
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Machine Learning Model Splitting on Mobile Edge Networks

Permalink

https://escholarship.org/uc/item/08q3485r

Author

Wang, Song

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08q3485r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Machine Learning Model Splitting on Mobile Edge Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Communication Theory and System)

by

Song Wang

Committee in charge:

Professor Xinyu Zhang, Chair
Professor Sujit Dey
Professor Haojian Jin
Professor Patrick Pannuto
Professor Bhaskar Rao
Professor Ramesh Rao

2023

Copyright

Song Wang, 2023

All rights reserved.

The dissertation of Song Wang is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2023

iii

DEDICATION

To those who silently supported, quietly encouraged, and tirelessly

believed in this pursuit.

iv

EPIGRAPH

The purpose of computing is insight,

not numbers.

—Richard Hamming

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xvi

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Split ML: Opportunities and Challenges 3
1.2 Dissertation Contributions . 6

Chapter 2 Cellular Native Machine Learning Model Splitting 8
2.1 Introduction . 8
2.2 Related Work . 13

2.2.1 Distributed ML . 13
2.2.2 ML model splitting. 14
2.2.3 Tailoring ML models to edge computing systems. 15

2.3 The Need for Multi-Split in 5G MEC Networks 16
2.4 HiveMind Multi-Split Design . 19

2.4.1 A Primer on 5G MEC for ML 19
2.4.2 Problem formulation . 21
2.4.3 Split Cost Information (SCI) design 24
2.4.4 Cost analysis . 31
2.4.5 Extension to split DNN training 33
2.4.6 Runtime Optimization under Network Dynamics 34

2.5 HiveMind Multi-objective Split 37
2.6 Splitting Non-Linear Neural Networks 39

2.6.1 Split RNN . 40
2.6.2 Split Collaborative Learning 41

2.7 Evaluation . 44
2.7.1 Simulation setup . 44

vi

2.7.2 Multi-split performance validation. 46
2.7.3 Performance under network dynamics 52
2.7.4 Effectiveness of multi-objective split 54
2.7.5 Effectiveness in splitting non-linear ML models 56

2.8 Conclusion . 57

Chapter 3 Error Tolerant ML Model Splitting Over Edge Networks 59
3.1 Introduction . 59
3.2 Related Work . 64

3.2.1 Distributed Edge Intelligence 64
3.2.2 ML communication overhead reduction 65

3.3 System overview . 66
3.4 Error-tolerance in Distributed ML 68

3.4.1 A dissection of neural network models 68
3.4.2 Characterizing error tolerance in split ML 70
3.4.3 Characterizing error tolerance in FL 73

3.5 NeuroMessenger Operations . 77
3.5.1 Error tolerance Enhancing Coding 77
3.5.2 Additional Operations 82

3.6 Evaluation . 88
3.6.1 Experimental setup . 88
3.6.2 End-to-end performance 89
3.6.3 Impact of Link Conditions 91
3.6.4 Impact of Split Point . 92

3.7 Conclusion . 93

Chapter 4 Omnidirectional Millimeter-Wave Coverage for ML Model Splitting . 94
4.1 Introduction . 94
4.2 Motivation and Challenges . 99

4.2.1 Potential Advantages of APA 99
4.2.2 Challenges . 101

4.3 Design . 105
4.3.1 Design Overview . 105
4.3.2 Preliminaries: Modeling APA Multi-Array Beamforming 106
4.3.3 Joint Array and Beam Management 109
4.3.4 Multi-Array Co-Phasing 116
4.3.5 Recovering from Link Outage 120

4.4 Implementation and Experiment setup 123
4.4.1 Implementation . 123
4.4.2 Experimental setup . 126

4.5 Evaluation . 127
4.5.1 Micro-benchmarks . 129
4.5.2 System Level Evaluation 135

vii

4.6 Discussion . 137
4.7 Related Work . 140
4.8 Conclusion . 142

Chapter 5 Summary and Future Work . 143
5.1 Dissertation Summary . 143
5.2 Future Work . 145

5.2.1 Limitations of Existing Works 145
5.2.2 Orchestration of Multi-tenant Split ML Deployment on

MEC . 146
5.2.3 UWB-based Split Spiking Neural Networks 147

References . 149

viii

LIST OF FIGURES

Figure 1.1: The exponential growth trend of ML model sizes, in comparison to the
mobile hardware limitations. 3

Figure 1.2: An architectural comparison of (a)cloud-based ML, (b)MEC-based ML,
and (c)Split ML . 4

Figure 2.1: An example of 5G cellular native ML: An UE, three MEC nodes, and
a cloud server form a 5-hop MEC chain. Each device executes a part
of the ML model to a certain layer and send the intermediate data to
the next device on the chain. 9

Figure 2.2: The latency comparison of 4 split architectures: (1) UE computing, (2)
Cloud single split, (3) Edge single split, (4) Multi-split on UE, edge,
and Cloud . 17

Figure 2.3: Graph representation of the HiveMind multi-split: (1) Map split as-
signments to graph. (2) The original split graph representation has
numerous edges. (3) The pruned and transposed graph limits the edges
strictly between adjacent MEC nodes. 20

Figure 2.4: A showcase of Split Cost Information (SCI) message transmitted from
node p to node p − 1. The message contains a optimal path cost for
each split point set. 26

Figure 2.5: Split DNN procedure: 1○ SCI update: each node calculates its shortest
path costs and signal its upstream node with SCI message, 2○ Split ML
task: each node chooses its own split point and execute the layers. . . 32

Figure 2.6: Link dynamic showcase: the split ML latency surges at 120ms and
450ms due to high variances in link capacity. 35

Figure 2.7: The edge cost calculation in HiveMind multi-objective: the quality as-
surance metrics are reshaped by non-linear weight functions before lin-
early combined with the best effort metrics. 39

Figure 2.8: Non-linear NN showcase: (a) Recurrent Neural Network (RNN), (b)
Collaborative learning. 41

Figure 2.9: A showcase of linearized RNN in HiveMind split RNN design. 41
Figure 2.10: Simulated 5G network topology and UE trajectory. 43
Figure 2.11: Efficiency of (a) HiveMind split inference and (b) HiveMind split train-

ing, in mmWave IAB network. 49
Figure 2.12: Efficiency of (a) HiveMind split inference and (b) HiveMind split train-

ing, in sub-6GHz network. 49
Figure 2.13: Impact of ML models on HiveMind. 50
Figure 2.14: Impact of computation capability of various MECs on HiveMind split

inference. 51
Figure 2.15: HiveMind topology adaptation showcase: the split assignment does not

change for the unchanged part of the route and the average latency
increases less than 5ms after the topology change. 52

ix

Figure 2.16: Predictive Splitting performance under (a) 10ms and (b) 50ms link
coherent time . 55

Figure 2.17: Impact of link prediction accuracy on the predictive split. 56
Figure 2.18: Energy consumption and running latency comparison of HiveMind multi-

objective and baselines. 56
Figure 2.19: Efficiency improvement of HiveMind non-linear on (a) RNN model

(GRU) and (b) collaborative learning model (QMIX) over standard
HiveMind split. 57

Figure 3.1: An example of split ML over a lossy edge network. 61
Figure 3.2: NeuroMessenger system overview. 66
Figure 3.3: Layer composition of a typical neural network and a demonstration of

feature map redundancy: most of parameters in the feature map from
batch norm layer are dropped after the pooling layer. 69

Figure 3.4: Top-1 accuracy with different error rate applied to the feature map from
(a) layer 4, (b) layer 26. 72

Figure 3.5: A demonstration of impact of different types of errors on feature maps:
the top region of the frog shape is almost entirely corrupted by block
errors, while the random error preserves the shape. 72

Figure 3.6: Per-layer accuracy of VGG11 FL under BLER=0.1. We see the ranges
of accuracy of batch norm layers (3, 4, 8, 10, 12, 16) exceed 20 percent,
indicating that the batch norm layers are highly sensitive to errors. . . 74

Figure 3.7: Top-1 accuracy of VGG11 trained in FL under different block error rate
applied to (a) 8st, (b) 11th, (c) 18th, and (d) 22th layers (conv). . . . 75

Figure 3.8: Top-1 accuracy of VGG11 trained in FL under different block error rate
applied to (a) 16st, (b) 19th layers (batch norm). 76

Figure 3.9: Top-1 accuracy of VGG11 trained in FL under different block error rate
applied to (a) 25th, (b) 26th layers (fully connected). 76

Figure 3.10: Top-1 accuracy of ResNet18 under different block error rate with the
split point after (a) first, (b) second, (c) third, and (d) forth residual
module. 79

Figure 3.11: Top-1 accuracy of VGG11 under different BLER with the split point
after (a) 1st, (b) 5th, (c) 19th, and (d) 26th layer. 80

Figure 3.12: Word error rate of DeepSpeech2 under different block error rate with
the split point after (a) first, (b) second, (c) third, and (d) forth splitting
point. 82

Figure 3.13: An illustration of feature map pruning: (1) generate redundancy mask,
(2) Multiply redundancy mask to the feature maps, (3) Convert pruned
feature maps to sparse representation. 84

Figure 3.14: Top-1 accuracy of (a) split ML (VGG11 split at 15-th layer) and (b)
FL (VGG11), as the block error rate of the link increases. 90

Figure 3.15: End-to-end running latency of (a) split ML (ResNet18 split at 15-th
layer) and (b) FL (ResNet18), as the block error rate of the link increases 90

x

Figure 3.16: End-to-end running latency and top-1 accuracy at BLER=0.2 when
splitting at each layer in VGG11. 90

Figure 4.1: Coverage and multipath diversity under the same power constraint: (a)
Single array. (b) 4-array APA. 96

Figure 4.2: The impact of co-phasing. 103
Figure 4.3: X-Array workflow. 103
Figure 4.4: X-Array optimization relaxation: replace and redistribute beams to

match λϕ. 109
Figure 4.5: Mobility causes two arrays to lose co-phasing periodically, unless with

frequent feedback. 110
Figure 4.6: Client angular speed. 112
Figure 4.7: Phase changing rate. 112
Figure 4.8: X-Array phase prediction matches the ground truth well. 112
Figure 4.9: Concurrent beam sweeping when: (a) blockage occurs; (b) blockage

disappears. 123
Figure 4.10: X-Array hardware prototype is built on a commercial multi-array 802.11ad

AP, with customized array layout. 127
Figure 4.11: AoD estimation error. 128
Figure 4.12: Impact of AoD estimation error. 128
Figure 4.13: Impact of joint array/beam selection on: (a) link stability; (b) link quality.128
Figure 4.14: Phase prediction error. 132
Figure 4.15: Impact of phase prediction error. 132
Figure 4.16: CDF of normalized throughput gap under blockage 132
Figure 4.17: Normalized throughput gap due to co-phasing overhead. 136
Figure 4.18: Coverage improvement in a room environment. 137
Figure 4.19: Multi-array outdoor range improvement. 138

xi

LIST OF TABLES

Table 2.1: Link settings . 47

Table 3.1: The top-1 inference accuracy and the end-to-end latency performance
of NeuroMessenger FL and baselines under a Matlab simulated noisy
3GPP NR uplink. 84

Table 3.2: The top-1 inference accuracy and the end-to-end latency performance of
NeuroMessenger split ML and baselines under a Matlab simulated noisy
3GPP NR uplink. 85

xii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to all those who have

contributed to the successful completion of this PhD thesis. Their unwavering support,

guidance, and encouragement have been instrumental in shaping this journey and making

this milestone possible.

I extend my heartfelt thanks to my esteemed supervisor, Professor Xinyu Zhang,

for his invaluable mentorship throughout this research endeavor. His profound knowledge,

constructive feedback, and continuous encouragement have been pivotal in honing my

research skills and pushing me to strive for excellence.

I am immensely grateful to the members of my defense committee, Sujit Dey,

Ramesh Rao, Bhaskar Rao, and Pat Pannuto. Their insightful feedback, critical evaluation,

and constructive suggestions have immensely enriched the quality of this thesis. Their

collective expertise and dedication to academic excellence have been a source of inspiration

and motivation for me.

I would like to acknowledge the invaluable support and guidance provided by my

internship mentors, Pengyu Zhang from Alibaba, Manikanta Kotaru, Xenofon Foukas, and

Bozidar Radunovic from Microsoft Research. Their practical insights, industry knowledge,

and encouragement during my internship significantly contributed to my research and

added real-world relevance to my work.

I extend my gratitude to all my collaborators who shared their expertise and ideas

during the course of this research. Their willingness to collaborate and engage in mean-

xiii

ingful discussions has broadened my understanding and enriched the outcomes of this

study.

My deepest appreciation goes to my family for their unwavering love, encourage-

ment, and understanding throughout this arduous journey. I want to express a special

appreciation to my dear wife Jingqi Huang. Her unwavering support, patience, and belief

in me have been the cornerstone of my resilience during challenging times. Her selflessness

and sacrifices made it possible for me to focus on my research, and I am forever indebted

to her.

I am grateful to my friends for their constant support, encouragement, and cama-

raderie. Their friendship and moments of levity provided a much-needed balance to the

intensity of academic life and served as a reminder of the joys beyond research.

In conclusion, I want to acknowledge the collective efforts of all those mentioned

above, as well as those who have supported me in ways beyond words. Your belief in my

abilities and dedication to my success have been the driving force behind the completion

of this PhD thesis. I am humbled and thankful for the opportunity to have undertaken

this academic journey, and I hope to continue contributing to the field of research with

the same passion and dedication that you have instilled in me. Thank you all.

Chapter 2 contains material from “HiveMind: Towards Cellular Native Machine

Learning Model Splitting” by Song Wang, Xinyu Zhang, Hiromasa Uchiyama, and Hi-

roki Matsuda, which appears in the IEEE Journal on Selected Areas in Communications,

40(2):626–640, 2021. The dissertation author was the primary investigator and author of

this paper.

xiv

Chapter 3 contains material from ”NeuroMessenger: Towards Error Tolerant Dis-

tributed Machine Learning Over Edge Networks” by Song Wang and Xinyu Zhang, which

appears in the IEEE International Conference on Computer Communications, 2022. The

dissertation author was the primary investigator and author of this paper.

Chapter 4 contains material from ”X-array: Approximating Omnidirectional Millimeter-

Wave Coverage Using an Array of Phased Arrays” by Song Wang, Jingqi Huang, Xinyu

Zhang, Hyoil Kim, and Sujit Dey, which appears in the ACM International Conference

On Mobile Computing And Networking, 2020. The dissertation author was the primary

investigator and author of this paper.

xv

VITA

2018 B. E. in Electrical Engineering, Beijing University of Posts and Telecom-
munications

2018-2020 Research Assistant, University of California San Diego

2020 M. S. in Electrical Engineering, University of California San Diego

2020-2023 Research Assistant, University of California San Diego

2023 Ph. D. in Electrical Engineering, University of California San Diego

PUBLICATIONS

Song Wang and Xinyu Zhang, “NeuroMessenger: Towards Error Tolerant Distributed
Machine Learning Over Edge Networks”, In IEEE INFOCOM, 2022.

Song Wang, Xinyu Zhang, Hiromasa Uchiyama, and Hiroki Matsuda, “HiveMind: Towards
Cellular Native Machine Learning Model Splitting”, IEEE Journal on Selected Areas in
Communications, 40(2):626–640, 2021.

Song Wang, Jingqi Huang, and Xinyu Zhang, “Demystifying Millimeter-Wave V2X: To-
wards Robust and Efficient Directional Connectivity Under High Mobility”, In ACM Mo-
biCom, 2020.

Song Wang, Jingqi Huang, Xinyu Zhang, Hyoil Kim, and Sujit Dey, “X-array: Approxi-
mating Omnidirectional Millimeter-Wave Coverage Using an Array of Phased Arrays”, In
ACM MobiCom, 2020.

xvi

ABSTRACT OF THE DISSERTATION

Machine Learning Model Splitting on Mobile Edge Networks

by

Song Wang

Electrical Engineering (Communication Theory and System)

University of California San Diego, 2023

Professor Xinyu Zhang, Chair

The rapid growth of Machine Learning (ML) model sizes poses challenges for mobile

applications, especially when compared to the slower pace of mobile hardware development.

Although cloud-based ML lightens this load by moving computations to Data Center

(DC) servers, it struggles with limited bandwidth. On the other hand, Mobile Edge

Computing (MEC)-based ML offers faster response times but can’t always handle intense

computations. To find a balance, split ML is introduced, which distributes ML tasks across

various computing platforms.

xvii

The study delves into the inherent challenges of split ML, proposing innovative

solutions: (1) HiveMind, A split ML system optimized for cellular networks; (2) Neu-

roMessenger, A mechanism that uses ML’s inherent error tolerance to reduce data trans-

mission delays; and (3) X-Array, An innovative radio architecture that meets split ML’s

high bandwidth needs. Together, these contributions seek to enhance the efficiency and

feasibility of ML in the mobile computing landscape.

xviii

Chapter 1

Introduction

Machine learning (ML) models have become an increasingly integral part of mobile

applications. Yet, as they continue to evolve, the sizes of these models have expanded

exponentially. The Transformer model of 2017 required 65 million parameters [1], and

the GPT-2.5 model of 2019 expanded to encompass 1.5 billion parameters. The most

recent iteration, GPT-4, is projected to hold over 1.7 trillion parameters. Other models,

for tasks such as image generation [2, 3, 4, 5] and video segmentation [6, 7], have also

demonstrated similar exponential growth in size, as illustrated in Fig. 1.1. Meanwhile,

the average memory size and computational capacity of mobile hardware have only grown

linearly [8]. This discrepancy results in increased memory usage and power consumption,

thereby inhibiting the operation of these models on mobile devices.

To address these constraints and enable the implementation of larger models on

mobile platforms, developers have started employing cloud-based ML schemes [9, 10, 11].

As shown in Fig. 1.2, in cloud-based ML, the inference of the ML model is hosted on Data

1

Center (DC) servers [9, 10]. Applications upload their input data to the DC server and

retrieve the corresponding inference results. By offloading the computational and storage

demands of ML models to the DCs, this system bypasses the hardware constraints of

mobile devices, enabling a better Quality-of-Service (QoS) through leveraging the superior

computational power of DC servers [12, 13].

Nonetheless, cloud-based ML faces scalability challenges. The networking capacity

of DCs is insufficient to support the transmission of mobile users’ input data to ML servers.

As evidenced by a 2021 CISCO study, end devices generated nearly 850ZB of data annually,

while global DC traffic could only handle 20.6ZB [14]. This bandwidth shortfall increases

communication latency and undermines QoS.

To address the limitations of cloud-based ML, the concept of Mobile Edge Com-

puting (MEC)-based ML has been proposed, capitalizing on the rapidly expanding MEC

infrastructures which deploy data centers close to users, offering cloud-like services [12,

13, 11, 15]. Compared to traditional cloud data centers (DC), MEC deployment offers

enhanced flexibility. With its compact nature, MEC is not bound by rigid infrastructure

requirements and can even be situated adjacent to base stations. Consequently, it aug-

ments computational capacity beyond what the standard DC provides. In addition, due

to their closer proximity to users, MEC servers reduce the communication latency for ML

input data significantly compared to cloud-based ML [11, 15]. However, MEC servers

are generally less powerful than DC servers, and as such, the computational latency of

MEC-based ML has yet to reach the levels achieved by cloud-based ML.

2

Transformer
65M

params

GPT
117M

params

GPT-2
1.5B

params

T5
11B

params

GPT-3
175B

params

GPT-4
~1.7T

params

Style-
GAN
26M

params

Stable
Diffusion

890M
params

DALL-E
3.5B

params

Fast R-CNN
19M

params

YOLOv8
71.8M
params

SAM
95M

params

Typical smartphone RAM
size in 2023 (12GB)

Language processing
Image generation

Image segmentation

Figure 1.1: The exponential growth trend of ML model sizes, in comparison to the mobile

hardware limitations.

1.1 Split ML: Opportunities and Challenges

The simultaneous utilization of the communication advantages of Mobile Edge

Computing (MEC)-based Machine Learning (ML) and the computational strengths of

cloud-based ML necessitates a novel approach, namely split ML [11, 16]. The concept of

split ML, depicted in Fig. 1.2, mirrors the idea of pipeline parallelism inherent in tradi-

tional distributed ML systems. A split ML system dissects a mobile ML model inference

into multiple segments, allocating them to various computing units including the mobile

device, MEC servers, and cloud servers. Split ML can offload ML computations to MEC

servers during poor network conditions and to cloud servers when the network is favorable.

Consequently, it circumvents the latency bottleneck that both MEC-based and cloud-based

3

Input data

Intermediate
data

Comm. latency

Less
powerful
server

(a) Cloud-based ML (b) Edge-based ML

(c) Split ML

Figure 1.2: An architectural comparison of (a)cloud-based ML, (b)MEC-based ML, and

(c)Split ML

ML might cause.

Designing a split ML system, however, is far from trivial. The distributed and

pipelined model within split ML presents new challenges to both the splitting mecha-

nism and the underlying communication hardware. This dissertation identifies three key

challenges associated with split ML:

(i) Allocation of ML model components: A typical neural network comprises hun-

dreds, sometimes thousands of layers. Splitting it across several MEC/cloud servers could

4

present 106− 109 potential options. It is clearly not feasible to brute-forcily assess all split

options since split ML system needs to make rapid decisions to accommodate network

dynamics. Hence, a light-weight algorithm to obtain the optimal split option in real-time

is necessary. Moreover, the evaluation of split options often involves multiple metrics, such

as end-to-end latency and energy consumption, requiring the split algorithm to accommo-

date these metrics simultaneously. Lastly, certain ML models lacking linear structures,

for instance, multi-agent reinforcement learning models and federated learning models,

require specific splitting algorithms as they cannot be divided layer-by-layer.

(ii) Efficient transmission of ML intermediate data: Split ML involves the exchange

of intermediate output from the middle layers of an ML model between servers. This

intermediate data, which can range from several megabytes to hundreds of megabytes

[16], presents significant transmission challenges on traditional wireless communication

stacks. For example, the transmission of large data under dynamic wireless link conditions

is prune to frequent retransmissions, leading to increased communication latency. Previous

research has demonstrated the unique error tolerance capabilities of ML intermediate data

in distributed ML training [17]. As such, the underlying communication stack of split ML

applications should adapt to these error tolerance capabilities to optimize efficiency.

(iii) Design of communication hardware for split ML bandwidth requirements: Split

ML demands a throughput at the gigabit-per-second (Gbps) level with millisecond-level

latency [11]. Such requirements can only be fulfilled by millimeter-wave (mmWave) radios.

However, mmWave radios are plagued by limited coverage due to severe attenuation,

restricting their range to around 200 meters—a distance far smaller than the typical gap

5

between two MEC sites [18]. Moreover, the Field-of-View (FoV) of an mmWave radio

only covers approximately 120◦, thereby limiting user mobility. Thus, an omni-coverage

mmWave radio is necessary for split ML with general mobile users.

1.2 Dissertation Contributions

In this dissertation, we thoroughly examine the system designs of split ML. We

identify the fundamental challenges associated with implementing a practical split ML

system and utilize a range of techniques — encompassing a novel split algorithm, innovative

communication software, and hardware designs—to realize an effective split ML system

on mobile edge networks. The primary contributions of this dissertation are:

(i) In Chapter 2, we introduce HiveMind, the first practical multi-split ML sys-

tem tailored for 5G cellular networks. HiveMind reformulates the complicated multi-split

problem to a min-cost graph search and optimizes the distributed algorithm to drastically

reduce the signaling overhead. Benefit from its low overhead property, HiveMind makes

the optimal split decision on multiple computing nodes in real-time and adapts the split

decisions to the instantaneous network dynamics. HiveMind also incorporates a multi-

objective mechanism that accommodates heterogeneous objectives for a single ML task.

HiveMind adapts to a wide range of ML frameworks, including non-linear models like Re-

current Neural Network (RNN), Federated Learning (FL), and Multi-agent Reinforcement

Learning (MARL). We evaluate HiveMind on 5G MEC network simulators with realistic

traffic patterns and real-life MEC computation/communication profiles. Our experiments

6

demonstrate that HiveMind achieves the optimal efficiency comparing to state-of-art split

ML designs.

(ii) In Chapter 3, we first characterize the error tolerance capability of state-of-art

distributed ML frameworks. Based on the observations, we propose NeuroMessenger, a

lightweight mechanism that can be built into the cellular network stack, which can enhance

and utilize the error tolerance in ML data to reduce communication overhead. NeuroMes-

senger does not require per-model profiling and is transparent to application layer, which

simplifies the development and deployment. Our experiments on a 5G simulation frame-

work demonstrate that NeuroMessenger reduces the end-to-end latency by up to 99% while

maintaining less than low accuracy loss under various link conditions.

(iii) In Chapter 4, we propose X-Array, a first-of-its-kind omni-directional mmWave

radio architecture to support the gigabyte bandwidth requirement of split ML. X-Array

jointly selects the arrays and beams, and applies a dynamic co-phasing mechanism to en-

sure different arrays’ signals enhance each other. X-Array also incorporates a link recovery

mechanism to identify alternative arrays/beams that can efficiently recover the link from

outage. We have implemented X-Array on a commodity 802.11ad APA radio. Our exper-

iments demonstrate that X-Array can approach omni-directional coverage and maintain

high performance in spite of link dynamics.

7

Chapter 2

Cellular Native Machine Learning

Model Splitting

2.1 Introduction

The booming mobile Machine Learning (ML) applications are challenging the cur-

rent computing and communication network architectures. Amid the rapid maturity of

mobile machine learning platforms, e.g., Google ML kit [19], Apple Core ML [20], and

Fritz AI [21], more than 10% of mobile apps have incorporated ML models, with use cases

ranging from face identification, object detection, to intelligent personal assistants and

augmented reality [22]. Recent studies also proposed to integrate ML into 5G networks to

optimize network functions such as QoS-aware routing, resource allocation, and slice man-

agement [23, 24, 25, 26]. In addition, the emerging 6G is envisioned to bring human-like

intelligence into every aspect of networking systems [27]. However, due to the computa-

8

Cellular Network

ML model (DNN)

RAN CN Cloud

“Tree”

UE
MEC

UPF UPF UPF

5GC

Link
Data path

Figure 2.1: An example of 5G cellular native ML: An UE, three MEC nodes, and a cloud

server form a 5-hop MEC chain. Each device executes a part of the ML model to a certain

layer and send the intermediate data to the next device on the chain.

tion resource constraints on mobile devices, such mobile ML applications typically only

use miniature models hundreds of times smaller than standard ML models [22], which

hampers model accuracy and limits their use cases. The stringent computation power

budget further renders the more computation-heavy ML training tasks impossible. On the

other hand, offloading these tasks to the cloud may incur high data transfer overhead and

sometimes can be even slower than on-device computing [16].

To enable computation-intensive mobile ML applications, recent work explored edge

computing infrastructures [15] that offer cloud-like services within the cellular network. To

minimize latency without compromising model accuracy, such edge ML implementations

can split a model into multiple parts, and allocate them among different computing nodes,

9

including the user equipment (UE), mobile edge computing (MEC) servers, and cloud

servers. For the commonly used deep neural network (DNN) model, for example, each

part corresponds to multiple DNN layers. Each node executes the model up to a specific

layer, and sends the intermediate data to the next node. With such UE-edge-cloud synergy,

a split ML system can dynamically assign parts of a model to the computing nodes based

on network conditions and computation resources, to alleviate the pressure of computation

on UE devices and potentially optimize end-to-end latency and energy consumption [12,

13, 28, 16, 29].

Existing research abstracts the ML model splitting as redistributing the computing

load across a generic client-server link. As the 5G network infrastructure evolves to em-

brace built-in computing capabilities, an important question arises: Can the 5G networking

and computing stack itself natively support AI/ML through model splitting? Unlike in

the abstract model, a single 5G site often consists of many MEC servers distributed across

different vantage points in the RAN/core network. Splitting the ML model across such

a unique distributed system, potentially involving dynamic links and UEs with different

performance objectives, becomes a non-trivial problem.

More specifically, such a cellular-native model splitting needs to address three

unique challenges. (i) Multi-split ML models over a 5G network. 5G’s native MEC

support [15] and flexible traffic steering capabilities can enable a new multi-split scheme

among the UE, multiple MEC servers, and the cloud server. Fig. 2.1 shows a typical case

of ML inference model splitting, where an image classification NN is split across a UE,

three MEC nodes, and a cloud server. The intermediate output from each partition of

10

the NN is transmitted to the next computing node via wireless backhaul or wired links.

The inference result is output at the last partition of the network. In such multi-split

scenarios, the number of split options grows exponentially with the number of ML layers

and computing nodes, and are often on the order of millions. In addition, the split decision

needs to accommodate the computing resources distributed across the network, along with

varying network conditions. Due to all such complexities, the linear searching method in

existing ML model splitting designs cannot be applied to multi-split systems.

(ii) Multi-objective split. Compared with a single atomic model, the split ML de-

cision over 5G networks should be optimized to flexibly accommodate different objectives,

e.g., inference/training latency, energy consumption, and privacy preservation. Some of

these objectives are based on best efforts, i.e. maximization/minimization, whereas some

are quality assurances, i.e., ensuring a performance metric does not exceed a predefined

threshold. Accommodating such heterogeneous objectives simultaneously poses a new

challenge for the splitting decision making.

(iii) Splitting for non-linear ML models. Existing single-split approaches are lim-

ited to standard linear ML models with a chain of layers. Thus, a simple linear search

across all inter-layer cuts suffices to identify the optimal split point. However, other com-

monly used ML paradigms, e.g., Recurrent Neural Network (RNN) and Collaborative

Learning, require additional information transfer between the same or different modules.

Directly applying split ML on them fails to account for the extra communication overhead

and may result in highly suboptimal performance.

In this paper, we propose HiveMind, a novel multi-split ML framework that ad-

11

dresses the aforementioned challenges through three design choices. (i) A distributed

split ML algorithm. We first reformulate the multi-split problem into a min-cost graph

search. To avoid the huge communication overhead that renders the existing solutions

infeasible, we propose a distributed min-cost graph algorithm tailored for 5G MEC net-

works. Through graph pruning and information aggregation, our algorithm dramatically

cuts down the number of inter-node signaling messages, thus enabling an efficient and

practical multi-split without the loss of optimality on split decisions. (ii) A mechanism

to simultaneously accommodate best efforts objectives (e.g., minimizing energy cost) and

quality assurance objectives (e.g., latency threshold) in the splitting decision. The mecha-

nism discriminates the quality assurance metrics with a non-linear mapping function, and

enforces the quality assurance objectives without compromising the optimality of the best

effort metrics . (iii) Splitting non-linear ML models. We further broaden the application

domain of our split ML algorithm by extending it to non-linear ML models, including re-

current ML models and collaborative ML models, whereas the latter involves Multi-agent

Reinforcement Learning (MARL) and Federated Learning (FL). Our solution takes into

account the iterative feedback structures commonly seen in such models while requiring

little modifications to the standard algorithm.

We evaluate HiveMind on a 5G network simulation framework, which represents a

tree-structured integrated access and backhaul (IAB) network and edge/cloud computing

devices co-located on all IAB gNBs, CN, and cloud server, in compliance with 3GPP’s

provisioning of 5G MEC architecture [30, 11]. The evaluation framework adopts synthetic

traffic traces that faithfully reproduce the traffic characteristics of a cellular network. Our

12

experimental results demonstrate that (i) HiveMind is able to adapt to a wide range of

traffic load. It outperforms cloud and UE-based baselines by up to 89.8% under high

traffic load. HiveMind benefits more from MEC capability gains than the baselines by up

to 47.2%, especially from the MECs co-located with IAB gNBs. (ii) HiveMind can simul-

taneously accommodate the best effort and quality assurance objectives, and outperforms

the heuristic linear multi-objective by 22.9% on the best effort objective. (iii) HiveMind

reduces the parameter feedback latency on both RNN and collaborative learning models,

and outperforms the standard split by up to 2.3× on multiple criteria.

HiveMind, to our knowledge, marks the first practical multi-split ML system tai-

lored for 5G MEC networks. Its contributions can be summarized as follow: (i) A novel

cellular native split ML algorithm that enables the practical multi-split ML by distribu-

tively optimizing split assignment with negligible overhead. (ii) A multi-objective mecha-

nism that adapts different types of objectives to a single multi-split task. (iii) Extension

of the multi-split algorithm to widely adapted non-linear ML models including RNN and

collaborative ML. (iv) Validation of HiveMind on a 5G simulator against state-of-art ML

splitting designs.

2.2 Related Work

2.2.1 Distributed ML

Recent research explored distributed machine learning to reduce the processing

time of mobile ML applications leveraging edge or cloud computing devices. Ho et al.

13

[31] proposed to use a centralized parameter server to aggregate the local gradient, and

schedule training tasks on the local nodes. Agarwal et al. [32] designed AllReduce that

further extends this paradigm to a tree structure, by accumulating and passing the local

gradient from child nodes to parent nodes. Foster et al. [33] introduced a fully distributed

paradigm where each node broadcasts the local gradient to all other nodes. In addition to

the latency-oriented parallel computing paradigms, Konevcny et al. [34, 35, 36, 37, 38, 39]

proposed Federated Learning (FL) framework with an emphasis on preserving data privacy.

FL obscures the local update from local nodes so that the parameter server cannot infer

sensitive information, but can still keep the training accuracy. The above distributed

ML designs assume a client/server architecture, where each computing client trains one

instance of the whole model. In contrast, our split ML framework partitions an ML model

so that the different parts are executed sequentially on different computing nodes within

a cellular network. In addition, distributed ML mainly focuses on ML training. Our split

ML framework can be applied to both training and inference.

2.2.2 ML model splitting.

ML model splitting has garnered much interest in the past two years. In particu-

lar, the 3GPP standardization group recognized the performance benefits for ML model

splitting and has been investigating protocol-level primitives to support ML model split-

ting within the cellular edge/core networks [11]. Much of the related research verified the

advantages of ML model splitting and focused on partitioning the DNN computing load

to meet certain optimization objectives. Kang et al. [16] proposed to identify a single

14

splitting point to cut a DNN inference model in two parts, executed by a generic client

and server respectively, to optimize running latency or energy consumption. Hu et al.

[40] further extended the single split scheme to DNN models with directed acyclic graph

representation. The single-split approach splits between the UE and one server, and the

performance improvement is largely limited by the computation resource and the link con-

dition of the server machine. In contrast, our multi-split approach can flexibly assign the

ML model to multiple MECs in order to adapt to dynamic link and computation resources.

Narayanan et al. [41] proposed an optimization-driven split ML framework, PipeDream,

that assigns parts of a model to multiple GPUs to reduce training latency on a single

machine. Among the existing research in distributed/parallel ML, PipeDream shares the

most similarity with our work. However, PipeDream assumes static links between GPUs

where the partitioning is done once and for all. The linear programming based optimizer

itself incurs around 8 s running latency on a server-level machine [41], which renders it

unsuitable for real-time splitting of ML inference models in dynamic cellular networks.

2.2.3 Tailoring ML models to edge computing systems.

Besides model distribution and partitioning, existing work also explored other mech-

anisms to customize ML models for edge computing. Teerapittayanon et al. [42] proposed

an early-exit mechanism, BranchyNet, which adds exit points in the middle of an ML

model to cut the inference delay at the cost of lower accuracy. A follow-on distributed

ML design, DDNN [43], further proposed that each end device sends the output of its

exit point to an edge server which performs aggregation. Since the early exit mechanism

15

skips part of the model structure, the inference accuracy is largely compromised. So far no

early exit design achieves more than 80% of inference accuracy from the early exit points

comparing to the full model [42, 43, 44, 45, 46, 47]. Besides, it is feasible to compress

the intermediate data transfer between UE and cloud in order to reduce communication

latency [48, 49, 50, 51, 52, 53, 54, 55]. The state-of-art intermediate data compression

design [55] achieves up to 5000/1 compression ratio by training a model-specific NN com-

pressor while suffering a relative small accuracy loss of 8% due to the information loss

during compression. Comparing to above two mechanisms, our split ML framework does

not modify the model structure or intermediate data and reduces latency without sacrific-

ing the inference accuracy. Note that the early-exit and compressing approaches are not

in conflict with our split design. Instead, it is possible to apply them on top of HiveMind,

i.e. adding early exit points at the split points or compressing the intermediate data out

of the split points, to further optimize the processing latency.

2.3 The Need for Multi-Split in 5G MEC Networks

In this section, we explain the motivation for adopting multi-split ML and demon-

strate its advantages with an example scenario. In a mobile ML application, the total

overhead is attributed to two factors: the computation overhead in running the neural

network layers, and the communication overhead in transmitting data between computing

nodes, e.g., UE uploading an input image to the cloud server. Conventional NN model runs

on either UE or cloud server. UE-based ML models execution suffers from large compu-

16

1-Layer NN UE MEC Cloud

1.2

0.5 1

2

3 201

1 4

4

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
MEC-cloud link capacity

100

101

To
ta

l o
ve

rh
ea

d

Cloud Single-split Multi-split

Cloud ML overhead
continuously
increases as link
capacity drops

Single-split moves
the model to UE as
link capacity dropsMulti-split moves

some layers to MEC
as MEC-Cloud link
capacity drops

Figure 2.2: The latency comparison of 4 split architectures: (1) UE computing, (2) Cloud

single split, (3) Edge single split, (4) Multi-split on UE, edge, and Cloud

17

tation overhead due to its stringent computation budget and cloud-based ML often incurs

large communication overhead due to limited communication link capacity. In comparison,

split ML achieves a flexible tradeoff between computation overhead and communication

overhead by dynamically splitting a ML model between the UE and cloud [16, 40, 30]. It

can achieve low computation overhead when the link capacity is high and avoid high com-

munication overhead otherwise. In addition, comparing to existing single-split schemes

[16, 40, 30], multi-split ML further improves the efficiency by leveraging a chain of MEC

servers, striking a middle ground between UE and cloud with more computation budget

than UE-only and a faster and more stable communication link than cloud-only model

execution.

To showcase the advantage of multi-split ML, we consider a simple scenario where

a UE, MEC, and cloud server split a 3-layer NN, as shown in Fig. 2.2. The layers have

computation loads of 0.5, 1, and 4 units and communication load of 1.2, 1, and 4 units. The

three computation nodes have computation capacity of 1, 3, and 10 units respectively and

the link between UE and MEC has a capacity of 2 units. We assume a simple overhead

model where the overhead is load divided by capacity, e.g., transmitting input on UE-

MEC link takes 1.2
2

= 0.6 unit time. The link capacity between MEC and cloud is set

to vary between 1
10

to 1 to simulate the link dynamics. We compare multi-split ML with

two schemes: cloud ML, where UE always upload the input to the cloud for computation,

and single-split ML, where the model is split between UE and the cloud. Fig. 2.2 shows

the total overhead of three schemes as the MEC-cloud link capacity decreases from 1 to

1
10

. We see cloud ML’s overhead continuously increases as the communication overhead

18

increases (i.e., link capacity decreases). Single-split ML starts with all layers assigned

to the cloud and transfers the layers to UE when link capacity further drops, to avoid

increasing communication overhead. Mutli-split ML achieves a even lower total overhead

on top of single-split ML by assigning the last two layer to MEC instead of UE. This

experiment shows that multi-split avoids the increasingly large communication overhead

in cloud ML and achieves a lower computation latency than single-split ML. Note that

this experiment only demonstrates an simplified typical scenario. In Sec. 2.7, we will show

that in a more detailed and realistic 5G setting, our multi-split ML reduces total latency

by 37 to 90% compared with cloud ML and 32 to 55% compared with single-split ML.

2.4 HiveMind Multi-Split Design

In this section, we first provide a primer on the 5G MEC system that enables the

multi-split ML framework. Then we introduce HiveMind multi-split design for both ML

inference and training, and its runtime optimization under network dynamics.

2.4.1 A Primer on 5G MEC for ML

Similar to the legacy 4G architecture, 5G networks separate the Radio Access Net-

work (RAN) and Core Network (CN) functions. Yet Integrated Access and Backhaul

(IAB) is introduced in the RAN as a unique feature, where basestations (i.e., gNBs) form

a tree-like topology with multi-hop wireless backhaul links [30]. Due to the flexible deploy-

ment of data plane, ETSI group [15] provisions a flexible deployment of MECs at different

19

…

𝑷 nodes2-Layer NN

Objective:

𝑣!,!
#

Node
𝒑

𝑣!,$
#

𝑣$,$
#

Node
𝒑 + 𝟏

……

𝑣!,!
#%!

𝑣!,$
#%!

𝑣$,$
#%!

E

𝒄(𝒗𝟏,𝟏
𝒑 , 𝒗𝟐,𝟐

𝒑%𝟏)

Node
𝑷

(1) Map split assignments to the graph

E

𝑣!"#

𝑣#,#!

𝑣#,%!

𝑣!"%

𝑣#,#%

𝑣#,%%

𝑣!#%

𝑣%,%%

𝑣!%%

𝑣!"&

𝑣#,#&

𝑣#,%&

𝑣!#&

𝑣%,%&

𝑣!%&

𝑣!"'(#

𝑣#,#'(#

𝑣#,%'(#

𝑣!#'(#

𝑣%,%'(#

𝑣!%'(#

𝑣#,%'

𝑣%	%'

𝑣!%'

S…

Node
1

Node
2

Node
3

Node
𝑷 − 𝟏

Node
𝑷

Included in one
message

…

𝒗&
' 𝒗(

' 𝒗)*++
'

Only one edge
for a split point
set

(3) Pruned and transposed split graph

Relay node

…

S

𝑣#,#!

𝑣#,%!

𝑣#,#%

𝑣#,%%

𝑣%,%%

𝑣#,#&

𝑣#,%&

𝑣%,%&

𝑣#,#'(#

𝑣#,%'(#

𝑣%,%'(#

𝑣#,%'

𝑣%	%'

E…
0

0

Node
1

Node
2

Node
3

Node
𝑷 − 𝟏

Node
𝑷

A node has to
communication
with multiple
nodes

𝑂 𝐿!𝑃
individual
messages

…

(2) Original split graph

Figure 2.3: Graph representation of the HiveMind multi-split: (1) Map split assignments

to graph. (2) The original split graph representation has numerous edges. (3) The pruned

and transposed graph limits the edges strictly between adjacent MEC nodes.

20

vantage points within the 5G infrastructure, including the gNBs, RAN aggregation point,

and the core network site. The flexible MEC deployment provides mobile applications with

easier and faster access, especially for the gNB MECs which can be reached by UEs in

one hop. The communication overhead is hence expected to be much shorter than remote

cloud access [12], rendering it feasible to accelerate ML inference/training. On the other

hand, the 5G User Plane Function (UPF) enables the free steering and routing of applica-

tion traffic among UEs and MECs attached to different network entities [18], allowing the

formation of multi-hop MEC chains. All above 5G features jointly enable the multi-split

ML paradigm where an ML model is split into multiple parts and assigned to a chain of

MEC nodes, as shown in Fig. 2.1.

2.4.2 Problem formulation

The multi-split problem. We now describe the multi-split problem formulation.

For simplicity, we assume a linear DNN and a single objective of minimizing inference

latency. In later sections, we will extend the design to non-linear ML models and multi-

objectives.

Consider a scenario where P − 2 MEC nodes in 5G system, along with a UE and a

cloud server, form a P -node MEC chain where the first node p = 1 is the UE and the P -th

node p = P is the cloud server. The UE, serving as the source node, initiates a split ML

task that utilizes the MECs along the route from UE to the cloud. We refer to the cloud

server as the sink node, as it is the last node along the chain that may undertake part of

the ML processing load. The ML model to be split across the network has L layers. We

21

define a split decision as two functions u(p) = m,w(p) = n to represent assigning layers

m to n to the node p. Suppose the layer-wise computation latency τ pl and communication

latency ϵpl of transferring intermediate data are known to all P nodes through profiling

[16], the problem of finding the optimal split decision to minimize the total latency can be

expressed as follow:

min
u,w

P∑
p=1

w(p)∑
l=u(p)

τ pl +
P∑

p=1

ϵpw(p) (2.1)

s.t. u(p) ≤ w(p), ∀p (2.2)

u(p) = w(p− 1) + 1, 2 ≤ p ≤ P (2.3)

w(P) = L (2.4)

The first term in Eq. (2.1) sums up the computation latency of all P nodes and the

second term sums up the communication latency of transferring intermediate data across

adjacent nodes. Eq. (2.2)-(2.4) ensure the assignment includes all L layers in the ML model

in correct order without overlapping. Note that it is valid to “skip” a node by assigning

no layer to it. In such cases, the communication latency over the skipped node still needs

to be included since within the IAB network the intermediate data has to travel through

the skipped node.

Mapping split assignments to graph. The above optimization framework uses

functions u(p), w(p) as variables. Although they can be treated as vectors to fit into

existing integer programming solutions, the mapping between them and the computation

latency, i.e. τ
w(p)
u(p) , is a non-convex function since τ pl is arbitrary. Hence, it is hard to

solve the problem directly with integer programming. If we take the brute-force approach

22

and examine all possible split options, then it requires calculating the latency for all(
P+L−1

L

)
split options (split L layers into P sets while allowing 0 layer in a set since it is

possible not to assign layers to a node), e.g., a ResNet50[56] split on 5 nodes has 4.0× 107

options. Examining such a huge amount of split options requires significant processing

time, let alone the overhead caused by gathering the latency profiles and distributing

the split decisions to all MECs. Hence a direct search, as done in existing single-split

solutions, cannot meet the real-time requirement of cellular native split ML. To overcome

these limitations, we modify the variables and reformulate the problem as a classic linear

optimization - shortest path problem. We first convert the search space for the split

decision into a directed graph G = (V,E). The set of vertices:

V = {vpm,n|∀p, 1 ≤ m ≤ n ≤ L} (2.5)

embodies all possible assignment decisions on all P nodes, where a single vertex vpm,n

represents the decision of assigning layers m to n to node p. To avoid confusion, we

use the term ”vertex” to refer to the vertices in the graph and ”node” to refer to the

computing nodes in the cellular network. Then we can easily connect the vertex following

the constraints in Eq. (2.2)-(2.4):

E = {(vpm,n, v
q
x,y)|p < q,m ≤ n, x ≤ y,

x = n+ 1, y = L when q = P}
(2.6)

where an edge (vpm,n, v
q
x,y) represents choosing the assignment vqx,y after the assignment

vpm,n. To be consistent with the objective function in Eq. (2.1), we set the weight on the

edge (vpm,n, v
q
x,y) to be the cost of choosing the decision vqx,y after vpm,n, i.e., the sum of the

23

communication latency in transferring intermediate data from p to q, and the computation

latency on the node q:

c(vpm,n, v
q
x,y) =

y∑
l=x

τ ql + ϵpn (2.7)

Finally, we add a pair of virtual start/end vertices vs, ve connecting to vertices corre-

sponding to the first and last node with zero-cost edges, i.e., {v1m,n|1 ≤ m ≤ n ≤ L} and

{vPm,n|1 ≤ m ≤ n ≤ L} respectively, to serve as source and destination in the graph.

The optimization objective now becomes finding the shortest path from vs to

ve, and the vertices along this path form the assignment decision functions u,w, i.e.,

u(p) = m,w(p) = n if and only if vpm,n belongs to the shortest path. By reformulating the

optimization, we can derive the optimal u(p), w(p) by finding the shortest path with classic

linear programming based solutions and avoid the complicated non-standard optimization

problem in the original formulation.

2.4.3 Split Cost Information (SCI) design

At first glance, the problem can be straightforwardly solved by applying the well-

known Dijkstra’s algorithm. However, Dijkstra’s algorithm requires reconstructing the

entire graph on a central controller node, and the size of the graph grows exponentially

with the number of layers and linearly with the number of nodes. In the previous example

of ResNet50 running on 5 nodes, the corresponding graph comprises 4.5× 105 edges, each

requiring the profiling of computation and communication latency to determine the cost.

Despite the relatively low computation complexity of Dijkstra’s algorithm, gathering such

information and feeding it back to the controller incurs significant overhead, especially

24

when the decision needs to be updated frequently under network dynamics.

We now introduce our Split Cost information (SCI) design which can efficiently

solve the graph representation of the split ML problem. SCI inherits the logic of the

distributed Dijkstra’s algorithm [57, 58] and is tailored to the split ML graph to tackle the

information gathering overhead. In SCI, each vertex calculates its own shortest path by

traversing its neighbor vertices’ path cost, i.e. the sum of all edges on the shortest path

of a vertex. Specifically, given that a vertex A’s neighbor vertices’ path costs are known,

A selects the neighbor vertex with the minimal sum of shortest path cost and edge cost

as its predecessor vertex on the shortest path, and the sum value as its path cost. The

shortest path can then be found by iteratively following the predecessor vertex all the way

to the destination. Hence, to determine the shortest path, a vertex needs to know the path

costs of all its neighboring vertices. However, acquiring such information may induce non-

trivial communication overhead. In existing distributed algorithms [57, 58], a vertex needs

to send individual messages to all its neighbor vertices with its shortest path cost value.

Note that each node has
(
L
2

)
vertices (choosing the start and stop point from L layers

for a split assignment) and each vertex has (L+1)P
4

outgoing edges on average (a vertex

vpm,n has outgoing links to all the following nodes after p, which is P
2

nodes on average,

and for each node, the vertex has links to all L − n + 1 vertices with starting layer n+1,

which is L+1
2

vertices on average). Therefore, a node needs to send
(
L
2

)
(L+1)P

4
= O(L3P)

messages. In the previous example of ResNet-50 running on 5 nodes, this translates to

3 × 106 messages, each with only one cost value. Sending such a large number of short

messages all at once incurs huge overhead and can easily congest the network, rendering

25

Split point Optimal costIntermediate
data

Node
𝒑 − 𝟏

Node
𝒑

…

Node 𝟏
(UE)

…

Node 𝑷
(Sink)

SCI
message

Upstream Downstream

SCI message

𝒗%
&

𝒗'
&

𝒗(
&

𝜁%
&

𝜁%
&

𝜁%
&

min()

min()

min()

!!"#

!","#

!",%#

!!%#

!%,%#

!!##

Figure 2.4: A showcase of Split Cost Information (SCI) message transmitted from node

p to node p− 1. The message contains a optimal path cost for each split point set.

it impossible to directly apply the existing algorithm to the split ML problem.

Transforming the split graph. To reduce the communication overhead for dis-

tributed shortest path algorithm, we introduce a split graph transformation technique. We

observe that for a vertex on computing node p, the neighboring vertices are mostly located

on the adjacent node p− 1, except for those vertices that skip the node p− 1. For exam-

ple, edge (v11,3, v
3
4,6) assigns the 6 layers between node 1 and 3 and skips node 2. If we can

eliminate such edges, we can limit the communication strictly between two adjacent nodes,

and the O(L3) short messages from a node can be aggregated as one single message. To

this end, we transform the graph by introducing relay vertex vPRn to represent the “null”

workload assigned to the skipped node. In the above case, edge (v11,3, v
3
4,6) can be broken

down into two edges (v11,3, v
2
R3) and (v2R3, v

3
4,6), both connecting the vertices of neighboring

26

Algorithm 1: Optimal split cost calculation.

Input: Optimal cost for each split point set on node p+ 1:

{ζp+1
0 , ζp+1

1 , ..., ζp+1
L+1}, layer-wise computation latency:

{τ p0 = 0, τ p1 , ..., τ
p
L}, layer-wise communication latency from node p− 1:

{ϵp−1
0 , ϵp−1

1 , ..., ϵp−1
L } where ϵp−1

0 corresponds to model input

Output: Optimal cost for each split point set (SCI message) {ζp0 , ζ
p
1 , ..., ζ

p
L+1},

Optimal split points {np
0, n

p
1, ..., n

p
L+1}

1 i← 0 ;

2 while i ≤ L do

; // Iterate split point sets

3 for j ← i to L do

; // Iterate vertices in a split point set

4 θij ←
∑j

l=i τ
p
l + ϵp−1

i + ζp+1
j+1 ; // Calculate the cost of j-th vertex

in i-th split point set

5 ;

6 np
i ← argminj(θ

i
j) ;

7 ζpi ← minj(θ
i
j) ;

8 if np
i > i+ 1 then

9 for z ← i+ 1 to np
i do

10 np
z ← np

i ;

11 ζpz ← ζpi −
∑

l=i zτ
P
l ;

12 i← np
i ;

13 i← i+ 1

27

nodes. Fig. 2.3 showcases the transformation graph of splitting a 2-layer model on P nodes

with relay vertices. With this measure, we aggregate the O(L3) path cost values into one

message, thus saving the overhead of sending O(L3) individual messages.

Slimming the inter-node messages. The use of relay vertex in the graph trans-

formation reduces the messaging overhead. But the size of a message increases to O(L3)

times due to the aggregation and may still incur non-negligible transmission latency when

the ML model has a large number of layers. For example, for a ResNet-152, each message

would contain 4 × 106 path cost values. Suppose each path cost value is stored in float

format, the size of the message would be 80 MB, which is too large for real-time signal-

ing. We thus further reduce the size of each message by pruning the number of path cost

values in a message. We first transpose the graph, i.e., reverse the direction of all edges

and reverse the role of the start/end nodes, which does not change the optimal shortest

path. We then group the vertices vpm,n on a node p by the starting layer m. We denote

such a group of vertices as a split point set vp
m. Fig. 2.3 demonstrates the split point sets

on different nodes. We see that in the transposed graph, a vertex’s neighbor vertices must

belong to the same split point set. This is because according to Eq. (2.6), a vertex’s neigh-

bor vertices all share the same starting layer. Recall that in the shortest path algorithm,

a vertex only needs to know the minimal path cost among its neighbor vertices in order

to calculate its own path cost. This means that only the cost of the optimal vertex in

a split point set, i.e. the vertex with the minimal cost, is required by the shortest path

calculation, and instead of sending cost values for all vertices, a node can just send one

per split point set.

28

Leveraging the above property, we introduce an optimal split cost algorithm, as

described in Algorithm 1. The algorithm simultaneously reduces the message size and

finds the shortest paths for vertices on a node. Line 1 to Line 5 first calculates the path

cost of all vertices. Then, based on the aforementioned property, Line 7 finds the optimal

path cost ζpi for each split point set. These path cost values are packed into a signaling

message called Split Cost Information (SCI) message, as shown in Fig. 2.4, and sent to the

adjacent node to serve as the input of the optimal split cost algorithm on that node. In the

meantime, Line 6 finds the stop layer index np
i of the vertices corresponding to the optimal

paths, which are later used as the key information for split assignment decision making.

A SCI message contains only L + 1 = O(L) shortest path cost values corresponding to

L layers in the model plus a relay node layer. For the previous ResNet-152 example,

it means a less than 4KB message size, nearly 24000× smaller than the original 80MB

message. The optimal split cost algorithm design can thus be safely extended to models

with a large number of layers without inducing large overhead. To further improve the

efficiency of the algorithm, we observe that if np
i for a split point set i is greater than i,

then np
f = np

i for all split point sets f ≤ np
i . This is because the costs θfj on split point sets

f ≤ np
i is just θij minus a constant

∑f
e=i+1 τ

p
l and the optimality of ni

p holds for these split

point sets. Hence, we compare np
i with i in line 8 and skip the computation for iteration

i+ 1 to np
i if np

i > i+ 1.

SCI protocol in 5G networks. We now introduce how to execute the above

SCI solution framework in 5G MEC networks. As illustrated in Fig. 2.5, the operation

consists of two processes: (1) SCI update, (2) Split ML task. The SCI update runs along

29

the upstream direction, i.e., from sink node to source node, whereas the split ML task

runs on the downstream direction. During the SCI update process, a node calculates the

shortest path costs with Algorithm 1 and sends the SCI message to its upstream node.

Since the downstream SCI message is required by the algorithm, the SCI update starts

from the sink and moves upstream towards the source node. The split ML task starts

immediately after the SCI update is completed. During the split ML run-time, each node

receives the ML intermediate data from its upstream node, executes the ML model up to

a certain split point, and sends the intermediate data to its downstream node. A node

chooses its own split point based on the calculation results from the SCI update and the

upstream node’s split point. Specifically, recall that Algorithm 1 derives the stop layer

index of the optimal vertices np
i for each split point set. Since the vertices in a split point

set represent split assignments with the same starting layer i, then np
i is the optimal split

point for node p if its upstream node splits at layer i − 1. Hence, given the upstream

node’s split layer index x, a node p can easily identify its optimal split point by finding

np
x+1. Note that since the source node always executes the ML model from the first layer,

its optimal split point is always n1
1. A split ML task process finishes when the entire ML

model is executed and the output is sent back to the source or the cloud server for further

application-specific processing.

Owing to the split graph transformation and SCI message design, the SCI protocol

achieves high efficiency in solving the multi-split assignment problem: A node only sends

out one SCI message to its adjacent node per SCI update and the message size is only a

few KB. Combined with the low complexity of the optimal split cost calculation algorithm

30

(O(L2)), the SCI update process can be completed in an instant. In our experiment, we

observe that the average running time for one SCI update is only 27 ms.

The low running time of SCI update is crucial for combating network dynamics. Due

to the variation of the wireless channel and background traffic demand, the link throughput

between MECs often varies drastically over time. Consequently, the communication cost

profiles used by the optimal split cost calculation are likely to expire very quickly. As a

result, the optimal split points calculated by an SCI update also expire quickly, leading to

a sub-optimal split. A fast SCI update process means the process can update the optimal

split points at a fast pace and thus adapt to more severe network dynamics.

2.4.4 Cost analysis

In this section, we provide a simple analysis to examine the advantages of our split

ML approach in terms of computation and communication cost. With the assumption that

τPl ≤ τ pl ≤ τ 1l ,∀l, p, i.e. the cloud server has the minimal layer-wise computation latency

and the UE has the maximal, we can easily deduce that the minimal total computation

latency is
∑L

l=1 τ
P
l and maximal is

∑L
l=1 τ

1
l . Note that the maximal total computation

cost equals the total cost in that case because UE-only model execution does not entail

any communication overhead. Since SCI always selects the split decision with the minimal

cost, the maximal possible communication cost in a split ML task is
∑L

l=1 τ
1
l −

∑L
l=1 τ

P
l ,

i.e., the difference between the maximal and minimal total computation cost. In other

words, SCI allows up to
∑L

l=1 τ
1
l −

∑L
l=1 τ

P
l of communication before switching from split

ML to conventional UE-only ML. This indicates that unlike conventional cloud-based ML

31

Sp
lit

re
qu

es
t

SC
I

Optimal
cost

calculation

Initiation 1st
input

1st
output“Tree”

2nd
input

2nd
output“Cat”

SC
I

Node 1
(UE)

Split
adjustment

Time

SCI update

in
te

rm
ed

ia
te

da

ta

1 2 2 1

Node
2

Node
3

Node 4
(Sink)

SC
I

SC
I

(Algorithm 1)

SC
I

SC
I

in
te

rm
ed

ia
te

da

ta
in

te
rm

ed
ia

te

da
ta

Channel
Prediction
Δ𝑡

Figure 2.5: Split DNN procedure: 1○ SCI update: each node calculates its shortest path

costs and signal its upstream node with SCI message, 2○ Split ML task: each node chooses

its own split point and execute the layers.

32

whose communication cost may grow unbounded under poor link conditions, SCI is able

to gracefully degrade to the UE-only execution when link capacity becomes too low.

2.4.5 Extension to split DNN training

The above design focuses on splitting a single-pass ML inference model. In contrast,

ML training is an iterative bi-directional process: a forward inference pass, same as the

ML inference process, is followed by a backward pass, which travels through the layers

in reverse order to calculate the parameter updates using intermediate results from the

forward pass [41]. The shared intermediate result means a node needs to have the same

set of layers for both the forward and backward passes. Hence, only one split assignment

is needed. Similar to split inference, we can formulate the split assignment as a graph and

derive the optimal split assignment by finding the shortest path. However, two additional

costs need to be considered in the edge cost of the graph. The first one is the cost of

running the backward pass, including both computation and communication cost. The

second is the cost of passing the layer parameters when the split assignment changes. To

better explain parameter passing, consider a case where two MECs p1 and p2 are initially

assigned with layer 1-2 and 3-4 respectively. Later the assignment changes to 1-3 for p1

and 4 for p2. In this case, the parameters of layer 3 need to be passed from p2 to p1. The

parameter passing cost only exists in training because in inference the parameters from all

layers are fixed and can be loaded to MECs prior to the inference task, while in training

the parameters vary rapidly. Assuming the layer-wise training cost τ ′pl , ϵ′pl and the cost of

passing l-th layer’s parameter from p to q ηp,ql are known, the cost for an edge is the sum

33

of the forward and backward passes:

c(vpm,n, v
q
x,y) =

y∑
l=x

(τ ql + τ ′ql) + ϵpn + ϵ′pn +
∑
l∈LT

ηp,ql (2.8)

where LT is a set of the layers required to be transferred from p to q. In the case where

the layers needs to be transferred from q to p, we replace ηp,ql with ηq,pl . Therefore, to

enable split training, we simply need to modify the corresponding edge cost computation

(Line 3) in Algorithm 1:

θj ←
j∑

l=i

(τ pl + τ ′pl) + ϵp−1
i + ϵ′p−1

i +
∑
l∈LT

ηp,ql + ζp+1
j+1 (2.9)

2.4.6 Runtime Optimization under Network Dynamics

The foregoing discussion assumes that the network dynamics can be counteracted

by frequent SCI updates for most of time, which is corroborated by our experiments in

Sec. 2.7B. However, due to the sparse high variance in 5G links [59], the latency information

in the SCI messages may still occasionally expire at the time when the split ML is executed.

As a result, the corresponding split decisions become outdated and highly sub-optimal.

Furthermore, the latency information in an SCI message is often aggregated across multiple

hops before it reaches an upstream node, during which the links may experience larger

dynamics. So the optimal decisions made at these upstream MECs are more likely to

expire.

To showcase this phenomenon, we create a simplified split DNN scenario with 1 UE

and 5 MECs on the route. The link capacities are {4000, 2000, 800, 400, 100}Mbps for each

hop starting from the UE. We generate dynamic traffic according to the background UE

34

𝒑 −𝟏 𝒑

… … … …

C
ap

ac
ity

𝒕

𝒑 −𝟏 𝒑

𝒄(𝒕)

𝑐(𝑡!) 𝑐(𝑡")

SCI: optimal assignment calculated
with 𝑐(𝑡!)

Split task: assignment runs with
𝑐 𝑡" ≠ 𝑐(𝑡!)

Latency
anomaly

 0
 20
 40
 60
 80

 100
 120
 140

 0 100 200 300 400 500 600 700

La
te

nc
y

(m
s)

Time (ms)

Figure 2.6: Link dynamic showcase: the split ML latency surges at 120ms and 450ms

due to high variances in link capacity.

density and demand distributions extracted from a real-world cellular network trace[60].

Fig. 2.6 shows the time series of total split latency. We see that at t = 120ms and 450ms,

the split latency surges to over 500 ms. As illustrated, this is because the split assignment

is made at t = t1 when the access link capacity is c(t1), while the split task runs at t = t2

when the link capacity drops to c(t2), making the split assignment outdated.

To tackle the link dynamics, we introduce a simple predictive splitting mechanism to

the SCI design. This mechanism leverages existing cellular link capacity forecast schemes

[61] to predict the inference latency. Recall that in Eq. (2.7), the edge cost involves the

communication latency ϵpn, which can be estimated by the link capacity cp,p+1(t) and the

35

intermediate data size of n-th layer sn:

ϵpn(t) =
sn

cp,p+1(t)
+ ψn (2.10)

where ψn is the MEC overhead for transferring n-th layer intermediate data, including

the network stack overhead and 5G signaling overhead, which can be profiled in advance.

From Fig. 2.6 we see the latency spikes are caused by the link capacity variation between

the SCI message at t1 and the split task at t2. We denote such time gap as ∆t = t2 − t1.

Ideally, if ∆t is known in advance, a node p at t1 can forecast the link capacity at t2

cp,p+1(t2) = cp,p+1(t+ ∆t) and then calculate the communication latency ϵpn(t2) at t2 from

Eq. (2.10), thus eliminating the effect of link dynamics. However, ∆t is determined by the

dynamics of upstream links and the split assignment of upstream nodes, both of which are

not known to node p. Nonetheless, since the upstream nodes only run a part of an ML

model, the variation in ∆t is largely limited, often smaller than the link coherent time at

node p. Hence, we estimate ∆t on a node by averaging the time gaps from previous g split

tasks on this node and calculate the communication latency accordingly. Note that since

procedure 1 and 2 are mirrored, different nodes have different ∆t, e.g. node 2 in Fig. 2.5

has smaller ∆t than node 4. In the case where ∆t is smaller than link coherent time, we

simply disable predictive split as it is no longer necessary. Experiments in Sec. 2.7 shows

the predictive split can eliminate over 95% of latency spikes under realistic cellular link

dynamics when the link capacity prediction error is less than 13%.

36

2.5 HiveMind Multi-objective Split

It is straightforward to apply the HiveMind multi-split to metrics other than latency.

One can simply replace the layer-wise latency profiles τ pl and ϵpl with the corresponding

cost profiles, e.g., the energy consumed for running layer l. However, a 5G MEC appli-

cation often needs to account for a mix of metrics simultaneously [15, 62]. Depending on

the specific application, these metrics may require different objectives. There are two cat-

egories of performance objectives defined in 5G [62]: (i) Best effort, where a metric needs

to be optimized to the best effort, e.g., reducing the energy cost as much as possible, (ii)

Quality assurance, where a metric needs to be limited by a certain threshold, e.g., making

sure the latency is below 100ms. It is non-trivial to apply multiple metrics with different

objectives to the shortest path solutions.

The canonical multi-metric shortest path solution linearly combines the metrics as

the edge cost in the graph [63]:

c(vpm,n, v
q
x,y) =

M∑
j=1

wj(

y∑
l=x

(τj)
q
l + (ϵj)

p
n) (2.11)

where (τj)
p
l and (µj)

p
l are the computation and communication costs of the j-th metric,

and wj is the corresponding weight. Such the linear combination method does not require

any modification to the HiveMind operations other than the edge cost calculation. How-

ever, this method does not distinguish the best effort objectives from quality assurance

objectives, and cannot represent the threshold of the quality assurance objectives. Since

the objectives of different metrics are often conflicting, e.g. optimizing latency may lead

to increased power consumption, the linear combination method may lead to excessive op-

37

timization on the quality assurance objectives and compromise the best effort objectives.

For example, in Sec. 2.7D, we run a multi-objective split task with a best effort objective

on energy consumption, and a quality assurance objective on latency whose threshold is

120ms. We observe that comparing to the optimal method, the linear combination unnec-

essarily optimizes the latency to 75ms while increasing energy consumption by 29%.

To address the above problem, we introduce a non-linear weight function design.

The high-level idea is to restrain the weight of quality assurance objectives in the edge

cost when the metric is well below the threshold so that the best effort objectives are

not affected, and quickly increase the weight of the quality assurance objectives when the

metric approaches the threshold to prevent the quality assurance violations. Doing so

requires a non-linear mapping between the metric to its weight in the edge cost. Hence,

we use non-linear weight functions to reshape the quality assurance metrics, before linearly

combining them with the minimization metrics. Suppose there are B objectives in a split

ML task, where the first C objectives are quality assurance and the remaining are best

effort. We define ϕj =
∑y

l=x(τj)
q
l +(ϵj)

p
n as the cost of the j-th objective on edge (vpm,n, v

q
x,y).

Then the total cost of the edge can be calculated as:

c(vpm,n, v
q
x,y) =

C∑
j=1

Wc(ϕj) +
B∑

j=C+1

wbϕj (2.12)

where Wc is the non-linear weight function and wb is the linear weight for best effort

objectives.

Fig. 2.7 shows the calculation of the edge cost. By design, Wc should be a monoton-

ically increasing convex function that asymptotically approximates the constraint x = Φj.

38

𝑣!,#
$

𝑣%,&
'

(𝜙! , 𝜙" , … , 𝜙#)

(𝝓𝟏, 𝝓𝟐, … , 𝝓𝑪)

(𝝓𝑪'𝟏,… , 𝝓𝑩)

Constraint
objectives

Optimization
objectives

Optimization Weight
functions (Linear)

Constraint Weight
functions (Non-linear)

𝑣!,#
$

𝑣%,&
'

𝐶(𝑣),+
, , 𝑣-,.

/)

Figure 2.7: The edge cost calculation in HiveMind multi-objective: the quality assurance

metrics are reshaped by non-linear weight functions before linearly combined with the best

effort metrics.

We empirically find that the inversely proportional function y = − 1
x−Φj

, x ∈ (−∞,Φj)

achieves the best optimization performance. Given the updated edge cost definition, we

can simply plug it in the optimal latency calculation algorithm (Line 3 in Algorithm 1) to

enable the multi-objective split.

2.6 Splitting Non-Linear Neural Networks

The HiveMind design we have introduced so far is applicable to DNNs. In this

section, we describe how to extend the design to non-linear NN models, including Recurrent

Neural Network (RNN) and collaborative learning models.

39

2.6.1 Split RNN

RNN models are widely used for applications with temporal correlated and sequen-

tial inputs, such as natural language processing and speech recognition. An RNN model

consists of a sequence of identical recurrent modules. Each recurrent module contains sev-

eral linearly-organized layers. Part of the model output called “hidden states” is feed to

the next module along with the input sequence. Fig. 2.8 (a) demonstrate the topology of

a typical RNN model. A straightforward way to adapt HiveMind to RNN is to split the

recurrent module since it shares a similar linear structure as a standard DNN. This would

require running the recurrent module repeatedly on the MEC network. In the common

case where the first layer is on the source node and the final output layer is on a MEC

node or cloud server, the hidden states generated at the final layer need to be fed back to

the source node everytime the recurrent module is repeated. The size of the hidden states

is usually in the same order as the intermediate data passed across adjacent layers, if not

larger [64]. Hence, transferring the feedback to the source, usually across multiple hops,

causes a large overhead.

To address this problem, we propose to linearize the RNN splitting problem so it

becomes similar to the DNN splitting. Consider an RNN with R recurrent modules, each

consisting of L layers. As shown in Fig. 2.9, we regard the l-th layer on the r-th recurrent

module as layer (r − 1)× L + l. The remaining input sequence {xr+1, xr+2, ..., xP−1} and

the previous output sequence {y1, y2, ..., yr−1} are transferred along with the intermediate

output. This way we can reuse the HiveMind mechanism while avoiding sending the hidden

40

𝑥! 𝑥" 𝑥#

𝑦! 𝑦" 𝑦#

…

Recurrent
module

Agent

Central

Agent(𝒂) (𝒃)

Figure 2.8: Non-linear NN showcase: (a) Recurrent Neural Network (RNN), (b) Collab-

orative learning.

𝑥!

𝑦!

…
1 2 3 4 1 2 3 4

𝑥"
9 10 1112 13 14 1516

𝑦"
1 2 3 4

17181920

𝑦#

…

… …
{𝑦! , 𝑦" , 𝑦#}
Intermediate

data

{𝑥$,𝑥% ,… }
𝑥#

Figure 2.9: A showcase of linearized RNN in HiveMind split RNN design.

state across multiple hops within the MEC network.

2.6.2 Split Collaborative Learning

Collaborative learning is a widely adopted distributed ML training paradigm. Com-

mon collaborative learning models include Distributed Deep learning (DDL), Multi-agent

Reinforcement Learning (MARL), and Federated Learning (FL). In a collaborative learn-

ing setup, multiple identical copies of a model are deployed on different nodes called agents,

each training its models with locally observed environment and states. In order to achieve

global optimum, the agents periodically transfer their model parameters to each other

41

or to a central controller to merge the parameters, as shown in Fig. 2.8(b). The model

parameters are usually on the order of 100 MB [65], significantly larger than inter-layer

intermediate data which are on the order of 100 KB (Sec. 2.7B). As a result, the parameter

transfer cost constitutes a significant part of collaborative learning.

To optimize the runtime cost of an agent network, the HiveMind design needs

to account for the cost of parameter transfer. The parameter transfer happens after

calculating the final layer of an agent model. Hence for split assignments on node p

that involve the final layer, i.e., vpi,L, 0 ≤ i ≤ L− 1, we need to add the parameter transfer

cost to the edge costs. Suppose the parameter transfer cost at node p ωp is known through

link capacity profiling. Then, we can simply add ωp to the standard HiveMind training

(Eq. 2.9) to reflect the parameter transfer cost:

θj ←
j∑

l=i

(τ pl + τ ′pl) + ϵp−1
i + ϵ′p−1

i +
∑
l∈LT

ηp,ql + ζp+1
L+1 + ωp (2.13)

We can then replace the cost calculation for vpi,L, 0 ≤ i ≤ L− 1, i.e., the L-th iteration of

the inner for-loop in Algorithm 1, with Eq. (2.13) to enable split collaborative learning.

Note that since the split assignments that do not involve the final layer are not affected

by the parameter transfer cost, the cost calculations in the first L − 1 iterations remain

unmodified.

42

1

2

3

4

5

6
A

B

C

D

E
7

8

9
F

G

H

0

IAB gNB /
eNB MEC Wireless

Wired Link UE route

0

12

5G mmWave IAB

5G sub-6Ghz

ABC

Figure 2.10: Simulated 5G network topology and UE trajectory.

43

2.7 Evaluation

2.7.1 Simulation setup

We evaluate the HiveMind framework on a custom built 5G network simulator.

Below we introduce the key components of the simulator.

Network topology. We evaluate HiveMind on 2 representative 5G networks: a

5G mmWave IAB network and a 5G sub-6 GHz network. As illustrated in Fig. 2.10, the

5G mmWave IAB network consists of 6 IAB nodes, each equipped with a mobile MEC. The

IAB nodes are deployed in a 1km × 1km region, and form a tree-topology in compliance

with the 3GPP Release-15 guidelines [30]. Traffic from the IAB nodes is aggregated and

flows to the core network through the donor IAB (node 6) and its wired backhaul link (link

F). There are 2 additional MECs (node 7 and 8) in the core network. A cloud server is

connected to node 8 through public IP, serving as the sink node. The sub-6 GHz network

consists of a single basestation. There is one MEC in the core network and a cloud server

in public IP. All wireless link capacities are configured according to the maximum uplink

MCS’ bitrate specified by 3GPP [66], as shown in Table 2.1.

UE mobility. A target UE within the IAB network’s coverage area requests the

split ML task at the beginning of each experimental trial. It keeps running the task while

moving along a pre-defined trajectory at a speed of 40km/h. We calculate the UE’s access

link SNR using the Friis model assuming an EIRP limit of 40dBm as specified by the FCC

[67]. We then convert the SNR to link bitrate by 5G NR CQI to MCS mapping table

[68]. Although this channel and link model does not account for sophisticated propagation

44

effects, it should suffice to generate a similar level of dynamics as real-world mobile cellular

links, which is critical for testing the model splitting.

Background traffic. We generate the number of UEs and individual UEs’ bit-rate

distribution following the traffic emulation approach in [60], which has been cross-validated

with real-world traffic traces. We then feed the background UEs’ bit-rate samples along

with the target UE’s bit-rate to a widely-adopted Proportional Fair Scheduler (PFS) [69],

which allocates the channel resources and determines the link capacity for the target UE.

In addition, we scale the UE population and individual UEs’ bitrate by 2, 1, and 1
2

to

create high, mid, and low background traffic scenarios.

ML cost profiles. The computation and communication cost profiles of an ML

model are crucial for a faithful representation of the model workload, and also serve as

inputs to the HiveMind framework. To obtain realistic ML cost profiles, we build a Python-

based latency/energy profiling tool as a stand-alone package for Pytorch. The profiling tool

traverses the ML model object and registers a forward hook and a backward hook for each

layer (a torch.nn.functional object). To generate latency profiles, the hooks measure

the processing time of a layer during inference and training phases using Python’s built-

in time.perf counter() module with an accuracy of ±1µs. The per-layer processing

time values are organized in the order of the layers as the computation latency profile.

The hooks also record the output size of the layer for inference and training, which is

used to calculate the communication latency based on Eq. (2.10). For computing energy

profiles, we adopt PyJoules [70], a third party energy footprint monitor that measures the

computing energy of a Python function. For communication energy profiles, due to the

45

lack of 5G interface on our devices, we adopt the link bitrate/power mapping data from

the latest operational 5G measurement [59] to convert the instantaneous link bitrate in our

simulation to power consumption. We measure the cost profiles on the following four sets

of machines to represent the UE, IAB MEC, core MEC, and cloud server, respectively: (i)

Raspberry Pi 3 Model B+, (ii) MacBook Air 2020 with Apple M1 CPU and 16GB unified

memory, (iii) A PC with Ryzen 3800X CPU, 64GB DDR 4 RAM, and Nvidia RTX 2080

GPU (iv) A server with Intel 9990XE CPU, 128GB DDR4 RAM, and 4 × Nvidia RTX

1080Ti GPUs.

2.7.2 Multi-split performance validation.

Impact of background traffic To evaluate the effectiveness of HiveMind under

different background network traffic intensities, we run HiveMind inference and training

along with three baseline approaches: UE Only, which runs the whole model on the UE;

Cloud Only, which runs the whole model on the cloud server; Single Split, which splits the

network only between the UE and a cloud server as in [16]. We use ResNet18, a widely

used image classification CNN with a moderate number of layers (52) as the split ML

model. For inference tasks, we choose the total processing latency as the optimization

objective. For training tasks, we choose the sum energy consumption of IAB MECs and

UE as the optimization objective, since the training tasks are not as latency-sensitive as

the inference tasks.

Fig. 2.11 and 2.12 plot the running cost distribution of each method under the

mmWave IAB and sub-6GHz networks, respectively. We see that for both mmWave IAB

46

Table 2.1: Link settings

Index Type Capacity (Mbps)
UE bandwidth

Mean Std.

5G mmWave IAB

A Wireless 200 66.49 19.47

B Wireless 200 71.89 19.72

C Wireless 200 47.06 8.95

D Wireless 200 54.03 11.61

E Wireless 200 48.59 9.41

F Wired 400 54.05 12.94

G Wired 200 36.03 8.63

H Wired 50 18.12 4.43

5G sub-6GHz

A & B Wireless 50 33.94 8.45

C Wired 50 18.78 3.66

47

and sub-6GHz networks, HiveMind achieves the minimal running cost for all traffic intensi-

ties. For mmWave IAB split inference (Fig. 2.11(a)), the latency of the cloud-only baseline

quickly increases to over 300ms as the network becomes more loaded, while the single split

converges to the UE-only baseline due to the increasing communication latency. HiveMind

is able to keep a stable running latency of ≤ 79 ms by limiting the usage of the core and

cloud servers under high network load. For mmWave IAB split training (Fig. 2.11(b)), the

energy consumption of the cloud-only method reaches up to 890J due to the less power

efficient low bitrate links under high network load. HiveMind keeps the IAB nodes’ energy

consumption under 400J by adjusting the split to restrain the data transfer on the links.

This set of experiments proves that in the mmWave IAB network, HiveMind can adapt

the split assignment to the dynamic network load and outperforms all the baselines on

both the inference and training tasks.

For sub-6 GHz split inference, we observe that the running latency of HiveMind

converges to the UE-only approach as the network load increases. The underlying reason

is that, due to the relatively lower link capacity (high communication latency) outweighs

the low computation latency on the MECs, so that the best split strategy is simply to

run the whole model locally on the UE. The result verifies that, even when the network

condition provides no benefit for splitting the ML, HiveMind is able to converge to the

best non-split strategy and yield the best performance.

Impact of ML models. We repeat the above experiments with three ML models

with different computation and communication characteristics: VGG11, a 16-layer CNN

model with an average layer output size of 356KB; ResNet18, a 52-layer CNN model

48

 0

 100

 200

 300

 400

Low Load Mid Load High Load

L
a

te
n

c
y
 (

m
s
)

Hivemind

Cloud only

Single Split

UE only

(a)

 0
 200
 400
 600
 800

 1000
 1200

Low Load Mid Load High Load

E
n

e
rg

y
 (

J
)

Hivemind

Cloud only

Single Split

UE only

(b)

Figure 2.11: Efficiency of (a) HiveMind split inference and (b) HiveMind split

training, in mmWave IAB network.

 0

 200

 400

 600

 800

Low Load Mid Load High Load

L
a

te
n

c
y
 (

m
s
)

Hivemind

Cloud only

Single Split

UE only

(a)

 0
 200
 400
 600
 800

 1000
 1200

Low Load Mid Load High Load

E
n

e
rg

y
 (

J
)

Hivemind

Cloud only

Single Split

UE only

(b)

Figure 2.12: Efficiency of (a) HiveMind split inference and (b) HiveMind split

training, in sub-6GHz network.

with an average layer output size of 80KB; R-CNN, a two-part CNN with the average

layer output size of 242KB. We define relative efficiency of a strategy as the average

ratio between the cost of the strategy and the cost of the UE-only baseline under the

same scenario for both training and inference. Fig. 2.13 shows the results. We see that

HiveMind achieves the highest relative efficiency on RCNN, 3× over ResNet18 and 1.8×

over VGG11. This is because the large communication overhead corresponding to the

49

of layers

La
ye

r o
ut

pu
t s

iz
e

VGG11 RCNN

ResNet18

 0
 1
 2
 3
 4
 5
 6

Low Load Mid Load High Load

R
el

at
iv

e
Ef

fic
ie

nc
y

 0
 1
 2
 3
 4
 5
 6

Low Load Mid Load High Load

R
el

at
iv

e
Ef

fic
ie

nc
y

 0
 1
 2
 3
 4
 5
 6

Low Load Mid Load High Load

R
el

at
iv

e
Ef

fic
ie

nc
y

 0
 1
 2
 3
 4
 5
 6

Low Load Mid Load High Load

R
el

at
iv

e
Ef

fic
ie

nc
y Hivemind

Cloud only
Single Split

UE only

Figure 2.13: Impact of ML models on HiveMind.

larger layer output size provides HiveMind with more improvement margin, while a large

number of layers gives HiveMind more flexibility to split the model in more efficient ways.

In other words, HiveMind sees more performance gains with a larger layer output size and

a larger number of layers.

Impact of MEC capability. In this section we examine the performance of

split ML with different MEC capabilites. The capability changes on different MEC nodes

may affect the split ML differently depending on the MEC servers’ proximity to the UE.

Therefore, we isolate the impact of capability change for each type of MEC. Specifically, we

repeat the above ResNet18 inference experiment and in each trial, choose one type of MEC

nodes and scale their computation latency profiles to {×1/10,×1/2,×1,×2,×10,×20},

in order to represent the different computational capabilities while keeping the rest of

the MEC nodes’ latency profiles unchanged. The results are denoted as improved IAB,

improved CN, and improved cloud for IAB MEC nodes, core MEC nodes, and the cloud

50

 0

 50

 100

 150

 200

 250

 300

1/10 1/2 1 2 10 20

L
a
te

n
c
y
 (

m
s
)

Hivemind (improv. IAB)

Hivemind (improv. CN)

Hivemind (improv. cloud)

Single Split

Cloud only

Figure 2.14: Impact of computation capability of various MECs on HiveMind split in-

ference.

server, respectively. Note that for cloud only and single split baselines, we only evaluate

the performance under cloud server capability change since they do not use IAB or core

MEC nodes. Fig. 2.14 shows the latency under different MEC capabilities. We see that

as the scale increase from 1/10 to 20, the improved IAB MECs result in the most latency

reduction, 14.5% lower latency than the CN MECs, and 47.2% than the cloud server. This

implies that the split DNN benefits the most with computational capacity improvement on

IAB MECs, which are closest to the UEs. Meanwhile, the single-split and cloud-only

approaches converge to 115 ms and 181 ms regardless of the MEC capabilities, indicating

the bottleneck of these two approaches lies in the communication latency. We also observe

that the overall latency performance for ×10 and ×20 is very close, which shows that

improving MEC capability cannot improve the split ML’s performance indefinitely since

it is also bounded by the communication links’ capacity.

51

 50

 60

 70

 80

 700 720 740 760 780 800

Ti
m

e
(m

s)

Latency (ms)

9 8 7 6 1 9 8 7 6 3 2UE UE

Unchanged

La
te

nc
y

(m
s)

𝟗 ← 𝟖 ← 𝟕 ← 𝟔 ← 𝟑 ← 𝟐 ←UE𝟗 ← 𝟖 ← 𝟕 ← 𝟔 ← 𝟏 ←UE

Sp
lit

To
po

lo
gy

6
1

3
2

Time (ms)

Figure 2.15: HiveMind topology adaptation showcase: the split assignment does not

change for the unchanged part of the route and the average latency increases less than

5ms after the topology change.

2.7.3 Performance under network dynamics

Impact of network topology changes. In 5G IAB networks, the network topol-

ogy may vary over time, as some gNBs may be put into sleep, or additional gNBs are added

for load balancing purposes. Meanwhile, the UE mobility and handoff also causes changes

in the network path. To showcase the effectiveness of our HiveMind design under such

topology dynamics, we randomly select a a period of time in the above ResNet18 exper-

iment where a topology change happens due to UE mobility, and plot its corresponding

workload and latency change in Fig. 2.15. This topology change represents an extreme

case where not only the access gNB changes from gNB1 to gNB2 due to the UE mobility

52

but also the number of hops on the route increases by 1. After the topology change, we

see the workload assignment remains the same for the unchanged part of the route. Such

persistence originates from a unique property of our HiveMind design, i.e., a MEC node’s

optimal split decision is independent of the upstream MECs (Sec. 2.4). Moreover, Hive-

Mind is stateless and does not require data transfer between the old and new MECs upon

a gNB handoff, which further improves the responsiveness of the system in the presence of

UE mobility. We also see a less than 5 ms increase in average latency after the topology

change event. This implies the added MEC can compensate for the extra communication

latency caused by the extended route and vice versa.

Effectiveness of predictive split. To investigate the performance of HiveMind’s

predictive split under different levels of network dynamics, we compare it with the standard

split DNN. We use link coherent time, i.e., the time during which the link capacity is

stable, to represent varying levels of network dynamics. We choose 10ms coherence time to

represent extreme network dynamics and 50ms coherent time to represent typical network

dynamics in cellular networks during rush hours [71]. We compare the predictive split

with the standard split DNN Fig. 2.16 shows the result. We see under 10 ms link coherent

time, the predictive split still leaves 12% of latency spikes over 100ms. As mentioned in

Sec. 2.4E, this is because the time gap ∆t between the SCI message and the split task is

much larger than the link coherent time. With the same amount of time gap estimation

error, the link capacity estimation is more likely to deviate from the correct value under

short link coherent time. In contrast, predictive split eliminates all latency spikes over

100ms when link coherent time is 50 ms, which is similar to the average look-ahead time

53

for predictive split in our setup. This implies the predictive split mechanism is effective,

as long as the link coherent time is no less than the average look-ahead time of the split

decision.

Impact of link prediction accuracy. The previous experiment assumes a 100%

link prediction accuracy. We further investigate the impact of link prediction errors on

HiveMind’s performance. Reusing the experiment setup for the 50ms link coherent time,

we run the split task with different link prediction accuracy. We model the link prediction

error as a normal distribution with the correct link capacity as mean and various relative

prediction errors as standard deviation. We generate random samples from these distri-

butions for predictive split. Fig. 2.17 shows the median latency against relative prediction

error. We see the latency performance deteriorates when the prediction error increases

and the performance gain turns to loss at 13%. Given that the state-of-art link prediction

mechanism can achieve < 10% prediction error over 91% of time [61], the result implies

the predictive split is able to tolerate typical link prediction errors. Note that the median

latency converges to 130 ms as prediction error increases beyond 17%, because as the

prediction error increases, it is more likely that the access link or one of the IAB links is

predicted with extremely small capacity and the predictive split assigns the whole model

to UE and IAB MECs, which takes around 130 ms to run the model.

2.7.4 Effectiveness of multi-objective split

To evaluate the effectiveness of the multi-objective split, we repeat the above

ResNet18 experiment under intermediate network load. The objective is to minimize

54

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 40 80 120 160 200

C
D

F

Latency (ms)

w/ predictive split
w/o predictive split

(a)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Latency (ms)

w/ predictive split
w/o predictive split

(b)

Figure 2.16: Predictive Splitting performance under (a) 10ms and (b) 50ms link coherent

time

energy consumption (best effort) while limiting the latency below 120 ms (quality assur-

ance). We compare ’s multi-objective design with three baselines: Opt. latency which

only optimizes latency, Opt. energy which only optimizes energy, and linear combine,

which linearly combines the objectives to calculate the edge cost as discussed in Sec. 2.5.

Fig. 2.18 shows the latency and energy consumption distribution. We see that both Opt.

latency and Opt. energy achieve the overall minimal for their targeted metric, while sac-

rificing the other metric, implying that energy and latency are two conflicting objectives

in such split tasks. Linear combine balances the two metrics and achieves an average

cost of 75ms/476J , whose latency value is unnecessarily low. In contrast, the HiveMind

multi-objective design further reduces the average energy consumption by 22.9% on top of

linear combine while keeping the maximal latency under the 120ms constraint. The result

indicates that HiveMind multi-objective design is able to simultaneously accommodate the

best effort and quality assurance objectives.

55

 0

 40

 80

 120

 0 10 20 30 40

L
a

te
n

c
y
 (

m
s
)

Relative accuracy

w/ predictive split
w/o predictive split

Figure 2.17: Impact of link prediction ac-

curacy on the predictive split.

 200

 400

 600

 800

 1000

 50 75 100 125 150 175

Opt. latency

Opt. energyMultiobj

Linear
combine

E
n

e
rg

y
 (

J
)

Latency (ms)

Figure 2.18: Energy consumption and

running latency comparison of HiveMind

multi-objective and baselines.

2.7.5 Effectiveness in splitting non-linear ML models

We investigate the performance of split collaborative learning and split RNN under

varying traffic loads in the mmWave IAB network. To evaluate the split RNN model, we

build a customized sequence labeling RNN consisting of 200 GRU recurrent module. For

the split collaborative learning model, we choose a well known multi-agent reinforcement

learning model, QMIX [72], which consists of a central mixing model and N RNN-based

agent models. We assume the central model is located at the cloud server (the sink)

and the optimization only applies to the agent models. For both experiments, we set the

energy consumption as the optimization objective with a latency constraint of 120ms. We

compare split RNN with the standard HiveMind design which repeats a split recurrent

module every iteration and split collaborative learning with the standard HiveMind which

splits the agent network without considering the parameter transfer cost. Fig. 2.8 shows

the relative efficiency. We see the split RNN outperforms the standard HiveMind by 1.7×

56

 0

 0.5

 1

 1.5

 2

 2.5

Low Load Mid Load High LoadR
e

la
ti
v
e

 E
ff

ic
ie

n
c
y Hivemind non-linear

Hivemind

(a)

 0.5
 1

 1.5

 2
 2.5

 3
 3.5

Low Load Mid Load High LoadR
e

la
ti
v
e

 E
ff

ic
ie

n
c
y Hivemind non-linear

Hivemind

(b)

Figure 2.19: Efficiency improvement of HiveMind non-linear on (a) RNN model (GRU)

and (b) collaborative learning model (QMIX) over standard HiveMind split.

under low load and 2.3× under high load, due to the increasing hidden state transfer cost

under the high network load. Similarly, split collaborative learning outperforms standard

HiveMind by 1.5× under high network load, where the latter fails to account for the large

parameter transfer cost. The results prove that the split non-linear designs can capture

the unique cost components in non-linear NNs and outperform the standard HiveMind by

a large margin.

2.8 Conclusion

In this paper, we have explored the multi-split ML as a new paradigm to integrate

edge intelligence to 5G systems. Our HiveMind framework distributively finds the opti-

mal multi-split under network dynamics and adapts to multiple optimization objectives

and neural network structures. Our experiments demonstrate that HiveMind significantly

improves ML running efficiency with various network dynamics, ML models, and MEC

57

capabilities. We believe HiveMind envisions a new direction to harness collaborative edge

power to boost ML intelligence in the 5G era.

Chapter 2 contains material from “HiveMind: Towards Cellular Native Machine

Learning Model Splitting” by Song Wang, Xinyu Zhang, Hiromasa Uchiyama, and Hi-

roki Matsuda, which appears in the IEEE Journal on Selected Areas in Communications,

40(2):626–640, 2021. The dissertation author was the primary investigator and author of

this paper.

58

Chapter 3

Error Tolerant ML Model Splitting

Over Edge Networks

3.1 Introduction

Owing to the standardization of 5G multi-access edge computing (MEC) [15] and

booming development of machine learning (ML) applications, we have witnessed a growing

interest in synergizing the user equipment (UE), MEC, and the cloud to boost mobile ML

in recent years [73, 12, 74]. The combined computation power from many devices and

the flexibility of splitting workloads enable this new distributed ML paradigm to break

the limits of scarce computation resource and unpredictable latency, which used to hinder

the UE and cloud based execution, respectively. Among the many proposed solutions

of distributed ML, two have recently gained major traction: Split ML [16, 40, 41, 29]

dynamically assigns parts of a model inference process to different computing nodes based

59

on network conditions and computation resources, to alleviate the pressure of computation

on UE devices and potentially optimize end-to-end latency and energy consumption [12,

13, 28, 16, 29]. Federated Learning (FL), on the other hand, distributes the training of

a model to a federation of participant devices. Each device (usually a UE) trains a copy

of the model with its local data, and updates the learned weights to a central parameter

server (PS) for aggregation. An FL system utilizes the computation power of a large

number of mobile devices, while eliminating the need for uploading privacy-sensitive raw

data to the cloud [35, 38].

Despite the unprecedented computation power scale-up, these distributed ML meth-

ods suffer from one major bottleneck: due to their distributed architecture, computation

nodes need to exchange data with each other (referred to as ML data) intensively, which

may cause significant communication overhead. Specifically, split ML transmits interme-

diate layers’ output data from the UEs to MECs, and FL’s participating devices upload

the locally trained model weights to the parameter server. Since the data source is usually

located at the UE, split ML and FL mainly rely on the cellular uplink for data transfer.

Due to the limited power budget of mobile devices, the uplink typically experiences lower

link quality [75]. As illustrated in Fig. 3.1, under poor link conditions, block errors occur

more frequently and the cellular link needs to attempt multiple retransmissions to correct

the errors. This tends to hamper latency sensitive ML applications such as remote driving,

remote-controlled robotics, and AR display/gaming which require a stringent end-to-end

latency of around 10 ms [11].

Existing works have approached the communication overhead problem by com-

60

“Tree”

Tx Rx

Initial
transmission

NACK

Retr. #1

NACK

Retr. #2 R
et
r.
la
te
nc
y

Noisy link

Figure 3.1: An example of split ML over a lossy edge network.

pressing the ML data before transmission [56, 51]. Such approaches often need non-trivial

redesign on the application level, and are unaware of the low-layer overhead due to poor

link quality. In this paper, we propose to leverage the intrinsic error-tolerant capability

of the ML data to circumvent the communication overhead. Unlike the general cellular

network traffic that requires error-free data transmission, we observe that distributed ML

may still perform the inference or training operations with fair accuracy, even with the

present of errors in data transfer. As a result, retransmission becomes unnecessary as

long as the error-induced accuracy loss is tolerable. In other words, such error tolerance

capability in ML data reduces the need for retransmissions and consequently, the overall

communication overhead.

To realize this principle, we present a first study on the error-tolerant capability of

distributed ML models. By examining representative split ML and FL model execution

over 5G edge networks, we address the following key questions:

How well can the ML data tolerate errors? We perform a layer-level char-

61

acterization of the accuracy performance versus error rate under a wide range of link

conditions and block error patterns. Our experiments reveal that the error tolerance capa-

bility exists in most of the commonly used deep neural network (DNN) layers in split ML

and FL. However, the specific accuracy losses vary significantly across different types of

DNN layers. For a certain layer, the accuracy loss and error rate are strongly correlated,

and hence the accuracy performance of the ML model can be profiled as a function of error

rate. In addition, the ML data in split ML suffer more accuracy loss from burst errors,

whereas FL is agnostic to error patterns.

How to enhance the error-tolerant capability of ML models? Based on

the error-tolerance characterization, we propose two techniques to enhance error tolerance

in distributed ML: Interleaved coding utilizes the property that split ML data is prone

to burst errors. It randomly interleaves the ML data sequence so that the burst errors

are jumbled into smaller pieces and spread over time, which mitigates their impacts on

the model accuracy. Importance-based coding facilitates Unequal Error Protection (UEP)

on parameters with different values and reduces the error rate on high-valued parameters

which are more likely to impact the model accuracy.

How to leverage the error-tolerant capability to improve the efficiency

of distributed ML in wireless edge networks? We propose NeuroMessenger, a

lightweight cellular-native mechanism that reduces the latency of distributed ML over

edge networks. NeuroMessenger is jointly executed by the transmitter and receiver of the

ML data, i.e. UE and basestation co-located with MEC. It is transparent to ML appli-

cations and tightly integrated with the devices’ protocols stack which aligns with 3GPP’s

62

vision for future edge intelligence system [11]. For an ML model, NeuroMessenger per-

forms a layer-wise profiling of the error rate to accuracy mapping offline. At runtime,

NeuroMessenger on transmitter first reduces the ML data size by pruning the redundant

parameters. Then it enhances the error tolerance of the ML data by applying the afore-

mentioned enhancement schemes. The encoded data is then sent over the cellular edge

link. At the receiver end, NeuroMessenger’s retransmission controller retrieves an estima-

tion of the channel state and estimates the corresponding error rate. Then, based on the

error rate to accuracy profiles from the offline stage, the retransmission controller predicts

if the accuracy can meet the application requirement and determines if a retransmission

is necessary and how aggressive the retransmission should be. By shrinking the need for

retransmission, NeuroMessenger substantially improves the communication efficiency of

distributed ML while maintaining a user-defined accuracy requirement. With NeuroMes-

senger, the edge link can aggressively choose a high order modulation and coding scheme,

which leads to high raw bit-rate and high block error rate under moderate or low channel

quality. NeuroMessenger also greatly reduces the complexity of distributed ML system’s

development and deployment by making the communication overhead reduction mecha-

nism transparent to applications.

We evaluate NeuroMessenger on a 5G NR simulator. Our experiments adopt the

typical PHY settings of a 5G uplink (e.g., modulation and coding scheme, bandwidth and

subcarrier spacing, transport block size, etc.). We choose state-of-art image classification

and speech recognition models as representative ML applications. Our experiment results

show: (i) NeuroMessenger reduces the communication latency by up to 95% comparing to

63

baselines while still maintaining less than 10% accuracy loss under an extreme link SNR

of -2 dB. (ii) NeuroMessenger is effective under a wide range of error rates. We observe

20% to 99% latency reduction and less than 5% accuracy loss under 0.1 to 0.95 block error

rate. (iii) For split ML models, NeuroMessenger is effective regardless of the partitioning

point within the models.

The major contributions of this paper are as follow: (i) A First characterization

of error tolerant capability in distributed ML. (ii) A novel system that enhances and

utilizes error tolerant capability to reduce communication overhead in distributed ML.

(iii) Experimental verification of NeuroMessenger on a 5G edge network environment with

representative distributed ML settings.

3.2 Related Work

3.2.1 Distributed Edge Intelligence

Distributed ML on cellular edge servers has garnered much interest in the past two

years. In particular, the 3GPP standardization group has envisioned a deep integration

of split ML and FL for mobile inference and training respectively [30]. Existing research

on split ML mostly focused on partitioning a DNN’s computing load to two or more parts

which are executed by generic edge servers to meet latency or energy optimization ob-

jectives [16, 40, 41]. The research on FL proposed new designs on aggregation algorithm

[38, 76, 77], participants selection [78, 79, 80], and incentive mechanisms [81, 82] to improve

the communication efficiency or privacy. These works assume the ML data is transmitted

64

directly over the communication links which usually over-protect the data integrity. When

the link condition is poor, frequent retransmissions may occur. Even under good link con-

ditions, the communication PHY layer conservatively chooses the modulation and coding

scheme (MCS) that is most likely to work in an error-free manner, rather than choosing

one with high raw bit-rate but more block errors. In contrast, we propose to build error

tolerant capability into the intermediate data, so that they can be salvaged in spite of

errors. With this measure, the edge network can avoid the costly retransmissions, and can

aggressively choose a high but error-prone MCS level to improve communication efficiency.

3.2.2 ML communication overhead reduction

A classical approach to reduce the communication overhead in edge ML is to com-

press the ML data. Yao et al. [55] proposed a NN-based compressor/decompressor de-

sign that compresses the intermediate data following compressive sensing theory. Hu et

al. [83] adopted a similar NN-based compressor/decompressor and leveraged the prior

transmissions to aid the decompression of current intermediate data. These NN-based

compression techniques greatly reduce the intermediate data size, but they bear two limi-

tations. First, the NN compressor/decompressor themselves require hours of training for

individual model and split point [55]. In the case where the split point or the ML model

needs to be constantly changed due to network dynamics, e.g., in the context of online

learning, it is impossible to train the compressor/decompressor in real time. Second, such

compression approaches are heavily customized to individual application, e.g., the com-

pressor/decompressor are jointly trained with the ML model. In contrast, NeuroMessenger

65

R
ed

un
da

nc
y

Pr
ed

ic
tio

n

Redundancy
mask

Sp
ar

se
R

ep
re

se
nt

at
io

n

12 4 -10 -2
0 3 -1 -3
3 -3 24 20
-10 0 11 1

Feature maps (Split ML) or
Weights (FL)

R
an

do
m

In
te

rle
av

er

Retransmission
controller

D
ei

nt
er

le
av

er

D
es

pa
rs

ify

C
ha
nn
el

es
tim

at
io
n

La
ye

r 𝒊
−
𝟏

La
ye

r 𝒊

La
ye

r 𝒊

Pr
un

in
g

Inject uniformly
distributed errors

La
ye

r 𝒊
+
𝟏

… Top-1
accuracy

Standard
dataset

PHY

Application

Offline profiling

Error rate/accuracy mapping

User defined
accuracy
toleranceSp

lit
 M

L

Sp
lit

 M
L

12 4 -10 0
0 3 -1 -3
3 -3 24 20
-10 0 11 1

Erred data with
accuracy guarantee

Off-the-shelf NN model Continue inference (Split ML) or
Aggregation (FL)

Raw feature maps or
model weights,
No additional
processing

Meta info
(Split ML or FL?

Model?
Split layer?)

Figure 3.2: NeuroMessenger system overview.

only needs a lightweight application-independent profiling consisting of only the inference

process which usually takes less than 1/1000 of time to run compared to the training.

3.3 System overview

The system architecture of NeuroMessenger is shown in Fig. 3.2. At runtime, the

UE application runs off-the-shelf distributed models. It can pass to the low layer the raw

ML data along with a small metadata indicating if the application is split ML or FL, what

the NN model is, and the splitting point for split ML. NeuroMessenger, as part of the

cellular-native stack, recognizes the metadata and acts on the ML data accordingly. For

66

split ML, NeuroMessenger first prunes the redundant data (Sec. 3.5.2), and then applies

error tolerance coding (Sec. 3.5.1). As for FL, NeuroMessenger skips these two processes.

The resulting data and metadata are then fed to the original cellular PHY layer and then

transmitted to the basestation.

Upon receiving the data, the NeuroMessenger retransmission controller on the

basestation estimates how many retransmission attempts are needed to balance the model

accuracy and communication overhead. Specifically, the retransmission controller first uses

the information in the metadata to find the corresponding error rate to accuracy mapping

function G, which is profiled offline (Sec. 3.5.2). It also retrieves the latest uplink SNR

measurement and estimates the corresponding error rate r. Then, the controller compares

estimated accuracy under the current error rate G(r) and a user-defined minimal tolerable

accuracy au and calculates the maximum number of retransmission attempts n as follow:

n =


0 if G(r) > au

F (r, au) if G(r) < au

(3.1)

where F (r1, r2) calculates the minimal number of retransmission attempts to reduce error

rate from r1 to r2. For example, F (0.8, 0.5) = 2 means that to reduce error rate from 0.8 to

0.5, the maximal number of retransmission attempts needed is 2. F is determined by the

PHY layer MCS level and the channel condition, and can be derived by existing predictive

models [84]. The basestation then signals the UE for retransmission until n attempts or the

data passes parity check. By eliminating the retransmissions when G(r) > au and reducing

the number of retransmission attempts when G(r) < au, NeuroMessenger alleviates the

communication overhead.

67

Notably, NeuroMessenger separates the ML data transfer from the main ML design,

and thus it reduces the complexity of the distributed ML system design while still pro-

viding model-specific efficiency improvement. The lightweight offline profiling also enables

easy and fast adaptations of rapidly evolving ML models to NeuroMessenger without any

runtime overhead.

3.4 Error-tolerance in Distributed ML

In this section, we first characterize the error tolerance capability in a typical split

ML setting. Then, based on the characteristics, we propose and verify two techniques to

encode the intermediate data transfer and enhance error tolerance in generalized split ML

models.

3.4.1 A dissection of neural network models

To study the error tolerance in split ML, we must first understand the structures

of split ML and the neural network (NN) models. A NN model consists of multiple

consecutive layers. During an inference task, a layer takes the output data from its previous

layer, commonly referred to as feature maps, applies certain operations and feeds its own

output feature maps to the next layer. Despite numerous variants, most commonly used

convolutional neural network (CNN) models share the same 4-layer building blocks, as

shown in Fig. 3.3.

Convolution (conv) layer convolves the input data or feature maps with a set

68

Figure 3.3: Layer composition of a typical neural network and a demonstration of feature

map redundancy: most of parameters in the feature map from batch norm layer are

dropped after the pooling layer.

of learned filters.

Batch norm (bn) layer normalizes a batch of feature maps.

Pooling (maxpool, avgpool) layer applies the maximum or average function

over a region in the feature maps and reduces the region of parameters to a scalar.

Activation (sig, ReLu) layer applies a non-linear activation function to individ-

ual parameters and maps the negative or small valued parameters to zero.

In addition to the 4 basic layers in CNN, fully connected layers, which linearly

combine all feature maps, are often used as a final classifier or an independent NN model

for classification tasks.

69

3.4.2 Characterizing error tolerance in split ML

We first demonstrate the impact of errors of intermediate data transfer in split ML,

with a pre-trained ResNet18 model [85]. ResNet18 is a popular image classification CNN

model consisting of 54 layers. Due to its broad application and typical layer structure,

it is often used as the benchmark for distributed ML designs [16, 55]. We assume an

example split ML setting where a UE and a MEC split the model at the 5th layer over a

noisy 5G link. The parameters in the feature maps are stored in standard 32-byte float

type. To investigate the impact of different error patterns, we use two types of errors: (1)

burst errors represents the common error pattern in packetized communications where an

error corrupts an entire packet. To match our 5G link assumption, we set the length of

a packet to 3777-byte blocks, a typical transport block size in 5G NR [86]. (2) random

errors represents a more general but rarer error pattern where an error corrupts an random

individual parameter in the feature maps. The corrupted parameters are treated as zeros

in our characterization experiments. We vary the error rate and test the corresponding

top-1 inference accuracy on the CIFAR100 dataset. Fig. 3.4 showcases the error rate to

accuracy mapping when splitting at two example layers (layer 4 and 26). By examining

the error rate to accuracy mapping at each layer, we have the following key observations:

The vanilla split ML has limited error tolerant capability. As shown in

Fig. 3.4, the inference accuracy gradually decreases to 0 as the error rate increases. This

implies the feature maps inherently possess error tolerance and may still produce correct

inference result under a non-zero error rate. We have the same observation for the error

70

rate to accuracy mappings of all layers except for the fully connected layers. This inherent

error tolerant capability is mainly caused by convolution and pooling layers after the

splitting point which operate on local regions and often have “soft outputs”, i.e. float

point type. Even if a parameter is corrupted, the convolution and pooling operations in

the layers after the splitting point can still produce similar values from other parameters

in the same region and eventually dilute the impact of the corrupted parameter. Note that

in both figures of Fig. 3.4, the accuracy under burst errors is approximately linear with

respect to the error rate, with 7% accuracy loss for every 10% error rate increase. For a

slightly noisy 5G uplink with 10% error rate [68], it will lead to 7% accuracy loss, which

is usually the accuracy gap between an advanced NN model and a simple classifier. This

implies that the inherent error tolerance in ML data alone can hardly combat the block

errors in practical communication systems without a major impact on inference accuracy.

Error tolerance is layer-dependent. The error rate to accuracy mapping curve

differs across layers, indicating that under the same link condition, splitting at different

layers yields different accuracy. For example, at block error rate of 0.8, layer 26 and 4

show accuracy of 78% and 52%, respectively. Such gaps are observed for all other layers

with accuracy differences ranging from < 1% to 50%. This seemingly obvious observation

reveals the necessity for a layer-wise error rate to accuracy profiling in the cases where the

splitting layer is dynamically selected.

Split ML is prone to burst errors. In Fig. 3.4, we see with the same error rate,

the block errors cause far more accuracy loss than the random errors, i.e., up to 20% for

layer 4 and 50% for layer 26. For other layers in ResNet18, we also observe similar accuracy

71

0 20 40 60 80 100

Error rate (%)

0

20

40

60

80

T
o

p
-1

 A
c
c
u

ra
c
y

Burst error

Random error

(a)

0 20 40 60 80 100

Error rate (%)

0

20

40

60

80

T
o

p
-1

 a
c
c
u

ra
c
y

Burst error

Parameter error

(b)

Figure 3.4: Top-1 accuracy with different error rate applied to the feature map from (a)

layer 4, (b) layer 26.

Uncorrupted Block error Parameter error

Uncorrupted Block error Parameter error
MaxPool

Uncorrupted Burst errors Random errors

Received
Feature

map

Maxpool
Output

Contour
of frog

Corrupted
region

Preserved
contour

Figure 3.5: A demonstration of impact of different types of errors on feature maps: the

top region of the frog shape is almost entirely corrupted by block errors, while the random

error preserves the shape.

72

gaps ranging from 20% to 60%. Similar to the first observation, such vulnerability to burst

errors originates from the convolution and pooling operations. Since these operations are

applied to local regions, the output feature maps usually show a similar pattern to the

input feature maps in spite of their different sizes. Fig. 3.5 shows a visualization of input

and output feature maps at the 5th layer (maxpooling) of ResNet18 with an image of a

frog as input. We see that the basic shape and the contour of the frog are preserved after

the maxpooling layer, even though the feature map size reduces from 24×24 to 12×12. As

a result, the random errors in the input feature maps are usually diluted in the following

layers.

Burst errors, on the other hand, corrupt long sequences of parameters that usually

span multiple local regions or even an entire input feature map. Since convolution and

pooling layers can only produce zeros if all parameters in a local region are corrupted

(treated as zero in our experimental characterization), the impact of burst errors is often

preserved on the following layers. Fig. 3.5 showcases such phenomenon. We see that under

burst errors, the top half of the frog contour is corrupted even after a maxpooling layer.

In comparison, the random errors only corrupted a small region and the frog contour is

preserved. Hence, the burst errors are more likely to cause a large accuracy loss than

random errors.

3.4.3 Characterizing error tolerance in FL

As mentioned in Sec. 3.1, instead of feature maps, the clients in FL transfer the

model weights. Hence, it is reasonable to expect that FL possesses different error tolerance

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layer

0

50

T
o

p
-1

 a
c
c
u

ra
c
y

Figure 3.6: Per-layer accuracy of VGG11 FL under BLER=0.1. We see the ranges of

accuracy of batch norm layers (3, 4, 8, 10, 12, 16) exceed 20 percent, indicating that the

batch norm layers are highly sensitive to errors.

characteristics than split ML. We investigate the impact of errors on a FL system with

the VGG11 model. We assume a typical FL system with 20 participating devices, each

training with 1
20

CIFAR-100 dataset that follows i.i.d. distribution. The model weights

are aggregated using the widely-adopted FedAvg algorithm [87] in a synchronized manner,

i.e., in each epoch, one client only uploads model weights one time. To avoid the impact of

heterogeneous links, we assume the FL system selects clients with similar link conditions

and all clients share the same error rate. To investigate layer-wise error tolerance, we only

apply errors to one layer’s weights for each trial. Note that the activation and pooling

layers are not considered in the experiment since they do not have weights. The model is

trained over 50 epochs and then tested with the CIFAR-100 testing set. For each layer and

error rate, we repeat the experiment 10 times. From the results, we make the following

key observations:

Batch norm layers in FL are not error-tolerant. Fig. 3.6 shows the top-1

accuracy when applying random errors with 10% error rate to each layer. Although most

layers maintain a stable accuracy for all 10 trials, layer 4, 8, 10, and 12 show a wide range

74

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y Random error

burst error

(a)

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y

Random error

burst error

(b)

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y

Random error

burst error

(c)

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y

Random error

burst error

(d)

Figure 3.7: Top-1 accuracy of VGG11 trained in FL under different block error rate

applied to (a) 8st, (b) 11th, (c) 18th, and (d) 22th layers (conv).

of accuracy fluctuations up to 70%. Upon further inspection, we found that all layers with

larger than 20% accuracy fluctuations are batch norm layers. Fig. 3.8 further shows the

accuracy when the two batch norm layers experience different error rates. We see such

fluctuations exist persistently. Unlike the convolution layers’ weights which only affect one

small region of a feature map, the weights in the batch norm layers are applied to a batch

of feature maps. Consequently, the weight errors have a larger impact on accuracy. This

result indicates that ideally batch norm layers’ weights should be transferred error-free.

FL is prone to both burst errors and random errors. To investigate the im-

pact of error patterns, we compare the accuracy from two different types of error patterns.

75

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y Random error

burst error

(a)

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y Random error

burst error

(b)

Figure 3.8: Top-1 accuracy of VGG11 trained in FL under different block error rate

applied to (a) 16st, (b) 19th layers (batch norm).

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y

Random error

burst error

(a)

0.2 0.4 0.6 0.8

BLER

0

50

100

T
o

p
-1

 a
c
c
u

ra
c
y

Random error

burst error

(b)

Figure 3.9: Top-1 accuracy of VGG11 trained in FL under different block error rate

applied to (a) 25th, (b) 26th layers (fully connected).

76

As shown in Fig. 3.7 and 3.9, we see that for both convolution and fully connected layers,

random error and burst error have similar impacts on model accuracy. This is because the

training process in ML has a forward phase and a backward phase. The forward phase,

essentially the same as the inference phase, computes the inference result and the corre-

sponding loss from the first layer to the last layer, while the backward phase uses the loss

to compute the gradient of each layer propagating from the last layer to the first layer.

Similar to split ML, the convolution and pooling layers dilute the errors in the forward

phase and hence reduces its negative impact on the model accuracy. However, the same

layers spread out errors to more parameters during the backward phase which amplifies

the impact of errors on the model accuracy. As a result, there is no discernible advantage

of random errors over burst errors. This means FL’s error tolerance cannot be improved

by interleaved coding.

3.5 NeuroMessenger Operations

3.5.1 Error tolerance Enhancing Coding

Interleaved Coding The foregoing experiments hint that split ML suffers more

accuracy loss from burst errors than random errors under the same error rate. In practice,

however, due to the packetization operation and wireless channel coherence, the majority of

the errors are in the form of burst errors [88]. To alleviate the impact of such burst errors,

we adopt an interleaved coding method to encode the feature maps. Interleaved coding is

a family of codes aiming to convert the burst errors to random errors by interleaving the

77

data sequence [89]. The basic idea is that the interleaving operation redistributes a long

sequence of errors across many short separated bursts.

To showcase the interleaved coding, we apply it to the ML data in the burst error

experiment in Sec. 3.4B and compare the top-1 accuracy. Without loss of generality, we

use random interleaved coding [90]. The code generates a randomized permutation whose

size equals the number of float point numbers in ML data and reorders the numbers in the

data accordingly. To understand the result across different models, we add VGG11 [91],

another popular image classification NN, to the experiment. We choose 4 different split

points for each model, each at a quadrate point of the model. Fig. 3.10 and 3.11 show

the the results.

We see that interleaved coding improves accuracy by up to 190% for all split points

in ResNet18 and first 3 points in VGG11 (we will explain the last point later). Specifically,

the last two points in ResNet18 show less than 1% accuracy loss when error rate is less

than 50% while the baseline loses 45% accuracy at the same error rate. The result implies

the interleaving technique substantially improves the burst error tolerance for most layers

in CNN models.

Importance-based Coding Unlike the regional operations in the convolution

and pooling layers, a fully connected layer operates on all parameters in feature maps and

the output is a linear combination of all parameters whose weights are obtained during

the training phase. Instead of the patterns and shapes in feature maps, the impact on

accuracy from fully connected layers is determined by the absolute value of individual

parameters. Recall that interleaved coding only redistributes the long sequence of errors

78

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(a)

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(b)

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(c)

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(d)

Figure 3.10: Top-1 accuracy of ResNet18 under different block error rate with the split

point after (a) first, (b) second, (c) third, and (d) forth residual module.

79

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(a)

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(b)

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(c)

0.2 0.4 0.6 0.8

Error rate

0

0.2

0.4

0.6

0.8

T
o

p
-1

 A
c
c
u

ra
c
y

w/o coding

w/ coding

(d)

Figure 3.11: Top-1 accuracy of VGG11 under different BLER with the split point after

(a) 1st, (b) 5th, (c) 19th, and (d) 26th layer.

80

without reducing the number of errors. As a result, the interleaved coding does not improve

the error tolerance for fully connected layer. This explains the result in Fig. 3.11(d) where

the interleaved coding shows similar accuracy as the baseline.

To enhance error tolerance for fully connected layers, we adopt importance-based

coding, a family of codes that provide Unequal Error Protection (UEP) capability for

data with different importance. The basic idea is that a corrupted high-valued parameter

will have more impact on accuracy than a corrupted low-valued parameter (e.g., near 0).

Hence the high valued parameters are more important and should be protected against

high error rates by UEP.

To showcase the importance-based coding, we repeat the previous burst error exper-

iment for the DeepSpeech2 model [92]. DeepSpeech2 is a recurrent neural network (RNN)

speech recognition model consisting of fully connected and activation layers. Similar to

ResNet18, it is often used as a benchmark to evaluate distributed ML systems [93]. To

show the maximum possible improvement, we assume an ideal importance-based coding

scheme that ensures the error rate of a particular parameter is inversely proportional to

its value while the total error rate is constant. In practice, the importance coding applies

UEP techniques such as Hadamard matrix [94], network slicing [95], and repetition [96],

to the high-valued parameters to reduce their error rate under the same overall error rate.

Fig. 3.12 shows the Word Error Rate (WER) performance for 4 splitting points at each

quadrate point. A higher WER means lower speech recognition accuracy We see the ideal

importance-based coding generally reduces WER by up to 60%. When block error rate

(BLER) is less than 50%, the WER with ideal importance-based coding is maintained at

81

0.2 0.4 0.6 0.8

Error rate

0

50

100

W
E

R

w/o coding

w/ coding

(a)

0.2 0.4 0.6 0.8

Error rate

0

50

100

W
E

R

w/o coding

w/ coding

(b)

0.2 0.4 0.6 0.8

Error rate

0

50

100

W
E

R

w/o coding

w/ coding

(c)

0.2 0.4 0.6 0.8

Error rate

0

50

100

W
E

R

w/o coding

w/ coding

(d)

Figure 3.12: Word error rate of DeepSpeech2 under different block error rate with the

split point after (a) first, (b) second, (c) third, and (d) forth splitting point.

< 20%, less than 1% increase from the 0% block error rate case. The result shows that the

ideal importance-based coding effectively enhances the error tolerance for fully connected

layers.

3.5.2 Additional Operations

Layer-wise error-tolerance profiling As demonstrated in Sec. 3.4 and 3.4.3,

the accuracy performance of a distributed ML model depends on the link error rate, as

well as on which layer the error occurs. To ensure a certain level of accuracy, we need to

profile the mapping between the error rate and inference accuracy, and use the profile to

82

estimate accuracy under a given link condition at runtime. We first reuse the experimental

settings in Sec. 3.4 and 3.4.3 where the ML data experience random errors. For split ML

models, since the splitting point may change at runtime, we profile the error rate to

accuracy mapping for each layer offline. For FL models, we only profile a single error

rate to accuracy mapping by applying the errors to the weights of all except the batch

norm layers. We vary the error rate and record the corresponding top-1 testing accuracy.

Suppose the error rates are {r1, r2, ..., rL}, with corresponding accuracy {a1, a2, ..., aL}.

To approximate the error rate to accuracy mapping function, we empirically choose an

exponential function G to fit the mapping, so that the L1 distance between the inferred

accuracy and measured accuracy is minimized.

G = min
G

L∑
i=1

|ai −G(ri)| (3.2)

Since the error tolerance strongly depends on error rate (Sec. 3.4), we can thus accurately

estimate the accuracy with G, for a given error rate (derived from the link SNR). The

profiling is performed offline and only needs to be done once for a given ML model. The

profiling latency is determined by the device’s computation power as well as the size and

depth of the ML model. We observe a profiling latency of < 10s for split ML and < 10min

for FL with 54-layer ResNet18 model on a server with Nvidia RTX2080 TI GPU.

83

C
O
N
V

B
N

R
eL
U

M
ax
Po
ol

M
ax
U
np
oo
l Redundancy

mask

Redundancy finder

Sp
ar
se

R
ep
re
se
nt
at
io
n

12 4 -10 -2
0 3 -1 -3
3 -3 24 20
-10 0 11 1

Feature
map

Values: [12, 3, 24]
Indices: [(0, 0),

(2, 0),
(2, 2)]

Size: (4, 4)

Figure 3.13: An illustration of feature map pruning: (1) generate redundancy mask, (2)

Multiply redundancy mask to the feature maps, (3) Convert pruned feature maps to sparse

representation.

Table 3.1: The top-1 inference accuracy and the end-to-end latency performance of Neu-

roMessenger FL and baselines under a Matlab simulated noisy 3GPP NR uplink.

VGG11 - CIFAR100 ResNet18 - CIFAR100 DeepSpeech2 - LibriSpeech

tcomm Acc. retr. ? tcomm Acc. retr. ? tcomm WER retr. ?

Ours
8.80s

(-35.6%)
84.0%
(-2.3%) None

0.77s
(-35.8%)

82.6%
(-4.0%) None

20.12s
(-38.8%)

18.7%
(-6.3%) None

HARQ
13.66s
(-0.0%)

86.0%
(-0.0%) Yes

1.20s
(-0.0%)

80.0%
(-0.0%) Yes

31.36s
(-0.0%)

17.6%
(-0.0%) Yes

84

Table 3.2: The top-1 inference accuracy and the end-to-end latency performance of Neu-

roMessenger split ML and baselines under a Matlab simulated noisy 3GPP NR uplink.

85

S
p
li
t
p
o
in
t
1

S
p
li
t
p
o
in
t
2

S
p
li
t
p
o
in
t
3

S
p
li
t
p
o
in
t
4

t c
o
m

m
A
cc
.

re
tr
.
?

t c
o
m

m
A
cc
.

re
tr
.
?

t c
o
m

m
A
cc
.

re
tr
.
?

t c
o
m

m
A
cc
.

re
tr
.
?

V
G
G
1
1
-
C
IF
A
R
1
0
0

O
u
r
s

3
6
.0
m
s

(-
9
1
.9
%
)

7
9
.7
%

(-
8
.1
%
)

N
o
n
e

2
6
.7
m
s

(-
8
7
.7
%
)

8
3
.3
%

(-
3
.1
%
)

N
o
n
e

4
.8
m
s

(-
9
1
.2
%
)

8
2
.0
%

(-
1
1
.1
%
)

N
o
n
e

<
1
m
s

(-
9
3
.0
%
)

6
5
.8
%

(-
2
3
.5
%
)

N
o
n
e

R
a
w

4
3
3
.8
m
s

(-
0
.0
%
)

6
8
.2
%

(-
2
0
.7
%
)

N
o
n
e

2
1
6
.8
m
s

(-
0
.0
%
)

8
5
.2
%

(-
0
.9
%
)

N
o
n
e

5
4
.3
m
s

(-
0
.0
%
)

8
3
.0
%

(-
3
.5
%
)

N
o
n
e

1
3
.6
m
s

(-
0
.0
%
)

6
5
.4
%

(-
2
4
.0
%
)

N
o
n
e

P
ru

n
ed

3
3
.8
m
s

(-
9
2
.2
%
)

6
0
.1
4
%

(-
3
0
.1
%
)

N
o
n
e

2
4
.5
m
s

(-
8
8
.7
%
)

7
2
.8
%

(-
1
5
.3
%
)

N
o
n
e

2
.6
m
s

(-
9
5
.2
%
)

6
1
.4
%

(-
2
8
.6
%
)

N
o
n
e

<
1
m
s

(-
9
3
.0
%
)

5
9
.8
%

(-
3
0
.5
%
)

N
o
n
e

P
ru

n
ed

-

H
A
R
Q

4
6
.6
m
s

(-
8
9
.3
%
)

8
6
.0
%

(-
0
.0
%
)

Y
es

3
8
.0
m
s

(-
8
2
.4
%
)

8
6
.0
%

(-
0
.0
%
)

Y
es

4
.1
m
s

(-
9
2
.4
%
)

8
6
.0
%

(-
0
.0
%
)

Y
es

<
1
m
s

(-
9
3
.0
%
)

8
6
.0
%

(-
0
.0
%
)

Y
es

R
es
N
et
1
8
-
C
IF
A
R
1
0
0

O
u
r
s

1
6
.0
m
s

(-
3
9
.6
%
)

7
6
.8
%

(-
4
.0
%
)

N
o
n
e

6
.0
m
s

(-
5
5
.9
%
)

7
8
.4
%

(-
2
.0
%
)

N
o
n
e

2
.5
m
s

(-
6
3
.2
%
)

8
0
.0
%

(-
0
.0
%
)

N
o
n
e

2
.1
m
s

(-
3
6
.4
%
)

8
0
.0
%

(-
0
.0
%
)

N
o
n
e

R
a
w

2
6
.5
m
s

(-
0
.0
%
)

6
6
.5
%

(-
1
6
.9
%
)

N
o
n
e

1
3
.6
m
s

(-
0
.0
%
)

7
8
.6
%

(-
1
.8
%
)

N
o
n
e

6
.8
m
s

(-
0
.0
%
)

6
8
.3
%

(-
1
4
.6
%
)

N
o
n
e

3
.3
m
s

(-
0
.0
%
)

6
8
.3
%

(-
1
4
.6
%
)

N
o
n
e

P
ru

n
ed

1
4
.9
m
s

(-
4
3
.8
%
)

7
6
.8
%

(-
4
.0
%
)

N
o
n
e

3
.8
m
s

(-
7
2
.1
%
)

6
3
.7
%

(-
2
0
.4
%
)

N
o
n
e

2
.2
m
s

(-
6
7
.6
%
)

6
2
.0
%

(-
2
2
.5
%
)

N
o
n
e

1
.7
m
s

(-
4
8
.5
%
)

6
3
.9
%

(-
2
0
.1
%
)

N
o
n
e

P
ru

n
ed

-

H
A
R
Q

2
3
.1
m
s

(-
1
2
.8
%
)

8
0
.0
%

(-
0
.0
%
)

Y
es

6
.0
m
s

(-
5
5
.9
%
)

8
0
.0
%

(-
0
.0
%
)

Y
es

3
.3
m
s

(-
5
1
.5
%
)

8
0
.0
%

(-
0
.0
%
)

Y
es

2
.6
m
s

(-
2
1
.2
%
)

8
0
.0
%

(-
0
.0
%
)

Y
es

D
ee
p
S
p
ee
ch

2
-
L
ib
ri
S
p
ee
ch

(A
cc
u
ra
cy

re
p
re
se
n
te
d
b
y
W

E
R
)

O
u
r
s

3
.5
m
s

(-
6
2
.8
%
)

1
7
.7
%

(+
0
.5
%
)

N
o
n
e

3
.5
m
s

(-
6
2
.8
%
)

1
8
.0
%

(+
2
.2
%
)

N
o
n
e

3
.5
m
s

(-
6
2
.8
%
)

2
5
.0
%

(+
4
2
.0
%
)

N
o
n
e

3
.5
m
s

(-
6
2
.8
%
)

1
7
.7
%

(+
0
.5
%
)

N
o
n
e

R
a
w

9
.4
m
s

(-
0
.0
%
)

2
2
.3
%

(+
2
6
.7
%
)

N
o
n
e

9
.4
m
s

(-
0
.0
%
)

2
7
.6
%

(+
5
6
.8
%
)

N
o
n
e

9
.4
m
s

(-
0
.0
%
)

4
7
.2
%

(+
1
6
8
.2
%
)

N
o
n
e

9
.4
m
s

(-
0
.0
%
)

8
0
.1
%

(+
3
5
5
.1
%
)

N
o
n
e

P
ru

n
ed

3
.0
m
s

(-
6
2
.8
%
)

3
5
.4
%

(+
1
0
1
.1
%
)

N
o
n
e

3
.0
m
s

(-
6
2
.8
%
)

3
7
.6
%

(+
1
1
3
.6
%
)

N
o
n
e

3
.0
m
s

(-
6
2
.8
%
)

6
8
.7
%

(+
2
9
0
.3
%
)

N
o
n
e

3
.0
m
s

(-
6
2
.8
%
)

1
0
0
.0
%

(+
4
6
8
.2
%
)

N
o
n
e

P
ru

n
ed

-

H
A
R
Q

4
.6
m
s

(-
5
1
.1
%
)

1
7
.6
%

(-
0
.0
%
)

Y
es

4
.6
m
s

(-
5
1
.1
%
)

1
7
.6
%

(-
0
.0
%
)

Y
es

4
.6
m
s

(-
5
1
.1
%
)

1
7
.6
%

(-
0
.0
%
)

Y
es

4
.6
m
s

(-
5
1
.1
%
)

1
7
.6
%

(-
0
.0
%
)

Y
es

86

Feature map pruning The aforementioned error-tolerance techniques effectively

reduce the need for frequent retransmissions, but do not reduce the data size which may

induce a large initial transmission overhead. To further improve efficiency, we introduce a

feature map pruning design for split ML. It is observed that most parameters (i.e. the float

point numbers) in the feature maps are dropped by the first maxpooling and activation

layers after the split point, i.e., their values do not affect the inference result of the ML

model [17]. Hence, these redundant parameters can be safely removed to reduce the ML

data size. However, it is challenging to determine which parameters are redundant since

it depends on the model input and cannot be predicted without running the layers first.

To efficiently find the redundant parameters, we introduce a quantized NN based

redundancy prediction scheme. The general idea is that since the parameters are made

redundant by the first activation and pooling layers after the split point, we can feed

the feature maps to such layers to find which parameters are redundant. It is time-

consuming to run full layers so instead, we use their quantized versions which have the

same operations. As shown in Fig. 3.13, when a feature map is generated at the split point,

it is first quantized and then fed to a redundancy finder branch, which consists of the first

activation and pooling layers after the split point, and an unpooling layer [97] to map the

pooling layer’s output to their corresponding positions in the original feature maps. The

output of the redundancy finder branch is a feature map that has the same size as the

original feature map, but with redundant parameters converted to zero. We replace all

non-zero parameters in this feature map output to 1 and multiply it element-wisely with

the original feature maps. The feature map becomes sparse after such a pruning step and

87

can be efficiently stored using standard sparse representation [98] with a data size of only

a fraction of the original feature maps.

3.6 Evaluation

3.6.1 Experimental setup

We evaluate NeuroMessenger on a Matlab-based 5G link-level simulation framework

[99], which simulates an end-to-end 5G NR uplink with complete MCS implementations

as well as 3GPP compliant channel models. By default, we use 16QAM modulation with

490/1024 LDPC code rate. Varying the link SNR leads to different levels of error rate.

The OFDMA uses 20MHz bandwidth with 30KHz subcarrier spacing. We adopt a 2 ×

2 MIMO setting with 2 PUSCH layers. The transport block size is set to 30216 bits.

For the physical channel, we use 3GPP CDL-C clustered delay line channel [100] which

represents a generic multi-path channel. Specifically, we set the SNR of the channel to

-2dB by default to simulate a noisy link. Using a high order MCS, even with a relatively

high SNR, may result in a similarly noisy link.

Models and dataset. We evaluate NeuroMessenger on two of the most widely

deployed applications: image classification and speech recognition. For image classifica-

tion, we choose ResNet18 and VGG11 to represent state-of-art CNN models. For testing

purposes, we use CIFAR100, a standard image classification data set with 100 classes and

100 test images for each class. For speech recognition, we use the DeepSpeech2 model

applied on the LibriSpeech dataset, a large corpus of reading English speech containing 5

88

hours of testing speech.

Baselines For split ML experiments, we compare the performance of NeuroMessen-

ger with the following three baselines: (i) Raw does not perform any additional processing

on the ML data. (ii) Pruned prunes the redundancy of the ML data but does not per-

form the two coding schemes that enhance error tolerance. (iii) Pruned-HARQ prunes

the redundancy and leverages the built-in HARQ retransmission mechanism in 5G. The

retransmission version (RV) in HARQ, i.e., the maximal number of retransmission at-

tempts, is set to 16. For FL experiments, since feature map pruning and error-tolerant

enhancement schemes are not applicable, we use only one baseline: HARQ, i.e., the default

retransmission scheme in 5G instead of the retransmission controller in NeuroMessenger.

3.6.2 End-to-end performance

Table ?? and 3.1 show the inference accuracy and end-to-end latency performance

for split ML and FL. In this experiment, we set the maximal tolerable accuracy loss of

NeuroMessenger to 80% (−6% compared to the original model) for image classification

models, and the maximal WER increase to 20% (+3.4% comparing to the original model)

for the speech recognition model. Compared to the raw baseline, the pruned baseline

reduces up to 95.2% transmission times accompanied by 9.3% to 113.1% higher loss in

accuracy. This means NeuroMessenger’s redundancy pruning design effectively reduces the

intermediate data size. But it sacrifices the error tolerance capability, implying the need

for error enhancing coding. The pruned-HARQ baseline achieves the best accuracy

due to frequent retransmissions which also causes 20% more communication latency than

89

0.2 0.4 0.6 0.8

BLER

75

80

85

90

T
o

p
-1

 a
c
c
u
ra

c
y

Raw

Ours

Minimal tolerable acc.

(a)

0.2 0.4 0.6 0.8

BLER

75

80

85

90

T
o
p
-1

 a
c
c
u
ra

c
y

Ours

Minimal tolerable acc.

(b)

Figure 3.14: Top-1 accuracy of (a) split ML (VGG11 split at 15-th layer) and

(b) FL (VGG11), as the block error rate of the link increases.

0.2 0.4 0.6 0.8

BLER

10
1

10
2

10
3

L
a
te

n
c
y
 (

m
s
)

Raw

Pruned-HARQ

Ours (80% acc.)

Ours (70% acc.)

(a)
0.2 0.4 0.6 0.8

BLER

10
4

10
5

L
a
te

n
c
y
 (

m
s
)

HARQ

Ours (80% acc.)

Ours (70% acc.)

(b)

Figure 3.15: End-to-end running latency of (a) split ML (ResNet18 split at

15-th layer) and (b) FL (ResNet18), as the block error rate of the link increases

0

20

40

60

80

T
o

p
-1

 a
c
c
u

ra
c
y

5 10 15 20 25

Layer

100

105

L
a

te
n

c
y
 (

m
s
)

Raw Pruned-HARQ Ours Raw Ours Pruned-HARQ

Figure 3.16: End-to-end running latency and top-1 accuracy at BLER=0.2 when splitting

at each layer in VGG11.

90

the pruned baseline. Our NeuroMessenger design strikes the best balance between the

accuracy and latency : its transmission time only increases 1%-5% on top of the pruned

baseline due to the computation time of coding while the accuracy is maintained above

the maximal tolerable accuracy most of time, which is 0.9%-30.5% higher than the raw

and pruned baselines. In summary, the experiment shows the performance advantages of

NeuroMessenger over the baselines in split ML and the necessity of the coding mechanisms

for enhancing error-tolerance.

3.6.3 Impact of Link Conditions

To investigate the performance of NeuroMessenger under different link conditions,

we vary the SNR of the 5G link so that the block error rate increases from 0.1 to 0.95.

Fig. 3.14 and Fig. 3.15 show the top-1 accuracy and latency results of ResNet18 in split

ML and FL, respectively. We set the minimum tolerable accuracy to 80% for both split

ML and FL. In Fig. 3.14, we see accuracy slightly decreases to 82% as the BLER increases.

It remains at the same level as the NeuroMessenger retransmission controller determines

that error tolerance can no longer satisfy the accuracy requirement and enables retransmis-

sion. Note that even for the raw baseline in Fig. 3.14, the NeuroMessenger retransmission

controller can still guarantee a minimal latency of 80% by enabling retransmission earlier.

In Fig. 3.15(a), we see the latency of raw and pruned-HARQ baselines increases

exponentially with BLER as the number of retransmission increases. The latency of Neu-

roMessenger stays constant until BLER= 0.5 due to the absence of retransmissions. Note

that if we lower the minimal tolerable accuracy to 70%, the latency stays constant until

91

BLER= 0.9. The FL’s latency in Fig. 3.15(b) shows a similar trend but with a lower

constant latency.

In summary, this experiment shows that the NeuroMessenger retransmission con-

troller can effectively guarantee the accuracy under a wide range of block error rate, and

NeuroMessenger keeps the communication latency constant when the block error rate is

within the error tolerance of the ML data, which is determined by the ML model, layer,

and minimal tolerable accuracy.

3.6.4 Impact of Split Point

Recall that in split ML, the error tolerance is different across layers (Sec. 3.4).

Hence the effectiveness of NeuroMessenger may vary with different choices of split point.

To investigate this effect, we reuse the experimental setup in Sec. 3.6 and split a VGG11

model at each layer. Fig. 3.16 shows the latency and corresponding accuracy performance.

We see that NeuroMessenger achieves 40%-99% latency reduction comparing to the raw

baseline and 20% comparing to the pruned-HARQ baseline for all layers. Although pruned-

HARQ achieves the highest accuracy, NeuroMessenger achieves similar accuracy for most

layers and significantly higher accuracy than the raw baseline. In summary, this experiment

and the experiment in Sec. 3.5.1 jointly show that the advantage of NeuroMessenger applies

to a wide range of split points on typical NN models.

92

3.7 Conclusion

In this paper, we have explored the error tolerant capability in distributed ML data

transfer and its implications on communication efficiency. We characterize the error tol-

erance of various popular distributed ML systems and develop a novel system, NeuroMes-

senger that enhances and utilizes such error tolerance. We believe our work envisions a

new direction towards efficient distributed ML over wireless edge networks.

Chapter 3 contains material from ”NeuroMessenger: Towards Error Tolerant Dis-

tributed Machine Learning Over Edge Networks” by Song Wang and Xinyu Zhang, which

appears in the IEEE International Conference on Computer Communications, 2022. The

dissertation author was the primary investigator and author of this paper.

93

Chapter 4

Omnidirectional Millimeter-Wave

Coverage for ML Model Splitting

4.1 Introduction

The emerging wireless infrastructure is facing a massive mobile traffic demand

[101, 102, 103, 104], driven by billions of upcoming Internet of Things and immersive

multimedia applications [105, 106, 107, 108, 109]. Due to the spectrum crunch in legacy

low-frequency bands, both the wireless local area and cellular network standards have

been incorporating millimeter-wave (mmWave) technologies (e.g., 802.11ad and 5G NR)

to meet the looming challenge of mobile traffic overload. Ideally, one would expect the

mmWave technologies to provide WiFi or LTE-like seamless coverage. But mmWave

signals have orders of magnitude higher attenuation loss, which has to be compensated

through high-gain phased array antennas. The directional gain of a phased array is,

94

empirically, proportional to the number of antenna elements [110, 111, 112, 113]. Hence,

to provide sufficient mmWave coverage, an intuitive way is to simply increase the phased

array size.

However, the high directionality brings two new challenges to mmWave networks:

(i) Beam management overhead. A phased array may generate hundreds of beam patterns

with main lobes pointing to different directions. Ideally, by rapidly scanning through the

beams, it can approximate the behavior of an omni-directional antenna. Yet, when the

receiver is mobile or when the line-of-sight (LoS) is blocked by obstacles, such a trial-and-

error scanning may incur huge overhead in finding an alternative beam [114, 115, 116].

Recent years witnessed substantial research in designing efficient algorithms to identify

the optimal beam directions under link dynamics [117, 118, 119, 120]. (ii) Limited field-

of-view (FoV) coverage. A phased array has limited FoV (typically narrower than 120◦

[121, 122, 123]), due to the intrinsic properties of its patch antenna elements. This problem

remains largely underexplored. Very recently, a Pia system [124] was proposed to combine

multiple access points (APs) to expand the FoV [124], but this requires dense deployment,

which is often not economically feasible, and involves tight coordination among distributed

APs.

A more viable approach to overcoming the FoV limitation is to aggregate standard

phased arrays to form an “array of phased arrays” (APA). In an APA mmWave radio,

multiple phased arrays are co-located, sharing the same RF chain but facing different

angles to jointly cover 360◦ in azimuth or elevation. The combined coverage may provide

more multipath diversity, i.e., signals may traverse different paths through reflections,

95

(a) (b)

Figure 4.1: Coverage and multipath diversity under the same power constraint: (a) Single

array. (b) 4-array APA.

making it easier to save a link under blockage. The APA architecture has been adopted

recently by both 802.11ad [125, 126] and 5G NR devices [127, 128, 129, 130, 131, 132].

Apart from coverage, APA also offers advantages in cost and efficiency. This is because

beyond certain physical dimensions of the radio package, the feed network losses (between

the radio RF front-end and a single giant phased array) would negate the benefits of having

higher array gains [121]. In addition, all the phased arrays can share the same codebook,

thus reducing the on-chip register/memory requirements, which accounts for non-trivial

cost on a radio device[133]. Overall, APA makes it practical to scale to large phased arrays

[134].

Unfortunately, APA also incurs new challenges to mmWave network design. First,

due to the regulation constraint on emission power, not all phased-arrays can be turned

on simultaneously. So a node has to decide on not only which beam to use for each array,

but also how many and which arrays to activate. The decision space easily escalates to

96

an intractable scale. To our knowledge, no existing work attacked such a problem of

array/beam management. Second, the APA should leverage its advantages in multipath

diversity, to efficiently recover from link outage caused by mobility, blockage, or a mix of

both. This would require it adapt the beam/array selection in real-time, with minimum

protocol level overhead. Third, not all phased arrays’ signals combine in a coherent way,

so a straightforward way of turning on multiple arrays may even lead to lower link quality

than a single array.

In this paper, we propose a novel system called X-Array, which explores the chal-

lenges and opportunities from APA, through three major design components. (i) We

propose an optimization-driven array/beam selection algorithm to maximize the link qual-

ity under the power budget constraints. The solution is formulated as a look-up table,

which is generated in an offline one-time manner and maps the dominant signal paths’

angle-of-departure (AoD) to the optimal array/beam combination. At run-time, the APA

node only needs to run a simple AoD estimation algorithm, leveraging the periodic beacon

scanning defined in mmWave standards such as 802.11ad. (ii) We apply a low-overhead

dynamic co-phasing algorithm to the different transmit arrays, so that their signals can

coherently combine at the receiver, with very infrequent feedback. This method can max-

imize the combined directional gain (under regulation constraint), while maintaining as

wide beamwidth as possible, to make the link more resilient under mobility. (iii) We

design a link recovery mechanism that leverages the multi-array architecture to efficiently

and accurately find alternative arrays/beams when the strong path disappears (e.g., due

to blockage) or reappears, with minimal overhead.

97

We have implemented X-Array on a commodity single RF chain 802.11ad AP sup-

porting up to 8 arrays. X-Array runs at the device’s user space, so it does not require

any hardware modification. We have conducted experiments to verify X-Array in diverse

radio environments, including indoor and outdoor, with different levels of mobility, multi-

path conditions, and blockage dynamics. The results demonstrate that: (i) X-Array can

approach the best array/beam combinations for all the settings, and the corresponding

overhead is comparable with single-array solutions. (ii) X-Array can efficiently update the

array/beam selection under link dynamics caused by mobility and blockage. (iii) X-Array

can correctly apply the co-phasing factors to the multiple phased arrays to maximize the

advantages of APA, while respecting the transmit power constraint. (iv) The joint coverage

achieved through X-Array is comparable to an oracle solution that exhaustively searches

across the decision space. By dynamically selecting and switching among 8 arrays or even

4 arrays, X-Array can approximately achieve omni-directional coverage in a sophisticated

environment with random blockage. In contrast, a naive solution with a single array or

two fixed arrays leave many blind spots with extremely low bit-rate.

Although commercial APA 802.11ad radios already exist [126, 125], they typically

turn on all arrays which is far from optimal and may even be worse than a single-array

(Sec. 4.5). X-Array represents the first system to fully exploit the advantages of APA. Our

main contributions can be summarized as follows. (i) An efficient way to jointly manage

multiple phased arrays and their beams to maximize link quality; (ii) A multi-array joint

beamforming mechanism to ensure coherent combination of the multiple array’s signals;

(iii) A link recovery mechanism to ensure the robustness of APA under blockage; (iv)

98

Implementation and validation of X-Array on a commodity 802.11ad APA radio.

Our implementation of X-Array essentially converts a commodity multi-array 802.11ad

radio [126] into a partially programmable experimental platform. Unlike recently de-

veloped mmWave software radios [135, 136], this platform can only run the 802.11ad

MAC/PHY and does not provide channel state information (CSI). But it is less costly,

and it allows for selecting beam, codebook, and arrays. Latest development of the platform

will be documented in [137], and instructions for using the platform will be provided upon

reasonable requests.

4.2 Motivation and Challenges

In this section, we conduct preliminary experiments to demonstrate the potential

benefits of the APA mmWave radio, and the practical challenges in harvesting the benefits.

4.2.1 Potential Advantages of APA

We first investigate the unique channel characteristics of APA in comparison with

single-array. Our experiments run on an off-the-shelf 802.11ad APA radio. The radio

supports multiple arrays, each being a 6×6 uniform planar array with around 120◦ FoV.

More detailed hardware specifications will be introduced in Sec. 4.4. As a benchmark

experiment, we place a single-array AP and a 4-array AP in the middle of a 11m×6m

indoor meeting space. For a fair comparison, we configure the two APs to use the same

set of beams on each array, and the same total power constraint. Two poster boards (with

99

metal plate on the back) stand nearby, representing reflectors/obstacles just as in a typical

environment.

During the experiment, a user carries a client device, walking while keeping natural

body orientation, so occasionally her own body blocks the LoS of the AP-client link. We

measure the AoA profile at the client side, at 11 random locations. The AoA profile depicts

the received signal strength (RSS) along each angular direction. We omit weak AoAs that

are 5 dB lower than the strongest one, because of their negligible contributions to the total

RSS. From a high level, the AoA profile shows the multi-path diversity and each path’s

quality at each specific location. For simplicity, we only use APA at the AP side, whereas

the client is tuned to a quasi-omni beam, but the effects can be reciprocal. Fig. 4.1 (a)

and (b) show the resulting AoA profiles. Each line segment in the polar plot represents

the AoA of a signal path and the segment length denotes the corresponding RSS. We have

two major observations from the results.

Limitation of single-array: A single-array AP has very limited FoV and creates

very limited multipath. As shown in Fig. 4.1 (a), only a few locations within the single

array’s FoV have reasonable RSS. Beyond those are the AP’s blind spots and the client can

only rely on the NLoS reflected signals, which tend to be weaker and come up in a sporadic

way. Overall, the single-array AP can only provide very few dominant paths for only

locations within its FoV. We note that recent work [124] characterized the FoV constraint

of 802.11ad radios, but the focus was on the antenna gain pattern, so reflection/blockage

effects are not analyzed.

The benefit and potential of APA: An APA is able to expand the coverage

100

dramatically and provide more multipath diversity, potentially leading to more robust links

under mobility and blockage. With a 4-array AP, more locations have strong LoS paths

owing to the complementary FoVs of multiple arrays, even for those originally in the blind

spots of the single-array case. In addition, almost all client locations receive signals from

multiple dominant AoAs, i.e., the APA can make better use of surrounding reflectors,

since the enlarged FoV contains signals with more diverse AoAs. This benefit exists

even for locations whose LOS are blocked. The additional multipath will be valuable for

maintaining a robust connection, because the signals can be resteered along a new path’s

direction even if one is blocked. However, note that for certain client locations (e.g., top

left), the APA leads to weaker RSS than the single-AP. This implies that it may not be

optimal to activate all arrays simultaneously, since the transmit power is spread out, and

certain arrays’ signals may cancel each other.

4.2.2 Challenges

The foregoing measurement reveals the potential of APA, assuming an oracle system

that can orchestrate the arrays and beams with no overhead. In practice, approaching this

ideal entails non-trivial design challenges.

Joint array and beam management for mobile users: An 802.11ad AP

executes a sector level sweeping (SLS) periodically at the beginning of each beacon interval

(BI), where it broadcasts signals sequentially through each of its N beam patterns. The

periodic beam scanning ensures the AP is discoverable by unassociated clients, and the

best beam can be identified for each associated client. The SLS beam scanning involves N

101

52-byte beamforming (BF) frames and N−1 1-µs Short Beamforming Inter Frame Spacing

(SBIFS), two 208-bit SSW-feedback frame and one Long Beamforming Inter Frame Spacing

(LBIFS) [138]. The total scanning overhead is relatively small, e.g., ∼1.1 ms for a 64-

beam array, in contrast to the typical BI of 100 ms. However, for mobile clients, the beam

coherence time, i.e., mean period within which the best beam index remains unchanged,

becomes much shorter. So the beam scanning has to be executed more frequently. Specific

to the APA, the scanning overhead is further multiplied by the number of arrays, rising

to ∼8.8 ms even for an 8-array AP. Besides, even if we ignore the protocol overhead, the

AP has to jointly decide beam selection and array selection (e.g., billions possibilities,

Sec. 4.3.3), a combinatorial problem that can easily exhaust its computational power.

At first blush, one can simply turn on all phased arrays to circumvent the array

selection problem. Unfortunately, the FCC regulation [139] imposes constraints on both

the total radiation power (TRP) and effective isotropic radiation power (EIRP). The

EIRP constraint limits the phased array gain along the peak direction to 43 dBm and

the average of all directions to 40 dBm, for safety and interference concerns. The TRP

constraint further limits the total emission power of all directions to 500 mW [139]. When

all the arrays on an APA are active, the TRP needs to be split among all of them, whereas

an optimal solution should concentrate all the power towards the strongest eigen mode of

the channel, i.e., beaming the signals towards the strongest AoA.

Co-phasing between phased arrays: The phased arrays on the same APA node

share the same RF chain and transmit the same digital baseband signals. However, due to

their relative location/orientation differences, and hardware-induced initial phase offset,

102

Figure 4.2: The impact of co-phasing.

Light-weight
AoD

estimation

Optimal
beam/array
selection

Co-phasing
vector

Beam/
array

Estimated
AoD

Outage
detection

No
outage detected,
proceed normally

Outage detected,
initiate blockage

handling

Joint Array and Beam
Management

Multi-Array
Co-phasing

Outage
Handling

Angular
speed

prediction

Beam/array
selection

Co-phasing
vector

estimation

Dynamic
Co-

phasing
𝝎

Prediction

Figure 4.3: X-Array workflow.

103

the emitted signals do not necessarily combine coherently at the receiver. To showcase

this phenomenon, we run a controlled experiment with two arrays (index 6 and 7) on

the AP facing the client direction. Fig. 4.2 shows up to 7 dB of variation in RSS, as

the relative phase between the two arrays varies between 0, π
2
, π, and 3π

2
. This implies a

strong need for phase compensation, or co-phasing, to ensure coherent signal combination

between concurrent arrays. The problem becomes more pronounced in mobile scenarios,

as slight location variation causes significant phase change (due to the short wavelength).

The need to choose the optimal co-phasing factor essentially adds one more dimension in

the APA’s decision space, making it intractable. Note that our 802.11ad radio only allows

configuring the co-phasing factor with a 2-bit resolution (4 relative phase values). Finer

phase resolution will further compound the decision complexity.

Recovering from link outage, especially under blockage: MmWave link

outage may occur in an unpredictable manner, due to other objects moving across the

LoS or the device user’s own body blockage. For single-array radios, existing work has

explored algorithms to realign the transmitter and receiver’s beams, taking advantage of

the correlation between beam patterns on the same phased array [117, 119]. Yet for an

APA, a new mechanism is needed that can reselect the array as well as its optimal beam

to leverage the multipath diversity. And again, a brute-force way of rescanning all arrays

may incur non-trivial overhead, especially when the user is moving and body blockage

occurs frequently.

104

4.3 Design

4.3.1 Design Overview

We now briefly introduce X-Array’s design components and workflow. We build

X-Array on top of the 802.11ad MAC/PHY stack. Without loss of generality, we assume

a single client served by the X-Array access point. Extension to multiple users can be

straightforwardly realized using the built-in MAC protocol in 802.11ad, i.e., transmitting

to each client sequentially with CSMA/TDMA based scheduling. We assume the AP uses

an APA whereas the mobile client has a single phased array due to form-factor constraint.

To ensure it is discoverable by clients facing arbitrary directions, the X-Array AP has

to follow the 802.11ad SLS (Sec. 4.2) to periodically broadcast a beacon frame through

each beam and repeat it for each array. Considering the overhead of such full scanning

(Sec. 4.2), it has to be activated infrequently (default to every 8 BIs in X-Array).

X-Array’s main design components and decision logic run on the multi-array AP,

shown in Fig. 4.3. Whenever a client is associated, the AP runs a one-time full-scanning.

The client calls a lightweight AoD estimation algorithm (Sec.4.3.3) and feeds back its

estimation to the AP. Given the current AoD, the AP uses a lookup table to select the

optimal array(s) and beams to activate. The table only needs to be generated once in

an offline manner, using a joint array/beam selection algorithm (Sec.4.3.3) that optimizes

the overall APA beam output pattern with respect to each AoD, under the TRP and

EIRP constraints. Afterward, the client and AP proceed to their runtime routine, and

periodically update the array/beam selection, based solely on the per-BI SLS beacon

105

broadcast from one of the activated arrays.

Meanwhile, whenever two or more arrays are activated, X-Array applies a multi-

array co-phasing algorithm (Sec.4.3.4) to ensure that the arrays’ signals are coherently

combined. To align the signal phases, X-Array AP estimates the inter-array phase dif-

ference, and then compensates the difference by applying an initial phase offset (i.e.,

co-phasing factor), which is allowable in commercial 802.11ad APA hardware (Sec. 4.4).

As will be verified in Sec. 4.3.4, keeping track of the inter-array phase offset directly incurs

huge measurement overhead. Therefore, the X-Array AP predicts the phase offset changes

within one BI instead, based on the changing rate of the estimated AoD. It continuously

applies the co-phasing factor based on the predicted phase offset, until the beginning of

the next BI when the AoD is refreshed.

Occasionally, the mmWave link may experience an outage, i.e., low or null RSS,

likely due to AP losing track of client under blockage coupled with abrupt motion. Then

the AP executes a novel multi-array concurrent beam scanning scheme to rediscover strong

signal paths and reidentify the best array/beam. This scheme reduces the outage recovery

overhead from 8.8 ms to around 1.2 ms on an 8-array node (64 beams per array), compared

with a full scan.

4.3.2 Preliminaries: Modeling APA Multi-Array Beamforming

We first introduce a model of APA, which is a basis for the exposition of the X-

Array design. For simplicity, we assume a Uniform Linear Array (ULA) with antenna

elements arranged along the azimuth plane with half-wavelength displacement. Note that

106

the design can be easily extended to Uniform Planer Array (UPA), and our implementation

uses 6×6 UPA.

Modeling single-array. For a single ULA with N antenna elements, assuming

omni-directional Rx, the received signal can be formulated as:

y = HTwx + n (4.1)

where H and w both are 1-by-N vectors, representing the channel gain from theN transmit

antennas, and the beamforming weights, respectively. x represents the transmitted symbol

and n represents the noise.

The separation between antenna elements, d, is usually half wavelength, much

shorter than link distance, so it suffices to model the far field. The channel can be decom-

posed as gain component AG, which can be approximated to be consistent across antenna

elements, and phase component [ej
2πnd

λ
sin(ϕ)]N , n = 0, 1, . . . , N − 1, where ϕ is Angle-of-

Departure(AoD), the angle between the normal line of the phased array panel and receiver

wave-front. Plugging this decomposition in Eq. (4.1), we have:

y = wTAG[ej
2πnd

λ
sin(ϕ)]Nx + n (4.2)

where [.]N represents a vector of size N , and n = 1, 2, . . . , N . The phase component

[ej
2πnd

λ
sin(ϕ)]N is usually called steering vector for phased array beamforming. To maximize

the directionality gain towards ϕ, the complex conjugation of the steering vector at ϕ

should be used as the codebook entry to form a beam, i.e.,

107

wϕ = [e−j 2πnd
λ

sin(ϕ)]N (4.3)

Each codebook entry constitutes one row in the codebook (a matrix). The codebook

entries are often designed to steer to R angles that equally partition the FoV. Note that is

applicable to other codebook design objectives as well (e.g., minimizing sidelobes [140]).

Modeling APA. Now consider an APA transmitter with P phased arrays. Similar

to Eq. (4.1), we have:

y = HTwx + n (4.4)

where w and H are a 1-by-NP beamforming weight vector and a 1-by-NP channel gain

vector, for all NP antenna elements on the APA, which can be seen as a new, giant phased

array. Since the phased arrays may be placed in different positions/orientations, not all

NP antenna elements follow a ULA layout. So the beamforming equation Eq. (4.3) does

not necessarily hold for APA. Alternatively, we can regard the Rx signal as the coherent

combination of signals from the Tx arrays. Then Eq. (4.4) can be rewritten as:

y =
P−1∑
p=0

wT
pHpx + n (4.5)

where Hp is 1-by-N channel gain vector of the phased array with index p. Since the two

phased arrays are co-located on the same device, and typically only separated by several

centimeters, shorter than the Tx-Rx distance. Thus, we can again make the far-field

assumption, i.e.,

y =
P−1∑
p=0

wT
pHpe

j
2πsp
λ

cos(ϕ+
δp
2
)x + n (4.6)

108

Figure 4.4: X-Array optimization relaxation: replace and redistribute beams to match

λϕ.

where sp is the displacement between the centroids of array p and a reference array, and

δp denotes the angle between their normal directions. Hp is the channel gain vector for

array p, similar to the term H in Eq. (4.1) . We define the inter-array phase difference as

co-phasing vector Eϕ = [ej
2πsp
λ

cos(ϕ+
δp
2
)]P , p = 1, 2, . . . , P .

4.3.3 Joint Array and Beam Management

Optimal Array/Beam Selection for a Given AoD

We formulate the joint array/beam selection as an offline optimization problem.

For a given AoD, the objective is to appropriate the optimal beam pattern to maximize

the power towards the AoD direction subject to TRP and EIRP constraints, while creating

maximum multipath diversity. Note that the one-time offline optimization solely depends

on the line-of-sight AoD. Hence it does not need to rerun when environment changes.

Without loss of generality, we assume the APA jointly covers an FoV of 360◦ on

the azimuth plane where the clients are located. We equally partition the 2π FoV into R

109

-70

-65

-60

-55

-50

-45

 0 20 40 60 80 100
R

S
S

 (
d

B
m

)
Time (ms)

5ms feedback
10ms feedback

100ms feedback

Figure 4.5: Mobility causes two arrays to lose co-phasing periodically, unless with fre-

quent feedback.

directions and denote each partition as φr = 2π(r−1)
R

, r = 1, 2, . . . , R. The vector of RSS

values of all R directions, or normally called “beam pattern”, of the beam indexed b on

array p, can be represented as:

rb,p = |wT
b,p[e

j 2πnd
λ

sin(φr)]N×R| (4.7)

where [.]N×R represents a N -by-R matrix; n = 1, 2, . . . , N and r = 1, 2, . . . , R. Here

we omit the channel gain factor AG in Eq. 4.2 as it contributes equally for all beams.

Correspondingly we express the collection of beam patterns on a phased array p as R̄p =

{rb,p, b ∈ B}. As we mentioned earlier, the phased arrays in X-Array share the same

codebook. Hence the beams of the same index on different arrays share the same beam

patterns, although they might point at different directions due to the arrays’ orientation

differences.

The optimization problem can be formulated as:

110

max
α

λϕ
∑
b,p

αb,pr
T
b,p (4.8)

s.t.
∑
b,p∈ε

αb,prb,p ≤ IEIRP (elementwise) (4.9)

||
∑
b,p

αb,prb,p||11 ≤ ITRP (4.10)

αb,p ∈ {0, 1}, ∀b, p (4.11)∑
b

αb,p ≤ 1 (4.12)

where λϕ is a 1-by-R vector associated with a given AoD ϕ, and α is a B-by-R binary

decision matrix. The λϕ is the ideal APA beam pattern for the given AoD ϕ. For simplicity,

we define λϕ as a simple binary vector which has unit gain within ±20◦ of its intended

AoD and 0 gain elsewhere. Eq. (4.10) and (4.9) are the TRP and ERIP constraints,

respectively. The constraints (4.11) and (4.12) represent the fact that we can choose at

most one beam on one array. λϕ represents a customized ideal beam pattern. The goal

of the maximization function is to find a selection of beams whose combined pattern best

matches λϕ. We define λϕ as a simple binary vector where the direction ±15◦ around AoD

has 1 and others 0. We show in Sec. 4.5 that even with such simple definition, X-Array

can substantially improve the beam coherent time (Sec. 4.2.2).

The maximization objective (4.8) essentially combines the RSS values of individual

beam patterns as the resulting joint beam pattern of multiple beams on multiple arrays.

In other words, we model the average power combination of the beams. Later we will

introduce the dynamic co-phasing design (Sec. 4.3.4) which ensures the different beams’

111

-20

 0

 20

 0 10 20A
n
g
u
la

r
s
p
e
e
d
 (

d
e
g
/B

I)

Beacon interval

Figure 4.6: Client angular speed.

-0.2

-0.1

 0

 0.1

 0.2

 0 10 20

P
h
a
s
e
 c

h
a
n
g
e
 r

a
te

 (
ra

d
/B

I)
Beacon interval

Figure 4.7: Phase changing rate.

-0.2

 0

 0.2

 0 10 20 30 40

P
h
a
s
e
 c

h
a
n
g
e
 r

a
te

 (
ra

d
/B

I)

Beacon interval

X-Array estimated
Ground truth

Figure 4.8: X-Array phase prediction

matches the ground truth well.

112

signals are coherently combined at run time to further enhance SNR.

This optimization framework is non-linear, and the search space is determined

by the number of beams B and arrays P . A brute-force way of solving the problem

requires searching across BP beam patterns, i.e., 8 arrays with 64 beams on each requires

648 ≈ 2.8 × 1014 times computation which is intractable. Thus, we relax the constraints

(4.11) and (4.12). That is, we allow choosing an arbitrary number of beams on one array.

Through this relaxation, we transform the previous combinatorial optimization into a

standard linear optimization problem:

max
α

λϕ
∑
b,p

αb,pr
T
b,p + β

∑
b,p

αb,p (4.13)

s.t.
∑
b,p∈ε

αb,prb,p ≤ IEIRP (elementwise) (4.14)

|
∑
b,p

αb,prb,p|11 ≤ ITRP (4.15)

αb,p ≥ 0, ∀b, p (4.16)

Here we also add the sum of α to the maximization goal in order to encourage the α to

have fewer terms. This relaxed version of array/beam optimization can be solved efficiently

by standard linear programming toolboxes.

By relaxation, we allow having multiple beams in one array in α which is infeasible

in practice. To fix this problem, we leverage a key observation: The FoVs of multiple

arrays are usually partially overlapped, so certain beams on different arrays share similar

directions. This indicates we can replace the multiple beams on one array with beams

of similar directions on adjacent arrays. As a result, to make α feasible, we can simply

113

identify the multiple beams on one array in α, and replace the extra beams with beams of

similar directions on neighboring arrays. Fig. 4.4 illustrates this process. The similarity of

directions between arrays is subject to vendor implementation, i.e. the size and geometrical

layout of phased arrays. Without loss of generality, we use beam AoD to measure the

similarity of beams instead of arrays.

In case when there are not enough similar beams to replace, we discard the beams

whose directions deviate the most from the AoD, to guarantee the gain along the AoD

direction. Note that there may be two reasons for the lack of similar beams: (i) The

optimization includes too many non-zeros terms in α. (ii) The arrays do not have much

FoV overlap, so the number of similar beams is small. We prevent (i) by adding the

regulation term β
∑

b,p αb,p in Eq. (4.13). On the other hand, (ii) can be avoided with

more arrays (e.g., when per-array FoV is 120◦).

AoD Estimation and Tracking

AoD is assumed as a given input in the aforementioned array/beam selection algo-

rithm. To estimate the AoD, X-Array runs the 802.11ad SLS which scans the beams on

one of its currently active arrays. Intuitively, we choose a primary array whose orienta-

tion is closest to previous AoD, and let the client measure the sequence of per beam RSS,

denoted as [rb]
B where b is beam index. According to Eq. (4.2):

rb = |wT
b [ej

2πnd
λ

sin(ϕ)]N + n| (4.17)

Since the SLS beam scanning is very short (Sec. 4.2), the AoD can be assumed relatively

114

stable during SLS. Our objective here is to estimate the AoD ϕ based on the [rb]
B measure-

ment. Since the codebook weights wb and element-spacing d are known, we can compute

the [rb]
B for any given ϕ when omitting noise. The [rb]

B that best correlates with the

measurement should correspond to the most likely ϕ. We formalize this intuition through

a matched filter design.

The matched filter is a B-by-R matrix derived from the product of two parts: (i)

[wb]
B×N is the beam weights of B beams arranged in B-by-N matrix; (ii) [ej

2πnd
λ

sin(ϕr)]N×R

is normalized steering vector of R directions arranged in N -by-R. As an extension to

Eq. (4.17), the dot product of (i) and (ii) produces the RSS sequences for all R possible

AoDs. Then the matched filter simply correlates itself with the measured RSS sequence

[rb]
B as follows:

∇ = [rb]
B[wb]

B×N([ej
2πnd

λ
sin(ϕr)]N×R)T (4.18)

Then we can estimate AoD by identifying the direction r that leads to the maximum

similarity between measurement and model:

ϕ = r∈R∇ (4.19)

X-Array’s AoD estimation mechanism leverages the legacy SLS beam scanning in

802.11ad (Sec. 4.2), so it requires no hardware modification and shares the same overhead

(e.g., ∼1.1 ms out of each BI of around 100 ms). Many existing systems [118, 119, 141]

also need AoD as an input, but they either lack support on commodity hardware (due to

needs for CSI), or they require non-trivial computational time.

115

It is tempting to think that one can detour the array selection problem, by treating

the APA as a single giant phased array and apply a single codebook to it. However, this

single giant array approach lacks scalability for two reasons: (i) Hardware constraints.

The single codebook needs to specify all possible array/beam combinations, which easily

reaches billion scale as mentioned above, way beyond the storage capability of on-board

memory (only several hundred KB on a typical 802.11 device[133]). (ii) Protocol overhead.

Scanning through all the entries on the giant codebook takes 4.8 × 109 seconds for the

typical 8-array APA, and will obviously hinder normal data transmissions.

4.3.4 Multi-Array Co-Phasing

X-Array’s co-phasing design aims to maximize the beamforming gain when multiple

arrays are activated. To overcome the challenge of phase sensitivity (Sec. 4.2.2), we propose

a novel dynamic co-phasing scheme that approximates the optimal coherent combination

of multiple arrays, without the overhead of constantly probing their phase offsets.

Decomposition

Recall the multi-array channel can be modeled as a composition of signals from

individual arrays through a shared channel with phase offsets (Eq. (4.6)). To ensure

coherent signal combining, the beamforming weights wT must be designed to compensate

for the different arrays’ phase offsets. Based on Eq. (4.6), we thus have:

wT =
P−1∑
p=0

wT
p e

−j
2πsp
λ

cos(ϕ+
δp
2
) (4.20)

116

Recall Eϕ = [ej
2πsp
λ

cos(ϕ+
δp
2
)]P , p = 1, 2, . . . , P , represents the inter-array phase dif-

ferences, or co-phasing vector. We can then rewrite the APA beam weights equation

Eq. (4.20) as:

wT = wT
PE

∗
ϕ (4.21)

where (·)∗ is the complex conjugate operator. This implies that the multi-array co-

phasing problem can be decomposed as beamforming on individual arrays, but with proper

inter-array phase alignment. Therefore, to realize co-phasing, we do not need to modify

the existing codebook. Instead, we can simply multiply each individual array’s codebook

entry with an offset [E∗
ϕ]p, which is allowable on commodity hardware (Sec. 4.4). We now

describe how to estimate the Eϕ.

Estimating Co-Phasing Vector

We adopt a measurement driven method to estimate the Eϕ at the beginning of a

BI. Specifically, after each individual array’s beam is determined (represented by wT
p) on

each array p, we regard one of the arrays as reference array with phase 0. To measure the

relative phase of other currently active arrays (denoted as side arrays), the AP transmits

4 BF frames (the reference signal used in 802.11ad) using the reference array and one side

array simultaneously. We apply a phase shift ejφ to each of the BF frames. Specific to our

802.11ad radio, φ ∈ {1, j,−1,−j} (Sec. 4.4). The RSS value for these BF frames can be

formulated as:

117

yφ = |wT
pHpe

j
2πsp
λ

cos(ϕ+
δp
2
)ejφ + wT

0Hp|, φ ∈ {1, j,−1,−j}

By applying the phase shift value, we essentially build a discrete Fourier series with ejφ

as “frequency basis” and the co-phasing vector as “coefficients”. Hence, to extract the

co-phasing vector, we only need to take a Fourier transform on this series:

d|Φ| = FFT({y1, yj, y−1, y−j}) (4.22)

Then we find the second term dp,2 = ej
2πsp
λ

cos(ϕ+
δp
2
). Recall that the co-phasing vector

(Sec. 4.3.2) is the inter-array phase difference between reference array and another side

array. For array p, this phase offset is exactly dp,2. Hence we repeat this process for all

currently active arrays and we have co-phasing vector:

Eϕ = [dp,2]
P (4.23)

We need 4 BF frames (each lasting 0.015 ms) for every active array except the reference

array. Hence, the co-phasing vector measurement for one array takes 0.06ms. Even with

8 active arrays, the total overhead is negligible (< 0.5 ms).

Dynamic Co-Phasing

The foregoing co-phasing algorithm assumes that the AoD information is always

available as input. However, the inter-array phase offset varies drastically over a few ms

under node mobility, whereas the AoD can only be updated per BI in order to tame the

estimation overhead (Sec. 4.3.3).

118

More specifically, recall that the steering vector in Eq. (4.2) has a changing rate

of 2πnd
λ
sin(ϕ) and the co-phasing vector, as shown in Eq. (4.6), has a changing rate of

2πsp
λ
cos(ϕ + δp

2
). The array displacement sp is significantly larger than d, the antenna

element spacing. This implies that, with the same angular movement ϕ of Rx, the APA

Tx (affected by both fast-changing co-phasing vector and steering vector) suffers more from

link degradation than the single array Tx (affected only by mild steering vector).

Intuitively, one can keep track of the array steering term by probing the AoD

and update the co-phasing factor more frequently. However, the small coherence time of

the array steering term requires an impractically high feedback frequency to prevent link

degradation. As a showcase, we activate two beams on two arrays on an AP, and move the

client at walking speed. We repeat the experiment with different phase feedback intervals

(100 ms, 20 ms, 5 ms). Fig. 4.5 shows that the throughput converges only when feedback

interval is shorter than 10 ms. Larger intervals cause sub-optimal throughput “valleys”

due to laggy feedback. At higher moving speed, even more frequent feedback is needed.

We address this challenge using an angular speed based dynamic co-phasing scheme.

Dynamic co-phasing obtains the fine-grained phase estimates within the scope of one BI,

i.e. between two consecutive phase feedbacks. At the beginning of a BI, the AP measures

the co-phasing vectors for the currently active arrays as the initial co-phasing vector Eϕ,t0 .

Within each BI duration, to avoid the feedback, we predict the optimal instantaneous co-

phasing vector by modeling the relationship between the array steering vector and angular

speed. Denote ∆τ as AoD estimation interval, at a given time tj when AoD is updated,

we can estimate the average angular speed of the client as:

119

ω̄j =
ϕ(tj)− ϕ(tj −∆tτ)

∆τ
(4.24)

We assume the angular speed is stable within ∆τ since a typical BI is very short.

Thus, we can predict the phase change within one ∆τ interval as a function of time:

2πsp
λ

cos(ω̄jτ + ϕ(tj) +
δp
2

) ≈ ang(Eϕ,t0) + ω̄jτ (4.25)

To demonstrate the effectiveness of dynamic co-phasing, we leverage the same ex-

perimental setup as in Fig. 4.5, and keep measuring the co-phasing vector every 5ms to

get fine-grained ground truth. Meanwhile, we estimate AoD every 100 ms (one BI) and

calculate client angular speed by Eq. (4.24). Fig. 4.6 and Fig. 4.7 show the client angular

speed and the phase change rate of the co-phasing vector Eϕ. The strong resemblance

of these two figures further corroborates Eq. (4.25). We then input the angular speed to

our dynamic co-phasing model, and predict the co-phasing vector change over every 5 ms

within the next BI. Fig .4.8 shows that the predicted phase changing rate matches the

ground truth near perfectly. With instantaneous co-phasing vector known, the AP now

can align the phase of arrays within a BI without any explicit client feedback.

4.3.5 Recovering from Link Outage

When blockage occurs, if the LoS still delivers strong RSS or there exists any

strong reflection path within the FoV of active array(s), the array/beam management and

120

co-phasing solutions are still applicable (based on the periodic AoD estimation on the

primary array). But if a link outage occurs, i.e., weak or null RSS on the current link,

then X-Array invokes its outage handling mechanism. A straightforward way is to repeat

beam-sweeping on all arrays and select the strongest beam, but apparently this will incur

huge overhead.

To tame the rescanning overhead, we propose a simple concurrent beam sweep-

ing scheme. Immediately upon outage, X-Array concurrently beacons a reference frame

through the same beam index on all arrays, and repeats this for each beam index within

the codebook (shared by all arrays). If any strong LoS/NLoS path exists, then at least

one beam will lead to a strong AoD peak. If the strong path falls in the FoVs of multiple

arrays, then each such array will have one beam with similar RSS as the peak. But the

beam indices tend to differ due to the arrays’ different orientations (i.e., the same beam

index on different arrays points to different directions).

To showcase this phenomenon, we fix an 8-array AP and put a client 3m away, and

then snapshot the per-beam RSS of concurrent beam sweeping when a human blocks the

LoS path, and after the blockage exits. Fig. 4.9 (a) and (b) plot the results. It can be seen

that, upon blockage, two weak peaks exist on the per-beam RSS sequence, likely because a

certain beam can establish a NLoS path. Whereas after blockage disappears, three strong

peaks reappear.

If the peak RSS after concurrent scanning still falls below the threshold for the

minimum bit-rate, then no array/beam can sustain the link, and extraneous connectivity

solution may be needed (e.g., [142]). Otherwise, upon confirming the existence of a usable

121

beam, X-Array needs to further discriminate which array(s) cover the LoS within its FoV.

The concurrent scanning result already indicates the best beam indices that lead to strong

AoD. So X-Array simply sends a reference frame through the corresponding beam index

on each array. Those arrays and beams that lead to AoD peaks will be selected as active

arrays. Afterwards, X-Array moves out of the outage mode and transitions into its normal

mode of operation. Overall, the concurrent scanning mechanism can be called on to

reidentify a strong beam when the current link’s RSS drops significantly. When a link is

under blockage, it can also be called periodically to check whether the blockage disappears

and a new strong path reappears.

Two additional issues are remarkable here: (i) A straightforward full-scan needs to

probe NB beams in total, vs. (N + B) with concurrent beam sweeping. On an 8-array

APA with 64 beams per array, this means the latter reduces the overhead of rediscovering

strong paths by ∼ 8× (8.8 ms vs. 1.2 ms). (ii) Although co-phasing may sometimes

weaken the strongest peak on the RSS sequence, it rarely removes the peak, because the

strengthening effects may show up on other beams pointing close to the AoD. Plus, we only

need to know whether a strong peak exists, so a coarse grained per-beam RSS sequence

suffices.

122

-70

-60

-50

 0 10 20 30 40 50 60

R
S

S
 (

d
B

m
)

Beam index(a)

-70

-60

-50

 0 10 20 30 40 50 60

R
S

S
 (

d
B

m
)

Beam index(b)

Figure 4.9: Concurrent beam sweeping when: (a) blockage occurs; (b) blockage disap-

pears.

4.4 Implementation and Experiment setup

4.4.1 Implementation

We implement X-Array based on an off-the-shelf 802.11ad AP from Airfide Inc.

[126]. The original Airfide AP puts 8 phased arrays on a plane. We reorganize its physical

layout, and 3D print an antenna stand (Fig. 4.10) so that the 8 arrays face different

azimuth directions with 45◦ separation. In this way, the FoVs of different arrays partially

overlap, and together they cover 360◦ azimuth and 120◦ elevation. The mobile client has a

single phased array. Both devices comprise an 802.11ad NIC (with Qualcomm QCA9500

FullMAC WiGig chip and QCA6335 baseband) with 2-bit phase shifters, plugged in an

embedded Linux host (running Wil6210 firmware and driver). Below we describe the

notable technical thrusts in implementing X-Array.

(1) Fine-grained per beam RSS extraction: The per beam RSS at client side is crucial

123

for the AoD estimation and co-phasing mechanism, but is concealed to upper layers on

commodity 802.11ad devices. To expose the RSS, we first disassemble the firmware file to

ARC assembly code. Then we blanket search the assembly code and pinpoint where the

per beam RSS calculation takes place, and the associated memory address in NIC. Then we

leverage Talon-tools [143], a C-based firmware patching framework adapted for the 802.11

radios, and write the firmware patch to copy the RSS value, immediately after a RSS value

is calculated, from its original address to a designated memory address at the very back of

NIC memory, which can be safely accessed by the host driver. With the patched firmware

loaded to the NIC, we then write a Python program to call the mem dump command on

the host, and dump the RSS value from NIC to user space.

(2) Enabling short BI : Recall that 802.11ad performs SLS beam sweeping per BI,

so a shorter BI may make the beam selection more responsive but at larger overhead.

X-Array does not require short BI thanks to the dynamic co-phasing design (Sec. 4.3.4).

However, to obtain the fine-grained ground truth phase measurement (Sec. 4.5), we need

BI as short as possible. The standard 802.11ad radio limits the smallest BI to be 20 ms,

which is not enough for this purpose (c.f. Sec.4.3.4). To overcome this barrier, we follow

similar steps as above, to disassemble the firmware and pin-point the BI value memory

address. Then we hard code the BI value to the firmware patch. Extremely small BI will

lead to inaccurate RSS measurement or even firmware crash. We empirically found 5 ms

to be the smallest safe value.

(3) Real-time codebook loading and inter-array co-phasing : We implement X-Array’s

dynamic co-phasing by loading selected beams with different phase shifts after AoD es-

124

timation, and selecting the optimal phase shift based on the dynamic co-phasing design.

The 802.11ad standard limits the codebook size (maximum number of beams) to 128.

Yet this X-Array implementation requires more than 128 beams (with different phase

shift combinations) due to the APA setup. Hence it is necessary to load the codebook at

run-time. Normally the codebook file is only loaded from user space to NIC when the inter-

face boots. We use the HWD RFC WRITE SECTOR command (0x900, ut subtype id:

0x514) in Qualcomm wil6210 driver to write the new codebook to NIC. Then we call

WMI SET RF SECTOR PARAMS CMDID command (0x9A1), which is originally de-

signed to change one entry in codebook, but it can also trigger codebook reloading onto

the phased arrays. This way we can change the codebook without rebooting the NIC.

(4) Enforcing TRP/EIRP constraints. We enforce the TRP/EIRP constraint by

regulating the beams, which is a common practice by COTS phased array devices. Specifi-

cally, we enforce the constraints when optimizing the overall APA beam pattern in respect

of AoD, as shown in Eq.4.9 and Eq4.10. We then solve this optimization problem for each

AoD, so that the optimization output beam pattern complies with the EIRP and TRP

constraints. In our real-time implementation, we use the pre-calculated beam and array

combination, which automatically enforces the constraints.

(5) Implementation of other components. We implement the X-Array AoD estima-

tion algorithm on the client side, where the per-beam RSS measurements are performed.

The client then feeds back the estimated AoD along with estimated angular speed to the

AP in a single 802.11ad packet. The AP acts accordingly, by calling other design com-

ponents (implemented as python modules on the user space). Thanks to the lightweight

125

X-Array design, the algorithms can run in real-time on the embedded PCs of both the AP

and client.

4.4.2 Experimental setup

For comparison, we have also implemented the following APA solutions [144, 145,

141] as baselines.

(i) ACO [141]: We implemented the phase estimation and AoD estimation algo-

rithms proposed in ACO [141]. Just like X-Array, ACO takes per-beam RSS as input,

but it can estimate the phase difference between one reference antenna element and all

other antenna elements, from which it obtains the CSI. The corresponding AoD is ob-

tained by running the MUSIC [146] over the CSI. To implement ACO, we generate a

custom codebook file with two antennas activated for each beam, corresponding to the

reference antenna element and the to-be-measured antenna element. We choose the an-

tenna element with index 0 in the codebook file as reference. We generate 4 beams for

each to-be-measured antenna with its phase index as 0, 1, 2 and 3 (mapped to 0, π
2
, π, 3π

2
).

We then load the codebook and feed the per beam RSS to the ACO model [141] which is

implemented in python.

(ii) Periodic probing: We also implemented a periodic probing mechanism to re-

alize co-phasing across arrays. A probing frequency of 1
2

BI means that co-phasing is

done twice per BI. Here the inter-array co-phasing is then estimated based on the ACO’s

CSI output. Higher feedback frequency may make the co-phasing more accurate under

mobility/blockage, at the cost of higher overhead.

126

Figure 4.10: X-Array hardware prototype is built on a commercial multi-array 802.11ad

AP, with customized array layout.

(iii) Neighbor scan: Since there exists no other work in outage recovery with APA,

we implement a neighbor scan (NS) baseline. Whenever an outage occurs, NS first scans

adjacent arrays with the smallest angle displacement to the previous AoD. If a strong

beam exists, it settles on these arrays; otherwise it keeps trying others.

Note that the above periodic probing, and neighbour scan essentially represent the

default behaviors of the existing 802.11 ad protocol when running on an APA radio.

4.5 Evaluation

We conduct extensive experiments in three types of environment settings: indoor

open area (16.6m × 6.4m yoga room) with no furniture blockage, complex indoor (typ-

127

 0

 10

 20

 30

 40

Indoor
open space

Complex
 indoor

Outdoor

A
o

D
 e

s
ti
m

a
ti
o

n
 e

rr
o

r
(d

e
g

)
ACO

Scan only

X-Array

Figure 4.11: AoD estimation error.

 0

 20

 40

 60

 80

 100

2 4 8 15 30 45

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t
g
a
p
 (

%
)

AoD estimation error

Figure 4.12: Impact of AoD estimation

error.

 0

 4

 8

 12

 16

 20

5 15 30 45 60 75

B
e

a
m

 c
o

h
e

re
n

t
ti
m

e
 (

B
I)

Speed (mph)

non-overlap

X-Array

w/o optimization

(a)

0
1
2
3
4
5

5 15 30 45 60 75T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Speed (mph)

non-overlap
X-Array

w/o optimization

(b)

Figure 4.13: Impact of joint array/beam selection on: (a) link stability; (b) link

quality.

ical office environment with workbenches and partitions around the route) and outdoor

(parking lot). We will verify that X-Array achieves WiFi-like coverage and maintains high

performance under link dynamics. Our results can be summarized as follows:

• X-Array maintains high accuracy in AoD estimation across different environments,

enabling a negligible throughput gap (around 5%) in comparison with an ideal solu-

tion that knows the ground-truth AoD. Also, X-Array’s joint beam-array optimiza-

tion can form wider beams without sacrificing the gain, so it can provide stable and

high throughput under high mobility scenarios.

128

• When taking into account co-phasing, X-Array can more accurately predict the phase

change of the client within next beacon interval. Consequently, X-Array leads to a

much lower throughput gap (<12 %) in comparison to periodic probing (18% to

42%).

• The blockage recovering mechanism of X-Array saves most of the link outages and

experiences no throughput gap in 96% and 93% of the blockage cases, in complex

indoor and indoor open space respectively.

• We put all the components together and run X-Array, and we find that X-Array does

not suffer any throughput gap most of the time under different speeds, while periodic

feedback mechanism has a significant throughput loss even with a high frequency of

every 1
3

beacon interval.

• By maximizing the benefits from APA, X-Array can achieve WiFi-like omni-directional

coverage. In comparison, a straightforward way of turning on 4 phased arrays may

lead to even worse coverage compared with 2 arrays.

4.5.1 Micro-benchmarks

Joint Array and Beam Management

Accuracy of AoD estimation. We validate the accuracy and effectiveness of

X-Array’s AoD estimation in three different environments. In each environment, we fix

the AP and randomly place the client to 80 locations. We compare three schemes: ACO

129

[141], X-Array with and without match filter (the latter referred to as “beam scan only”).

The box plot in Fig. 4.11 shows that X-Array has the lowest average estimation error and

lowest std., i.e., it achieves the most accurate and stable AoD estimation. Although ACO

performs slightly better in indoor open space, its estimation error increases dramatically in

complex indoor and outdoor scenarios, since its CSI estimation only works reliably under

high SNR and degrades a lot in relatively long-range and multipath-rich conditions. Also

note that the beam scan only approach performs worse than X-Array in all cases due to

the imperfect beam patterns, which implies the effectiveness and necessity of the matched

filter design (Sec. 4.3.3).

Impact of AoD estimation error. To understand the end-effect on throughput,

we fix the AoD estimation error to a specific value. To control the error, we first measure

the groundtruth AoD using a laser range finder. Then we intentionally use an AoD value

that deviates from the ground-truth by 2◦ to 45◦, as input to X-Array’s array/beam

selection. Note that the commodity 802.11ad device does not allow data transmission

under RSS monitoring mode. Moreover, it does not implement high bit-rate 802.11ad

modulation and coding, so the benefit of higher channel/link quality cannot be reflected

in measured throughput. We thus follow the same approach as in [141, 117] to map the

RSS to achievable throughput.

Fig. 4.12 plots the percentage of throughput loss compared to the ground-truth,

denoted as Normalized throughput gap. An AoD error of below 5◦ causes minor throughput

loss (e.g., median 10% and 75-percentile at 15% in 4◦ case), yet the median throughput

loss escalates to about 30% for AoD error above 30◦. Considering the AoD estimation

130

accuracy (Fig. 4.11), the corresponding average throughput loss of X-Array falls below 5%,

in comparison to the 20%-40% loss of ACO, in complex indoor and outdoor environment.

Effectiveness of X-Array’s joint array/beam selection. We compare X-

Array with two baseline approaches, one is to simply lets two arrays beamform to the

same direction to emulate the effect of treating the APA as a single giant phased array

mentioned in Sec. 4.3.3, denoted as w/o optimization, and the other one is to place multiple

arrays with non-overlapping FoV, denoted as non-overlap. To verify X-Array’s resilience

under mobility, we use beam coherence time (Sec. 4.2) as the performance metric. To create

different client moving speeds, we use a time-lapse approach as in [117]: We move the client

2.2cm each time along a 10m trajectory, and collect per-beam RSS traces at each point.

Then, different speeds correspond to different time-lapse values between the measurement

points. The result in Fig. 4.13 (a) shows that, even at 75 mph moving speed, the beam

coherence time of X-Array remains within one BI (100 ms) and non-overlap remains 1.3

BI (130 ms), whereas the giant array can only support up to 45 mph. The reason is that

X-Array creates wider beams without sacrificing directionality. Thus, it needs to update

the array/beam selection much less frequently, leading to even lower overhead than the

giant array approach.

To ensure this benefit does not come at the cost of lower beam quality, we place the

client to random positions along trajectory 10 m away, and compare the average throughput

of the two beamforming mechanisms. The result is shown in Fig. 4.13 (b). Fig. 4.13

(b) shows that, compared with w/o optimization, beams formed by X-Array can achieve

comparable or higher average throughput, and lower variance in general. Interestingly, the

131

 0

 1

 2

 3

 4

 5

 6

Indoor Outdoor

P
h

a
s
e

 e
rr

o
r

(r
a

d
) Periodic probing

X-Array

Figure 4.14: Phase prediction error.

 0

 20

 40

 60

 80

 100

Indoor OutdoorN
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

g
a

p
 (

%
)

Pi/2
Pi

3*Pi/2

Figure 4.15: Impact of phase prediction

error.

0

0.2

0.4

0.6

0.8

1

 0 20 40 60 80 100

C
D

F

Normalized throughput gap (%)

X-Array complex indoor
NS complex indoor

X-Array open space
NS open space

Figure 4.16: CDF of normalized through-

put gap under blockage

throughput of both X-Array and w/o optimization is ∼ 2× higher than non-overlap, which

indicates that high link quality can be achieved by applying the co-phasing algorithm.

Multi-Array Co-Phasing

Accuracy of phase prediction. We conduct the co-phasing experiments by

arbitrary walking along 10 routes inside an office building, and repeat the aforementioned

pointwise measurements to emulate different driving speed in outdoor open space. For each

beam combination (with two different beam indices on two arrays) at each measurement

point, we exhaustively vary the 4 possible co-phasing values between two arrays, and

132

measure the per-beam RSS when both arrays are activated. As we previously observed in

Fig. 4.8, the phase change rate estimated by X-Array shares a highly similar pattern with

the groundtruth. According to the predicted phase change rate, we can predict the two

arrays’ phase offset across the duration of one BI. The box plot in Fig. 4.14 further shows

the percentile errors when we run phase prediction in indoor (3 mph walking speed) and

outdoor (varying speed from 15 mph to 75 mph) settings. We see that X-Array has an

average phase error of 0.57 and 0.44 in outdoor and indoor, which are around 2.5× and 5×

lower than periodic probing. Moreover, periodic probing incurs around 2× larger phase

error in outdoor scenarios than indoor, as it is unable to track the phase change under

high speed. In contrast, X-Array becomes even more accurate when it comes to outdoor.

The reason is that although the phase change is fast, it is also stable and thus easier to

predict.

Impact of phase prediction error. We now evaluate the impact of phase error

in terms of the throughput loss compared with an oracle solution. The groundtruth phase

offset between two beams (on two arrays) in the oracle solution is obtained using the

method in ACO [141]. As we mentioned in Sec. 4.4, our radio only has a 2-bit phase

shifter, which makes the measured impact of phase error at least the impact of 90 degrees

phase difference. So we intentionally deviate the predicted phase from ground-truth by π
2
,

π and 3π
2

. Fig. 4.15 plots the normalized throughput gap generated different deviations.

Our previous experiment already showed that X-Array can predict phase accurately with

a median phase error of only about 0.5 in radius. This is much lower than the case with

phase error of π/2 which only causes about a median normalized throughput gap of 15%.

133

Since 0.5 ¡ π
2
, it is clear that X-Array suffers much less normalized throughput gap (around

12%) compared to the π
2

phase error case. In contrast, recall periodic probing has a phase

prediction error between π/2 to π (Fig. 4.14), this translates into a significant median

normalized throughput loss of 18% to 42%. This result will be further corroborated in the

system level evaluation (Sec. 4.5.2). Note that higher throughput loss exhibits in outdoor

scenario than indoor, because there are fewer reflectors in outdoor scenario which may

cause less NLoS to compensate the throughput gap.

Recovering From link Outage

We compare X-Array with the neighbor scan only (NS) approach to check its ef-

fectiveness and overhead in recovering from blockage. Our experiment investigates indoor

scenarios where blockage often occurs due to human activities. We collect 10 trials with

random client locations in each environment and evaluate the normalized throughput gap

when blockage occurs. Fig. 4.16 plots the CDF across all the experiment trials. It is

observed that X-Array experiences almost no throughput gap in 96% and 93% of the

time in complex indoor and indoor open space, respectively. In contrast, NS suffers from

throughput loss in over 60% of the cases, which can be up to 99.8% in complex indoor

scenario. The indoor open space does not have as frequent sudden change as complex

indoor scenario, thus more likely to find the strongest path in a shorter time, but the 80%

normalized throughput gap is still large (about 99%).

134

4.5.2 System Level Evaluation

Overhead reduction. We compare the overall throughput of X-Array and pe-

riodic probing in open space and complex indoor/outdoor environment and conduct the

experiments in 5 trials at different locations for each setting. The periodic probing scheme

shares the same array/beam selection mechanism as X-Array, but aligns the phase based

on different CSI feedback frequencies, i.e., every 1, 1
2

and 1
3

BI. Also the high speed results

are obtained by predicting phase by X-Array and periodic probing using the method in

Sec. 4.5.1 first, measuring the RSS of joint-panel beamforming with the predicted phases,

and then mapping it to throughput. The box plot in Fig. 4.17 shows that X-Array has

a near-zero median and 75-percentile throughput gap, and only several outliers in all

the settings. In contrast, periodic probing suffers from around 20% to 57% normalized

throughput gap. Interestingly, although high frequency periodic probing (e.g., at 1
3
-BI in-

tervals) may achieve low normalized throughput gap at low moving speed, the normalized

throughput gap increases dramatically when it comes to high-speed case. This is because

the phase change rate may easily exceed the probing frequency under high mobility. The

experiment verifies the importance of the predictive co-phasing of X-Array under different

moving speeds.

Coverage improvement. To verify whether X-Array effectively exploits the

coverage advantages of APA (Sec. 4.2), we conduct experiments with different number

of arrays and by disabling/enabling its design components in both typical indoor and

outdoor scenarios. For indoor scenario, we place the client at certain locations and conduct

135

 0

 20

 40

 60

 80

 100

3 (walking) 15 30 45 60 75

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t
g
a
p
 (

%
)

Moving speed (mph)

 X-Array

1/3 BI

 1/2 BI

1 BI

Figure 4.17: Normalized throughput gap due to co-phasing overhead.

measurements across the whole room. For outdoor scenario, we fix the AP on a lamppost

(Fig. 4.10) and place the client at different distances, and repeat each distance setting

in five different outdoor environments. We evaluate the cases with 2, 4, and 8 arrays

running X-Array, and a case with 4 arrays but disabling the array selection and co-phasing

(labeled as “4 arrays w/o switching”). According to the specification of our device, the

TRP regulation constraint mandates that at most 2 arrays be turned on with full power.

So when N > 2 arrays are active simultaneously, we reduce the transmit power per array

to 2/N . The result of indoor and outdoor scenarios are shown in Fig. 4.18 and Fig. 4.19,

from which we can derive the following major insights: (i). Although 8-array achieves

similar coverage as 4-array, the areas with high bit-rate links is much larger, thanks to

arrays with partially overlapping FoVs providing co-phasing gains. Overall, with 8-arrays,

X-Array eliminates all blind spots in the room, even for locations with thick walls, i.e., it

approximately achieves omni-directional coverage. (ii). In the indoor and some outdoor

cases, the 4-array w/o switching performs even worse than 2-array running X-Array. This

136

Figure 4.18: Coverage improvement in a room environment.

is due to two reasons. First, the former turns on all arrays, and wastes transmit power

on arrays that may not provide any multipath diversity. Interestingly, we found that for

4-Array and 8-Array cases running X-Array, only 2 arrays are activated most of the time,

implying it can intelligently select the best arrays rather than turning on all. Second,

the phases between panels in 4-array w/o switching case are randomly chosen and not

coherently aligned most of the time. Consequently, the throughput performance is harmed

and becomes unstable, implying the importance of the co-phasing design.

4.6 Discussion

APA represents a relatively new phased array architecture to establish high-performance

mmWave networks. Our X-Array system has addressed several major challenges in APA,

137

 0
 1
 2
 3
 4
 5

5m 15m 25m 35m 45m 55m 65m 75mT
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Range

8-panel AP

4-panel AP

4 arrays w/o
 switching

2-panel AP

Figure 4.19: Multi-array outdoor range improvement.

but many other design choices exist, which we discuss below.

Extension to multi-RF-chain mmWave MIMO. Emerging mmWave network

standards such as 802.11ay and 5G NR support mmWave MIMO, i.e., multiple RF chains

each connecting to one phased array, sending multiple streams of data simultaneously to a

single user (SU-MIMO multiplexing mode) or multiple users (MU-MIMO). As mentioned

in Sec. 4.3, extension to multiple users in single-RF chain device can be realized using the

built-in MAC protocol in 802.11ad like CSMA/TDMA based scheduling. Alternatively,

mmWave MIMO can send the same stream of data across multiple RF chains to a single

user to improve its SNR (SU-MIMO diversity mode). Although APA has a single RF

chain, it can be considered as a special case of SU-MIMO diversity. The AoD estimation,

array/beam selection and outage handling mechanisms in X-Array can thus be directly

applied to facilitate SU-MIMO. Its co-phasing implementation has been constrained by

the 802.11ad hardware (2-bit phase resolution), yet the dynamic co-phasing formulation

is general enough for future 802.11ay devices with phase weights. Even for the mmWave

138

multi-user MIMO (MU-MIMO) case, X-Array’s three key mechanisms can serve as essen-

tial facilitating functions. Practical mmWave MU-MIMO protocols need to separate the

analog beamforming and digital beamforming in two steps [145]. The former still heavily

relies on the angular estimation and beam selection to narrow down the beam search space

and then identify the best beam on each array for each user. These challenges are similar

in nature to APA and can still benefit from the basic design components of X-Array. The

detailed design that integrates X-Array in mmWave MIMO is left for our future work.

Dealing with more versatile client devices. Our current X-Array design as-

sumes a simple single-array mobile client device. But future mmWave mobile devices may

encompass APA to overcome users’ hand/body blockage. Accordingly, the array selection

mechanism needs to be updated to coordinate the AP and client simultaneously. In ad-

dition, X-Array derives its decisions mainly based on the 802.11ad SLS, when the client

turns to quasi-omni mode. Ideally, the client can further select its receiving beam after the

AP’s array/beam are selected. This function is not implementable on our current 802.11ad

device, but may be explored when an APA software radio becomes available.

Impact on higher layers Dynamic co-phasing of X-Array prevents most of the

sudden drops of link quality (indicated by link RSS). Such variation will severely affect

the effective throughput on the higher layer protocols and applications that are sensitive

to instantaneous bandwidth estimation (e.g. TCP and DASH) [147, 148]. Such amplified

impacts on higher layers are well studied and beyond the scope of our current work.

Multi-APA interference and spatial reuse. Our present work focuses on op-

timizing a single-cell mmWave network with a single AP. When multiple clients co-exist,

139

the decision of each can be made independently, and the overhead will not increase in a

noticeable way, because all of them share the SLS broadcast beacons from the AP. When

multiple APs and clients coexist, X-Array may not sacrifice spatial reuse much since it

tries to direct power towards the dominant AoA. Proper interference management schemes

(e.g., [149]) may still be needed, but are beyond the scope of this work.

4.7 Related Work

In order to overcome the two main obstacles in realizing robust mmWave network-

ing, i.e. mobility and blockage, recent research has explored efficient beam management

algorithms, along with new network architectures.

By reducing beam scanning overhead, the transmitter and receiver can quickly

realign their beams, thus becoming resilient under channel dynamics. AgileLink [118]

makes use of multi-arm beams and Hash function to identify the signal power along all

spatial directions, and selects the beam along the strongest direction. BeamSpy [117] learns

the correlation between beams offline, and prunes the beam search space to efficiently

recover from blockage. UbiG [150] introduces an asymptotically efficient beam alignment

algorithm that uses a few probings to estimate the best beam. Most of such algorithms,

along with many compressive sensing and statistical estimation algorithms[151, 152, 153],

rely on the CSI as input, which requires non-trivial on-board memory space [133] and is

unavailable on typical commodity mmWave radios. ACO [141] acquires CSI indirectly by

measuring the RSS corresponding to different phase shift values of different groups antenna

140

elements. Based on the CSI, it [141] estimates AoD according to [146] and form beams

accordingly. However, the CSI acquisition process itself takes non-trivial overhead.

To overcome the FoV limitations of phased-arrays, Pia [124] leverages multiple

cooperative APs, and switches to the appropriate AP whenever one is blocked. It uses

motion and location sensors on mobile mmWave devices to overcome user mobility and

orientation changes. Bouncenet [149] further addresses the spatial reuse when multiple APs

and clients coexist. EMi [154] first reconstructs the reflection environment using mmWave

sensing, and then intelligently places the APs to improve long-term network robustness

under random blockage and mobility. Beam-forecast and miDroid [119, 155] also leverages

the environment information, and matches the measured CSI with ray-tracing simulated

CSI in order to guide the beam selection. Yang et al. [156] leverages the mobile sensor data

to adapt the beamwidth by choosing the beam from a multi-level codebook. Listeer [157]

makes use of luminaries information from lighting infrastructure to help with maintaining

beam alignment and tracking mobility. Notably, none of the above work addresses the

challenges related to the APA architecture (Sec. 4.2.2).

In emerging mmWave SU/MU-MIMO standards such as 802.11ay, the AP first

performs legacy beam scanning and let clients report a set of potential beams for each

phased array. Then the AP collects CSI feedback of the clients’ selected beams and

further performs digital precoding to realize hybrid beamforming. Recent work designed

algorithms to group the clients [158] or estimate the mmWave MIMO channel [159, 160],

assuming detailed CSI feedback is available. As discussed in Sec. 4.6, X-Array addresses

a different set of problems, although its design components can be transferable to single

141

user mmWave MIMO.

4.8 Conclusion

We have explored APA as a new paradigm to simultaneously improve the mmWave

coverage and link quality. Our X-Array solution framework builds on the 802.11ad stan-

dard and runs directly on commodity devices. Our experiments have verified X-Array’s

advantages in terms of efficiency, coverage, and ability to rapidly recover from link outage.

We believe X-Array marks an important step in making mmWave networks more resilient

in dynamic and mobile scenarios.

Chapter 4 contains material from ”X-array: Approximating Omnidirectional Millimeter-

Wave Coverage Using an Array of Phased Arrays” by Song Wang, Jingqi Huang, Xinyu

Zhang, Hyoil Kim, and Sujit Dey, which appears in the ACM International Conference

On Mobile Computing And Networking, 2020. The dissertation author was the primary

investigator and author of this paper.

142

Chapter 5

Summary and Future Work

The escalating scale of ML models, coupled with the growing demand for mobile ML

applications, necessitates innovative solutions in mobile ML. The traditional centralized

paradigms, such as cloud and MEC based ML, fall short of performance due to their

inability to adapt to the dynamics of mobile networks. Split ML, as the distributed mobile

ML paradigm, links the computing nodes within the mobile network, amalgamating them

into a significantly more potent and intelligent collective mind. Through the exploration

of Split ML in this dissertation, we believe that we are forging a path towards the delivery

of real-time Artificial General Intelligence (AGI) to every mobile user.

5.1 Dissertation Summary

In this dissertation, we thoroughly explore the design aspects of Split ML, identify-

ing key challenges and deploying a variety of techniques—such as a unique split algorithm,

143

innovative communication protocols, and hardware designs—to implement an effective

Split ML system on mobile edge networks.

We first introduce HiveMind, the first multi-split ML system designed for 5G cel-

lular networks. HiveMind simplifies the complex multi-split problem into a mini-cost

graph search, optimizing the distributed algorithm to drastically reduce signaling over-

head. Thanks to its low overhead, HiveMind facilitates real-time optimal split decisions

across multiple computing nodes and adapts to instantaneous network dynamics. It also

integrates a multi-objective mechanism that accommodates diverse objectives for a sin-

gle ML task. HiveMind is compatible with a wide variety of ML frameworks, including

non-linear models like Recurrent Neural Network, Federated Learning, and Multi-agent

Reinforcement Learning. Evaluation of HiveMind using 5G MEC network simulators with

realistic traffic patterns and real-life MEC computation/communication profiles demon-

strates that it outperforms current split ML designs in efficiency.

We further characterizes the error tolerance capability of split ML intermediate

data communications. From these insights, we introduce NeuroMessenger, a lightweight

mechanism integrated into the cellular network stack to exploit ML data’s error tolerance

and reduce communication overhead. NeuroMessenger simplifies development and deploy-

ment as it does not require per-model profiling and remains transparent to the application

layer. Experiments on a 5G simulation framework demonstrate that NeuroMessenger de-

creases end-to-end latency by up to 99% while maintaining low accuracy loss under various

link conditions.

Finally, we propose X-Array, an innovative mmWave radio architecture designed

144

to accommodate the bandwidth needs of split ML. X-Array simultaneously selects ar-

rays and beams, applying a dynamic co-phasing mechanism to ensure signal enhancement

across different arrays. It also features a link recovery mechanism to identify alterna-

tive arrays/beams for efficient link recovery from outage. Implemented on a commercial

802.11ad APA radio, our experiments show that X-Array achieves near omni-directional

coverage and maintains high performance despite link dynamics.

5.2 Future Work

5.2.1 Limitations of Existing Works

This dissertation presents an initial exploration of Split ML systems, based on

certain assumptions that may guide future extensions.

Firstly, it assumes that each server in the split ML system serves a single user,

eliminating the need to schedule computational resources. However, in practical deploy-

ments, computational resources should be scheduled with a clear understanding of the

split options to maximize system efficiency.

Secondly, the dissertation posits that the runtime for each ML inference and training

pass is significantly shorter than the interval between calls to the split ML service. This

would mean that computation on one node wouldn’t be hampered by the preceding node.

Yet, in real-world scenarios, communication latencies can fluctuate greatly. Therefore, a

queuing mechanism might be necessary to handle potential bottlenecks in split workloads.

Lastly, the study is predicated on the use of 5G cellular networks, known for their

145

expansive bandwidth. However, when dealing with IoT devices equipped with limited

computational capabilities and low-data-rate radios, such as ZigBee, the balance between

computation and communication expenses becomes more acute. This necessitates innova-

tive design approaches.

5.2.2 Orchestration of Multi-tenant Split ML Deployment on

MEC

The work presented in this dissertation considers only single-user split ML service

usage. However, in practical MEC deployments, a split ML service must cater to multi-

ple users sharing communication and computational resources allocated for the split ML

service. Consequently, effective resource scheduling is necessary to ensure optimal overall

split ML performance while maintaining fairness.

The complexity of this scheduling challenge surpasses that of traditional scheduling

in distributed systems, due to two main factors. Firstly, resource scheduling complexity

increases due to split options. As demonstrated in Chapter 2, an ML model’s optimal

split option is influenced by computation and communication resources, which in turn

determine a user’s required resources. Therefore, scheduling and split option decisions

must be jointly optimized, increasing problem complexity.

Secondly, scheduling decisions must account for both computation and communica-

tion resources. Unlike traditional scheduling designs operating on stable data center links,

split ML scheduling operates on more dynamic, unstable mobile links. This necessitates

146

more frequent scheduling decisions to accommodate these dynamics. To make informed

decisions, the scheduler requires mobile link information, such as link quality and block

error rates, from the integrated Radio Network Information Service (RNIS) within the

MEC system [15]. However, frequent RNIS calls burden the MEC control plane and un-

dermine the overall efficiency of the MEC system. As such, a scheduling system capable

of making real-time joint scheduling and split decisions with limited access to network

telemetry information is required.

5.2.3 UWB-based Split Spiking Neural Networks

Despite split ML’s success in alleviating computational pressure on mobile devices,

growing ML model sizes continue to strain data centers and MEC sites. Specifically, ML

services’ energy consumption, projected to reach 0.4 TWh by 2021 [161], grows commen-

surate with model size, presenting significant environmental challenges. To combat the

energy-intensive nature of traditional neural networks, Spiking Neural Networks (SNN)

have been proposed. Mimicking the behavior of neural cells, SNNs employ a series of

spikes to encode information, eschewing digitized numbers. Executed on specialized neu-

romorphic chips [162], SNNs significantly outperform traditional GPUs or TPUs in terms

of power efficiency. For identical models, an SNN consumes only 1/17 the energy of a

traditional neural network, achieving the same results [163].

Like traditional neural networks, SNNs maintain a layered structure, making them

compatible with split ML systems. To optimize energy efficiency in split SNNs, the com-

munication system’s energy consumption must be equivalent to that of SNN computation.

147

In split SNNs, intermediate data is spike series, which must be digitized before digital

communication system integration—increasing energy consumption. Moreover, digital

communication systems demand 2 to 5× more energy than SNN computation. Instead,

pulse-based systems, such as UWB, offer a viable alternative. By representing SNN spikes

as pulses and forgoing complex DAC and clocking systems, UWB offers considerable en-

ergy advantages over digital systems. Consequently, we posit that a UWB-based split

SNN communication system represents a significant step towards realizing our vision of

low-power mobile intelligence.

148

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural in-
formation processing systems, vol. 27, 2014.

[3] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 4401–4410.

[4] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing
and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 8110–8119.

[5] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

[7] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,”
arXiv:2304.02643, 2023.

[8] Counterpoint Research. (2020) Average smartphone NAND
flash capacity crossed 100 GB in 2020. [Online]. Avail-
able: https://www.counterpointresearch.com/average-smartphone-nand-flash-
capacity-crossed-100gb-2020/

[9] A. W. Services, “Artificial intelligence – ai and machine learning,” 2023. [Online].
Available: https://aws.amazon.com/ai/

149

[10] Microsoft, “Azure machine learning,” 2023. [Online]. Available:
https://azure.microsoft.com/en-us/products/machine-learning/

[11] 3GPP, “5g system (5gs); study on traffic characteristics and performance require-
ments for ai/ml model transfer,” TR 22.874 V0.0.0, 2020.

[12] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving
the last mile of artificial intelligence with edge computing,” Proceedings of the IEEE,
vol. 107, no. 8, pp. 1738–1762, 2019.

[13] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceedings
of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[14] C. G. C. Index, “Forecast and methodology, 2016–2021 white paper,” Updated:
February, vol. 1, p. 2018, 2018.

[15] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman, G. Verin et al., “Mec in 5g networks,” ETSI white paper,
vol. 28, pp. 1–28, 2018.

[16] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang,
“Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 1, pp. 615–629, 2017.

[17] S. Cao, L. Ma, W. Xiao, C. Zhang, Y. Liu, L. Zhang, L. Nie, and Z. Yang, “Seer-
net: Predicting convolutional neural network feature-map sparsity through low-bit
quantization,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 11 216–11 225.

[18] F. Giust, G. Verin, K. Antevski, J. Chou, Y. Fang, W. Featherstone, F. Fontes,
D. Frydman, A. Li, A. Manzalini et al., “Mec deployments in 4g and evolution
towards 5g,” ETSI White Paper, vol. 24, pp. 1–24, 2018.

[19] L. Google, “Ml kit — google developers,” https://developers.google.com/ml-kit,
2020.

[20] A. Inc., “Core ml — apple developer documentation,”
https://developer.apple.com/documentation/coreml, 2020.

[21] austin kodra, “Awesome-mobile-machine-learning,”
https://github.com/fritzlabs/Awesome-Mobile-Machine-Learning, 2020.

[22] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep learning
apps on smartphones,” in The World Wide Web Conference, 2019, pp. 2125–2136.

[23] ITU, “Y.3172 : Architectural framework for machine learning in future networks
including IMT-2020,” Jun. 2019.

150

[24] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “QoS-Aware Adaptive Routing
in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning
Approach,” in IEEE International Conference on Services Computing 2016, 2016.

[25] Z. Lin and M. van der Schaar, “Autonomic and Distributed Joint Routing and
Power Control for Delay-Sensitive Applications in Multi-Hop Wireless Networks,”
IEEE Trans. on Wireless Communications, 2011.

[26] K.-L. A. Yau, J. Qadir, C. Wu, M. A. Imran, and M. H. Ling, “Cognition-Inspired
5G Cellular Networks: A Review and the Road Ahead,” IEEE Access, vol. 6, 2018.

[27] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Toward self-learning edge intelli-
gence in 6g,” IEEE Communications Magazine, vol. 58, no. 12, pp. 34–40, 2020.

[28] I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney, R. Katz, A. D.
Joseph, M. Jordan, J. M. Hellerstein, J. E. Gonzalez et al., “A berkeley view of
systems challenges for ai,” arXiv preprint arXiv:1712.05855, 2017.

[29] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learning model co-
inference with device-edge synergy,” in Proceedings of the 2018 Workshop on Mobile
Edge Communications, 2018, pp. 31–36.

[30] 3GPP, “Nr; study on integrated access and backhaul,” TR 38.874 V16.0.0, 2019.

[31] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger,
and E. P. Xing, “More effective distributed ml via a stale synchronous parallel pa-
rameter server,” in Advances in neural information processing systems, 2013, pp.
1223–1231.

[32] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford, “A reliable effective terascale
linear learning system,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1111–1133, 2014.

[33] I. Foster and A. Iamnitchi, “On death, taxes, and the convergence of peer-to-peer and
grid computing,” in International Workshop on Peer-To-Peer Systems. Springer,
2003, pp. 118–128.

[34] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and
applications,” ACM Transactions on Intelligent Systems and Technology, vol. 10,
no. 2, pp. 1–19, 2019.

[35] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Ba-
con, “Federated learning: Strategies for improving communication efficiency,” arXiv
preprint arXiv:1610.05492, 2016.

151

[36] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen, “Billion-scale
federated learning on mobile clients: a submodel design with tunable privacy,” in
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking, 2020, pp. 1–14.

[37] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “Data-driven task allocation for
multi-task transfer learning on the edge,” in 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems. IEEE, 2019, pp. 1040–1050.

[38] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” in
Artificial Intelligence and Statistics. Proceedings of Machine Learning Research,
2017, pp. 1273–1282.

[39] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of
the 22nd ACM SIGSAC conference on computer and communications security, 2015,
pp. 1310–1321.

[40] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery for inference
acceleration on the edge,” in 2019 IEEE International Conference on Computer
Communications. IEEE, 2019, pp. 1423–1431.

[41] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger,
P. B. Gibbons, and M. Zaharia, “Pipedream: generalized pipeline parallelism for
dnn training,” in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019, pp. 1–15.

[42] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast inference via
early exiting from deep neural networks,” in 2016 23rd International Conference on
Pattern Recognition. IEEE, 2016, pp. 2464–2469.

[43] ——, “Distributed deep neural networks over the cloud, the edge and end devices,”
in 2017 IEEE 37th International Conference on Distributed Computing Systems.
IEEE, 2017, pp. 328–339.

[44] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural networks for
efficient inference,” arXiv preprint arXiv:1702.07811, 2017.

[45] C. Lo, Y.-Y. Su, C.-Y. Lee, and S.-C. Chang, “A dynamic deep neural network design
for efficient workload allocation in edge computing,” in 2017 IEEE International
Conference on Computer Design. IEEE, 2017, pp. 273–280.

[46] S. Leroux, S. Bohez, E. De Coninck, T. Verbelen, B. Vankeirsbilck, P. Simoens, and
B. Dhoedt, “The cascading neural network: building the internet of smart things,”
Knowledge and Information Systems, vol. 52, no. 3, pp. 791–814, 2017.

152

[47] L. Li, K. Ota, and M. Dong, “Deep learning for smart industry: Efficient manu-
facture inspection system with fog computing,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4665–4673, 2018.

[48] X. Xie and K.-H. Kim, “Source compression with bounded dnn perception loss for
iot edge computer vision,” in The 25th Annual International Conference on Mobile
Computing and Networking, 2019, pp. 1–16.

[49] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “Jalad: Joint accuracy-and
latency-aware deep structure decoupling for edge-cloud execution,” in 2018 IEEE
24th International Conference on Parallel and Distributed Systems. IEEE, 2018,
pp. 671–678.

[50] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient compression:
Reducing the communication bandwidth for distributed training,” arXiv preprint
arXiv:1712.01887, 2017.

[51] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” in Ad-
vances in Neural Information Processing Systems, 2018, pp. 4447–4458.

[52] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication compression
for decentralized training,” in Advances in Neural Information Processing Systems,
2018, pp. 7652–7662.

[53] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in neural information processing systems,
2015, pp. 1135–1143.

[54] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[55] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher, “Deep compres-
sive offloading: speeding up neural network inference by trading edge computation
for network latency,” in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, 2020, pp. 476–488.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[57] P. A. Humblet, “Another adaptive distributed shortest path algorithm,” IEEE trans-
actions on communications, vol. 39, no. 6, pp. 995–1003, 1991.

[58] M. S. Corson and A. Ephremides, “A distributed routing algorithm for mobile wire-
less networks,” Wireless networks, vol. 1, no. 1, pp. 61–81, 1995.

153

[59] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu, and H. Ma,
“Understanding operational 5g: A first measurement study on its coverage, per-
formance and energy consumption,” in Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, 2020, pp. 479–494.

[60] J. Ding, X. Liu, Y. Li, D. Wu, D. Jin, and S. Chen, “Measurement-driven capability
modeling for mobile network in large-scale urban environment,” in 2016 IEEE 13th
International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2016, pp.
92–100.

[61] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei, “Linkforecast: cellular link
bandwidth prediction in lte networks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 7, pp. 1582–1594, 2017.

[62] ETSI, “Multi-access edge computing (mec); support for network slicing,” ETSI GR
MEC 024 V2.1.1, 2019.

[63] P. Manyem and J. Ugon, “Computational complexity, np completeness and opti-
mization duality: A survey,” Electron. Colloquium Comput. Complex., vol. 19, p. 9,
2012.

[64] sgrvinod, “a-pytorch-tutorial-to-sequence-labeling,” 2020. [Online]. Available:
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling

[65] H. Pan, Z. Li, J. Dong, Z. Cao, T. Lan, D. Zhang, G. Tyson, and G. Xie, “Dissecting
the communication latency in distributed deep sparse learning,” in Proceedings of
the ACM Internet Measurement Conference, 2020, pp. 528–534.

[66] 3GPP, “Nr; physical channels and modulation,” TR 38.214 V16.4.0, 2021.

[67] Federal Communications Commission, “FCC 15-138A1,” 2015.

[68] 3GPP, “Nr; physical layer procedures for data,” TR 38.214 V16.4.0, 2021.

[69] R. Kwan, C. Leung, and J. Zhang, “Proportional fair multiuser scheduling in lte,”
IEEE Signal Processing Letters, vol. 16, no. 6, pp. 461–464, 2009.

[70] R. R. Chakib Belgaid, Arthur d’Azémar, “PyJoules PyPi,”
https://pypi.org/project/pyJoules/, 2020.

[71] F. Malandrino, C.-F. Chiasserini, and S. Kirkpatrick, “Cellular network traces to-
wards 5g: Usage, analysis and generation,” IEEE Transactions on Mobile Comput-
ing, vol. 17, no. 3, pp. 529–542, 2017.

[72] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson,
“Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning,” arXiv preprint arXiv:1803.11485, 2018.

154

[73] E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-Castiñeira,
M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks et al., “6g white paper on edge intel-
ligence,” arXiv preprint arXiv:2004.14850, 2020.

[74] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile
edge computing: The communication perspective,” IEEE Communications Surveys
Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[75] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five
disruptive technology directions for 5g,” IEEE Communications Magazine, vol. 52,
no. 2, pp. 74–80, 2014.

[76] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated learn-
ing with personalization layers,” CoRR, vol. abs/1912.00818, 2019.

[77] H. Wang, M. Yurochkin, Y. Sun, D. S. Papailiopoulos, and Y. Khazaeni, “Federated
learning with matched averaging,” CoRR, vol. abs/2002.06440, 2020.

[78] T. Nishio and R. Yonetani, “Client selection for federated learning with heteroge-
neous resources in mobile edge,” in ICC 2019 - 2019 IEEE International Conference
on Communications (ICC), 2019, pp. 1–7.

[79] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani, “Hybrid-fl
for wireless networks: Cooperative learning mechanism using non-iid data,” in ICC
2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp.
1–7.

[80] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L.-C. Wang, “Efficient train-
ing management for mobile crowd-machine learning: A deep reinforcement learning
approach,” IEEE Wireless Communications Letters, vol. 8, no. 5, pp. 1345–1348,
2019.

[81] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for
reliable federated learning: A joint optimization approach to combining reputation
and contract theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–
10 714, 2019.

[82] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim, “Incentive design
for efficient federated learning in mobile networks: A contract theory approach,”
in 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS),
2019, pp. 1–5.

[83] P. Hu, J. Im, Z. Asgar, and S. Katti, “Starfish: resilient image compression for aiot
cameras,” in Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, 2020, pp. 395–408.

155

[84] M. Hamza, A. Lipovac, and V. Lipovac, “Residual block error rate prediction for ir
harq protocol,” Tehnički vjesnik, vol. 27, no. 4, pp. 1071–1076, 2020.

[85] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[86] 3GPP, “Nr; physical layer; general description,” TS 38.201 V16.0.0, 2020.

[87] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized Data,”
in Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics. PMLR, 20–22 Apr 2017, pp. 1273–1282.

[88] C.-Y. Hsu, A. Ortega, and M. Khansari, “Rate control for robust video transmission
over burst-error wireless channels,” IEEE Journal on Selected Areas in Communica-
tions, vol. 17, no. 5, pp. 756–773, 1999.

[89] S. Lin and D. J. Costello, Error control coding. Prentice hall, 2001, vol. 2, no. 4.

[90] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE transactions on information theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[91] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[92] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen,
M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. H. Engel, L. Fan, C. Fougner,
T. Han, A. Y. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Y. Ng, S. Ozair,
R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang,
C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu, “Deep speech 2: End-to-end
speech recognition in english and mandarin,” CoRR, vol. abs/1512.02595, 2015.

[93] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher, “Deep
compressive offloading: Speeding up neural network inference by trading edge
computation for network latency,” in Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, ser. SenSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 476–488. [Online]. Available:
https://doi.org/10.1145/3384419.3430898

[94] S. Jakubczak and D. Katabi, “A cross-layer design for scalable mobile video,” in
Proceedings of the 17th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 289–300.

[95] ETSI, “5g;management and orchestration; architecture framework,” ETSI TS 128
5ss V16.4.0, 2020.

156

[96] M. Kanj, V. Savaux, and M. Le Guen, “A tutorial on nb-iot physical layer design,”
IEEE Communications Surveys & Tutorials, 2020.

[97] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision. Springer, 2014, pp. 818–833.

[98] PyTorch, “torch.sparse — pytorch 1.9.0 documentation,” 2020. [Online]. Available:
https://pytorch.org/docs/stable/sparse.html

[99] MathWorks, “Nr pusch throughput,” 2020. [Online]. Available:
https://www.mathworks.com/help/5g/ug/nr-pusch-throughput.html

[100] 3GPP, “Study on channel model for frequency spectrum above 6 ghz,” TR 38.900
V15.0.0, 2018.

[101] Federal Communications Commission, “FCC Promotes Higher Frequency Spectrum
for Future Wireless Technology,” https://apps.fcc.gov, 2015.

[102] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K.
Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for
5g cellular: It will work!” IEEE access, vol. 1, pp. 335–349, 2013.

[103] The White House, “Unlocking the Promise of Broadband for All Americans.”
https://www.whitehouse.gov/blog/2016/07/15/unlocking- promise-broadband-
generate-gains-all-americans., 2016.

[104] Cisco Systems, Inc, “Cisco Visual Networking Index: Global
Mobile Data Traffic Forecast Update, 2016-2021 White Paper,”
https://www.cisco.com/c/en/us/solutions/collateral/service- provider/visual-
networking-index-vni/mobile-white-paper-c11- 520862.html, 2016.

[105] O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Cutting the cord in virtual
reality,” in Proceedings of the 15th ACM Workshop on Hot Topics in Networks.
ACM, 2016, pp. 162–168.

[106] K. Guan, D. He, A. Hrovat, B. Ai, Z. Zhong, and T. Kürner, “Challenges and chances
for smart rail mobility at mmwave and thz bands from the channels viewpoint,” in
2017 15th International Conference on ITS Telecommunications (ITST). IEEE,
2017, pp. 1–5.

[107] S. E. Elayoubi, M. Fallgren, P. Spapis, G. Zimmermann, D. Mart́ın-Sacristán,
C. Yang, S. Jeux, P. Agyapong, L. Campoy, Y. Qi, and S. Singh, “5G Service Re-
quirements and Operational Use Cases: Analysis and METIS II Vision,” in European
Conference on Networks and Communications (EuCNC), 2016.

157

[108] M. Tercero, P. von Wrycza, A. Amah, J. Widmer, M. Fresia, V. Frascolla, J. Lorca,
T. Svensson, M. Hamon, S. Destouet Roblot, A. Vijay, M. Peter, V. Sgardoni,
M. Hunukumbure, J. Luo, and N. Vucic, “5G Systems: The mmMAGIC Project
Perspective on Use Cases and Challenges Between 6−100 GHz,” in IEEE Wireless
Communications and Networking Conference, 2016.

[109] C. Tranoris, S. Denazis, L. Guardalben, J. Pereira, and S. Sargento, “Enabling
Cyber-Physical Systems for 5G Networking: A Case Study on the Automotive Ver-
tical Domain,” in IEEE/ACM International Workshop on Software Engineering for
Smart Cyber-Physical Systems (SEsCPS), 2018.

[110] M. Boers, B. Afshar, I. Vassiliou, S. Sarkar, S. T. Nicolson, E. Adabi, B. G. Pe-
rumana, T. Chalvatzis, S. Kavvadias, P. Sen, W. L. Chan, A. H. Yu, A. Parsa,
M. Nariman, S. Yoon, A. G. Besoli, C. A. Kyriazidou, G. Zochios, J. A. Castaneda,
T. Sowlati, M. Rofougaran, and A. Rofougaran, “A 16TX/16RX 60 GHz 802.11ad
Chipset With Single Coaxial Interface and Polarization Diversity,” IEEE Journal of
Solid-State Circuits, vol. 49, no. 12, 2014.

[111] R. J. Mailloux, Phased array antenna handbook. Artech house, 2017.

[112] P. Hannan, “The element-gain paradox for a phased-array antenna,” IEEE Trans-
actions on Antennas and Propagation, vol. 12, no. 4, pp. 423–433, 1964.

[113] C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2016.

[114] B. Li, Z. Zhou, W. Zou, X. Sun, and G. Du, “On the efficient beam-forming training
for 60ghz wireless personal area networks,” IEEE Transactions on Wireless Com-
munications, vol. 12, no. 2, pp. 504–515, 2012.

[115] S. Sur, V. Venkateswaran, X. Zhang, and P. Ramanathan, “60 ghz indoor networking
through flexible beams: A link-level profiling,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 1. ACM, 2015, pp. 71–84.

[116] A. Patra, L. Simić, and P. Mähönen, “Smart mm-wave beam steering algorithm for
fast link re-establishment under node mobility in 60 ghz indoor wlans,” in Proceedings
of the 13th ACM International Symposium on Mobility Management and Wireless
Access. ACM, 2015, pp. 53–62.

[117] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra, “BeamSpy: Enabling Robust
60 GHz Links Under Blockage,” in Proceedings of Usenix Conference on Networked
Systems Design and Implementation (NSDI), 2016.

[118] O. Abari, H. Hassanieh, M. Rodriguez, and D. Katabi, “Millimeter wave communi-
cations: From point-to-point links to agile network connections,” ACM, pp. 169–175,
2016.

158

[119] A. Zhou, X. Zhang, and H. Ma, “Beam-forecast: Facilitating mobile 60 ghz networks
via model-driven beam steering,” in IEEE Conference on Computer Communica-
tions. IEEE, 2017.

[120] J. Palacios, D. De Donno, and J. Widmer, “Tracking mm-wave channel dynamics:
Fast beam training strategies under mobility,” in IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

[121] T. Sowlati, S. Sarkar, B. G. Perumana, W. L. Chan, A. Papio Toda, B. Afshar,
M. Boers, D. Shin, T. R. Mercer, W. Chen, A. Grau Besoli, S. Yoon, S. Kyri-
azidou, P. Yang, V. Aggarwal, N. Vakilian, D. Rozenblit, M. Kahrizi, J. Zhang,
A. Wang, P. Sen, D. Murphy, A. Sajjadi, A. Mehrabani, E. Kornaros, K. Low,
K. Kimura, V. Roussel, H. Xie, and V. Kodavati, “A 60-GHz 144-Element Phased-
Array Transceiver for Backhaul Application,” IEEE Journal of Solid-State Circuits,
vol. 53, no. 12, 2018.

[122] T. Sowlati, S. Sarkar, B. Perumana, W. L. Chan, B. Afshar, M. Boers, D. Shin,
T. Mercer, W. Chen, A. P. Toda, A. G. Besoli, S. Yoon, S. Kyriazidou, P. Yang,
V. Aggarwal, N. Vakilian, D. Rozenblit, M. Kahrizi, J. Zhang, A. Wang, P. Sen,
D. Murphy, M. Mikhemar, A. Sajjadi, A. Mehrabani, B. Ibrahim, B. Pan, K. Juan,
S. Xu, C. Guan, G. Geshvindman, K. Low, N. Kocaman, H. Eberhart, K. Kimura,
I. Elgorriaga, V. Roussel, H. Xie, L. Shi, and V. Kodavati, “A 60GHz 144-element
phased-array transceiver with 51dBm maximum EIRP and ±60° beam steering
for backhaul application,” in IEEE International Solid - State Circuits Conference
(ISSCC), 2018.

[123] K. Ramachandran, N. Prasad, K. Hosoya, K. Maruhashi, and S. Rangarajan, “Adap-
tive beamforming for 60 ghz radios: Challenges and preliminary solutions,” in Pro-
ceedings of the 2010 ACM international workshop on mmWave communications:
from circuits to networks. ACM, 2010, pp. 33–38.

[124] T. Wei and X. Zhang, “Pose information assisted 60 ghz networks: Towards seamless
coverage and mobility support,” in Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking. ACM, 2017, pp. 42–55.

[125] Microtik, “60 GHz Access Point with 3 Titled Phased Arrays,”
https://mikrotik.com/product/wap 60gx3 ap/fndtn-specifications, 2017.

[126] “Airfide inc.” http://airfidenet.com, 2019.

[127] W. Hong, K. Baek, Y. Lee, Y. Kim, and S. Ko, “Study and Prototyping of Practically
Large-Scale mmWave Antenna Systems for 5G Cellular Devices,” IEEE Communi-
cations Magazine, vol. 52, no. 9, 2014.

[128] Y. Huang, Y. Li, H. Ren, J. Lu, and W. Zhang, “Multi-panel mimo in 5g,” IEEE
Communications Magazine, vol. 56, no. 3, pp. 56–61, 2018.

159

[129] A. Ghosh, “5g new radio (nr): physical layer overview and performance,” in IEEE
communication theory workshop, 2018, pp. 1–38.

[130] E. Onggosanusi, M. S. Rahman, L. Guo, Y. Kwak, H. Noh, Y. Kim, S. Faxer,
M. Harrison, M. Frenne, S. Grant et al., “Modular and High-Resolution Channel
State Information and Beam Management for 5G New Radio,” IEEE Communica-
tions Magazine, vol. 56, no. 3, 2018.

[131] J. Liu, K. Au, A. Maaref, J. Luo, H. Baligh, H. Tong, A. Chassaigne, and J. Lorca,
“Initial access, mobility, and user-centric multi-beam operation in 5g new radio,”
IEEE Communications Magazine, vol. 56, no. 3, pp. 35–41, 2018.

[132] N. Song, P. Wen, H. Sun, and T. Yang, “Multi-panel based hybrid beamforming
for multi-user massive mimo,” in GLOBECOM 2017-2017 IEEE Global Communi-
cations Conference. IEEE, 2017, pp. 1–6.

[133] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim, “Practical MU-MIMO User Selec-
tion on 802.11Ac Commodity Networks,” in Proceedings of ACM MobiCom, 2016.

[134] D. Carlson, “Breaking Through the Cost Barrier for Phased Arrays,” Microwave
Journal, 2018.

[135] J. Zhang, X. Zhang, P. Kulkarni, and P. Ramanathan, “OpenMili: A 60 GHz Soft-
ware Radio Platform With a Reconfigurable Phased-Array Antenna,” in ACM Mo-
biCom, 2016.

[136] R. Zhao, T. Woodford, T. Wei, K. Qian, and X. Zhang, “M-Cube: A Millimeter-
Wave Massive MIMO Software Radio,” in ACM MobiCom, 2020.

[137] X. Zhang, “Millimeter-Wave V2X Testbed,” http://m3.ucsd.edu/, 2020.

[138] IEEE Standards Association, “IEEE Standards 802.11ad-2012: Enhancements for
Very High Throughput in the 60 GHz Band,” 2012.

[139] Federal Communications Commission, “FCC 13-112,” https://apps.fcc.gov/edoc-
public/attachmatch/FCC-13-112A1.pdf.

[140] D. De Donno, J. P. Beltrán, D. Giustiniano, and J. Widmer, “Hybrid analog-digital
beam training for mmwave systems with low-resolution rf phase shifters,” in 2016
IEEE International Conference on Communications Workshops (ICC). IEEE, 2016,
pp. 700–705.

[141] J. Palacios, D. Steinmetzer, A. Loch, M. Hollick, and J. Widmer, “Adaptive code-
book optimization for beam training on off-the-shelf ieee 802.11 ad devices,” in Pro-
ceedings of the ACM Annual International Conference on Mobile Computing and
Networking (MobiCom), 2018.

160

[142] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim, “WiFi-Assisted 60 GHz Wireless
Networks,” in ACM MobiCom, 2017.

[143] D. Steinmetzer, D. Wegemer, and M. Hollick. (2017) Talon tools: The framework for
practical ieee 802.11ad research. [Online]. Available: https://seemoo.de/talon-tools

[144] IEEE 802.11ay Task Group, “Status of Project IEEE 802.11ay,”
http://www.ieee802.org/11/Reports/tgay update.html, 2018.

[145] P. Zhou, K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, and Y. Liu, “IEEE
802.11ay-based mmWave WLANs: Design Challenges and Solutions,” IEEE Com-
munications Surveys & Tutorials, vol. 20, no. 3, 2018.

[146] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE
transactions on antennas and propagation, vol. 34, no. 3, pp. 276–280, 1986.

[147] X. Xie, X. Zhang, and S. Zhu, “Accelerating mobile web loading using cellular link
information,” in Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’17. New York, NY, USA: ACM,
2017, pp. 427–439.

[148] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “PiStream: Physical Layer Informed
Adaptive Video Streaming over LTE,” in Proc. of ACM MobiCom, 2015.

[149] S. Jog, J. Wang, J. Guan, T. Moon, H. Hassanieh, and R. R. Choudhury, “Many-to-
many beam alignment in millimeter wave networks,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2019.

[150] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim, “Towards scalable and ubiquitous
millimeter-wave wireless networks,” in the 24th Annual International Conference on
Mobile Computing and Networking. ACM, 2018, pp. 257–271.

[151] Z. Marzi, D. Ramasamy, and U. Madhow, “Compressive channel estimation and
tracking for large arrays in mm-wave picocells,” IEEE Journal of Selected Topics in
Signal Processing, vol. 10, no. 3, pp. 514–527, 2016.

[152] D. Ramasamy, S. Venkateswaran, and U. Madhow, “Compressive adaptation of large
steerable arrays.” in ITA, 2012, pp. 234–239.

[153] ——, “Compressive tracking with 1000-element arrays: A framework for multi-gbps
mm wave cellular downlinks,” in 2012 50th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton). IEEE, 2012, pp. 690–697.

[154] T. Wei, A. Zhou, and X. Zhang, “Facilitating Robust 60 GHz Network Deployment
by Sensing Ambient Reflectors,” in Proc. of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

161

[155] A. Zhou, S. Xu, S. Wang, J. Huang, S. Yang, T. Wei, X. Zhang, and H. Ma,
“Robot Navigation in Radio Beam Space: Leveraging Robotic Intelligence for Seam-
less MmWave Network Coverage,” in Proceedings of ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), 2019.

[156] Z. Yang, P. H. Pathak, Y. Zeng, and P. Mohapatra, “Sensor-Assisted Codebook-
Based Beamforming for Mobility Management in 60 ghz WLANs,” in IEEE Inter-
national Conference on Mobile Ad Hoc and Sensor Systems, 2015.

[157] M. K. Haider, Y. Ghasempour, D. Koutsonikolas, and E. W. Knightly, “Listeer:
mmWave Beam Acquisition and Steering by Tracking Indicator LEDs on Wireless
APs,” in Proceedings of ACM Annual International Conference on Mobile Computing
and Networking (MobiCom), 2018.

[158] Y. Ghasempour and E. W. Knightly, “Decoupling beam steering and user selection
for scaling multi-user 60 ghz wlans,” in Proceedings of the 18th ACM International
Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2017, p. 10.

[159] Y. Ghasempour, M. K. Haider, C. Cordeiro, D. Koutsonikolas, and E. Knightly,
“Multi-Stream Beam-Training for mmWave MIMO Networks,” in Proceedings of
ACM MobiCom, 2018.

[160] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel Estimation and
Hybrid Precoding for Millimeter Wave Cellular Systems,” IEEE Journal of Selected
Topics in Signal Processing, vol. 8, no. 5, 2014.

[161] D. Patterson, J. Gonzalez, U. Hölzle, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild,
D. R. So, M. Texier, and J. Dean, “The carbon footprint of machine learning training
will plateau, then shrink,” Computer, vol. 55, no. 7, pp. 18–28, 2022.

[162] A. R. Young, M. E. Dean, J. S. Plank, and G. S. Rose, “A review of spiking neuromor-
phic hardware communication systems,” IEEE Access, vol. 7, pp. 135 606–135 620,
2019.

[163] T.-Y. Liu, A. Mahjoubfar, D. Prusinski, and L. Stevens, “Neuromorphic computing
for content-based image retrieval,” Plos one, vol. 17, no. 4, p. e0264364, 2022.

162

