of the data aspect, both models, and in particular the numerical
Petri net model, treat all data as globally accessible to all transitions. In contrast,
contour/transition-nets denote the data aspect in terms of contours. Tokens of
the same color (i.e., contour) are identical and co-operate to give transitions
concession (allow them to fire). This permits several instantiations of the same
net to be concurrently active in different execution contexts. Hence, it is easy for
the contour/transition model to achieve data abstraction facilities while the other
models would have to be re-structured in order to do so.

Although the distinct process extension does allow a simple two-level
discipline of data access, the contour/transition model permits arbitrarily complex
contours to be constructed. In addition, the distinct process extension does not
consider interaction between different processes in order to enable a transition,
or to exchange information as during the firing of a transition; usually, processes
communicate indirectly through global variables. With split and boundary
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transitions, the contour/transition model allows processes to cleanly interact in
order to synchronize and communicate.

Hence, there are significant differences between the models, even when
considering the distinct process extensions to the presentational model. It is
emphasized that these differences will have a great bearing on our extensions to

the invariant-method.
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CHAPTER 4
Analysis of Contour/Transition-Nets

Although the verification of specifications using simple Petri nets is well
understood, contour/transition-nets are sufficiently more complex to prevent direct
application of previous analysis results. In this chapter, extensions to previous
analysis methods are presented to enable the derivation of proofs about systems
represented with the contour/transition model.

First, the problems in using existing analysis methods on systems modeled

with contour/transition-nets are examined.

Then, a different approach is introduced to form the basis of a set of
analysis concepts useful for proving statements about contour/transition-nets.
The approach takes advantage of the hierarchical nature of the contour/transition
model and certain key restrictions in the way colors interact which permit the use

of invariants in deriving proofs for systems represented by contour/transition-nets.
Next, the approach is applied to a relatively simple system represented by
the contour/transition model. Finally, the success of the approach is evaluated and

areas where this method should be further researched are identified.

Methods of Analysis and the Contour/Transition Model
Let us consider how the different analysis methods surveyed in Chapter 2 can
be applied to the contour/transition model. To refresh the reader’s memory, the

techniques to be considered are:

e State-Space Analysis

Structural Analysis

Inductive Analysis

Hybrid Approaches

75
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1. State-Space Analysis

As has been demonstrated, strong statements may be made about a system
represented with the Petri net model due to information presented by the
reachability tree for the system.

Although Petri nets are able to present concise descriptions of concurrency,
they nevertheless lack expressive power. Recall that one way of viewing the state
of a system is to consider it as being composed of two related portions: a econtrol
aspect and a data aspect. Since the entire state of the system is encoded in its
marking, both the control and data components of that state must be present in
the marking. Tokens in place/transition-nets are identical and do not carry data
values. Hence, the control portion of the state can usually be represented well,
usually quite well, owing to the graphical nature of the net. The same is not true
of the data portion. Since all the designer has to work with are “grey” tokens,
encoding data components of the state, even simple components such as counters
or sequence numbers, becomes quite difficult. To make matters worse, none of
the powerful control and data abstraction facilities found in modern programming

languages are to be found in place/transition-nets.

To meet this deficiency, contour/transition-nets enhance the Petri net model
by adding such features as colorful tokens, enabling predicates, and firing actions.
Since tokens have an associated data context, and transitions are able to access
this contextual information in a controlled fashion, the protocol designer is
able to capitalize on both powerful control representations and powerful data
representations. But consider that, with these additions to the model, the
construction of the reachability tree has become more difficult. In fact, the

addition of enabling predicates makes reachability questions undecidable.

Recall now that in the context of the place/transition-net, the reachability
tree encapsulates the totality of the state-space and this state-space is expressed as
the number of tokens residing at each place in the net. Reachability analysis, as it
is currently used, does not consider tokens as having an identity and a well-defined
relation to other tokens which regulates how they interact. In the context of the
contour/transition-model, a named net may appear to have incorrect behavior if
it is instantiated more than once, since the analysis technique can not distinguish

between tokens belonging to different instantiations. Yet, if a named net is being
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used as a monitor, it may may be desirable to be able to analyze how different
execution contexts behave as they call upon the monitor at its various entry places.
As such, it must be possible to consider all tokens present in the net, regardless
of their context, while taking into account the rules that guide the interaction
between tokens of different colors.

This is but a minor problem though. Regardless of the method that is used
to access the data aspect of the system (e.g., contours, global data store), the
computational power of our model is being raised to that of a Turing machine
by the addition of enabling predicates which may prevent transitions from firing.
For a short (and informal) proof, consider that adding an enabling predicate to
a transition is equivalent to adding an snhsbitor arc to that transition (an arc
that prevents the transition from firing as long as there is at least one token in
the place at the other end of the arc). As discussed by Peterson[PETES8:]), if the
Petri net model is extended to permit testing a single place for the presence of
no tokens, then the model has been extended to be equivalent in power to a
Turing machine. Since reachability is undecidable for Turing machines in general,

reachability analysis is not suitable for contour/transition-nets.
Considering that the goal is to use the contour/transition model as a
representation technique which can be analyzed, this is particularly ironic. As

Peterson[PETE77, p 238] points out:

“Although some work on design with Petri nets ... and implementation of Petri nets
... has been done, it has been limited in scope, presumably because its success hinges
on the existence of effective analysis techniques.”

Very clearly, if the contour/transition model is going to be successful as a tool
for protocol modeling, methods for analyzing properties of contour/transition-nets
must be developed.

Finally, note that there are other properties of extended Petri net models that
should be considered by reachability analysis. In particular, the use of enabling and
firing times for transitions, which is present in the timed Petri net model[RAzo83A]
(and in the contour/transition model) adds additional complexity to the analysis.
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2. Structural Analysis
Although the results of structural analysis are quite attractive (e.g., the

automatic generation of system invariants), the additional computational powér of

the contour/transition model makes this method unsuitable for analysis.

In particular, observe that the analysis via the incidence matrix of a net
considers variables in the context of places and transitions rather than in the
context of tokens. This difference in perspective between place/transition-nets
(and its abbreviated forms) and contour/transition-nets is eritical, and explains
quite well why, in general, an invariant method based on the structural properties
(i.e., solely the control aspect) of the system can not prove all of the interesting
properties. This deficiency in the incidence matrix analysis, while making it
unsuitable for some of our purposes, does not make less the value of the invariant
method for use on simpler Petri net models.® Rather, it merely highlights how the
philosophical differences between the two models make possible the use of different
analysis techniques. More accurately, it should be noted that contour/transition-
nets, unlike predicate/transition-nets or place/coloured-nets, are not simply

concise abbreviations for place/transition-nets, but instead are capable of greater

descriptive power.

3. Inductive Analysis

Although more difficult to apply, inductive analysis appears to be suitable,
with some modifications, for use on contour/transition-nets. Both predicate/action-
nets and contour/transition-nets are equivalent to Turing machines in power and

quite similar in nature, particularly when the distinct process extension to

predicate/action-nets are considered.
Note an important observation by Keller[KELL76, p 381] concerning the

distinct process extension:

“The technique described appears to have the very desirable property that the effort
required for proofs of systems with multiple processes increases only with the size of
the program rather than the number of processes executing the program.”

? In fact, incidence matrix analysis is useful for boundedness proofs of systems using con-
tour/transition-nets and, as such, forms one component of the proposed proof method.
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Providing a sufficiently powerful conceptualism can be developed to allow us
to frame contour/transition-nets in terms of the presentational model, then an
even larger proof savings may be achieved since the natural hieraréhy of the
contour/transition model may be exploited in order to produce proofs dealing with
smaller nets. Naturally, our approach must take into consideration the interaction
between colors, the various transition types, and also be able to deal with the
characteristic of contour/transition-nets which allow more than one colorful token

of the same context to exist in the system.

4. Hybrid Approaches
When proving properties about the total GMB representation of a system

(control, data, and interpretation domains), similar problems arise to those found
when analyzing contour/transition-nets. Note though that in the context of
Shapiro’s work, non-atomic firing is not relevant and thus those results appear not
to be germane to our analysis. Furthermore, recall that the contour/transition
model blends the control, data, and interpretation domains into a single graph.
Hence, although a contribution to the analysis of systems represented by the GMB,
the work by Shapiro[SHAP83] does not appear to have a direct bearing on our efforts
to find a proof methodology for systems represented by contour/transition-nets.
It is important to emphasize, however, that if delays are permitted in the systems

being analyzed, then the issues and methods reported by Shapiro must definitely

be considered.

A Method for Analyzing Properties of Contour/Transition-Nets
The distinct process extension to the presentational model[KELL76, p 381] is

extended by considering each process index, 7, as referring to a unique color in the
system.
For each color present in the net, x, the state of the net is given by:
e the context (variable bindings) of
e the marking of the n-colored tokens in the net

Observe that this differs from the distinct process extension in three important

respects: first, since variable bindings for different 7 are immune from conteztual
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stnlerference (a term to be fully defined further on), there are no global variables —
all variables are local relative to their execution context, #; second, unlike the

distinct process extension, more than one token may execute on behalf of = (hence
there is both snter-process concurrency and snfra-process concurrency); and, third,
only tokens associated with the same 7 may co-operate to enable a transition.!?
In this sense, variables in the context of a particular = are global to all tokens
executing in that context.

It should be noted that if split and boundary transitions are ignored, then
since tokens with different m do not interact in any way whatsoever in either the
control aspect or the data aspect of the net, each 7 executes in its own isolated

net. Each net is therefore equivalent to the unextended presentational model of
Keller:
e all variables are global in the context of each net

e the state of the net is given by its marking and the global data store

This result provides a basis (but, as shall be seen, not a perfect one) for analyzing

properties of systems represented by the contour/transition model.

Now that a mapping, of a sort, has been demonstrated between a
contour/transition-net and a net in the presentational model, it is possible to

fully explain the analysis and to examine the key assumption of freedom from

contextual interference.

The Method Revealed

Boundedness, deadlock freeness, and system-specific properties of a system
represented by contour/transition-nets are proven by starting with the MAIN net
of the system and proceeding recursively to consider if those properties hold for
the descendants of MAIN. Boundedness is proven by verifying invariants involving
place-variables of the net. Next, go-invariants of the net are derived and verified in
order to prove system-specific properties. Finally, freedom from deadlock is proven
by verifying the existence of a homing-state for the net. It should be noted that
although reference is made to the properties of “the net”, if the net in question has
more than one entry place, then reference is actually being made to the properties

10 As mentioned earlier, interaction between different 7 to enable transitions, is not addressed
by Keller.
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of a particular entry place of that net. That is a net with multiple entry places is

considered to be more than one net.

Restrictions of the Method
Some restrictions must be enforced to make the contour/transition-net being

- considered more suitable for analysis. For the purposes of our discussion let the
symbol x represent a particular context of execution (i.e., color) in the system.
Four sets of restrictions are placed on the contour/transition-nets to be analyzed:

First, only entry transitions may introduce new contexts and only exit
transitions discard contexts (which is consistent with the base model described in
Chapter 3). Hence, although named nets may be invoked from the net, additional
scoping contexts may not be constructed. This does not reduce the control
abstraction facilities of the net (e.g., recursion), rather it ensures that a unique

(color, net) pair is associated with a particular .

Second, the selection rules for each transition in the net must introduce the
same number of tokens on each output arc each time the transition fires. That
is, a transition may introduce two tokens on one output arc and one token on
another, but it must do so consistently each time it fires. It should not introduce
two tokens at one firing and one token at a later time. Only transitions that have a
selection predicate as a part of their selection rules exhibit this behavior. In order
to make analysis easier, such nefarious transitions can be transformed into a set of
transitions (Appendix A discusses how this can be performed).

Third, that no OR input logic can be present in the net. In order to
make analysis easier, such transitions are transformed into a set of transitions
(Appendix A discusses how this can be performed). The reader should note that
this transformation or the preceeding one does not change the semantics of the
system or result in a loss of representational power, rather it elaborates the control
aspect of the net somewhat.

Fourth, the use of named subnets in the contour/transition-net is prohibited.
In addition, all temporal attachments to the net (the enabling time and firing time
of each transition) are ignored. The issue of timing delays is left as an open area of
research. This work concerns itself only with the ordering of events and not their

duration.
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Ope aspect of the contour/transition model which is examined in detail is the
split transition. In fact, split transitions highlight an inconsistency in the simple
viewpoint presented earlier concerning a uniqixe net for each =: split transitions
allow interactions between different x in aspects of both control and data.

Each 7 in a contour/transition-net meeting the above restrictions executes
without fear of contextual interference with two exceptions:

e named nets introduce vertical (recurrent) interference by allowing
control to pass to another 7 and return some time later

e split and boundary transitions introduce horizontal (concurrent)
interference by allowing two or more different 7 to interact

Hence it is these two exceptions that separate the restricted form of contour/tran-

sition-nets described above from the unextended presentational model.

Boundedness Properties
The analysis begins by examining the boundedness of the net through

constructing incidence-invariants for the control aspect of the net. In short, the
restricted contour/transition-net is treated as if it were a place/transition-net: the
enabling predicates and firing actions of the net are ignored; each named net is
considered as a simple place, after proving that it is 1-bounded and firable at
its entry place; split transitions are considered as being multiple transitions; and,

allowances are made for boundary transitions.

To begin, note that considering the data aspect reduces the number of
reachable markings that the net can achieve (via the interaction of enabling
predicates and firing actions). Hence, if it is possible to show that the
place/transition-net is bounded, then no possible influence from the data aspect (or
from temporal aspects) can make the net unbounded.!! In general, any invariants
derived from the incidence matrix are valid regardless of the data aspect; but
properties which can not be derived from the incidence matrix may or may not be
invariant — sufficient information is lacking, without consulting the data aspect, to
know one way or the other. Unfortunately, the same argument cannot be made for
liveness (or non-termination) since it is possible that the reduced set of reachable

11 1t should be noted however, that if a net appears unbounded when the data aspect is not
considered, then it is possible that consideration of the data aspect will show the net to be bounded.
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markings derived when considering the data aspect fully (i.e., the inclusion of
enabling predicates into the model) may actually exclude those markings which
are termed free from deadlock. '

If it can be proven a given net is 1-bounded and free from deadlock at an entry
place, then a named net can be substituted inside another contour/transition-net
while preserving the boundedness and deadlock freeness properties of the second
net. This is similar in nature to Razouk’s|RAz081, p 49] observation that a
safe/live single-entry/single-exit graph can be substituted for a place in another
safe/live graph without loss of safeness/liveness in the second graph. Intuitively,
it is clear from the semantics of entry and exit transitions that if a token fires
an entry transition for a named net and that net is 1-bounded and live when
invoked at its entry place, then it will eventually produce a single token at one
of its exit places. This will result in a single token appearing sometime later at
the appropriate exit transition. This notion is expressed by saying that a named
net which meets these criteria is snvocation-safe/live. In practice, it is not possible
to immediately prove each named net present in the contour/transition-net being
examined to be invocation-safe/live. This is because in order to prove liveness, it
is often mecessary to rely on various system-specific properties that are proven in
the next step. Hence, our boundedness results often require using the assumption
that the named nets are in fact invocation-safe/live, where this property is actually
verified later on in the proof.

Note that split transitions have little effect on boundedness (though a large
effect on freedom from deadlock) when considered from the perspective of a
particular 7. In short, in the context of any particular , split transitions absorb
one eligible token and output one introduced token. Hence, in the context of
a given =, replacing a split transition with a normal one does not affected the
boundedness of the net. Therefore, when interpreting the incidence matrix of the
net, the portion of the split-transition which is considered is that which applies to

the path taken by the entry place for the net being considered.

Furthermore, note that boundary transitions have a small effect on boundness.
Two sub-types of boundary transitions can be distinguished: sending and recesving.
As discussed previously, a sending boundary transition takes a colorful token,
maps it into a colorless token, and passes that token to the underlying delivery
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mechanism. In contrast, a receiving boundary transition accepts a colorless token
from the underlying delivery mechanism. In terms of boundedness analysis, sending
boundary transitions are considered to absorb all tokens which enable them and

receiving boundary transitions are considered to be analogous to an entry place in

a named net.

System-specific Properties

The designer of the system must specify the invariants which should be
proven about the behavior of the system. These invariants are proven using an
extension to the Keller’s invariant-method: if the net does not contain enabling
predicates, then the incidence-invariants (or a modified form of them) derived in
the preceeding step can be used; otherwise, the state-space is augmented to reflect
the fact that multiple = are executing, the appropriate initial state, go is defined,
and then the designer-supplied predicates are proven to be go-invariant.

Note that if none of the transitions in the restricted contour/transition-net
have enabling predicates, then the incidence-invariants, derived from the structural
properties of the net can be used, to prove the system-specific properties as
well as the boundedness properties. This results from the fact that the net is
simply a place/transition-net (or perhaps a place/action-net in the terminology
of Diaz|[Diaz82]) which may contain named nets. Split and boundary transitions
make the topology of the restricted contour/transition-net more complex, perhaps
making a single net represent multiple nets joined at these special transitions.
However, these additional semantics do not make the analysis sufficiently more
difficult to mandate the use of an inductive invariant approach — the structural
properties of the net can still be useful in deriving invariants and system-specific
properties.

If different execution contexts can interact in the net (e.g., split transitions are
present), then it is often useful to convert the incidence-invariants into equations
involving place-variables in order to state and prove the system-specific properties.
Before discussing this, it is necessary to introduce the notion of a hserarchy vector.
The reader may find it useful to peruse the following two examples before reading

the following description of the proof process.
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Instead of considering the state-space to be a single vector containing values
for v; for each P;, and values for each component of the data aspect, let the
state-space be represented by a hierarchy vector, where v;; is the place variable
valued as the marking of place P; in the context of x; (i.e., m;(F;)) and v; is the
place variable valued as the marking of place F; in the context of all 7 executing
(ie., Y, m(P:), or [m(F;)]). One state vector is assigned for each x that is active
in the net and can interfere with another #. Hence, for a net with a split transition
permitting the interaction of two 7, the state-space contains two state vectors. If
multiple instantiations of a net at a given entry place are expected, a state vector
may be given a superscript to indicate that more than one instance of the vector
may be concurrently active.

Once a hierarchy vector has been constructed for the system, the invariants
derived from the incidence matrix may be converted into equations involving
place-variables, and the system-specific properties to be proven may be stated.
Usually, it is necessary to prove certain relations between the components of the
hierarchy vector in order to demonstrate the invariance of the system-specific
properties. This activity proceeds in a two-level fashion: first, properties local to
particular context are proven; second, properties between different contexts are
proven. After proving these properties, the place-variable equations may often be
simplified.

Now, if no enabling predicates are present, the system-specific properties can
usually be proven directly from the place-variable equations. If not, the invariant-
method of Keller is used to demonstrate the invariance of the system-specific
properties. Let go, the initial state, be the state of the system when a token
is placed on the appropriate entry place. After forming the hierarchy vector to
represent the state-space of the net, and choosing the appropriate value for g, the
invariants are proven first by showing that they hold for go, and second by showing
for each transition that if the invariants hold prior to that transition firing, then

the invariants hold after that transition has fired.

As with our analysis of boundedness, a distinction is made between sending
and receiving boundary transitions. If convenient to the analysis, corresponding
pairs of sending and receiving boundary transitions may be coalesced into a single
transition which maps a colorful token into a colorless token. This often has the
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effect of joining two named nets together since a given pair of sending and receiving
boundary transitions often reside in different nets. Regardless, for each receiving
boundary transition in the net, a separate component (state vector) is added to the
hierarchy vector for the net to represent the colorless execution context constructed
when the transitions fires. Appendix B contains a short proof of a system which

uses boundary transitions.

Deadlock Freeness
The method of analysis similar to that described for system-specific properties

is applied: if the net does not contain enabling predicates then the incidence-
invariants are used which were derived when boundedness was analyzed; otherwise,

a homing-state is derived and then the homing state is shown to be go-reachable.

Again, Note that if none of the transitions in the restricted contour/transi-
tion-net have enabling predicates, then the incidence-invariants which are derived
from the structural properties of the net along with any system-specific properties,
can be used to prove freedom from deadlock. As before, if different contexts
may interact in the net, it is useful to use equations involving place-variables to

demonstrate that the net is free from deadlock.

Hf enabling predicates are present, then the same hierarchy vector and the
same go are used that were used was used to prove system-specific properties.
Using the same designer knowledge that was required for go, g (the homing-state)
is defined, and the homing-state logic of Keller is applied to prove that gg is
go-reachable. In short, the procedure is to prove the existence of a norm with

zero-state qg, n(¢’) a function on the state-space, which shows that homing-qo is

go-invariant for the net.

An Example
Now let us re-consider the readers and writers example. Contour/transition-

nets are used to model the system and then its properties are analyzed using the
methods described above.

Figure 15 describes the nature of the system. It states that the named net
MAIN.M is instantiated once (think of this invocation as a call to initialize a
monitor), and then the MAIN net gets instantiated an arbitrary number of times
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MAIN.M

MAIN.H

Figure 15
Overview of the System

(up to n times concurrently) at the entry place H (once for each reader/writer in

the system).

The MAIN net in Figure 16 has two entry places. At the M entry place,
control forks. One fork generates n (identical) tokens for place S. The other fork
returns control to the net that instantiated MAIN.M. At place S, the system waits
to service requests to read (a token appears in place WR) or requests to write (a
token appears in place WW). H is the second entry place, which is instantiated an
arbitrary number of times by the driver process. Each instance is characterized
by a token of a unique color. A token which fires transition ¢ is designated as a
reader and proceeds to place WR. When at least one token is free in place S, then
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Figure 16

Contour/Transition-Net: MAIN

the split transition f; can fire and the process enters the reading state at place R
(a token from the context of place S also goes to place SR). Sometime later the
process completes its reading and fires transition ¢3. As a result of firing {3, a
token is returned to place S and the process enters the done state (place D) which
eventually leads back to the home state. Similarly, a token which fires transition ¢4
is designated as a writer and proceeds to place WW (waiting to write). When all
n tokens are present in place S, then ¢5 can fire absorbing n tokens and placing the
process in the writing state at place W (a token from the context of place S also
goes to place SW). When the process finishes writing, it fires transition ¢ which

returns the n tokens to place S and causes the process to enter the done state.
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Incidence Matrix Markings Invariants

ty [ to [ty [ tq| ts [te |t |ts |t | My Mpg m3 | my | ms
M -1 1 1 n
S -1 1 -nin n 1
SR 11(-1 1
SW 11-1} n
MX 1 1
H -1 -1 1 1 1
WR 11}-1 1
R 1-1 1
WW 1 -1 1
W 1]-1 1
D 1 1]-1]-1 1!
HX | | 1 1|

Table 5

Incidence Matrix and Invariants for Figure 16

The properties of the system are now analyzed. Initially, note that the
contour/transition-nets in Figures 15 and 16 already meet all of the restrictions

discussed previously. The analysis begins with the initial state of m(I) = 1.

Boundedness Properties

THEOREM 1. The total system, as described in Figure 15, is bounded.

From Figure 15, two invariants are found by inspection,
m(I) + m(MM) +m(L) =1, (m1)
and
n*m(l)+ m(P)+ m(MH) =n. (m2)

These invariants can be automatically generated or proven using induction. These
are the highest-level invariants of the system.
Before proving THEOREM 1, two lemmas concerning the named nets invoked

by the system are stated and proven.



LEMMA 1. MAIN.H is invocation-safe.

Table 5 shows the incidence matrix for the contour/transition-net in Figure 16.

Three invariants are present: two for the M entry place,

m(M) + m(MX) =1, (m3)

and
nsm(M)+m(S)+ m(SR)+n+xm(SW) =n, (m4)

and one for the H entry place,
m(H)+ m(WR)+m(R)+ m(WW)+m(W)+m(D)+m(HX)=1. (m5)

Note that invariant (m5), despite the fact that there are n readers and writers
in the system, equates to I and not n. This results from the fact that as far as
boundedness analysis is concerned, the individual readers and writers (each =)
do not interact. Second, note that the three invariants were derived in a slightly
different way than the standard incidence matrix method: invariants (m$) and
(m4) were derived by considering the incidence matrix as being composed only
of rows for places M, S, SR, SW, and MX (the top half of Table 5). Similarly,
invariant (m5) was derived by considering the incidence matrix as being composed
only of rows for places H, WR, R, WW, W D, and HX (the bottom half of
Table 5). Hence, for our boundedness proof, MAIN is actually two nets which
share four common transitions.

PROOF OF LEMMA 1. Directly from (m5): the control path along the H entry
place in MAIN is 1-bounded, and the associated exit place can hold at most 1

token.

LEMMA 2. MAIN.M is invocation-safe.

Proor oF LEMMA 2. Directly from (m38): the control path along the M entry
place in MAIN is 1-bounded, and the associated exit place can hold at most 1

token.

PROOF OF THEOREM 1. Given LEMMA 1 and LEMMA 2, the proof of THEOREM 1
follows directly from (m1) and (m2). That is, the two invariants state that the
net in Figure 15 is bounded provided that any named nets that it instantiates are
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invocation-safe. Since MAIN.H and MAIN.M are the only named nets instantiated
by the net in Figure 15, the two lemmas are sufficient to complete the proof. 3

System-specific Properties
Let the hierarchy vector, ¢, used to represent the state-space of the system,

be of the form (i, (7} k*)) where

-~

i = (S,MM,L,P,MH),

I

(M,S,SR,SW,MX),

m
and
h = (HWR RWW W D HX).

(To avoid clutter, the name of the place (e.g., P) is used instead of m(P) in the
three vectors above.)

System-specific invariants can now be proven about MAIN. In particular, it
is necessary to ensure that the two properties

(¢): vp* vy =0, and

(s1): ow <L
hold regardless of the state of the system.
THEOREM 2. Properties (1) and (#f) are invariant in the system.

The structural properties of the net will continue to be used to prove the
system-specific properties. To begin, the incidence-invariants are translated into

equations involving place-variables. For the net in Figure 15, since there is only

one instance of the net executing, the equations are:

v+ umM +vL =1, (n1)
and
n*vy+vp+uvyg =n. (n2)
For the net in Figure 16, the equations are:
UM + UMX = ), (n3)

ntvy +Us+USR+H NS =0y, (n4)
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and
vg+owr+vr+oww+w+up+gx =k (n5)

To show the relation between 1 and (i) h*).

LEMMA 3. j is at most 1 in the system.

PrROOF OF LEMMA 3. Directly from (n1). Only one of vy, vpps, and vy can be
greater than zero (and equal to 1), and the other two are zero. Furthermore, from
the topology of the contour/transition-net in Figure 15, it follows that once v, = 1,
it remains so.

Hence, if j refers to the number of times that MAIN.M is instantiated by the

system, then vy = 1 — j = 1. As a result of this, invariants (n3) and (n4)

simplify to

vy +omx =1, (n3)

and
n*vp 4+ USs+ USSR+ n*vsw = n. (n4)

LEMMA 4. k is at most n in the system.

PROOF OF LEMMA 4. Directly from (n2), using a similar line of analysis as in the

proof of LEMMA 3.

The relation between r7 and A* is now considered. From the incidence matrix
in Table 5, it is straightforward to show that the two properties

(#41): vgR = vsg, and

(fr): ow = vsw.
are always true by using an inductive-invariant method: initially, vg = vsgp = 0,
and vy = vgw = 0, so (41f) and (sv) hold; furthermore, if (115) and (sv) hold prior
to the firing of any transition, then they hold after that transition fires. For the
sake of brevity, the detailed proof is omitted. It should be emphasized that these
properties relate execution contexts in different nets.

Hence, the system-specific properties which actually need to be proven are:

(¢'): vsg * vsw =0, and

(#'): vsw < 1.
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PROOF OF THEOREM 2. Consider invariant (n§). There are two cases to consider
for vgy . For the first case,
case I: vsw =0,

from (n4) it is known that up to n readers may be active and both (i’) and (i')

are satisfied. For the second case,

case 2: vsw > 0,

from (n4) it is known that vsy = 1 and that vsg =0, which also satisfies (1) and
(¢"). 8

Deadlock Freeness
To show freedom from deadlock, let the initial state be m(L) = 1.

TueoreM 3. The total system, as described in Figure 15, is free from deadlock.

Before proving THEOREM 3, a lemma concerning the named nets invoked by

the system is stated and proven.

LEMMA 5. MAIN.H and MAIN.M are invocation-live.
ProoF ofF LEMMA 5. Consider the sum

vg +vp +vpx.
There are two cases. For the first case,
case 1: vg +vp +vax >0,

and thus transitions t;, t4, t7, and tg are firable for any 7 with m(H) + m(D) +
m(HX) > 0. For the second case,

case 2: vg +vp+uvgx =0,

and
vwRr+ R+ vww +vw =k,

which comes from (n5). Now, given this equation, consider the sum

VR + vw.
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There are again two cases. For the first case,
case 1: . vp + oy >0,

and it follows as a result of the analysis of system properties that vg = vgg and

- vy = vgw. Hence, either tg or tg is firable for any 7 with m(H)+m(D)+m(H X) =

0. For the second case,

case 2: vg+uw =0,
and
vww + twg >0
from (n4) it is known that vs = n. Hence, either transition f; or transition {5 is
firable for any 7 with m(H) + m(D) + m(HX) = 0.

ProoF of THEOREM 3. Consider the sum
v+ vpypM + UME.
There are two cases. For the first case,
case 1: vr+uvmypM +omg >0,
then transitions ¢;, {2 and t4 are firable. For the second case,
case 2: vi+uypm +oypg =0,

from (n1) it is known that vy = 1 and from (n2) it is known that vp = n. Hence
ty is firable. The proof of THEOREM 3 follows directly from this case analysis and
LemMa 5. That is, the case analysis shows that the net in Figure 15 is free from
deadlock provided that any named nets that it instantiates are invocation-live.
Since MAIN.H and MAIN.M are the only named nets instantiated by the net in
Figure 15, the LEmMMA 5 is sufficient to complete the proof. g
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entry

exit

L S |

| (1) pew access — reading or writing

| (2) B.access = reading
---------- < (3) B.access = writing

Figure 17
Revised Readers and Writers: MAIN

o~ m————

Another Example
Our example is now modified to shift some state information from the control

aspect to the data aspect.

As with the previous example, Figure 15 describes the nature of the system.
A different net is used for MAIN, however. The MAIN pet in Figure 17 has two
entry places, just like the net in Figure 16. At the M entry place, control forks.
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One fork generates n (identical) tokens for place S. The other fork returns control
to the net that instantiated MAIN._M. At place S, the process waits to service
requests to read or write (a token appears in place B). Thus, MAIN.M in the net
in Figure 17 is very similar to its counterpart in Figure 16. The other entry place
is H, which is instantiated an arbitrary number of times by the driver process. (In
the interests of readability, a dashed box appears around the control path for the
MAIN.H control path in Figure 17). Each instance is characterized by a token
of a unique color. When MAIN.H is instantiated, a new context is created and
a pew variable, access, is initialized as transition ¢; fires. The variable is set to
either reading or writing, in a random fashion. A token with access = reading is
designated as a reader and proceeds to place B. When at least one token is free
in place S, then the split transition ¢ can fire and the process begins reading at
place RW (a token from place S also goes to place SR). Sometime later the process
completes its reading and fires transition 3. As a result of firing {3, a token is
returned to place S, and the process reaches an exit place (place HX). Similarly,
a token with access = writing is designated as a writer and proceeds to place B.
When all n tokens are present in place S, then t4 can fire, absorbing the n tokens,
and the process begins writing at place RW (a token from place S also goes to
place SW). When the process finishes writing, it fires transition fg which returns

the n tokens to place S and the process reaches an exit place.

Properties of this system are now analyzed. Initially, note that the
contour/transition-nets in Figures 15 and 17 already meet all of our restrictions
discussed previously. The analysis begins with the initial state of m(I) = 1.

Boundedness Properties
THEOREM 4. The total system, as described in Figure 15, is bounded.

As the net in Figure 15 has not changed, the incidence-invariants of that net

can be restated:

m(I) + m(MM) + m(L) = 1, (01)

and
nsxm(l)+m(P)+ m(MH) = n. (02)

Again, these are the highest-level invariants of the system.
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Incidence Matrix Markings || Invariants
b |to [ ta | tg |ts |te || My | Mg || 03 | 04 | 03
M -1 1 1 |n
S -1{1{-n|n n 1
SR 1]-1 1
SW 1]-1 n
MX 1 1
H -1 1 1
B 1]-1 -1 1
RW 1]-1 1|-1 1
HX 1 1 1
Table 6

Incidence Matrix and Invariants for Figure 17

Before proving THEOREM 4, two lemmas concerning the named nets invoked

by the system are stated and proven.

LEMMA 6. MAIN.H is invocation-safe.

Table 6 shows the incidence matrix for the contour/transition-net in Figure 17.

Three invariants are present: two for the M entry place,
m(M)+ m(MX) =1, (03)

and
n*m(M)+m(S)+ m(SR)+ n+m(SW) =n, (o4)

and one for the H entry place,
m(H)+m(B)+ m(RW)+m(HX) = 1. (05)

Again, note that invariant (05), despite the fact that there are n readers and
writers in the system, equates to I and not n. Invariants (08) and (04) were
derived by considering the incidence matrix as being composed only of rows for
places M, S, SR, SW, and MX (the top half of Table 6). Similarly, invariant (05)
was derived by considering the incidence matrix as being composed only of rows
for places H, B, RW, and HX (the bottom half of Table 6).

ProoF oF LEMMA 6. Directly from (05): the control path along the H entry place
in MAIN is 1-bounded, and the associated exit place can hold at most 1 token.
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LEMMA 7. MAIN.M is invocation-safe.

PROOF OF LEMMA 7. Directly from (03): the control path along the M entry place
in MAIN is 1-bounded, and the associated exit place can hold at most 1 token.
PROOF OF THEOREM 4. Given LEMMA 6 and LEMMA 7, the proof of THEOREM 4

follows directly from (o1) and (02). 8

System-specific Properties
Let the hierarchy vector, ¢, used to represent the state-space of the system,

-~

be of the form (i, (7’ k*)) where
i = (SSMM,L P,MH),
m = (M,S,SR,SW,MX),

and

h = (H,B,RW, HX, access).
To prove system-specific invariants about MAIN, let 7, denote an instance of
a h context such that

access = reading Am(RW) > 0,

and |Y_ 7| denotes the ordinality of all such processes; and, let =, denote an

instance of a k context such that
access = writing Am(RW) > 0,

and |} 7| denotes the ordinality of all such processes. It is necessary to ensure
that the two properties

(): 1 X7 % | 70| =0, and

(5): | 7| <1
hold regardless of the state of the system.



THEOREM 5. Properties (¢) and (i1) are invariant in the system.

The structural properties of the net are again used to prove the system-
specific properties. To begin, the incidence-invariants are translated into equations
involving place-variables. As the net in Figure 15 has not changed, those equations

can be restated as:

vy+oym +uL =1, (p1)

and
n*vy+vp+uyg =n. (p2)

For the net in Figure 17,

vM + UMX = J, (r3)
n*vy +Us+HUSR+N*USY =N, (p4)

and
vg +vp + vrw +vgx = k. (p5)

To show the relation between s and (7 h*).
LEMMA 8. j Iis at most 1 in the system.
ProOF oF LEMMA 8. By the proof made for LEMMaA 3.
Hence, invariants (p8) and (p4) simplify to
oM +umx =1, (p3)

and

n*vy +vs+ USSR+ nrvsy =n. (p4)
LEMMA 9. k is at most n in the system.
PROOF OF LEMMA 9. By the proof made for LEMMA 4.

The relation between 17 and h* is now considered. In particular, the following

properties are invariant:

(¢51): |3 #,| = vsr, and

(v): |3 7wl = vsw.
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Initially, i = 0 and ht = 0*, so (ss¢) and (sv) bold. For each transition in MAIN,
note that if (s51) and (sv) hold prior to the firing of any tramsition, then they
hold after that transition fires. For example, when transition t; fires, both |} x|
and vsg increase by 1. Similar observations hold for transitions 3, ¢4, and {s.

Transitions ¢; and tg do not affect places RW, SR, or SW.
Finally, note that the following property is also invariant:

(v): let m, denote an instance of a h context, then access = reading or
access = writing in that context.

For each transition in MAIN, if (v) bolds prior to the firing of any transition, then
it holds after that transition fires: only transition {; modifies access, setting it to

reading or writing. Although other transitions may examine the value of access,

they do not modify the value.

By combining (1), (#f), (s1s), and (sv), the system-specific properties which
actually need to be proven are:

('): vsgp*vsw =0, and

(¢¢"): vsw <L
PRroOF oF THEOREM 5. The proof is similar to the proof for THEOREM 2. Consider
invariant (p4). There are two cases to consider for vsy'. For the first case,
case 1: vsw =0,
from (p4) that up to n readers may be active and both (i') and (si') are satisfied.
For the second case,

case 2: vsw > 0,

from (p4) that vsy- = 1 and that vgp = 0, which also satisfies (i') and (si’). 8
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Deadlock Freeness
To show freedom from deadlock, let the initial state be m(L) = 1.

THEOREM 6. The total system, as described in Figure 15, is free from deadlock.

Before proving THEOREM 6, a lemma concerning the named nets invoked by

the system is stated and proven.

LEmMMa 10. MAIN.H and MAIN.M are invocation-live.

Proor oF LEMMA 10. Since MAIN contains enabling predicates, the existence of
a homing state, ¢gg, for h* is shown. Let n(¢’) be a porm with zero-state g, defined

Zﬂr + lZﬂw) +vgx.

First, note that n(¢’) = 0 if and only if ¢ = go.
Second, for any state, §;, reachable from the initial marking, if n{gz) > O,

as

4#vg+3*vy+2*(

then there exists a state, gy, reachable from ¢, such that n(g:) > n(g;).

case I: |)_ 7| >0
from (s11), vsp > 0, so t3 fires, reducing n.

case 2: | 7,| >0
from (#v), vsw > 0, so ¢ fires, reducing n.

case 3: |7 | +|). 7| =0Avg >0
t; fires, reducing n.

case 4: |Y 7|+ |)Y_Au| =0Avg >0
from (v), either ¢2 or {4 may fire, each reducing n.

case 5: | Y 7|+ | 7| =0Avgx >0
place HX is an exit place so the exit transition in the net that invoked

this instance of MAIN.H will fire, removing the token from HX and
reducing n. In this case, the value of k in (p5) decreases by 1 since

there is one less instantiation of  in the system.

These five cases cover the entire state-space for h*. Homing-gy has been shown to
be go-invariant for the net since the existence of a norm for n(¢’) has been proven.

Hence, the net is free from deadlock.
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PRooF oF THEOREM 6. Consider the case analysis presented in the proof of
THEOREM 3. The proof of THEOREM 6 follows directly from this analysis and

LEMMA 10.

Evaluation :
This chapter has evaluated the applicability of various analysis methods to the

contour/transition model. In summary, incidence matrix analysis, with some minor
extensions, is quite suitable for proving properties about contour/transition-nets
that do not involve enabling predicates. The incidence-invariants that are derived
from the incidence matrix permit demonstration system-specific and deadlock
freeness properties. If enabling predicates are present, then the invariant-method is
particularly well-suited for contour/transition-nets. After extending the invariant-
method, it is possible to achieve results for the contour/transition model similar to

those that Keller showed for the presentational model.

In comparing our method to the proof method for the distinct process
extension to the presentational model, note that the hierarchy vector is a more
general mechanism for representing the state space of the system than the two-level
access scheme used by the former method. Of particular promise is the way in
which the hierarchy vector allows us to state the relationships between different
contents. With both approaches, the same properties are proven, using very similar
methods. Furthermore, note that the proof process is simplified with both methods
by isolating where contextual interference can occur. In the contour/transition
model, this is limited to split and boundary transitions and named nets, while
in the distinct process extension to the presentational model, each tramsition is

queried for its affect on global variables and variables local to an individual 7.

Note that the proof method discussed is not complete, as it restricts the
use of certain features of the contour/transition model. Clearly, a future area of
research is to generalize the augmentations and further extend them to remove the
restrictions mentioned above. Such extensions include addressing issues of timing
so that the analysis technique may take into account enabling and firing delays
in the transitions. In addition, it would be interesting to investigate the use of
multi-level homing-state proofs in which the relation between different contexts in

the hierarchy vector is further exploited.



CHAPTER 5
A Lengthy Example

This chapter presents an experimental evaluation of the contour/transition
model. Contour/transition-nets are used to model the handling of initial connection

establishment by the DOD Transmission Control Protocol.

Initially, a terse discussion of the problems of establishing connections in a
network takes place. This discussion centers on the use of the three-way handshake,

which is used by TCP as a solution for many of these problems.

Next, the description of the three-way handshake used in TCP is made. The
description is presented in three sections: first, a general set of notes concerning
the nature of this particular description is discussed; second, the data definitions

of the description are given; and, third, the actual nets themselves are presented.

Finally, the model is contrasted with other formal specifications of the three-

way handshake in TCP and then the success of contour/transition-nets in modeling

this problem isi evaluated.

Connection Establishment
The problems of providing reliable virtual-circuit service over a potentially

unreliable packet-switched network are discussed in great detail by Sunshine and
Dalal[Suns788). A central problem in this area is ensuring that a connection
established between two processes in the network becomes synchronized and
remains so. Each peer of the N-protocol that provides reliable communications to
these processes must agree as to the state of the connection and then update that
state as changes occur.

A connection may be viewed as traversing through a number of states at
each end. These states trace the activity of the connection from non-existence to
establishment, then to data transfer, and finally to closing. Consider the means by
which two N-peers establish a connection. Initially, a connection may be viewed
as being closed. When a process indicates that it is willing to accept a connection

103
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from another process, the connection for that process enters a listening state where
the process waits for another process to complete the connection. This is known
as a passive open. After this point, another. process may attempt to complete the
connection by performing an active open. Providing that all of the appropriate
conditions are met, the connection progresses to the established state at both ends.
Alternately, both pi'ocesses may try to actively open the connection simultaneously,
and the N-peers must be able to handle this situation correctly.

Connections occur between two sockets in the network. A socket is a pairing
between the address for a host in the network and a local port pumber for that host.
A connection may be uniquely specified by listing the two sockets participating
in the connection, as a socket uniquely identifies the end-point of a particular
conversation. Usually, for passive opens, a process requests a local port number
and does not specify a foreign socket. In contrast, for active opens, a process

requests both a local port number and a foreign socket.

Information to be sent from one process to another is first given to the local
N-peer which then encapsulates the information in a segment. In addition to
containing the data to be transmitted, the segment contains control information
for the use of the N-peers. For our purposes, three control bits that can be found
in the segments that the N-peers exchange are interesting. The SYN bit indicates
that an N-peer is requesting initial synchronization. The ACK bit indicates that
an N-peer is acknowledging a previously received segment. The RST bit indicates

that an N-peer is demanding that the connection should be reset.

At some time, a segment containing a SYN arrives. When the foreign
and local sockets specified in the segment match the socket pairing specified
by a process’ open, a connection begins. To synchronize the connection, initial
sequence numbers are exchanged between the two peers. These sequence numbers
impose an ordering on the data exchanged by the peers. Selection of the initial
sequence number is a tricky business, as one must take great care to ensure
that segments floating about from instantiations of previous connections have
sequence numbers outside the range of legitimate sequence numbers. Once both
peers have selected an initial sequence number, informed the other peer of the
number, and received an acknowledgement, the connection becomes established.

If something goes amiss in the connection establishment, a peer sends a segment
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containing a RST to the other peer. This has the effect of removing all traces of the
connection, with the appropriate information returned to the process associated

with the peer receiving the RST. Other information may be exchanged during this
synchronization, including process data (to be passed up only when the connection
is fully established), but these considerations are not germane to the focus of the

discussion.

This method of synchronization is referred to as a three-way handshake since
the simplest case of its operation can be summarized as follows: Process A performs
a passive open. Some time later, process B performs an active open. This results
in process B’s TCP choosing an initial sequence number and sending a segment
containing a SYN and the sequence number to process A’s TCP. Process A’s
TCP receives the segment, examines it, chooses an initial sequence number of its
own, and responds by sending a segment containing a SYN, the sequence number,
and an ACK of the incoming segment. Process B’s TCP receives the segment,
examines it, and decides that the connection is established. In addition, process
B’s TCP sends a segment acknowledging the incoming segment. Upon receipt of
this segment, process A’s TCP also decides that the connection is established.

The three-way handshake is able to successfully deal with a large number
of variations and exceptions, including such events as simultaneous active opens,
duplicate segments, segments from other instantiations, and half-open connections
(which occur when one host crashes during the synchronization activity and loses
all knowledge of a connection). Hence, it is a good initial connection protocol for

use by a reliable virtual-circuit service.

Description Notes
This section provides a general explanation of the description that follows.

First, it must be noted that the following sections do not provide a complete
description of TCP. Only those aspects of TCP that deal with connection
establishment are examined. Furthermore, some aspects of TCP that play a
minor role in connection establishment are abstracted to avoid unnecessary detail.
Components of TCP which are given little attention are: TCP options and option
handling, urgent data handling, windowing, user time-outs, and precedence and

security /compartment considerations. The description presented pays varying
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(small) degrees of attention to these aspects of TCP. In contrast, the TCP
specification[TCP] fully considers all of these issues in its discussion of initial

connection establishment.!?

Second, the description uses short mnemonics to represent error conditions

which may be raised and given to the user process. Their meanings are:
REFUSED — the connect was refused by the foreign peer
RESET — the connection was reset by the foreign peer
ISCONN — the connection is already established
NOBUFS — insufficient resources to service request
NOPEER — no foreign socket specified in an active open() call
DENIED — the user process is not allowed to specify this type of open() call
Third, the underlying (N-1)-service is presumed to be the DOD Internet

Protocol|{IP]. The discussion of the (N-1)-interface describes the type of service

expected.

Description Data Definitions
This section describes the data structures used by the description. Three

major structures are explicitly used the tcb, sp_type, and segment_type structures.

The tcb structure contains all of the state information for a connection. In
addition to the local and foreign sockets, all sequencing and windowing information,
precedence and security/compartment information, and so forth are all kept in
this structure. In the description that follows, a teb completely contains all known
information about a connection for an N-peer. A teb is in fact its own contour and
as a result has its own unique color. In the next section, the reader should be able
to appreciate the advantages and disadvantages that this interpretation permits.
Unlike the original TCP specification, the tcb does not have its state encoded as a

variable. Instead, contour/transition-nets are used to denote the state of a tcb.

12 There are two widely distributed versions of the specification of TCP. This chapter is based
on the earlier version, [TCP]. The other document is the MILSTD specification of TCP, known as
MIL-STD-1778. To the author's understanding, these two documents describe precisely the same
protocol, although in different formats. The former is a natural language treatise, the latter consists
mainly of an algorithmic specification. At the time this section of the dissertation was prepared,
only the earlier specification was available.
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The ip_type structure is the data type passed to/from the (N-1)-layer.
This structure specifies the source and destination addresses, precedence and
security /compartment information, a protocol code (which for our purposes is
always the code for TCP), a time-to-live value, and a segment to be communicated.

The sp_type structure is used as a part of the (N-1)-interface definition.

The segment _type structure is passed between N-peers as their means of
communication. The definition of the segment _type follows fairly closely the
definition given in the TCP specification, with a few exceptions. Each segment has
associated with it a length. This is not kept explicitly in the segment, but instead
is calculated based upon the values of various components in the segment. In order
to make this description more clear, the length is treated as an explicit component
of a segment_type. In addition, although the source and destination addresses
are not present in each segment, they have been made explicit components of a
segment _type as well. Similarly, pointers to the urgent, data, and options portions

of the segment _type have been abstracted somewhat.

All of the major data structures used in the description are presented in
Figure 18. Figure 18 presents these in a rough C-like syntax, and a complete

description of the semantics of these structures is not presented here.

Description Nets
This section presents the actual description itself. A series of contour/transi-

tion-nets are presented, along with additional explanatory text.

Some conventions are used in the drawing of these nets which should be
noted. First, the graphical conventions presented earlier in this dissertation are
followed. The primary motivation for this is to reduce clutter and make the nets
appear more readable. As expected, this results in the loss of some simplicity. For
example, some of the transitions presented have more than one output arc. One
of these arcs may lead to a named net while another may not. This means that
the transition also serves as an entry transition if the selection rule for the output
arc feeding the named net produces a token. Hybrid constructs of this sort are
meant as a convenient short-hand notation. In the interests of further brevity, one
additional liberty has been taken in drawing these nets: the entry places do not

declare the types of the formal parameters. This information has been excluded in
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struct tcb {
socket _type 1lsock, fsock;
precedence_type prc;
security type sec;

boolean active_open;
sequence_type iss, irs;
window_type wnd;
s_wnd_type snd;
r_wnd_type rev;
usr_sig_type timeout;
segment_type Bsg, seg; /* not state information s/
segnent_quene retranspit;
3
struct ip type {
addr _type saddr, daddr;
protocol _type proto;
precedence_type prc;
security type sec;
time_type ttl;
segment _type data;
};
struct segment_type { _
addr _type saddr, daddr; /* not actually in the segment #/
port_type sport, dport;
seg flags type ctl;
integer len; /* not actually in the segment s/
sequence_type seq, ack;
window_type wnd ;
seg_ptr up, data, optionms;
integer data _offset;
checksum_type cksue;
}

struct s.wnd type {
sequence_type gna, axt, up, wll, wl2;
windov_type wnd; ‘

};

struct r.wnd_type {
sequence_type axt, up;

window_type wnd;
};
struct socket _type {

addr_type addr;

port_type port;
3
struct seg_flags type {

boolean urg, ack, psh, rst, syn, fin;
}

Figure 18

Data Definitions
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O entry(tch,meyg)

(1) cr: ip_type packet .

mr: packet.saddr «— lsock.addr
packet.daddr — fsock.addr
packet.proto «— TCP_PROTOCOL
packet.ttl — TCP_TIME _TO_LIVE
packet.prc — pre
packet.sec — sec
packet.data « msg

do_cksum(packet)

(1)

exit

packet lost

packet crosses

(N-1)
Figure 19
(N-1)-interface: SNDPKT

order to avoid certain space limitations in preparing this dissertation. In all cases

though, the type of the formal parameters is easily determined by inspection.

Second, the entire description is not composed entirely of nets. Very often,
the enabling predicate or firing actions of a transition may reference an external
routine or predicate to provide a value. These functions are assumed to be called
in the current context. An example of an enabling predicate so specified would be
one that uses the expression P/S okay, which appears throughout the description
and asks if the precedence and security/compartment conditions properly met.
An example of a routine appearing in the firing actions for a transition would be

new_tss() which generates a new initial sequence number for a connection.

(N-1)-interface
The (N-1)-interface description is achieved through two nets, SNDPKT and
RCVPKT.

The SNDPKT net (Figure 19) loads the appropriate information for the
(N-1)-layer into an fp_type structure and then forks control. One fork leads to the

net’s exit place. The other leads to a place which feeds one of two transitions. One
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entry(tcb) .

segment_type seg

ok _cksum(packet)

exit(seg)

(1) ep: t2's packet is for t1's connection
mr: t1.seg «— t2.packet.data

(2) ip_type packet crosses
Figure 20

(N-1)-interface: RCVPKT

transition consumes the eligible token and does not introduce a token on its output
arc. This represents the packet being lost by the (N-1)-layer. The other transition
is a boundary transition. The firing actions for this transition state that the data

structure known as packet crosses into the (N-1)-media.

Recall that firing actions, while indivisible, execute in an ordered fashion.
Hence, the manipulation rules, after loading each field of the ¢p_type structure, calls
do_chksum() to calculate the TCP checksum for the segment and the (imaginary)
IP header. This corresponds to an interesting nuance in the TCP specification that
actually includes information not found in the TCP segment into the checksum
stored in the segment. Note that the although the selection rules for the transition
introduced a token on both output arcs, only one arc had construction rules and
manipulation rules to execute. Since only one set of manipulation rules is present,

the order of execution is unimportant.
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The RCVPKT net (Figure 20) is instantiated to accept information from the
(N-1)-media. When a token enters the net, it waits for a split transition to be
enabled. This transition will be enabled when a token is present on the other input
arc which contains a packet for the connection represented by the entry token.
That is, control will block until an incoming packet for the connection arrives
at the other input place. Independently of this, whenever any packet arrives, an
ip_type structure is given to the N-peer by the (N-1)-layer, and placed in a blank
token by the boundary transition. The routine ok_chksum() is called to verify
the checksum of the incoming packet (using the same algorithm which checks
information in both the segment and the (imaginary) IP header). If the checksum
found in the segment is incorrect, the blank token containing the ip_type structure
is dropped. Otherwise, the token proceeds to a place to wait for the N-peer to
request the next segment. When this split transition is enabled, the firing actions
specify that the incoming packet is copied into the entry token’s variable packet
and that seq «— packet.data in the context of this token. After firing, as with all
split transitions, control forks. The fork corresponding to the entry token exits,
which returns control to the caller. The other fork, which corresponds to the blank

token that was introduced by the boundary tfansition, terminates control.

It should be noted that the topology of Figure 20 does not enforce an ordering
on the incoming packets. If two packets with a correct checksum arrive before the
split transition fires, then the choice as to which packet is chosen as eligible is
non-deterministic. The Internet Protocol, which is the (N-1)-service, is datagram
oriented and may deliver packets out of order. Figure 20 demonstrates very simply

that the order of incoming packets is unimportant to the description.

These two nets compose the entire (N-1)-interface description. Conceptually,
one could view the two transition boundaries presented in these nets as being

Joined between two N-peers, as these are the only transition boundaries in the

description.

N-interface
Only a partial description of the N-interface is made. In particular, of the

several calls that processes may make upon TCP in the TCP specification, only
one call, the open() call is specified, as this is the only call that actually deals

with connection establishment. The form of the open() call described here is
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somewhat more limited than that presented in the original TCP specification. The
description herein permits a user process to issue an open request only for those

connections which are in the CLOSED state.

The open() call takes the following input parameters:

e port_type lport, which indicates the local port that the user process
wants to use as its end-point in a connection.

e socket_type fsok, which indicates the foreign socket that the user process
wants to connect with. If this is omitted or partially given, then any
foreign socket matching the requirements can establish a connection.

e boolean active, which indicates if an active or passive open should be
done.

e usr_sig_type timeout, which indicates, if given, a user signal handling
routine to be notified when a segment is not be acknowledged within a
certain time limitation.

e precedence_type prc, which indicates the precedence level that the
connection should have.

o secursty_type sec, which indicates the security /compartment level that
the connection should have.

e options_type options, which specifies any TCP options to be used.

When a user process issues an open() call, an open request is issued on behalf
of the user process. This results in the OPEN net (presented momentarily) being
instantiated, given the parameters specified by the user process for the open() call.
During the execution of OPEN, either an error code or a connection handle is
returned to the user process. If a connection handle is returned, then an associated

tcb has been instantiated for the user process.

N-protocol
The actions of the N-protocol for a particular connection start with the

OPEN net. Before describing OPEN, it is necessary to digress and introduce
another net, MAIN.

If a segment arrives for a connection that does not exist, some method for
rejecting the segment must exist. This generally requires some global knowledge of

all of the connections that are known on the local host. Since RCVPKT receives
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all incoming packets and only known connections instantiate RCVPKT to fetch
packets. packets arriving for non-existent connections will “stack-up” at the place
feeding the split transition in Figure 20. Clearly, this is incorrect behavior. Hence,
Figure 20, although correct on a per-connection basis and correct as a description
of part of the (N-1)-interface, is not actually invoked by the system. Rather,
connections wishing to fetch the next packet meant for them instantiate the MAIN

net at the RCVPKT entry place.

The MAIN net (Figure 21) specifies several parts of the system. When the
system starts, it instantiates MAIN at the TCP entry place. MAIN.TCP is viewed
as a “single entry, zero exit” net. In short, an instantiation of MAIN.TCP never
returns. The TCP entry place begins by establishing a new context containing a
list of connections which is initially empty. It then proceeds to a place where it
can enable any of three split transitions. Once any of these transitions fire, control
loops back.

If the OPEN entry place is instantiated in MAIN, a split transition fires
which checks if the connection specified by the parameters lport and fsok is present
in the connection list. If so, the ISCONN error is raised, and this is returned to
the caller. Otherwise, a connection handle is associated with a new connection for
Iport and fsok. This connection is added to the list of known connections, and the
connection handle is returned to the caller.

If the CLOSE entry place is instantiated in MAIN for a connection, a split
transition fires which removes the connection from the list of known connections
and flushes any queues and releases any resources associated with the connection.

Independent of the instantiation of the OPEN and CLOSE entry places, if a
packet arrives for a connection that is not present in the list of known connections,
a third split transition fires which invokes the BADSEG net (presented later).
BADSEG, described later, rejects the segment by constructing and sending an
appropriate segment.

The remainder of the MAIN is essentially the RCVPKT net. The RCVPKT
entry place in MAIN corresponds to the single entry place in the RCVPKT net,
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TCP entry

(8) (2)

OPEN (lport, fsok) RCVPKT
t5 t4 entry(éch)
t6 t3
()
exit(6) BADSEG
(ted,seg) exit(seg)
. B
(1) ip_type packet crosses 0
(2) ep: ok_cksum(packet)
(3) ep: t2's packet is for t1's connection db

mr: t1.seg «— t2.packet.data
(4) ep: t3's packet is pot for any connection known in the context of t4
cr: tch initialized for dummy connection
(5) mr: if the connection specified by t6’s lport and fsok
is known in the context of t5, then raise ISCONN
otherwise, associate a connection handle in the context of t6
and add the connection to the list in the context of t5
(6) return error or connection handle
(7) mr: remove t8’s conpection from t7’s list of connections
flush any queues and release any resources associated with t8's connection
(8): cr: new list of connections, initially empty

Figure 21
N-protocol: MAIN

and the split transition has the same enabling predicate and firing actions.!® The
interesting interaction, which was the motivation for merging the RCVPKT net
into MAIN, is that the place which supplies incoming packets to the RCVPKT

13 The observant reader will notice a slight deficiency in Figure 21. Due to unfortunate space
limitations, a transition is missing immediately after the RCVPKT entry place. This transition
creates the scegment _type seg which is returned. The author apologizes for this inconsistency.
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(1) parameters from open request
(2) sr: the open request is invalid
mr: give error to user
entry (1) (3) sr: MAIN.OPEN returned an error
mr: give error to user
(4) sr: MAIN.OPEN returned a connection
~ handle
) cr: tcb initialized from open request
exit |MAIN.OPEN mr: give connection handle to user
(lport.fsok) (5) mr: iss «— new_iss()
snd.nzt — iss + 1
snd.una — 188
msg.seq «— 188
msg.ack — 0
mesg.ctl — SYN

active —2*— (5) Pop-—
SNDSEG LISTEN
(tcb,msg) (ted)
-
SYNSENT
(ted)
+
MAIN.CLOSE
(tcbd)
-1
exit
Figure 22

N-protocol: OPEN

control path can also supply incoming packets to the BADSEG control path.
Since this place feeds both transitions, either may make use of incoming packets

depending on how well their enabling predicates are satisfied.

Now that MAIN has been discussed, the parts of the description dealing with

individual connections may be presented. As discussed above, an open request
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results in the OPEN net (Figure 22) being instantiated with the appropriate
parameters. OPEN first checks the validity of the request.

This check can be summarized as:

1. If the user process is not allowed to access Iport, or is not allowed to
use the indicated prc and sec levels, then the error DENIED should be

raised.
2. If active is set, but fsok is not fully specified, then the error NOPEER
should be raised.

3. If there are insufficient resources to handle this request, then the error
NOBUFS should be raised.

4. Otherwise, the request is considered valid.

If the request is not valid, the appropriate error is given to the user process,
and control returns as well. Otherwise, the MAIN net is instantiated at the OPEN
entry place. If MAIN.OPEN returned an error, the error is given to the user process
and control returns. Otherwise, the connection handle returned by MAIN.OPEN
is given to the user process. Next, the OPEN net checks to see if the user process
wanted an active open. If so, a SYN segment is sent, and the connection enters
the SYN_SENT state (by instantiating the SYN_SENT named net). If, instead, a
passive open was requested, the connection enters the LISTEN state. Eventually,
the path taken returns and the MAIN net is instantiated at the CLOSE entry
place. When MAIN.CLOSE returns, control returns as the connection has now

entered the CLOSED state and no longer exists.

The LISTEN named net (Figure 23) is used to process a connection that
is in the LISTEN state. First, RCVSEG is instantiated to await and return an
incoming segment for this connection. A RST is explicitly checked for. If present,
LISTEN ignores the segment. If an ACK is present, the segment is rejected. If a
SYN is not present, the segment is ignored. If a SYN is present, but precedence
and security/compartment considerations are not satisfied, then the segment is
rejected. Otherwise, the connection enters the SYN_RCVD state, and a SYN/ACK
is sent as the second part of the three-way handshake. If more of TCP were being
considered, other parts of the segment might be processed prior to entering the
SYN_RCVD state.



O entry(ted) (1) sr: seg.ctirstv
~(seg.ctl.ack v seg.ctl.eyn)

(2) sr:  seg.ctli.ack
—— (3) sr:  seg.cti.ayn
(4) mr: copy sport, saddr if needed
ire «— seg.seqg
seg = RCVSEG rcv.nzt «— seg.seq + 1
(tcb) queue geg.data
queue geg.options
iss — new_iss()
snd.nzt — is8 + |
(3) end.una «— iss
meg.seq + 188
msg.ack «— rev.nzt
meg.ctl — SYN, ACK

P (teh) (2)

P[S okay

—r ——(4)
BADSEG SNDSEG
(teb,seg) (tcb,msg)

-y -y

N S N SR
! LISTEN 'SYN.RCVD !
b (ted) 1 (teb)
_______ | F .
Figure 23

N-protocol: LISTEN

The SYN_SENT named net (Figure 24) is used to process a connection that
is in the SYN_SENT state. First, RCVSEG is instantiated to await and return an
incoming segment for this connection. If the segment acknowledges a segment not
belonging to this instance of this connection, the segment is rejected. Otherwise
the presence of a RST and a SYN is checked. If a RST is present, and this
is an acknowledgement, then the user process is informed that the connection

was rejected, and control returns (to the OPEN net). Otherwise, the connection
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Oentry(tcb) (1) seg.ctl.ack A (2eg.ack < isa V end.nzt < seg.ock)
(2) seg.ctl.rst v ~seg.ctl.ayn

v (3) s seg.ctl.ackA

(snd.una < seg.ack < end.nzt) A seg.ctl.eyn

mr: error — RESET

seg = RCVSEG (4) st P/S okay
(teb) mr: rcv.nzt — seg.seq + 1
irs «— 8eg.8eq

if (seg.ctl.ack) snd.una ~— seg.ack
(5) sr:  snd.una > iss
mr: mesg.seq +— snd.nzt
meg.ack «— rcv.nzt

(/J

BADSEG mag.ctl — ACK
(tcb,seg) queue seg.data
queue seg.oplions
-y (2) ~

-

r A
1SYN.SENT,

Lo At ]
r---%--4
1SYN_SENT, BADSEG
L_.(E.Cf)..-_: (tcb,seg)
—— (5) (6)
(6) sr: snd.una < iss SNDSEG SNDSEG
Ir: msg.seq «— 188 ——__

msg.eck — rcv.nzt :-SYN_SENT—: (tcb,msg) (tcb,meg)
msg.ctl — SYN,ACK v (ted) |

queue geg.data I v
queue seg.options

.

- o

r Y r A
. ESTAB | SYNRCVD;
Vo(teb) U0 (teb) !
[ 4 U o

Figure 24
N-protocol: SYN_SENT

remains in the SYN_SENT state (the segment is ignored). Precedence and
security/compartment'considerations are then checked. If they are not satisfied,
then the segment is rejected. If the considerations are satisfied, then a response is
sent, and the connection enters either the ESTAB or SYN_RCVD state, depending
on whether our SYN has been acknowledged. Again, if more of TCP were being
considered, other parts of the segment might be processed prior to entering the

new state.
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Oentry(tcb) 1) sr: seg.ctl.rat
2) s meeg.cti.rst
mr: meg.seq ~— snd.nzt
msg.ack — rcv.nzt
msg.ctl — ACK
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Figure 25

N-protocol: SYN_RCVD

Figure 24 is rather sequential in nature. This need not be the case. A single,
large switch-decision could be used to remove the sequential nature of the decisions
which lead to the net’s actions. This was not done for reasons of clarity. Depending
upon the designer’s interpretation of the trade-offs, the contour/transition model

could be used to remove nearly all of the sequential nature of this invocation.

The SYN_RCVD named net (Figure 25) is used to process a connection that
is in the SYN_RCVD state. First, RCVSEG is instantiated to await and return an
incoming segment for this connection. If the segment is outside the window, the
presence of a RST is checked. If present, the segment is ignored; if not, a response is
sent to force the foreign peer to re-transmit a valid segment. If the segment is inside
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the window, the presence of a RST is checked. If present, and this connection was
started with an active open(), the user process told that the connection has been
refused, and control returns. Otherwise, the connection enters the LISTEN state.
If a RST was not present, precedence and security/compartment considerations
are checked. If they are not acceptable, the segment is rejected; otherwise the
presence of a SYN is checked. If present, the segment is rejected, the connection
is closed, and the user process is informed that the connection has been reset; if
not, the presence of an ACK is checked. If not present, the segment is ignored.
If an ACK is present, a check is made to make sure that the ACK is correctly
acknowledging our SYN. If not, the segment is rejected. Otherwise the connection
enters the ESTAB state. Again, if more of TCP were being considered, other parts
of the segment might be processed prior to instantiating ESTAB.

The BADSEG net (Figure 26) is used to reject an incoming segment. First,
BADSEG checks for a RST in the segment. If present, no response is sent.
Otherwise, an ACK is checked for. Based upon the presence of an ACK, the
appropriate response is set-up in msg, and SNDPKT is instantiated to send the

response.
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entry(tcb,seg)

seg.ctl.ret segment_type msy

seg.ctl.ack (2)
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(2) mr: msg.seq — 0
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msg.ack — seg.seq + fcg en Y
meg.ctl — RST,ACK

db exit

Figure 26
N-protocol: BADSEG

The SNDSEG net (Figure 27) is used to send a segment to the other N-
peer. It instantiates SNDPKT to interact with the (N-1)-layer, and then forks
control. One fork returns. The other instantiates TIMER at the ENQ entry place.
TIMER.ENQ is viewed as a “single entry, zero exit” net.

The RCVSEG net (Figure 28) is used to get the next segment from the other
N-peer. It instantiates MAIN.RCVPKT to get the next packet for this connection,
and then forks control. One fork returns. The other instantiates TIMER at the
DEQ entry place, which, like MAIN.TCP and TIMER.ENQ), does not return.

The TIMER net (Figure 29) is responsible for handling retransmission.
When instantiated at the ENQ entry place, a transition fires which feeds one of
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SNDPKT
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Figure 27
N-protocol: SNDSEG

O entry(tcb)
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seg — MAIN.RCVPKT
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<

TIMER.DEQ
(tcb,seg)

exit(seg)
Figure 28
N-protocol: RCVSEG

two output arcs. If the retransmission queue is non-empty, the segment is added
to the retransmission queue and control terminates. If the retransmission queue is

empty, the segment is added to the retransmission queue and control proceeds to
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() ENQ entry(tch,msg)

( ) DEQ entry(tcb,seg)

(1) sr: retransmission queue non-empty
mr: add msg to the end of the retransmission queue
(2) sr: retransmission queue empty
mr: add msg to the end of the retransmission queue
3)et: TCP.TIME OUT
4) mr: set msg to the first message in the retransmission queue
5) sr: retransmission queue empty
(6) ep: t2’s seg is for t1's connection
mr: in t1's context remove segments from rtq that are fully ack'd by t2’s seg
(7) sr: retransmission queue empty V -seg.ctl.ack

Figure 29
N-protocol: TIMER

a place that can enable one of two transitions. One transition is used to model a
time-out. It has its enabling time set to a non-zero time-out value. Although the
transition is enabled as soon as a token appears at the place feeding its input arc,
it can not begin executing its firing actions (and absorb the eligible token) until the
enabling time has expired. If the time does expire, then SNDPKT is instantiated
and told to send the first segment in the retransmission queue. Control then loops
back. If prior to the expiration of the enabling time, the other transition, a split

transition which has an enabling time of 0, can fire, it does so immediately and

disables the former transition. When instantiated at the DEQ entry place, TIMER
checks to see if the retransmission queue for this teb is empty, or if the incoming

segment does not have the ACK bit set. In either case, control terminates by firing
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a null transition. If the queue is non-empty and the segment does acknowledge
something, then control proceeds to the other half of the split transition mentioned
previously. The split transition is enabled when a token is present in both of the
places feeding its input arcs that are for the same tcb. When two such tokens
can satisfy this predicate, the transition fires and removes any segments from the
tcb’s retransmission queue that are fully acknowledged by the incoming segment.
The half of the split transition associated with the incoming segment terminates
control immediately. The other half proceeds to see if the teb’s retransmission
queue is empty. If so, control is terminated; otherwise control loops back to the

place feeding the input arcs of the time-out transition and the split transition.

The reader should understand that TIMER is not adequate as a correct
description of the actions that occur when a segment times-out. In particular, the
structure of TIMER is such that control from the ENQ entry place loops forever
if an acknowledgement is never received. A necessary addition should be to keep
track of the number of retransmissions performed and, if the number exceeded
a certain threshold, then to abort the connection and inform the user process
that OPENed the connection that the connection has timed-out. Furthermore,
a more powerful description would probably use a variable enabling time, based
on segment-acknowledgement transit times, instead of the TCP_.TIME OUT
constant used in TIMER.

N—protocol primitives
| The definitions of the predicates and routines used in the enabling predicates
and firing actions of some of the transitions in the net are presented here.
The routine do_chksum() computes the TCP checksum for a segment and
associated packet, and stores the checksum in the segment’s cksum field. Similarly,
the predicate ok_chksum() computes the TCP checksum for a segment and

associated packet, and compares it to the value of the segment’s cksum field. If the
two values do not match, the routine returns FALSE otherwise it returns TRUE.

The new_tss() routine calculates an initial sequence number for a tcb.

The predicate P/S okay refers to the precedence and security /compartment

conditions being satisfied.
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Finally, the predicates fnside window and outside window check to see if
a segment is inside the valid window for a connection, checking the segment’s

sequence number and the s_wnd_type structure of the feb.

Evaluation
This section makes a critical examination of the preceding description.

Some general comments are made, and then the description is compared to two
other formal specifications of connection establishment in TCP (other than the
official DOD specification). Finally, the value of the contour/transition model as a

specification tool is considered.

In comparison to the full TCP specification, several observations can be made
which point to the advantages and weaknesses of the contour/transition model. In
many ways, the contour/transition model is less ambiguous that its natural language
counterpart. The flow of control for a particular state is more clearly defined.
Despite the use of “structured” (rigorously indented) paragraphs in the original
TCP specification| TCP], ambiguities do arise. These are in-escapable.! Although
“structured”, little hierarchy is present, which results in rather repetitive groups
of statements throughout the specification. In contrast, the contour/transition-net
description does not suffer from these problems, as transition-nets are used to
convey the bulk of the meaning. Even so, the contour/transition-net description
does make use of several predicates, functions, and procedures which are presented
in natural language. It is emphasized that the contour/transition model does not
seek to eliminate the use of natural language as a part of the specification, but
rather to introduce a rigorous approach which is more capable of capturing the

spirit of the protocol and is less ambiguous than less formal methods.

A difficult problem in presenting a specification is “knowing when to stop.”
That is, at what point has the specification given the full functional description and
further discussion on the part of the specification is actually constraining possible
implementations? Both descriptions do rather well in this regard, although the
original specification tends to do somewhat better. In providing a less ambiguous
description, the contour/transition model has taken the liberty to make several

!4 This section is not meant to be a critique of the TCP specification|TCP]. Any specification
made using a natural language approach will suffer these problems. This was a primary motivation
for the development of the MILSTD specification of TCP, MIL-STD-1778.
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things more concrete, so as to avoid possible mis-interpretation. It is not clear

if this has crossed the line from functional specification to implementational

constraint.

Companison with Transmission Grammar

Teng and Liu[TENG78), present a context-free grammar known as the
transmission grammar as a method for protocol specification. The transmission
grammar has been used to specify and verify initial connection handling by
TCP[UMBA82B]. A key advantage to the transmission grammar approach over
the use of finite state automata is the ability to compress transitions into a
compact form. Most problems with state explosion can be solved by simply adding
another production to the set of production rules for the grammar. In addition,
completeness is handled more automatically: by continuously expanding the
starting string, all possible states and outputs can be calculated. It is unfortunate
that the compact nature of the transmission grammar makes conceptualization of
the protocol more difficult to grasp: in the author’s opinion, specifications using

the transmission grammar tend to lack readability.

The specification of TCP’s initial connection handling reported by Umbaugh,
et. al.[UmMBA&2B| begins by presenting the valid messages that one TCP could send
to another. From these and the standard, the production rules for the grammar
were produced. Finally, a validation automaton was constructed to verify the
action of the protocol.

The presentation made is specifically addressed towards verification. In terms
of preseuting a usable specification or a conceptual model of initial connection
handling in TCP, little effort is expended. This division of attention can not be
under-stated. It becomes clear that the transmission grammar, while potentially
useful for verification activities, does not excel in either protocol explanation or as
an aid for implementation. In contrast, the description using the contour/transition
model goes to great length to present the functional basis of the protocol, and little
or no attention is given to properties to be analyzed. This approach is discussed in

somewhat greater detail further on.
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Comparison with SPEX

Schwabe[SchwaB81A] introduced the SPEX specification language. SPEX
is a transition-based system with some augmentations. A SPEXification (a
specification made using SPEX) consists of the definitions of nodes, along with
the definition of the topology and a set of properties defining liveness and safety
(functional correctness). All of these definitions are given in an algorithmic form,
with a few special operators that are “tailored” for protocol modeling. Node
definitions consist of a description of state (local) and interface variables, the initial
state, a set of events and the pre-conditions required to instantiate the events, and
a procedural definition of the behavior of the node when an event occurs. There
are two types of nodes: the station and the medium. Stations may be thought of
as end-points in the connection, while the media may be considered the underlying
communications subnet. The topology definition enumerates the nodes present in

the specification and their connections.

The SPEXification of the initial connection protocol is presented by
Schwabe[ScuwaB81B]. Four nodes are present: two stations, and two media.
It is interesting to note that the definition of the media nodes includes the event
of a message being lost. The actions of TCP are embedded in the definition of
the behavior of the stations. After achieving a SPEXification, the semi-automated
verification tool, AFFIRM[Suns824] is used. SPEXifications have a relatively
straightforward transformation to an AFFIRM representation, so SPEX lends

itself well to verification efforts.

A SPEXification is considerably more readable than a specification using
the transmission grammar approach. With improved readability, a greater
understanding of the spirit of the specification can be achieved. Unfortunately,
the algorithmic nature of SPEXifications do not present the reader with a great
insight into the nature of the protocol. It is true that the fundamental properties
are asserted and plainly described, but this does not demonstrate the true spirit of

the protocol’s actions.

The Contour/Transition Model as a Specification Tool
A great strength of a hybrid approach, such as the contour/transition model,
is the ability to use the natural concurrency structures found in Petri nets with

the abstraction facilities found in algorithmic approaches. From this vantage,
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contour/transition-nets could be useful as a specification method. The standard
Petri net model suffers from the inability to easily perform data manipulations,
along with some problems with state explosion. Numerical Petri nets, while
making data manipulation easier, suffer from a lack of discipline with regard to
data access.!® Contour/transition-nets solve this problem by introducing tokens
which represent various contexts of a given peer’s state. Furthermore, the hierarchy

introduced by using named nets might reduce state explosion problems somewhat.

It is important to realize however that protocol specification techniques can

serve three purposes:

e explanation of the protocol
e the basis for the verification of the protocol

e the basis for the implementation of the protocol

As shown with the description of connection establishment in TCP, the
contour/transition model does well to demonstrate the spirit of the protocol.
Given the powerful concurrency representation techniques that Petri nets
provide, along with the concurrent and recurrent invocation control semantics
that contour/transition-nets achieve, the contour/transition model can be seen

favorably as an explanation tool.

In terms of implementation, the contour/transition model is sufficiently
different from the algorithmic approach as to avoid placing many constraints on
the implementation process. For example, consider the operation of Figure 20.
No requirement is made as to the order that connections or incoming packets are
services. Rather, the notion that incoming packets pair with known connections
is put forth, with no other restraints. Some seemingly unnecessary constraints do
remain however. These can be observed from the description’s data definitions
in particular. Fortunately, an implementation would not have to adhere to the
letter of the data description providing that it did adhere to the intent of the state
variables. Regardless of these concerns for the data definitions, the nature of Petri
nets is sufficiently different from most traditional implementation languages so as

15 Recall that when using the numerical Petri net approach, all variables are global to all peers.
This introduces a tremendous problem for those who strive for conceptual clarity in specification

techniques.
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to avoid the trap of “specification by example.” Finally, to enjoy much success,
automatic, or semi-automatic methods for transforming contour/transition-nets

into tasking programs must be present.

In terms of verification, the contour/transition-net approach is notably, and
painfully weaker. Although the preceeding chapter presented sufficient results
to provide a foundation for analyzing the properties of system described with
contour/transition-nets, applying these results to the description presented in this
chapter would be quite expensive.

A criticism made of many specification and verification efforts is the lack
of ability to properly describe the behavior of the protocol when more than
one connection is active. For the description presented in our discussion, the
use of colors to represent connections, and the clean semantics of colors in
contour/transition-nets, permits a natural explanation of the protocol’s activities.
For analysis purposes, if one could demonstrate that initial connection handling
for a single connection was handled correctly, and one could demonstrate that
the interaction between connections (colors) did not disturb this property, then
one can prove that multiple connections are handled properly by the description.
The interaction between colors occurs when split transitions are used, while
the interaction between peers occurs when boundary transitions are used. In
the description, this is limited to the SNDPKT net, the MAIN net (including
MAIN.RCVPKT) and the TIMER net. It would not be difficult to show that the

instantiation of this net does not cause an incorrect series of interactions between
colors.

Much work remains in the area of analysis of systems represented with
the contour/transition model. In terms of the other two aspects however, the

contour/transition model seem to be well-suited as a specification tool.
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CHAPTER 6
Conclusions

The results presented by this dissertation are now summarized, and directions

for future research are suggested.

Contributions
This concluding chapter begins by reviewing the results shown by this

dissertation.

Modeling

This dissertation has presented a graphical model for concurrent computation
that combines the control aspects of Petri net theory with the abstraction facilities
found in programming languages. The contour/transition model introduces
abstraction facilities to both the control and data aspects in order to make its
underlying transition-based skeleton more capable of modeling concurrent systems.
Through the use of colorful tokens, which represent independent contexts of
execution, a contour/transition-net is able to be active both concurrently and
recurrently.

This dissertation has also demonstrated the modeling facilities of con-
tour/transition-nets by modeling initial connection handling in the DOD
Transmission Control Protocol. In particular, note that the contour/transition
model is able to present the protocol in a concise fashion with generally unambigu-
ous semantics. Furthermore, note that owing to the mechanism by which different
execution contexts interact in the model, more than one connection establishment

can be modeled by the nets presented with no additional modeling complexity.

Analysis
This dissertation has demonstrated that results previous applied to
predicate/action-nets can be extended to prove properties about contour/transi-

tion-nets. These extensions do not change the well-founded analysis properties
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of the invariant-method and capitalize on the hierarchical nature of the con-

tour/transition model to permit proofs of smaller constructs. As a result, the term
invocation-safe/live is formalized to refer to the notion of proper termination for a
contour/transition-net, and the term contertual snterference to refer to aspects of

a contour/transition-net that allow different contexts of execution to interact.

In addition to developing an extension to the invariant-method, this
dissertation discussed when simpler, cheaper methods of analysis, such as incidence-
matrix analysis can be used instead. Although not applicable in most interesting
situations, some of the time required to perform the analysis could be reduced if

care is taken to use the method easiest to apply to a given contour/transition-net.

Future Research
This dissertation has left many problems unanswered or has introduced new

research problems which, if contour/transition-nets are found to be useful for

modeling, should prove interesting. These areas are briefly surveyed here.

Communication Between Colors

The contour/transition model, as defined in this dissertation, provides
two means for different contexts of execution (i.e., colors) to synchronize and
communicate. The boundary transition corresponds to the facilities found in
message passing systems, while the split transition corresponds to a rendezvous
facility. Both of these methods have various merits, depending on the degree of

connectivity found in the system being modeled.

Although the behavior of split transitions is graphically intuitive, the same is
not necessarily true of boundary transitions. In particular, if a boundary transition
is really used to model a message passing facility, then the issues of loss and
corruption of messages and channel capacity might be addressed. Currently, our
interpretation of boundary transitions avoids these characteristics. One line of
research might be to be more considerate in this area and adjust the analysis
method accordingly.

In addition, it might be interesting to explore other types of synchronization
and communication primitives found in other languages and to see if they can

be framed in terms of the two types of transitions previously described. If
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not, then perhaps additional transition disciplines should be introduced into the

contour/transition model.

Analysis

One open area of research is the integration of timing information into the
analysis method. At present, the enabling time and firing time associated with
each transition is ignored in a contour/transition-net. This simple-minded view,
while adequate for systems which are not time-critical, is not suitable when the
goal is to model real-time systems in which both the ordering and duration of
events must be analyzed in order to determine if the system behaves correctly.

In addition, it might be useful to permit transitions other than entry and
exit transitions to modify the context of execution (i.e., introduce new scoping
contexts). In order to adapt the analysis method presented, the hierarchy vector
would need to take on a more dynamic nature in order to reflect the notion that
various “begin-end” blocks have changed the context of the system. This leads
to the consideration that the notion of the hierarchy vector could be extended in
many ways. For example, in addition to permitting arbitrary nesting, it might
also be useful to allow the analysis technique a greater level of granularity when
indicating the relation between a particular execution context in the system and

its corresponding component in the hierarchy vector.

Finally, in order to to be truly useful, the analysis process must be automated
to free the designer from the difficult tasks of analyzing the system by hand. In
part, this motivates a discussion of how contour/transition-nets might be simulated

and implemented.

Simulation

As a part of the design process, it is interesting to be able to animate a
system that is modeled with contour/transition-nets. With the use of sophisticated
bit-mapped, color graphics terminals, which are becoming widely available, the
author can envision a scenario where a contour/transition-net is displayed on the
designer’s screen and colorful tokens move about on the net. Animation of this
sort could be presented in a very compact representation as only one picture of
the graph need be displayed, while tokens of different colors, each representing a

different execution context, can occupy the same graph. The author believes that
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this approach could be particularly appealing when a system has several contexts
executing concurrently (as in the case of multiple connections being established,
which was briefly touched upon in the previous chapter). Furthermore, this type

of animation might be useful in examiring how colors interact in a system.

It should be noted that the contour/transition model adds nothing to
animation theory. Rather, it is felt that the animation of systems represented with
the contour/transition model might compose a significant portion of a powerful

design method for concurrent systems.

Implementation
The suitability of contour/transition-nets for semi-automatic implementation

should prove to be an interesting research topic. It is desirable to have language
processors take concurrent systems described using structured Petri nets and
produce ADA!® tasking programs. This appears to be a natural approach since
a designer can use the simple (yet powerful) concurrency mechanisms of the
contour/transition model and have this translated to the corresponding ADA
rendezvous constructs. Although the ADA constructs are, in theory, as powerful
as the original structured Petri net mechanisms, they are likely to be much more
complicated.

In related work, Nelson, et. al.[NELs82, NELs83] have shown one method
for translating annotated Petri nets into a PL/I-like language. This work
suffers from several drawbacks however (e.g., because of PL/I’s lack of good
concurrency primitives, some Petri net (sub-Jtopologies are not representable).
Hence, one research direction would be tc explore the relation between concurrency
constructs in contour/transition-nets and concurrency constructs in ADA. The
author hypothesizes that, owing to the strict nature of interaction between colors
(execution contexts) in the contour/tramsition model, an implementation of a
system modeled as contour/transition-nets should be able to exploit a high degree

of parallelism.

' ADA is a trademark of the Department of Defense (ADA Joint Program Office).
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Concluding Remarks

The author notes that previous extensions to the place/transition-net
model tend to follow an “all or nothing” philosophy: either some mechanism
for abbreviations are added to permit more concise representations but which
do not enhance modeling power; or computational power is added to make the
model Turing equivalent, with little or no consideration for data-handling facilities
and useful abstraction facilities. The contour/transition model is suggested as
a balanced hybrid approach that attempts to retain the control aspects of Petri
nets while introducing the abstraction facilities and data manipulation capabilities
found in programming languages. It is hoped that these extensions will make

transition-based models a more viable method for modeling concurrent systems.
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Appendix A
Transformation of Contour/Transition-Nets for Analysis

The analysis method presented in Chapter 4 placed some certain restrictions
on the structure of those contour/transition-nets which could be analyzed. This
appendix describes how contour/transitions-nets may be transformed in order to

meet those structural requirements.

Elimination of Selection Predicates
Removing selection predicates from a contour/transition-net is complicated

since the atomicity of the transition must be preserved at all costs. The prose
17

description is

1. Add a new transition to correspond to each output arc of the original
transition. If different numbers of tokens can be introduced onto an output
arc, then add a new transition for each possible distribution. This is consistent
with the requirement that selection rules for transitions are composed of a
predicate (evaluated in the context of the eligible tokens), and a constant.

2. For each new transition, connect a copy of each input arc for the original
transition as an input arc to the new transition, and also connect an output

arc corresponding to the appropriate output arc for the original transition.

3. For each new tranmsition, copy the enabling time, comstruction rule,
manipulation rule, and firing time from the original transition. For each new
transition give it the appropriate selection rule based on its corresponding
output arc on the old transition, but without any selection predicate. This

means each selection rule is a simple constant (usually just 1).

4. For each new tramsition, declare its enabling predicate to be the logical
AND of the enabling predicate of the original transition and the predicate

17 The author sincerely apologizes for the incomprehensibility of this descriptive passage. He
experimented with several wordings before choosing the the current one and placing it an appendix.
Clever readers will skip the passage and study Figure 30 instead.
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Elimination of Selection Predicates
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Figure 31
Elimination of OR Input Logic

associated with the selection rule of the corresponding output arc of the
original transition. Note that in the case of the default predicate(‘~’), the
actual selection predicate is the negation of the logical OR of all other

selection predicates for the original transition.

5. Finally, remove the original transition and all of its input and output arcs.

Figure 30 demonstrates this process.

Elimination of OR Input Logic
Although not as complicated as the previous transformations used to

eliminate selection predicates, again the atomicity of the original transition must

be preserved. The prose description is:

1. Add a new transition to correspond to each input arc of the original transition.



139

2. For each new transition, connect an input arc corresponding to the appropriate
input arc for the original transition, and also connect a copy of each output

arc for the original transition as an output arc to the new transition.

3. For each new transition, copy the enabling predicate, enabling time,
construction rule, selection rule, manipulation rule, and firing time from

the original transition.

4. Finally, remove the original transition and all of its input and output arcs.

Figure 31 demonstrates this process.
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Appendix B
Boundary Transitions

This appendix presents an analysis of a small system which uses boundary
transitions. The system presented is a very simple one in which a process
communicates with another via messages passed across a boundary transition. It
must be emphasized that this system is trivial in extent, as a perfect underlying
medium is assumed. As a result, the system does not make use of time-outs,
retransmissions, sequence numbers, windows, checksums, and so on. The example
has been included to demonstrate how the analysis techniques described in

Chapter 4 can be used on systems with boundary transitions.

Figure 32 represents the message writer. When invoked at its entry place, a
new variable, msg, is declared. Next, a function is called to get the contents of the
message to be sent. Control then reaches a combined transition’®: one fork (the

right arc) is a sending boundary transition; the other loops back to get the next
message to be sent.

Figure 33 represents the message reader. When invoked at its entry place, a
new variable, msg, is declared. Control now proceeds to a place which waits for
a split transition to fire. The other input arc for the split transition is fed by a
place connected to the output arc of a receiving boundary transition. When the
boundary transition fires, a message crosses, which is placed in the blank token
which arrives at place R. When the split transition fires, the message from the
blank token is copied into the context of token at place CL. The blank token
is discarded, the token with the message then calls a function to dispose of the

contents of the message received. Control then loops back to await the next

message.

18 1t should be noted that a combined transition such as the one in Figure 32 is perfectly
acceptable in a contour /transition-net. The transition could be expanded into two transitions (one
“pormal” and the other a sending boundary transition), and an additional place, but in the interests

of brevity, this particular design was chosen
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Figure 32
Message Writer

As discussed in Chapter 4, the sending and receiving boundary transitions in
the two nets will be coalesced in order to make analysis of the system easier. This
results in the single contour/transition-net shown in Figure 34. The boundary
transitions are now a part of transition ¢3, which is a combined transition (the left
output arc is “normal”, the right output arc corresponds to the juxtaposition of
the sending and receiving boundary transitions). At this point, it is clear that the
boundary transitions could be removed altogether in favor of a similar topology
using a split transition. The merits of this approach are left as questions of open
research: as suggested in Chapter 6, the different methods of communication

between colors in the contour/transition model requires further investigation.
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entry

message_type msg crosses
message_type msg

CL.msg — R.msyg

Figure 33

Message Reader

Table 7 shows the incidence matrix for the contour/transition-net in Figure 34.

Two invariants are present, one for the P entry place,

m(P) + m(PL) + m(S) = 1, (g1)
and one for the C entry place,

m(C) + m(CL) + m(M) = 1. (¢2)

As expected, these invariants were derived in a slightly different way that the
standard incidence matrix method: invariant (¢I) has calculated by considering
the incidence matrix as being composed only of rows for places P, PL, and S (the
top part of Table 7). Similarly, invariant (¢2) has calculated by considering the
incidence matrix as being composed only of rows for places C, CL, and M (the
bottom part of Table 7). No statement can be made as to the invariance of the
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PL
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CL.msg «— R.msg

Figure 34
Combined System
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Incidence Matrix Markings || Invariants

ty |t |ty |ty |t |te || Mp | Mg ||ry | r2
P -1 1 1
PL 1]-111 1
S 1]-1 1
R 1]-1
Z 0
C -1 1 1
CL -1 11 1
M 1 -1 1

Table 7

Incidence Matrix and Invariants for Figure 34

marking of place R, as the former is fed by a boundary transition. As far as the

invariance of the marking of place Z, a third invariant can be derived from Table 7:
m(Z) =0. (¢3)

Since there are no exit places associated with the control path for either entry
place, neither entry place is invocation/safe. However, invariants (¢1) and (¢2) do

show that the control paths for both entry places are bounded.

To prove freedom from deadlock, an argument is made directly from the
invariants (since each context is instantiated only once, the incidence-invariants
need not be translated into equations involving place-variables). Invariant (g¢1)

tells us that transitions ¢, {9, and t3 are firable. Consider the sum
m(C) + m(M).

There are two cases. For the first case,

case 1: m(C) + m(M) =1,

either transition ¢5 or ¢ is firable. For the second case,

case 2: m(C) + m(M) =0,

from (g¢2) it is clear that m(CL) = 1. Furthermore, since {3 has been shown

to be firable, eventually m(R) = 1. Hence, t4 is firable as well. Since at least
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one transition can fire, regardless of the state of the net, the system is free from
deadlock.
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