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Accounting for endogenous 
effects in decision‑making 
with a non‑linear diffusion decision 
model
Isabelle Hoxha 1,2*, Sylvain Chevallier 3, Matteo Ciarchi 4, Stefan Glasauer 5, 
Arnaud Delorme 6,7 & Michel‑Ange Amorim 1,2

The Drift‑Diffusion Model (DDM) is widely accepted for two‑alternative forced‑choice decision 
paradigms thanks to its simple formalism and close fit to behavioral and neurophysiological data. 
However, this formalism presents strong limitations in capturing inter‑trial dynamics at the single‑
trial level and endogenous influences. We propose a novel model, the non‑linear Drift‑Diffusion Model 
(nl‑DDM), that addresses these issues by allowing the existence of several trajectories to the decision 
boundary. We show that the non‑linear model performs better than the drift‑diffusion model for an 
equivalent complexity. To give better intuition on the meaning of nl‑DDM parameters, we compare 
the DDM and the nl‑DDM through correlation analysis. This paper provides evidence of the functioning 
of our model as an extension of the DDM. Moreover, we show that the nl‑DDM captures time effects 
better than the DDM. Our model paves the way toward more accurately analyzing across‑trial 
variability for perceptual decisions and accounts for peri‑stimulus influences.

Perceptual decision-making has been studied extensively from  behavioral1,2 and  neurophysiological3,4 perspec-
tives, as it is omnipresent in daily activities. When decisions are timed, evidence accumulation models accurately 
describe human and animal behavior. They assume that decisions are made when enough sensory evidence has 
been gathered.

Among them, the Diffusion Decision Model (DDM, also called Drift-Diffusion Model)5 suggests that evidence 
is accumulated linearly, with a constant drift. The accumulation is additionally subject to Gaussian noise; hence 
the decision state can be seen as a particle following a Brownian motion. The popularity of this model yields 
from its intuitive formalism and good fit to  behavioral1 and neurophysiological  data3. It has also been shown 
that the DDM formalizes the optimal strategy for decision-making under time  constraints6,7. Interestingly, other 
forms of decision models such as the Leaky-Competing Accumulator  model8, and attractor  models9,10 can be 
formulated equivalently to the DDM under certain  constraints6,11.

The DDM accounts for global statistics of the behavior by describing the Response Time (RT) distribution and 
error rate. A major limitation of this model is that it does not consider inter-trial variability. However, behavioral 
studies have shown that sequential  effects12 impact prior expectations and the subsequent decision  process13. 
Traditionally, expectations are modeled through the starting point, or bias, of the accumulation  process5. Recent 
accounts have suggested that choice history affects subsequent drift  rates14. Together, these studies suggest that 
these parameters could be intertwined and vary over time, as participants become more familiar with the task. 
To address this issue,15,16 proposed an extended DDM, where starting points are uniformly distributed and drifts 
follow a Gaussian distribution without explicit dependence between them. However, this only provides global 
statistics about perceptual responses without insight into single decisions or inter-trial interactions. Moreover, 
the linear accumulation does not describe the variation of the dynamics at the scale of the single decision, which 
seems inconsistent with the aforementioned empirical observations.
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Linear evidence accumulation also assumes that evidence accumulation is independent of the decision state 
or of the time that passes. While some models consider the effect of time on the  decision17, or dynamics close 
to the  threshold18,19, no model to our knowledge accounts for initial dynamics. For example, ambiguous stimuli 
could yield flat initial drifts. This is partially translated into non-decision time, as it is assumed to be when sensory 
evidence is processed in the brain without contributing to the decision process.

Previous attempts at single-trial fitting of decisions have been made through attractor  models9,20,21, and it 
has been shown that these models can be reduced to a Drift-Diffusion  Model6,22, that is in that case, a Langevin 
equation with a non-linear  drift23. Its dynamics allow for transitions between decision states under fluctuating 
 stimuli11. However, the link between each parameter and the dynamics of the model is complicated to interpret. 
Moreover, the reduction proposed assumes a reflection symmetry of the network to obtain the given form. This 
seems limiting, in particular when each perceptual decision recruits different sensory modalities.

Moreover, while the few parameters of the DDM are advantageous in terms of complexity, it can be a limiting 
factor when analyzing endogenous effects, such as fatigue or training on decisions. Previous works have shown 
that post-stroke fatigue increases the non-decision time along experiment time, while RTs tended to decrease in 
healthy  participants24. Increased environmental requirements in terms of workload can decrease RTs and alter 
 accuracy25. While some models have taken into account the passing of time within each  trials17, no models have 
tried to account for more global fluctuations to our knowledge.

Here we propose a straightforward one-dimensional non-linear form to address these limitations: the non-
linear Drift-Diffusion Model (nl-DDM). It recreates double-well-like dynamics from an evidence-accumulation 
perspective without assuming reflection symmetry. We show its validity and compare its fitting performances 
to these of the DDM. We first provide a formal description of the nl-DDM, relating it to the DDM. Then, we fit 
the models on two human behavior datasets: a lexical classification task already  published26, and a multisensory 
classification task. Then, we used correlations to compare the parameters of both models on data simulated from 
DDM parameters and provide an empirical explanation of the effect of the nl-DDM parameters with analogies 
on the DDM. We show that it fits data equally well as the DDM while providing drift variability like the extended 
DDM. The dependency of the drift rate on the decision state provides a framework for more refined analyses of 
the decision process. Last, we considered the time spent performing the lexical task and showed that the nl-DDM 
modeled behavioral data significantly better than the DDM in that instance, supporting the necessity to account 
for the experiment time. We provide open-source code pluggable onto the PyDDM  toolbox22 for reproducibility 
and easy use of our model.

Results
In this paper, we introduce the non-linear Drift-Diffusion Model (nl-DDM) and show that it performs better 
than the DDM in terms of fitting accuracy on behavior. To this aim, we fitted both models on two datasets: a 
lexical classification dataset previously published  in26, on which we also modeled the effects of the time spent 
doing the experiment, and a multi-sensory classification task. To provide insight into the meaning of nl-DDM 
parameters, we also performed correlation analyses between nl-DDM and DDM parameters on data generated 
from DDM parameters and subsequently fitted by the nl-DDM.

nl‑DDM formalism. Our goal was to propose a simple model in which trajectories are attracted to a bound-
ary. Placing ourselves in the context of two-alternative choice paradigms, our model needed two attractive states. 
In one dimension, this forces the existence of an unstable fixed-point between the two stable fixed-points27.

Therefore, the model we propose follows a Langevin equation where the drift varies with the state of the 
decision. The drift equation can be written in the following form:

where x represents the decision variable and dx its variation in infinitesimal time dt. N(t) is a Gaussian white 
noise term. −k(x + a)(x − z)(x − a) represents the drift, and depends on several parameters. The parameter 
k is a time constant of the system, and a and z determine where the attractors, or decision boundaries, lie. ±a 
represent the two attractive states, and we constrain z to the interval ] − a, a[ to obtain z the unstable fixed-point. 
In this case, the drift corresponds to the deterministic part of the equation and depends on the current decision 
state. A summary of the parameters of the nl-DDM is given Fig. 1, which can be compared to the description of 
the DDM Fig. 5. In the following, we provide a formal explanation of the meaning of each parameter.

The interpretation of k as a time constant is straightforward from the equation: as k increases, a decision is 
reached faster for any given set of parameters.

To build an intuition for the other parameters, we first consider the potential function derived from the drift 
term (Fig. 2):

This profile is called a double-well potential profile.
From Fig. 2, we can see that there are two sinks at ±a , as well as a source at z, which emerge from the topology 

of the system. Therefore, ±a are the decision boundaries and control, along with z, the speed-accuracy trade-off. 
Taking a the boundary for correct responses and −a for incorrect ones, we can see that moving z closer to −a 
makes the −a-well shallower and the a-well deeper (Fig. 2A). In other words, the correct decision becomes more 
attractive than the incorrect one. The gradient becoming more positive on the interval [z, a], the trajectories 
starting on that interval also reach the correct decision faster.

(1)dx = −k(x + a)(x − z)(x − a)dt + N(t) ,

(2)V(x) = k
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By reducing a, both wells become shallower, making decisions slower (Fig. 2B). However, for a given noise 
scale, this also means that any perturbation in the wrong direction is easier to correct because a small perturba-
tion in the other direction can counterbalance that effect. When the wells are deep, the decision variable is driven 
rapidly to the stable fixed-point, making perturbations less reversible.

We can also observe the impact of k on the potential function in Fig. 2C.
Similar to the DDM, we can fit RTs by solving the Fokker-Planck equation corresponding to the Langevin 

equation (Eq. 1)22. Then, a non-decision time Tnd shifts the resulting distribution and accounts for biological 
transmission delays.

This model is similar to the Double-Well Model (DWM), which emerges from attractor network  models11,23. 
The potential profile of the DWM indeed takes the form:

Comparing this equation to Eq. (2), we observe a term in x3 that is absent from the DWM, because of 
the reflection symmetry assumption made in the  DWM23,27. However, when z = 0 and µ = 0 , we observe the 
equivalence of the systems:

This equivalence is coherent with the interpretation of z and µ as the impact of the stimulus on the decision 
and shows that in the absence of a stimulus, the two models follow the same behavior. Because the nl-DDM 
is not assuming reflection symmetry, the presence of a stimulus impacts the trajectories generated by the two 
models in different ways.

Model performance and comparisons. Behavioral results. It is helpful to obtain each participant’s RTs 
and decision accuracy for decision-making analysis, particularly for decision model fitting.

We used two datasets in this paper, described in the Methods section. They both consist of classification 
tasks performed by human participants. One of them is a dataset collected by Wagenmakers et al.26, in which 
participants had to assess whether a word presented on screen existed or not. The second one is a dataset in 
which participants were shown visual stimuli or a combination of visual and auditory stimuli on screen and had 
to classify them according to their type (either “face” or “number+sound”).

We describe here the validation conducted on the multi-sensory dataset. Analyses of the lexical  dataset26 are 
discussed later.

(3)V(x) = −µx − αx2 + x4.

k = 4

a2 = α/2

Figure 1.  Description of the Non-linear Drift-Diffusion Model (nl-DDM). The decision state is represented by 
a decision variable x traveling from a starting point (for example, drawn from a uniform distribution, centered 
around x0 and of width 2sz . It is represented as “SP” on the figure) to a boundary (“Correct boundary” or 
“Incorrect boundary”) under the influence of a drift. Here, the drift depends on the current state of the decision. 
Depending on the position of x0 relative to z, the drift will hence have different shapes. The trajectory is also 
impacted by white noise so that real trajectories are similar to the thin blue lines. From the stimulus onset, the 
decision process is delayed by a certain non-decision time ( Tnd ). Over an ensemble of decisions, probability 
density functions of correct and error response times can be created, as displayed here.
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On average, participants were shown 49.82± 2.42% (mean ± standard deviation, N = 25 ) of “number+sound” 
stimuli, indicating the quasi-equiprobability of each stimulus. We then performed mixed-model ANOVAs on 
their RTs and response accuracy for both stimulus-response mapping (between-subject factor) and stimulus 
(within-subject factor). Across all participants and stimulus types, the mean RT is 535± 61 ms , with an accuracy 
of 98.59± 0.95% . For the “face” stimulus, participants responded after 539± 56 ms with an average accuracy 
of 98.51± 1.17% . Participants responded to the “number + sound” stimulus after 531± 69 ms on average with 
an accuracy of 98.68± 0.94% . The difference in performance between the types of stimuli is not significant in 
terms of accuracy (Table 1) nor RTs (Table 2).

In the “face-left” stimulus-response mapping, where participants were instructed to click left upon face stimu-
lus presentation and right when they were presented with a number+sound stimulus, participants responded on 
average within 531± 74 ms with an accuracy of 98.48± 1.12% ( N = 15 ). Participants who underwent the “face-
right” mapping ( N = 10 ) responded within 541± 30 ms with an accuracy of 98.77± 0.60% . The effect of the 
stimulus-response mapping on accuracy and RT was not significant (Tables 3 and 4). We note a marginal interac-
tion effect between stimulus-response mapping and stimulus type on the accuracy ( p = 0.052 , Table 1). However, 
pairwise post-hoc comparisons revealed no difference between interaction sub-conditions ( pHolm > 0.310).

These results show the uniformity of participant responses across mappings and stimuli.

Figure 2.  Parameter manipulation on the nl-DDM. (A–C) Potential functions of the nl-DDM for different z 
(A Shifting z changes the relative attractiveness of each boundary, a (B Shifting a changes the accuracy and the 
speed of decisions), and k (C Shifting k changes the speed of decisions). The parameters are always the same for 
the solid black curve: a = 1, k = 1, z = 0 , allowing for a comparison of the effects of the different parameters. 
(D) Trajectories in the absence of noise for different values of x0 , under a = 1, k = 1, z = 0 . It becomes clear 
that the drift range for each trajectory depends on the starting point. The trajectory approaches the boundary 
asymptotically and will eventually be crossed since noise is omnipresent.

Table 1.  Within subjects effects on accuracy.

Cases Sum of squares df Mean square F p

Stimulus 1.249× 10−5 1 1.249× 10−5 0.299 0.590

Stimulus * S-R mapping 1.758× 10−4 1 1.758× 10−4 4.202 0.052

Residuals 9.623× 10−4 23 4.184× 10−5
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Comparison of loss values. Parameter fitting was performed using  PyDDM22 for both the nl-DDM and the 
DDM, minimizing the negative log-likelihood function. We fitted a model per participant and model type, 
resulting in 25 DDM and 25 nl-DDM on the sensory classification dataset. The DDM was fitted using 6 param-
eters (1 boundary, 2 drifts, i.e. one per stimulus, 1 starting point, 1 starting-point variability, 1 non-decision 
time), and the nl-DDM consisted of 7 parameters (k, a, 2z (one per stimulus), 1 starting point and variability, 1 
non-decision time).

We computed the Bayesian Information Criterion (BIC) for each model fitted on the multi-sensory dataset 
to establish a comparison of model performance that considers the sample size and number of parameters for 
each model. This is indeed necessary when comparing performance across model types, since the number of 
parameters is different. We observed that the nl-DDM fitted RT data significantly better than the DDM, even 
when accounting for the number of parameters (Fig. 3, Shapiro-Wilk test: W = 0.928, p = 0.08 , one-tailed paired 
t-test, t(49) = 1.714, p = 0.046,Cohen’s d = 0.343,N = 25).

Comparison of parameters. We compared the parameters of the DDM and nl-DDM using data generated from 
DDM parameters, varying the parameters B, ν, x0 and sz consecutively. Each parameter varied 100 times, result-
ing in 400 generated datasets, to which the parameters k, z, a, x0 and sz of the nl-DDM were fitted. Although we 
fit the parameters separately for each stimulus, we merge all the results to build relations between the parameters 
of the DDM and the parameters of the nl-DDM.

Table 2.  Within subjects effects on response times.

Cases Sum of squares df Mean square F p

Stimulus 1201.903 1 1201.903 2.446 0.132

Stimulus * S-R mapping 370.446 1 370.446 0.754 0.394

Residuals 11303.230 23 491.445

Table 3.  Between subjects effects on accuracy.

Cases Sum of squares df Mean square F p

S-R mapping 8.608× 10−5 1 8.608× 10−5 0.447 0.510

Residuals 0.004 23 1.926× 10−4

Table 4.  Between subjects effects on response times.

Cases Sum of squares df Mean square F p

S-R mapping 1438.081 1 1438.081 0.179 0.676

Residuals 184867.754 23 8037.728

Figure 3.  Distribution of the differences between the BIC obtained after fitting the nl-DDM and fitting the 
DDM on the multi-sensory classification dataset. A more negative difference means a better fit of the nl-DDM 
compared to the DDM. This figure has been generated using JASP (0.16.0.0)28(see https:// jasp- stats. org/).

https://jasp-stats.org/
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The correlation matrix of the nl-DDM and DDM parameters across all models is given Fig. 4. Note that, 
since the DDM parameters were artificially varied, the correlation coefficients within DDM parameters were 
discarded from our analysis.

We empirically computed the relation between the parameters within the nl-DDM. We observed a strong 
negative correlation between a the boundary and k the time constant. This corresponds to their opposed effect 
on the attractiveness of the correct response. Increasing either will make the decision more attractive, so to keep 
the same attractiveness of the correct response, if one increases, the other should decrease. In our data, since the 
noise term was constant, these two terms are strongly correlated. Note that the effect of each parameter remains 
different, as shown on Fig. 2B and C. While increasing k deepens both wells, increasing a will deepen the wells 
and pull them apart. Effectively, the relation between a and k is non-linear, as seen on Supplementary Fig. S2. 
We noted a positive correlation between k and z, which can also be understood with Fig. 2A,C: if k increases, the 
correct decision well becomes deeper and thus more attractive, and to correct for this effect, z needs to increase 
as well. k and sz the half-width of the starting-point distribution of the nl-DDM were related, while a related to 
the middle of the distribution x0 and to its half-width sz . This can be explained by the symmetric effect of k on 
the depth of the potential wells (Fig. 2C) and the asymmetric effect of a (Fig. 2B). In the same line, z correlated 
positively to x0 and negatively to sz . Increasing z results in slower correct and less accurate decisions. To maintain 
the same speed-accuracy trade-off, the starting-point distribution can be shifted towards the correct-decision 
boundary and it variability diminished so that a larger portion of it is located to the right of z, which is the 
attracting zone of the correct-decision boundary. Last, the starting-point parameters x0 and sz in the nl-DDM 
positively correlated with each other.

Upon cross-model comparison, we first observed that the middles of the starting-point distributions and 
their width correlated positively, which was expected. x0 of the nl-DDM and sz of the DDM were consequently 
also positively correlated, since they both correlated positively to sz of the nl-DDM, and a negatively to sz of the 
DDM for the same reason. x0 of the DDM also correlated negatively with z of the nl-DDM: increasing x0 in the 
DDM results in faster correct decisions and more accurate decisions. Decreasing z in the nl-DDM has the same 
effect, as the correct-decision well deepens and a larger proportion of the starting-point distribution is located 
to the right of z, hence towards the correct decision. sz of the DDM additionally correlated negatively to z and 
positively to k. Increasing sz with x0 = 0 in the DDM results in faster decisions and lower accuracy. Decreasing z 
in the nl-DDM results in faster correct decisions, which is coherent with the effect of increasing sz . Increasing k 
makes decisions faster and since the potential wells deepen (Fig. 2C), the decisions are also more prone to noise 
and hence less accurate. All these effects mirror the ones observed upon increasing sz in the DDM.

The DDM boundary B correlated positively to k, a, z and x0 and negatively to sz of the nl-DDM. Increas-
ing B results in improved accuracy at the cost of slower decisions. Consistent with this effect, increasing a also 
increases the accuracy. Shifting the starting-point distribution towards the correct decision, i.e. to the right of z, 
while decreasing its variability results in more correct decisions (Fig. 2D), explaining the observed correlation. 

Figure 4.  Correlation matrix of all parameters, computed from the parameters fitted over data simulated from 
DDM parameters. Pearson correlation coefficients were computed over N = 400 observations. This figure was 
obtained using the matplotlib (3.5.2)30-based Python library seaborn (0.11.2)31 (see https:// matpl otlib. org/ and 
https:// seabo rn. pydata. org/) ⋆ : p < 0.05,⋆⋆ : p < 0.01,⋆⋆⋆ : p < 0.001.

https://matplotlib.org/
https://seaborn.pydata.org/
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Increasing z results in slower correct responses due to the correct potential well being shallower (Fig. 2A), which 
mirrors the loss of speed implemented by an increase of B. Increasing k results in overall faster and less accurate 
decisions, which contradicts the effects of the boundary increase in the DDM. However, we also noted that k 
correlated positively with z and negatively with sz of the nl-DDM. These two parameters being positively and 
negatively correlated to B respectively, the increase of k upon increasing of B should be a consequence of these 
correlations.

We also observed a significant negative correlation between z and ν . This relationship was also expected, as 
increasing the drift ν in the DDM results in faster correct decisions. Mirroring this effect, z regulates the relative 
attractiveness of each decision well. As z becomes more negative, the correct decision (corresponding to decision 
boundary +a ) becomes more attractive, and hence correct decisions are made faster. Another explanation for 
this can be derived from Fig. 2: if we shift z closer to 0, the negative and positive wells of 2 will tend to be at the 
same level. It means that the mean maximum drift will decrease towards zero as z increases closer to the middle 
of the two boundaries ±a . In other words, increasing z will decrease the drift, hence the negative correlation. 
Conversely, a correlated positively with ν since pulling the potential well apart makes them more attractive 
(Fig. 2B). z also correlated positively with x0 of the DDM, which was expected as both have an impact on the 
proportion of trials that reach either boundary in the absence of noise. we noted a negative correlation between 
DDM drift and nl-DDM starting-point distribution.  Following29, higher DDM starting-point variability results 
in faster error responses. Therefore, across models, if the drift becomes greater in the DDM, hence making error 
responses slower, the starting-point variability in the nl-DDM should diminish to have the same effect.

Effects of time passing. The time spent performing the task is likely to impact the decision strategy, and 
we seek to model these effects using the DDM and the nl-DDM. We thus added a time condition to the lexi-
cal classification dataset, corresponding to whether the trial was performed in the first half of the experiment 
(“early” condition) or the second (“late” condition). Participant 2 did not complete all the blocks, and was elimi-
nated from our analyses. Therefore, the following analyses are presented over 16 subjects, each exposed to all 
the conditions.

Model fitting. The drift and z of the DDM and nl-DDM varied as a function of the stimulus complexity 
(common, rare, very rare, non-existent word), and the boundary of the DDM varied depending on both the 
instruction (speed/accuracy) and the time condition, resulting in 4 boundaries. In the nl-DDM the effects were 
modeled separately using a and k, fitting k depending on the time condition and a according to the instruc-
tion. Then, the starting-point distribution and non-decision time were fitted over all trials for each model. We 
compared the fitting performance of the two models. The BIC of the nl-DDM was significantly smaller than 
the BIC obtained by the DDM (Shapiro-Wilk test: W = 0.773, p < 0.001 , one-sided Wilcoxon signed-rank test 
( BICnl−DDM < BICDDM : W = 34, p = 0.042 ), which shows that splitting the effects of instruction and experi-
ment time yielded better results than combining them.

Analysis of the parameters of the lexical classification dataset. We fitted both the DDM and the 
nl-DDM taking into account the instruction, the time of the experiment (early/late trial) and the word type 
for each trial. In the DDM, we hence fitted 4 drifts, corresponding to the 4 word types, and 4 boundaries, 
corresponding to 2instructions× 2times . Conversely in the nl-DDM, we fitted 4z parameters (one per 
word type), 2a (one per instruction) and 2k (one per time of the experiment). We then performed paired t-tests 
to assess the discriminability of the parameters across conditions. We first compared the drift and z param-
eters across word types. In both the DDM and nl-DDM, we observed significant differences in the drifts and z 
between all word type pairs, except between rare and non-existent words (Tables 5, 6). The two models there-
fore discriminate between word types equally well. We observed that k differed significantly between the two 
time conditions ( t(15) = 4.553, p < 0.001 ), and a differed significantly between the two instruction conditions 
( t(15) = 4.879, p < 0.001 ). Comparing the boundaries of the DDM resulted in 6 comparisons, corresponding 
to the Bonferroni-corrected α = 0.05

6 = 0.008 . We noted no significant difference between early and late trials 
in the accuracy instruction ( t(15) = 2.784, p = 0.014 ), while all the other differences were significant (Table 7). 
The behavioral analysis (Supplementary Information 3) however underlined significant differences in RTs and 
accuracy across time of the experiment. The effects of time passing are therefore better transcribed by the nl-
DDM than the DDM.

Discussion
We presented a non-linear model of decision-making. This model takes the form of a Langevin equation, and 
provides a framework in which individual trajectories of the decision variable can have different shapes under 
the same global parameters (Fig. 2D). We have shown that this model predicts behavioral data equally well as the 
DDM. From the formalism we have described, it becomes clear that inter-trial variability in drift emerges from 
the dynamics of the nl-DDM, offering the possibility for further single-trial analyses and modeling.

The interpretation of the nl-DDM parameters may seem counter-intuitive at first, particularly when consid-
ering that decisions are made faster when the boundaries are further apart. Our correlation analysis provided 
insight into bridging the meaning of nl-DDM and DDM parameters. The difference is that in the DDM, the 
gradient of the drift is constant, whereas it varies in decision space with the nl-DDM. By pulling the boundaries 
further apart, we effectively reduce the impact of one attractor on the other, making each of them more attrac-
tive. Therefore, a decision can be reached faster, at the price of accuracy. Similarly, increasing the drift in the 
DDM is equivalent to shifting z towards the negative boundary in the nl-DDM, as they both result in fast correct 
responses. However, note that these parameters are not entirely equivalent as we did not find a perfect mapping 



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6323  | https://doi.org/10.1038/s41598-023-32841-9

www.nature.com/scientificreports/

between them, meaning that the nl-DDM is conceptually different from the DDM (Fig. 4, see also Supplementary 
Information 2, Figs. S1 and S2).

We have shown that the nl-DDM can also account for changes in the decision dynamics that do not relate 
directly to a change in the experiment but rather to the state of the participants. While such an account neces-
sitates an exponential multiplication of parameters in the DDM, the nl-DDM requires a simple duplication of the 
parameters. Indeed, if we again consider the case where there are two conditions (here, instruction and time), 
the DDM requires ninstructions × ntimes boundaries, while the nl-DDM requires ninstructions + ntimes 
boundary parameters (a and k). The version we showed here only split the trials into two instruction and time 
conditions, which results in the same number of parameters in the DDM and in the nl-DDM. Note however that 
any more instances of either condition would have meant more parameters in the DDM relative to the nl-DDM.

We argue that drift and starting-point variability are intertwined, as transcribed in the nl-DDM and in align-
ment with the view that evidence accumulation starts in anticipation of stimulus  apparition32. EEG research has 
shown a matching between pre-stimulus activity and confidence ratings in human  participants33,34. The starting-
point distribution models pre-stimulus states, and in the DDM the drift relates to the quality of the integrated 
 stimulus4, with more ambiguous stimuli corresponding to lower drift rates. At the single-trial level, drift vari-
ability relates to the variation of the quality of stimulus perception and processing in the  brain1. In our model, 
the starting point directly impacts evidence accumulation, allowing for a uniform theory of decision-making 
that includes explicit co-dependency of parameters. Some general forms of the DDM include a variance of the 
drift. In the nl-DDM, we have not implemented this possibility, as we assumed that the inter-trial variability of 
the drift emerged from the variability of the starting point. In neurophysiological terms, we assumed that the 
pre-stimulus arousal and stimulus expectations led to differences in the rate of evidence accumulation. This is 
supported by past observations, according to which pre-stimulus brain activation impacts  RTs35,36. Pre-stimulus 
brain activity also modifies  perceptual37 and  pain38 thresholds. Therefore, depending on the pre-stimulus activ-
ity, decisions can be made even in the absence of actual  evidence33,39, or under ambiguous  evidence40,41. Along 
the same lines,42 have shown that biases were implemented through local changes in accumulation rate, which 
supports the intertwining of accumulation rate and pre-stimulus states. However,34,43–45 argue that pre-stimulus 

Table 5.  Paired samples T-test on the values of z fitted per word type on the lexical classification dataset.

Measure 1 Measure 2 t df p Cohen’s d

zFrequent – zRare − 7.526 15 < 0.001 − 1.882

– zVery rare − 7.173 15 < 0.001 − 1.793

– zNon-existent − 5.438 15 < 0.001 −1.360

zrare – zVery rare − 3.933 15 0.001 − 0.983

– zNon-existent 1.082 15 0.296 0.271

zVery rare – zNon-existent 5.617 15 < 0.001 1.404

Table 6.  Paired samples T-Test on drift values fitted per word type on the lexical classification dataset.

Measure 1 Measure 2 t df p

νFrequent – νRare 7.257 15 < 0.001

– νVery rare 15.695 15 < 0.001

– νNon-existent 9.899 15 < 0.001

νrare – νVery rare 16.337 15 < 0.001

– νNon-existent 0.419 15 0.681

νVery rare – νNon-existent − 10.031 15 < 0.001

Table 7.  Paired Samples T-Test on the decision boundary of the DDM, fitted on the lexical classification 
dataset according to the instruction (BAi: boundaries for the accuracy instruction, BSi: boundaries for the 
speed instruction) and time of the experiment (Bx1: early trials, Bx2: late trials).

Measure 1 Measure 2 t df p Cohen’s d

BA1 – BA2 2.784 15 0.014 0.696

– BS1 9.635 15 < 0.001 2.409

– BS2 10.884 15 < 0.001 2.721

BA2 – BS1 8.003 15 < 0.001 2.001

– BS2 10.295 15 < 0.001 2.574

BS1 – BS2 7.020 15 < 0.001 1.755
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brain states should only affect the decision criterion, not how well participants perceived the stimuli. Translating 
the signal-detection theory to the evidence-accumulation  scheme16, pre-stimulus states should only be chang-
ing the decision boundary, or equivalently the starting point, and not the drift rate. For example,34 found that 
pre-stimulus alpha power did not impact the accuracy of visual evidence accumulation, but only the confidence 
in the decision.33 found similar results with auditory stimuli. Although these observations seem to contradict 
our assumption that the starting point impacts the evidence-accumulation process, both phenomena could co-
exist, as more extreme starting points are more attracted to the closer attractor. This results in fast and confident 
observations, although little evidence has been accumulated (we would be located at a plateau in our model), 
i.e., even if the stimulus was not well perceived.

The current analysis uses a form of the DDM without all variabilities proposed by Ratcliff and  Tuerlinckx29. 
The reason is two-fold. First, we wanted to use simple forms of both models to emphasize the characteristics of 
the ground parameters of each model. One may argue that the DDM should then have been fitted using a single 
point as the starting point. However, this would have introduced a confound when comparing the two models. 
Indeed, a major advantage of the nl-DDM is the variety of dynamics that it offers depending on the starting 
point. Since the DDM can also be improved by adding starting-point variability, implementing it in both models 
seemed to be a fair compromise. Second, and related to the first, any source of variability that could have been 
introduced in the DDM could also have been implemented in the nl-DDM. Besides starting-point variability, 
non-decision time variability could also exist in the nl-DDM. As argued above, the drift and starting-point vari-
ability should be intertwined, meaning that fitting a variability of the drift would be redundant to some extent 
in the nl-DDM, but we could implement variability in k, which, according to our analyses on time that passes, 
could be a natural mirror of the remaining effects of drift variability in the DDM.

The dynamics that we propose here is rooted in empirical observations made in neurophysiological studies. 
More specifically, three phases can be identified in the decision trajectories: an inertia stage, a quasi-linear evi-
dence accumulation stage, and a plateau stage. The initial inertia relates directly to the brain activation needed 
to integrate sensory evidence.35  and36 have shown in human EEG studies that the brain activity prior to stimulus 
presentation changed the speed of responses. More specifically, they showed that the more pre-activated the 
required sensory area, the faster the decision. The nl-DDM mimics this behavior at the single-trial level: for trials 
starting close to the unstable fixed-point (i.e., further from the correct decision well), the trajectories start with a 
plateau-like stage, whereby little evidence is accumulated because the brain would need to process the stimulus 
more intensively in order to extract information from it, before integrating evidence faster. This initial inertia 
is circumvented by shifting the starting point closer to the decision well, resulting in faster and more accurate 
responses. The initial inertia in the DDM is referred to as the non-decision time and encompasses both sensory 
processing and motor planning and execution. The nl-DDM assumes therefore that part of these processes par-
ticipates in the decision process, which goes beyond the conceptualization of decision-making as the sequence 
of sensation, perception, and motion.

A recent review  from46 shows the limitations of existing evidence-accumulation models. We try to address 
several of them with the nl-DDM, including the possibility for analyses beyond the global description of RTs 
and the formulation of initial and final dynamic changes during the decision process. In particular, our formal 
description has shown that different shapes of decision trajectories can co-exist within the same framework, not 
solely because of noise, but because of meaningful variability. We expect this model to be further used to gain 
insight into the across-trial variability of decisions.

The current study considered that the input was presented at the beginning of the trial and affected the 
decision in a constant fashion. We could also imagine more dynamic cases, where the input is processed over a 
finite period and participants accumulate evidence during stimulus presentation, as has been done in past DDM 
 analyses47,48. In non-stationary contexts, the input can be considered as a variation of z in time. By shifting z to 
either boundary, more trajectories are attracted to the opposite boundary, hence increasing the likelihood of 
correct answers. In addition, it can be inferred from our formal analysis that changing z means changing the drift 
rate. This change in input could also explain error-correcting  behaviors49 and spontaneous changes of  mind50. 
When the stimulus ends, the DDM is modified so that the drift is null, i.e. evidence is no longer accumulated. 
Therefore, changes of mind are the result of noise in the system. Conversely, stimulus termination could be 
modeled through shifting z in the nl-DDM, which effectively modifies the drift rate of the current decision, 
in a way that the decision variable could toggle towards the opposite boundary upon stimulus disappearance. 
Conceptually, the drift in the nl-DDM not only relates to the accumulation of evidence but also encompasses 
decision processes related to the post-processing of evidence.

We have shown that, while similar to the  DWM11 derived from attractor  models23, the nl-DDM is equivalent 
to it only in the absence of input. A question that remains open is that of the mechanism underlying this equa-
tion. From the reduction computed in the paper  by23, it would seem that a network of three populations could 
produce the dynamics we have described. However, the main assumption of the reduction was that the network 
was invariant through reflection. We argue that the mechanisms described by the nl-DDM are similar to these 
of the DWM, but offer a broader range of applications beyond the case of symmetrical models.

Extending this model to multiple-choice situations is another interesting ground of research. The DDM is 
inapplicable in such situations. The nl-DDM would require structural changes for multiple choices. Indeed, the 
decision variable’s trajectory is here modeled in a one-dimensional space, where the alternatives are represented 
as attractors. Its multiple-choice variant would require more attractors. In 1D-space, adding more stable fixed-
points will result in two issues. First, traveling from one alternative to another may require passing through 
other decision wells, which seems incoherent with behavior. Second, adding stable fixed-points requires the 
implementation of as many unstable fixed-points, which would mean a two-fold increase in the number of 
parameters when adding one choice. A simpler solution would be to switch to a 2D-space, so there could be a 
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central unstable fixed-point, and the subjective preference for each alternative would determine the position of 
each stable fixed-point.

Methods
Drift‑Diffusion model. The Drift-diffusion  model5 is characterized by a linear accumulation disturbed by 
additive noise. Formally, this can be written as the following Langevin equation (Eq. (4)):

where x represents the decision variable, an abstract quantity representing the state of the decision, dx its infini-
tesimal variation in time dt, and N(t) is a Gaussian white noise, parameterized by its standard deviation σ . 
Figure 5 gives a representation of this model.

Evidence is accumulated following Eq. (4) until a decision boundary A > 0 or −A is reached. Typically, the 
positive boundary corresponds to correct decisions and the negative one to incorrect responses.

Finally, the starting point of accumulation is called the bias and is defined as a single point within the two 
boundaries. In general forms of this model, it is also possible to consider that the starting point is drawn from 
a uniform distribution centered around the bias x0 and of width 2sz , such that [x0 − sz , x0 + sz] ⊆] − A,A[51, or 
from other parametric  distributions15. We will consider uniformly distributed starting points in our fitting to 
provide a fair comparison of the two models without loss of generality.

The boundary separation represents the speed-accuracy trade-off. Indeed, if this separation is bigger, deci-
sions are less impacted by noise and hence more accurate, but at the same time, they will take longer to reach 
from a given starting point. In contrast, the drift mainly impacts the speed of response, as a higher drift will lead 
to faster correct responses and longer incorrect responses.

Fitting is typically done globally over RTs. In fact, the trajectories defined by the equation cross the decision 
boundaries, forming a RT distribution usually compared to an exponentially modified Gaussian. In order to 
obtain a close fit, it is necessary to define a non-decision time (noted Tnd ), which corresponds to the time neces-
sary for sensory processing of the stimulus, motor planning and execution, independently of the decision process.

Data collection and processing. In order to test the quality of the fitting of the nl-DDM, we use RTs 
from a classification task performed by humans described thereafter. The paradigm was initially implemented to 
assess the relation between RTs and emotion valence of visual stimuli.

Classification task with different sensory modalities. We first tested the quality of the nl-DDM by fitting it to 
data we collected. 25 (11 female, 14 male) healthy right-handed participants aged 27.72± 8.96 (mean ± stand-
ard deviation) with normal or corrected-to-normal vision and hearing consented to taking part in a perceptual 
classification task experiment. EEG brain activity was also recorded (not reported here). The experiment was 
performed under the local ethics committee approval of the Comité d’Ethique de la Recherche Paris-Saclay 
(CER-Paris-Saclay, invoice notice nb. 102). All the methods described were performed in accordance with the 
guidelines and regulations stated by this committee and disclosed in the invoice. An interview preceded the 
experiment to check with the participants for non-inclusion criteria (existing neurological and psychiatric dis-
orders, uncorrected visual and hearing deficiencies). Informed consent was obtained from all the participants 
included in this study.

Participants were presented at each trial with images of faces or images of numbers, and had to respond with 
mouse clicks to report what stimulus they perceived. A sound accompanied images of numbers to suppress any 
ambiguity. Participants were instructed to respond using their right hand. To control for possible differences in 
motor response speeds between the two fingers, one group of participants ( N = 15 ) was instructed to report faces 
with a left click and numbers with a right click (“face-left” stimulus-response mapping), while the other ( N = 10 ) 
was given the opposite instruction (“face-right” stimulus-response mapping). Responses were constrained to 2 
s after stimulus onset. No feedback on the performance was given to participants. At each trial, each stimulus 
had a 50% chance of occurring.

Each participant performed 480 classification trials, split into 8 blocks of 60 trials each. Between each block, 
participants were offered a break of free duration. Each trial followed the sequence described Fig. 6. First, a central 
red cross appeared on the screen, indicating a pause period. After 1.5 s, the cross became white as a signal for trial 
start. The white cross stayed for 1.5 s, after which a video clip of visual noise appeared: 9 frames of noise of 100 
ms each were displayed. After the noise clip, a last frame of random visual noise was presented, and the stimulus 
appeared on top of it. The last frame stayed intact until the end of the trial, and the stimulus was displayed over 
it for 200ms. The trial was terminated upon participant response or timed out after 2 s. A trial lasted for about 5 
s, resulting in blocks of about 5 min each.

We used face sketches as used  in52, which were generated from the Radboud Face  Dataset53. Number stimuli 
were generated at the beginning of the session for each participant, under the constraint that they were 3-digit 
integers. In total, 10 different face stimuli and 10 different number stimuli were used for each participant.

Lexical classification dataset from Wagenmakers et al.26. To model the effects of time passing and discard the 
possibility of better performances emerging from the fitting algorithm or data acquisition, we also lead our 
analyses on a bigger pre-existing dataset taken  from26. 17 human participants performed a classification task, as 
they were randomly presented with real or invented words. The invented words were generated from real words 
by changing a vowel, and the real words were labeled in three categories depending on their frequency (frequent, 
rare, or very rare). In total, stimuli were split into 4 categories of interest. Each participant performed 20 blocks 

(4)dx = νdt + N(t) ,
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of 96 trials each, with as many invented words as real words in each block. Participants were given the additional 
instruction to define the speed-accuracy trade-off in each block: they alternated between blocks where speed was 
emphasized and blocks where accuracy was more important. Responses were limited to 3 s, and trials with RTs 
below 180 ms were discarded to avoid anticipatory responses. More details can be found  in26, and the dataset 
can be accessed from here.

Behavioral analyses. We are interested in comparing model parameters between the DDM and the nl-
DDM. It is important to check whether participants’ performance across stimulus-response mappings and 
stimuli is coherent in terms of RTs and accuracy. Indeed, the multi-sensory experimental paradigm we defined 
entails two types of stimuli and two motor commands for the choices. In addition, we have created two experi-
mental groups, which were instructed to respond with opposite motor commands. First, we computed the per-
centage of stimuli in each class to verify that the stimuli were globally equiprobable for each participant. Since we 
designed the experiment to display each stimulus with the same probability at each trial, we expect this number 
to be close to 50% . Otherwise, participants could opt for a strategy that prioritizes one response against the other. 
Then, we performed two mixed-model ANOVAs, respectively testing RTs and accuracy. The stimulus-response 
mapping was considered a between-subject factor and the stimulus type a within-subject factor.

In the lexical classification  data26, the effect of the time of the experiment is of special importance, as well 
as its interaction with the other experimental conditions (i.e. the word type and the instruction). We therefore 
performed two repeated-measures ANOVAs, respectively testing RTs and mean accuracy, assessing the effects 
of time (first half of the trials or second, resulting in two conditions: early vs. late trials), stimulus frequency, 
and instruction (accuracy or speed). One of the participants (participant 2) did not perform the 9th block of 
the experiment, which removed a significant portion of trials in one of the conditions. This participant was 
removed from the analyses, and the analyses were therefore performed over 16 participants. Post-hoc analyses 
were performed using the Holm correction.

Data fitting. The classical way of fitting evidence-accumulation models is by fitting one drift for each stimu-
lus category separately. In that case, the positive and negative boundaries still correspond to correct and incor-
rect responses respectively, and the starting points are taken from the same distribution regardless of the stimu-
lus. Consequently, one pair of boundaries ±B , the middle of the starting-point distribution x0 and its half-width 
sz , and two drifts ν0 and ν1 (corresponding respectively to “face” and “number+sound” trials) have to be fitted in 
the DDM. Similarly, one pair of stable fixed-points ±a , one time scale k, the middle of the starting-point distri-
bution x0 and its half-width sz , and two unstable fixed-points z0 and z1 (that will tune the drift in the “face” and 

Figure 5.  Description of the Drift-Diffusion model (DDM). The decision state is represented through a 
decision variable that travels from a starting point that can be drawn for example from a uniform distribution, 
centered around x0 and of width 2sz . The decision state is represented through a decision variable x traveling 
from a starting point (for example, drawn from a uniform distribution, centered around x0 and of width 2sz . It 
is represented as “SP” on the figure) to a boundary (“Correct boundary” or “Incorrect boundary”) under the 
influence of a constant drift (dotted line). The trajectory is also impacted by white noise so that real trajectories 
are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a certain non-
decision time ( Tnd ). Over an ensemble of decisions, RT distributions of correct and error responses can be 
estimated, as displayed here.
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“number+sound” stimuli respectively) are needed for the nl-DDM. In both cases we fix the noise parameter to 
σ = 0.3 . As explained  by5, since the speed-accuracy trade-off is determined by the boundary separation, fitting 
two parameters among drift, boundary, and noise is constraining enough. In addition, each model requires fit-
ting a non-decision time Tnd per stimulus type. Hence, 6 parameters must be fitted per participant for the DDM, 
against 7 for the nl-DDM.

We used the PyDDM  toolbox22 for the fitting, minimizing the negative log-likelihood function and an implicit 
resolution. The nl-DDM indeed does not have explicit solutions when z is not centered. The log-likelihood is such 
that the more negative, the closer the modeled distribution of RTs is to the empirical RT histogram.

Fitting the lexical classification  dataset26. With this dataset, we were interested in modeling the effects of time 
passing throughout the experiment. Therefore, we created an artificial condition based on the sequence of 
blocks, which characterized the trials as happening early (i.e. within the first half of the experiment) or late (i.e. 
within the second half of the experiment). We discarded participant 2, for whom we did not have data for the 
9th block. All the other participants performed 20 blocks alternating between speed and accuracy instructions, 
therefore each time condition held 5 blocks with each instruction. Within the DDM framework and for each 
participant, one drift was computed per stimulus type, resulting in 4 drift terms: ν1, ν2, ν3, νNW , corresponding 
respectively to frequent, rare, very rare, and non-existent word stimuli. 4 boundaries were fitted, corresponding 
to 2 instructions ×2 time conditions. The non-decision time, starting point, and starting-point variability were 
fitted for each participant over all trials. The within-trial noise parameter was fixed to 0.3. Hence, each model 
consisted of 11 parameters.

Within the nl-DDM framework, we fitted for each participant one z per stimulus type ( z1 , z2 , z3 , zNW ). In 
addition, one parameter a was fitted per instruction condition and one parameter k per time condition, resulting 
in 4 more parameters. Similar to the DDM, the non-decision time, starting point, and starting-point variability 
were fitted over all trials from each participant and the noise scale is set to 0.3.

As previously, we used  PyDDM22 with negative log-likelihood minimization and implicit resolution.

Performance comparison. Since the fitting on both datasets was performed using a different number of param-
eters and samples, we computed the Bayesian Information Criterion for each model, defined as:

That way, a penalty for more samples and parameters is considered. The negative log-likelihood is the fitting score.
Hence, we compare each loss pairwise, using a one-sided paired-sample t-test. Indeed, we want to test whether 

the nl-DDM is better than the DDM with these three metrics, hence testing the hypothesis BICnl-DDM < BICDDM.

BIC = log(sample size)× nparameters + 2× (Negative Log-Likelihood) .

Figure 6.  Timeline of a single trial. Each trial is preceded by a rest period, followed by a baseline period 
(necessary for EEG processing, not reported here), each lasting 1.5 s. A noise clip consisting of 9 random-dot 
frames of 100 ms each indicates the arrival of the stimulus in a non-stimulus-specific fashion. The stimulus 
then appears on a noisy visual background for 100 ms. The same noisy background frame then lasts until the 
participant’s response and times out after 2 s otherwise.

Table 8.  List of DDM parameters used for simulations and subsequent correlation analysis. A uniform 
sampling of 100 values was performed over the variation range of each parameter. One parameter was varied at 
a time, using the default value for all the other parameters.

Parameter Default value Variation range

B 1 [0.2, 5]

ν 0.2 [0, 10]

x0 0 [−1, 1]

sz 0 [0, 1]

σ 0.3 Kept constant

Tnd 0.3 Kept constant
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Comparison of parameters. For a better understanding of the parameters of the nl-DDM, their interac-
tion and their meaning in the DDM framework, we computed the Pearson’s correlation coefficients of DDM 
and nl-DDM parameters over simulated experiments. In order to obtain correlation coefficients within nl-DDM 
parameters as well as across DDM and nl-DDM parameters, we varied one by one the DDM parameters B, ν, x0 
and sz , and simulated 500 data points for each parameter combination. The nl-DDM parameters k, z, a, x0 and sz 
were subsequently fit to the generated datasets. Table 8 summarizes the sampling of DDM parameters as well as 
the default value for each parameter. We explored 100 variations of each parameter, resulting in 400 generated 
datasets. Since the noise parameters σ = 0.3 and Tnd = 0.3s were kept constant when simulating the DDM, we 
also fixed σ = 0.3 and Tnd = 0.3 in the nl-DDM.

We computed the correlation matrix between all the parameters of both models. This allows for a first look 
into first-order interactions between model parameters, within and across model types. Since the correlations 
within DDM parameters were irrelevant due to their artificial manipulation, these coefficients were not com-
puted. The correlation coefficients were computed using Pearson’s ρ , defined as:

Data availability
The lexical classification dataset is already made available by Wagenmakers et al.26 and can be accessed here. 
The multi-sensory classification dataset as well as the Python code are available at https:// github. com/ IsabH ox/ 
nl- DDM. git. The corresponding author can be contacted regarding these datasets.
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