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Abstract

The nature of the dynamics of nonverbal interactions is of con-
siderable interest to the study of human communication and
future human-computer interaction. Facial expressions consti-
tute an important source of nonverbal social signals. Whereas
most studies have focused on the facial expressions of iso-
lated individuals, the aim of this study is to explore the cou-
pling dynamics of facial expressions in social dyadic interac-
tions. Using a special experimental set-up, the frontal facial
dynamics of pairs of socially interacting persons were mea-
sured and analyzed simultaneously. We introduce the use of
convergent cross mapping, a method originating from dynam-
ical systems theory, to assess the causal coupling of the dyadic
facial-expression dynamics. The results reveal the presence of
bidirectional causal couplings of the facial dynamics. We con-
clude that convergent cross mapping yields encouraging results
in establishing evidence for causal behavioral interactions.
Keywords: mimicry; convergent cross mapping; facial ex-
pressions

Introduction
In recent years, the development of automatic coding algo-
rithms boosted the study of facial expressions (Littlewort et
al., 2011). By automatically tracking the facial dynamics in
response to experimental conditions, the nonverbal facial re-
sponses to a large variety of situations can be assessed. Hu-
man facial expressions constitute a complex dynamical sys-
tem formed by the facial muscles that are controlled by brain
dynamics which, in turn, are governed by endogenous and
exogenous sources. Facial expressions have an important
signalling function. By means of expressions, nonverbal in-
formation is transmitted to social partners and provides an
important context to the verbal information (Smith, Cottrell,
Gosselin, & Schyns, 2005). In successful dyadic interactions,
the facial expressions of interlocutors may be expected to
be coupled. For instance, in mother-child interactions, the
smile of the mother may invoke a smiling response from the
child (Cohn, 2010), which, in turn, reinforces the smile of
the mother. In a behavioral context, such a transient posi-
tive feedback loop is associated with behavioral synchrony or
mimicry, the tendency of interacting humans to synchronize
or mimic their behaviors (Louwerse, Dale, Bard, & Jeuniaux,
2012). In a mathematical context, such feedback loops can be
modeled in terms of a coupled dynamical system.

The aim of this paper is to study behavioral mimicry by
means of dynamical system theory. More specifically, the
goal is to determine if dynamical system theory can be used

successfully to measure the presence and direction of causal-
ity in the interaction dynamics of dyadic facial expressions.
Detecting synchrony or mimicry in behavioral interactions is
a challenge. Simply measuring the correlation between two
dynamic time-series representing non-verbal behaviors of the
two interlocutors (e.g., their smiling intensities) falls short for
two reasons: (i) there may be causation without correlation,
and (ii) there may be correlation without causation. An ex-
ample of causation without correlation is a case in which the
causing effect equally often induces a positive result and a
negative result. An example illustrating correlation without
causation is the presence of an external effect that induces
synchronous behavior. For example, a sudden flash of light
induces the synchronized closing of the eyes of both conver-
sation partners.

Many methods have been proposed to measure synchrony
and mimicry in behavioral interactions, for instance: win-
dowed cross correlation (Boker, Xu, Rotondo, & King, 2002),
frame differencing co-occurrence (Paxton & Dale, 2012),
Granger causality (Kalimeri, Lepri, Kim, Pianesi, & Pent-
land, 2011), and cross recurrence quantification (Shockley,
2005). For a more complete overview, the interested reader is
referred to a relatively recent survey of methods (Delaherche
et al., 2012). The main limitation of these methods is that
they fail to measure causality in an appropriate manner. Win-
dowed cross correlation suffers from the aforementioned lim-
itations of correlation. Frame differencing co-occurrence
only considers the simultaneity of time-specific derivatives of
pixel intensity associated with the visually discernible behav-
iors of two persons. Granger causality has its merits for lin-
ear dynamics, but fails to account for the prevalent nonlinear
dynamics of human behavior. Finally, cross recurrence quan-
tification has a strong foundation in dynamic systems theory
and provides many measures for characterizing the interac-
tion dynamics. However, in itself it is not suitable to estab-
lish a causal coupling of temporal sequences. The only way
to determine causality is to manipulate the alleged causing
stimulus and measure its effect (Richardson & Dale, 2005).

A relatively recent method called Convergent Cross Map-
ping (CCM) (Sugihara et al., 2012) originates from the do-
main of complex system dynamics and allows for measuring
causal couplings. In contrast to cross recurrence quantifica-
tion, it provides means for the detection of causal relations
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between interacting nonverbal signals without suffering from
the two shortcomings of straightforward correlation.

Detecting Causality
In the context of complex dynamical systems, the dynamics
of two interacting systems is represented by an attractor man-
ifold: i.e. the admissible states within the state space spanned
by the two (possibly multidimensional) variables. In what fol-
lows, we briefly explain Convergent Cross Mapping in terms
of attractor manifolds.

Convergent Cross Mapping
When N interacting dynamical variables describe a single at-
tractor manifold in N-dimensional phase space (i.e., a cou-
pled system of N differential equations), the temporal de-
velopment of each individual variable contains information
about the influence of the other N − 1 variables. This may
be compared to a musical ensemble in which the contribu-
tions of each of the constituent members depend on those
of all the other members. The realization that each vari-
able in a coupled dynamical system contains information
about all other variables, led Flores Takens (Takens, 1981) to
propose the reconstruction of an N-dimensional attractor by
mapping a single variable against one or more time-delayed
versions of itself. He showed that the resulting ”shadow at-
tractor” is highly similar (“diffeomorphic”) to the original N-
dimensional attractor manifold. We illustrate these concepts
by means of the standard example: the N = 3 dimensional
Lorenz attractor defined by a system of three coupled differ-
ential equations:

dX/dt = 10(Y −X),

dY/dt = X(28−Z)−Y, (1)
dZ/dt = XY −8Z/3.

The three variables X , Y , and Z, describe the time-varying
system state, with t representing time. As can be seen in these
equations, the dynamics of X depends on Y (and on X itself),
those of Y on X and Z, and those of Z on X and Y . The top
part of Figure 1 shows the attractor manifold M of the famous
Lorenz system. The middle and the bottom part illustrates
the shadow attractors MX and MY formed by plotting X(t)
against its time-delayed versions X(t + τ) and X(t + 2τ) and
Y (t) against its time-delayed versions Y (t + τ) and Y (t +2τ).
By comparing the two shadow attractors, their similarities be-
come apparent. These similarities reflect the fact that the two
variables X and Y (and Z) are (by definition) causally related.

Convergent Cross Mapping exploits the same principle in
the opposite direction. If two dynamical variables A and B
are coupled, than if A has a causal relation to B, it is pos-
sible to predict the shadow attractor of A from the shadow
attractor of B, and vice versa. In practice, the CCM algo-
rithm measures the causal coupling between variables X and
Y by selecting a point of shadow attractor MX together with
a number of its nearest neighbors. These are used to predict
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Figure 1: Top: Illustration of the Lorenz attractor manifold
M. Middle: Shadow attractor manifold MX obtained by plot-
ting X(t) against a time-delayed versions of itself: X(t + τ)
and X(t + 2τ) (τ = 30). Bottom: Shadow attractor MY ob-
tained for Y . The shadow attractors have a similar shape.
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Table 1: Statements rated by the participants on the five-point
scale “completely disagree”, “disagree”, “neutral”, “agree”,
and “completely agree” . Only the ratings of statement 1 are
used in the present study.

# Statement
1 The conversation was good
2 I liked my conversation partner
3 My conversation partner seemed to like me
4 I listened carefully to my conversation partner
5 My conversation partner listened carefully to me

the temporally coupled points on shadow attractor MY . If MX
and MY are causally coupled, as is the case in the Lorenz at-
tractor, increasing the number of nearest neighboring points
in MX leads to improved predictions of the points in MY . The
improvement in prediction quality as a function of the num-
ber of points is a sign of an unidirectional causal coupling.
The prediction quality is measured by means of a correlation
value ρCCM of the actual and predicted values. Hence, the
admissible values of ρCCM are confined to the unit interval.

Experimental Method
We applied CCM to measure causal facial interaction dy-
namics. The data was collected in an experiment studying
mimicry and synchrony in a dyadic conversation. Twelve
participants (10 female) were instructed to tell each other
about the best and worst events they experienced in their lives.
Throughout the session, one participant was assigned the role
of the storyteller, whereas the other participant was assigned
the role of the listener. After the session, each participant
evaluated the quality of the interaction by filling in a brief sur-
vey. Participants were asked if they knew their conversation
partner, and if so, how often they met. In addition, they rated
five statements on a five-point scale (“completely disagree”,
“disagree”, “neutral”, “agree”, “completely agree”). The five
statements are listed in Table 1. The motivation for includ-
ing these statements was to evaluate the relation between the
perceived quality of the conversation and the CCM measure-
ments. In the present study, only the ratings for statement 1
of the survey were used for a post-hoc comparison of the per-
ceived quality of the interaction and the presence and strength
of the causal coupling as determined by CCM.

Data Collection
Pairs of participants were each seated in front of an Eye
Catcher system in separate rooms. An Eye Catcher sys-
tem (Ex’ovision) is a recording and display device that by
means of an internal see-through mirror, allows for the frontal
recording of the face of a person watching the displayed face
of his or her conversation partner. Two Eye Catcher systems
were coupled in such a way that the pairs of participants could
hear and see each other. Simultaneously, both participants
were recorded during the session using digital recording soft-
ware running on two Macbooks (OSX). All videos had a res-

Table 2: Action units (AUs) extracted from the video se-
quences.

AU Facial Expression
AU1 Inner Brow Raise
AU2 Outer Brow Raise
AU9 Nose Wrinkle

AU12 Lip Corner Pull
AU20 Lip Stretch

olution of 640× 400 pixels and a frame rate of 30 frames
per second. For the current experiment, 6 pairs of sequences
were selected for causal analysis. Four pairs involved female-
female interactions and the other two mixed gender interac-
tions. For each segment, two fragments of 3000 frames (100
seconds) were selected during which either participant spoke
about a positive experience.

Facial Expressions Extraction
The resulting video sequences were processed using the
Computer Expression Recognition Toolbox (CERT; Version
5.1, build 1208::867:869M) (Littlewort et al., 2011). CERT
outputs for each frame of a facial video sequence estimates
of action unit (AU) intensities. Action units are the building
blocks of facial expressions as defined by Ekman and Friesen
(1976). Each action unit describes the appearance or move-
ment of a local region of the face. An example of an action
unit is the “Inner Brow Raise”, which is represented by its
shorthand “AU1” (action unit 1). The action unit intensity
estimates generated by CERT can be negative (evidence for
absence) or positive (evidence for presence). The magnitude
is proportional to the visual absence or presence of the action
unit. Table 2 lists the five action units for which we extracted
estimates for further analysis, cf. (Cohn, 2010). Two ac-
tion units measure facial expressions in the upper facial re-
gion (AU1 and AU2), one in the central region (AU9), and
two cover the lower facial region (AU12 and AU20).

Dynamical Systems Analysis
Convergent Cross Mapping was applied to paired sequences
of the same AU intensities. (We did not examine causal cou-
plings between different pairs of AUs.) We used the R imple-
mentation of Convergent Cross Mapping (rEDM 0.2.6) com-
bined with Matlab routines for file input and output. CCM has
two parameters: the embedding dimension and the time lag.
The embedding dimension parameter specifies the number of
time-delayed versions of a variable to reconstruct the shadow
manifold. For instance, the shadow attractors displayed in
Figure 1b and c were reconstructed with an embedding di-
mension of 3, corresponding to the original and two time-
delayed version of X and Y , respectively (i.e., X(t), X(t + τ),
X(t + 2τ) and Y (t), Y (t + τ), Y (t + 2τ)). Its optimal value
is highly dependent on the task. We determined the optimal
value by varying the embedding dimension from 2 to 10. The
time lag parameter defines the time lag separating the predict-
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Figure 2: Example of paired time-series of action unit 12 es-
timates. The two series represent the two interacting partic-
ipants of dyad 6, pp11 and pp12. The horizontal axis repre-
sents time in frames ( 1

30 th seconds), the vertical axis repre-
sents the AU intensity.

ing and predicted AU intensity. Because we were interested
in multiple time lags ranging from synchrony (time lag = 0) to
mimicry (time lag > 0), we examined time lags ranging from
0 (synchrony) to 30 (mimicry) in steps of one. Each time
step corresponds to 1/30-th of a second. Hence, the time lags
cover the interval from 0 to 1 second.

Results
Figure 2 shows an example of the AU12 estimates for the two
interacting participants of dyad 6 (pp11 and pp12). Whenever
a participant is listening, his or her AU12 intensity tends to be
larger than that of the speaker. In the figure, participant pp12
is listening to pp11 in the middle time segment.

As an illustration of the interaction dynamics, Figure 3
shows the “attractor manifold” of a 10-second fragment of
the AU12 signature of a dyadic interaction between pp11
and pp12. A circular structure represents a period coupling.
Clearly, the interaction dynamics of pp11 and pp12 are more
noisy and complicated than those of the Lorenz system. This
is due to the noisy nature of the CERT action unit estimates
and the complicated dynamics of behavioral interactions.

The results of applying the CCM algorithm to the paired
time-series of the five action units revealed that only AU12
gave rise to causal coupling. For this action unit, we found
that the prediction quality ρCCM increased as a function of
the number of samples L for all dyads and in both directions.
This indicates that all dyads exhibited a bidirectional causal
coupling of their lip corner pull expression dynamics. The
optimal strengths were obtained at time lags varying from
0 (synchrony) to 0.8 seconds (mimicry). The values of the
prediction quality ρCCM(Lmax) at the maximum number of
samples examined Lmax provide an indication of the coupling
strengths.

Table 3 lists the strongest causal relations (the maximum
values across the five action units examined) found for the 6
dyads examined. For each dyad, the Table lists the composi-
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Figure 3: Visualization of the “attractor manifold” obtained
by plotting the AU12 intensities of pp11 against those of pp12
for a sample of 300 frames (10 seconds). Adjacent frames are
connected by lines.

Table 3: CCM results for AU12. The first column specifies
the dyad number. The second column indicates the gender
composition of the dyad, where the first and second mem-
ber of the dyad are separated by a hyphen (F = female, M =
male). The third column lists the ratings of statement 1 in
the survey (“The conversation was good”) as a measure of
the quality of the conversation (rating 1 represent “strongly
disagree” and 5 “strongly agree”), via neutral (3) to very pos-
itive (5), the ratings by the two participants are separated by
a /). The fourth and fifth columns list the predictive qualities
ρCCM→) and ρCCM←) in both directions.

dyad gender evaluation ρCCM→ ρCCM←

1 F-F 2/1 0.68 0.43
2 F-F 1/1 0.35 0.42
3 F-F 2/1 0.47 0.59
4 F-F 3/3 0.39 0.54
5 F-M 3/3 0.64 0.74
6 M-F 4/3 0.46 0.56

tion of each dyad, female-female (F-F), male-female (M-F),
or female-male (F-M), the rating of statement 1 of the post-
hoc evaluation of the conversation given by the participants
ranging from strongly disagree (0) to strongly agree (5), the
ratings by the two participants are separated by a /), and a
specification of predictive quality ρCCM(Lmax) obtained for
the largest value of L examined, Lmax = 300 in both direc-
tions: from the first participant to the second (ρCCM→) and
vice versa (ρCCM←). As listed in the last column, the strongest
causal relations were obtained for AU12 (Lip Corner Pull)
which is a measure of (subtle) smiling. The results did not
depend critically on the embedding dimension, although the
best predictive qualities were obtained for the maximal value
of the embedding dimension examined (10).

Figure 4 shows the results of applying Convergent Cross
Mapping to paired time series of AU12, see also Table 3. The
six plots depict the outcomes for dyads 1 to 6 (top to bot-
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tom). Each of the plots shows the prediction qualities ρccm
as a function of the number of samples (Library Size L) for
the two directions of interaction between the two dyad mem-
bers A and B. Increasing the number of samples L from the
shadow manifold MA for predicting the shadow manifold MB
leads to an increase in the correlation ρccm for A→ B (green
curve). Similarly, increasing the number of samples from MB
to predict MA, increases the correlation ρccm for A← B (blue
curve). The observation that for all dyads both values of ρ ex-
hibit a steady increase with the number of samples, indicates
a bidirectional coupling for all dyads. Importantly, such in-
creases are not seen for arbitrary sequences taken from differ-
ent dyads, i.e., from two persons that did not interact. When
pairing the same AU sequences of two persons of different
dyads, a small increase is observed up to a maximal value of
ρccm ≈ 0.2.

The coupling strengths show some variation both within
and between dyads. For our small sample of dyads, there does
not seem to be clear relation between the composition of the
dyad or the evaluation of the conversation and the prediction
strengths (neither for the other survey statements).

Discussion and Conclusions
As stated in the introduction, the goal of the present study
was to determine if dynamical system theory can be used to
measure the presence and direction of causality in the inter-
action dynamics of dyadic facial expressions. We employed
the method of Convergent Cross Mapping for determining a
causal relation between nonverbal behavior in conversation
partners. The fact that the method was able to predict the fa-
cial expressions of the interacting partners confirms that the
presence of a causal coupling in nonverbal behavior can be
measured with CCM. Importantly, the prediction improves
with an increasing number of samples per conversation part-
ner in a given dyad. In the CCM method, this is considered a
true sign of causality.

Previous studies indicated an increased tendency of fe-
males as compared to males to exhibit nonverbal mimicry
(Dimberg, 1990; Briton & Hall, 1995). LaFrance and col-
leagues (LaFrance, Hecht, & Paluck, 2003) found a clear gen-
der difference in smiling especially for female dyads as com-
pared to male dyads. Although we did not find an effect of the
evaluation of the conversation on the coupling strength, evi-
dence for such an effect has been reported (Chartrand & van
Baaren, 2009). Future work aims at increasing the number
of dyads submitted to CCM analysis to establish if the effect
can be confirmed. Finally, the range of lags at which the evi-
dence for causal coupling is strongest agrees with the range of
values reported in the literature (Dimberg & Thunberg, 1998;
Dimberg, Thunberg, & Elmehed, 2000; Sato & Yoshikawa,
2007; Achaibou, Pourtois, Schwartz, & Vuilleumier, 2008).

To the best of our knowledge, this is the first time that CCM
has been applied to measure the presence, strength, and di-
rection of causal coupling in nonverbal behavioral dynamics.
Although our results are encouraging, additional study is re-
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Figure 4: Illustration of the output of Convergent Cross Map-
ping applied to the paired AU12 time series of dyads 1 to 6
(top to bottom). The curves show the increase of the pre-
diction quality ρCCM as a function of the number of samples
(Library Size L). The increase is a qualitative measure of
causal coupling. The green curve represents the causal effect
of the first dyad member on the second, and the blue curve
the causal effect in the reverse direction.
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quired to establish the weaknesses and strengths of applying
CCM in cognitive science. An important issue concerns the
question to what extent behavioral coupling dynamics cor-
respond to the complex system dynamics for which CCM
and related methods were formulated. As a case in point,
the “attractor manifold” depicted in Figure 3 appears quite
chaotic when compared to the smooth attractor manifold of
the Lorenz system in Figure 1. Although a difference in ap-
pearance is to be expected, given that the Lorenz system is a
deterministic mathematical model and the dyadic AU12 dy-
namics reflect real-world behavioral measurements, a further
analysis of coupled facial expressions is needed to establish
the precise nature of the dynamics in relation to established
mathematical formulations. Still, since CCM has been ap-
plied successfully to other noisy real-world time-series, such
as the causal relation between galactic cosmic rays and an-
nual variations in global temperature (Tsonis et al., 2015), we
are confident about its validity as a measurement tool for es-
tablishing behavioral causality.

Notwithstanding our encouraging results, the relative small
number of samples (6 dyads) does not warrant any far-
reaching conclusions. In our future studies we will determine
if the results generalize to a larger set of dyads, to other action
units, and to other nonverbal behaviors. The main conclusion
that we draw from our exploration is that Convergent Cross
Mapping appears to provide a viable and fruitful alternative
to existing measures of synchrony and mimicry.
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