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'PERTURBATION SOLUTIONS FOR THE PARTICLE TRAJECTORIES

‘OF A GAS-SOLID MIXTURE ENTERING A CURVED DUCT

‘Woon~Shing Yeung#*
. ABSTRACT

A matched asymptotic expansion solution was found for the’
particle trajectories in a curved duct when the non-dimensional
momentum equilibration length Lm' is small. The motion of the
carriér fluid was assumed to be uniform. The approximate
solution was gompafed with the exact numerical solution and
good agreements were found.

”
. . *Materials and Molecular Research Division, Lawrence Berkeley

Laboratory, University of California, Bérkeley, California 94720.
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Perturbation.Solutiohs for the Particle Trajectories

of a Gas-Solid Mixture Entering a Curved Duct

Woon-Shing Yeung

Introduction

In a previous studyl,.Yeung hasvobtained numefical solutions for the
particle trajectories in a circulaf curvéd tube. Two dimensioniess quantitiés
were identified{ T2 the nondimeﬁsional momentum équilibfafion length, and
&, the ratio of the mean radius of the elﬁow to thé radius of the cross section
of the pipe. It 1is thus.natural to'invéstigate the perturbation solutioﬁ when

T OF 8, or both, are small (or large). The main advantage of perturbation

" solutions is that the variables of the governing équations can be represented

approximatély in closed forms. These are considerably better than the
numerical solutions. For example, the calculation.of particle density in the
region of interestvéan bé'moreveasily carried ouf using the approximate closed
form sélution than the numerical solution. It also saves a lot of computer
storage spaces when momentuﬁ couplihg between the gas and the particle phase

is accounted for.
Theory
Consider a gas—particlé mixture flowing into é 2-D curved duct with mean

radius of curvature R as shown.
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Fig. 1 Coordinate system ofvthe geometry used.

A 2-D éﬁrved'duct is chosen for simplification, so that § ié absent from the

governing equations. The main assumptions are those used in the previous

studyl, which are listed below:

(1)

(2)
(3)

(5)

Particle-particle interaction is.small compared to particle-

fluid interaction.

The'présence of particles does not‘influence thé'gas flow field.

Only the drag force eﬁerted by the fluid phase on the particle

- phase is considered.

(4)

The aerodynamlc drag fOrce_is_assumed to be given by Stokes law

-3

throughout the region of interest.

The fluid moves with uniform speed along the curved pipe.

Some justifications of the above assumptions can be found in the previous

investigationl. If we denote u as the velocity component in increasing

r-direction and v.as- the velocity component in the increasing {-direction,

we can Write"dOanthe_motion'of the fluid phase in view of éSsumption (5):"'

.2..
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where'w is-theinitial.entry velocity of the dilute suspension and subscript f
denotes values pertaining to the fluid phase. For the motion'of the particle

phase, we shall use the Lagrangian description. As mentioned by Yeungz,'collisions

~among particles cannot be neglectéd if one tries to formulate the motion of an

individual particle, which presents great difficulty in the solution process.

>HdWever,'when the particle phase is considered as a continuum, the particle-

particle interaction becomes negligible compared with the particle-fluid‘inter—
‘actioﬁ, as long as the suspensioh‘is diiuteg;v Thus, if the particle phése
behaves aé, or at least approximately, a cbnfinuum, the mbmentum equatioﬁsbof
the particle phase can be expressed as

aﬁ \'J

3u Sdu. v ve u_-u _ :

ot p or r 3y r va ’ .

V. dV. V_JV.. uv V=~V . A '
P,, —RyR_P, Pp__£Lp ()
ot p or r 3} r T ¢ v

m
where we haveée neglected the diffusional stress tensor of the particle phase

due to its interaction with the fluid phase.. T, 18 the momentum equilibration

time and the subscript p denotes the particle phasé; By virtue of assumption

(4), T, is given by

oo .
g p o o :

2% - O

m 9 o _

where o denotes the partiéle diameter, Eﬁ thé particle material density and
ufthe viscosity of the fluid phase. It is of particular importance to realize

that equations (3) and (4) describe the mean motion of the particulate phase,



but noﬁ the motion of individual:particles. Thus, imagine a small volume
surfounding é_point in:spacé, which is large enough to contain a great number

of moiecples, while still posséssihg dimensions small compared with the
charaéferistic dimensioﬁ.of.the~physical system. Thé gquantities up,vp in
equations (3) and (4) then represent the average value of the motion of all the
particles contained in that small volume. Since only mean values are ofvmain
concern in most practical situétions, the Lagfangian formulation of individuel
particle motion apbears to be more than adequéte. .Moreover, the collisions
amorig particles render the Lagrangian'formulation impréctical._ T§ éircumvent
this:difficulty, the notion of emsémBle averagei is used with the Lagrangian
formulétion.of the particlefmotion. vTo begin‘with, we write downvthe equaﬁiOn
of motion‘of a particle

wFE=FE) . ()
where M is the particle mass, ¥ the particie_velocity_and_F(t) the force acting
upon the particle by virtue of collisions from the fluid mdlecules and other.
particles. Following Langévin3 on the theory of Brownian motion, we assume
F(t) can be written as a sﬁm of ‘two parts: (i) an "averaged-dut" part, which
represents the viscous drag experienced by the particle and.(ii).a "fluctuéfing"

part f(t). Equation (6) becomes

du Vv | | o
M—L=M222Prr) . (7)
dt T . v v

We now consider an ensemble of a large nﬁmber of systems'and take the ensemble

average of (7),

$An ensemble is a collection of a large number of systems similar to the one

originally under consideration. The ensemble average is one which is taken
over the ensemble at any instant of time. It was introduced by Gibb and is
used extensively in statistical mechanics. :

L,
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. The important assumption to be made here is

<=0 )

and equation (8) is reduced to

d<v'} <V>—<§7> : : - ,
P . .f P | (10)
dt T .

m

The particlé may collide with other particles and thereby lose momentum or

change direction. This may be loqked ypon as a‘drag'force acting oﬁ the partiéle
by all other particles._ However, since the'cbllision frequency of the-pérticle
with the gas molecules is much larger than with the.other paiticles, the

averaged drag force is represented solely by the viscous drag due to the fluid.
Assumption (9) is justified by the random natuie of f(t)f. Equation (10) is

the necessary equation of motion of a particle -in terms of the énsemble average
value of the velociﬁy. Since the-enéemble average value is the one most likely
to be observed macroscopically, it can be_lqoked upon as the-mean motion of the
particle phase.. From here dn, we drop the use of brackets in equation (10).

It should be clear that only mean values are formulated and solved for. Hence

av ?f-V : N .
R _-_*r P | ‘ (11)
dt T :

In polar coordinates,
V. =ue +v.e, o, ' ' _ (12)

‘ . o hd - . . . 0] . l - »
where e, and e .are the unit vectors in the increasing r and § directions,

respectively. Substituting (12), (1) and (2) into equation (11) and remembering

fStrictly speaking, a special'proof is required. ‘It may be considered as a

- pure assumption in the present work.
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that e, and e, are not constant vectors, we obtain

v 2
e, W S
at Tr T q o L : (13)
m : : .
in the‘r-direction and
dv_ u v W-v - o :
P, PP _ P : (14)

at - r T
) m

in the § diredtion. We have used the dynamic relations

it = Y ~ S (15)
and '

a _p

it ~ r (16) .

Equationé (13) to (16) can be solved‘fdr the particle frajeétories under
some prescribed initial conditions. One may have obtaiﬁed the same set of.
governing eqﬁations Ey considering tﬁe motiohvof an individual particle under
the influence of only the viscous drag of the fluid phase. In that case,'f(t)
would have been identically zero at any instant, which is a highly improbable
situation e&en when theré_is absélﬁﬁely no'éollisioﬁ among particlesf. Indeed,
the autocorrelation function of f(t) is important in some other quantities of
interest in the theory of chwnian motionu. _Thus} the dérivation given abbve
of equatidns'(l3) to (16) is fundamentally moré ébrrect and rigorous. Further-
more, the use bf.ensemble averagervalues of maéroscopic quantities is more
approériate~for most physical systems in practice.

For the initial conditions, we assume ﬁhe gas and pérticie»phaSes are in
dynamic equilibrium and that the»ﬁarticles are uniformly distributed at the

ehtry.' Hence the ensembied‘averagésvof the initial conditions are

TRecall that f(t)'is4the fluctuating part of the forde due to particle-molecule
and particle-particle-collisions as:Well. . v

6.
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w =0, v.=W . r=r , §=0 . (17)

at t=0, and (rO,O)-being the initial poéition of the particle.

Matched Asymptotic Solution

As mentioned before, we are seeking analytical sblﬁtions for the particle
trajectories when E;; the hondﬁnensiohal momentum equilibratibn length, is 
smali. It can bé readily shown, by nondiménsionalizing the bérticle equations,

that L is given by

iy wTm " "

TR RN X (18)
where |

t =RMW . S : S (19)
Hence small_lm implies that

o | | - (20)

It is wéll kno&n‘in pertﬁrbatioﬁ tﬁéory'that if the small pafameter, in our
caserfg; is a rafio of two time scales, in our case Tm‘and t*, it will be a
singular perturbation problemS. One cannot generate series solutions, which
are uniformly valid in the dbmain_of interest, by straightforward expanéions.
Several methods exist to:deal with singular perturbatioﬁ problems and fhe method
of matched asymptotic expanSions is-most éuitable for the present problem.

We begin by identifjing the oufer vériable_and thé innervvériable of the
problem, which are 5 and'rm,.rgspeétiQely. Then the outer problem is
formulated by introducing the‘followiﬁg'diménsionless quantities: | |

, ¥, E=% L o (e1)
N |

eI

_u v ;
U = 35' , V= 3? , R =

EQuations(l3)_to (16) become



- = Lo

L Lo+ T, (22)
at "R

’Em g’g = 1—V-Em —U;V ) (23)
dt R

E_5 , (24)

dt

€., e

dt R ’ : - ' :

Examination of equations (22) and (23) shows that wheﬁ I%f~0,.they_beCOme
algebraic equations instead of first order ordinary differential equations.

Thé given-initial ¢Onditiohs (l7)'cannd£ be satisfied conseqﬁently. The -
failﬁre to,sétisfyiall the prescribed boundary and initial conditions of the
oumersolution'is fypical in all singular pefturbation problems. Hence, instead
of using (17), dne muéf obtain the genefal'sélutions of (23) to (255 and
evaluate any constaﬁté ih the'general solution by matching_with the inner

solution. Pertinent solutions of (22) to (25) are Written in the forms

ﬁ:@+%ﬂ+ﬁ@}n{,‘_‘, ' IVQQ
T T B s en
§_= §g~+f;§i;+f§fé-;-g.., _— .‘ : - | | | (28)
¥ = '?o*fm@l*vii@-j': -  (29)

Substituting (26), (27), (28); (29) into'equatidns (22) to (25) and equating

equal order of i% we obtainv'

L



0=1-V_ ,
o}
o (30)
. —-.-— vo
i ‘L’ Z -
| ° R,
S = :
for the zeroth order and
UO——U1+VO/RO ,
. _ T3 | -
Vo =.-Vl-v§ E .. o _ . : | | _ | |
. R.
4= = (V, -=7V)
1 R 1 R o]
ol o)
for the first order of E;. The dot denotes differentiation with respect to t.
The governing equations for higher order terms are complicated algebraically'
and are not recorded here.
The general solutioh to the outer problem is found, to order of Eﬁ, as
follows:
~ 1~ 1 % 2.1, 1 E.C° 3c=. 3 =\~ -~k
U== L «= (Z+C) +3(~S-"+5+2=t+ t9)L+0(L’) ,  (32)
A nm A2 A m A A2 A A A 2AE m m
o, Ll 2,12 %, 138, 0tk
V=1-5 L +7[5(C+C)IL +0(L ) (33)
A AT ;
-
-
In view of equation (32), should have been nondimensionalized according to
U= /'WLm 80 as ‘to render T of order 1. However, the final results were
found to be identical with the present results when the new form of U was

used. : , _ S



R = A+(C}£—)fm+[E-f§_(c€+§K)]ii |
" {%[z(‘.}‘\l_e-%i_';gi% #,;iﬁf?he}i?nm('ﬂ;) L@
'{p;' (§+B)+[D;L2(C€+ L +‘{F+—[t(i-§)+%#*;ﬂt3]}iren |
. 2A 6A
g S 52D
+‘§<,-2%>]+H}ii P | . | G

where A,B,C,D,E,F,G,H afe‘constants to be determined by matching cdnditiQns.
For the inner problem, the following nondimensional quantities are used:
r ! ' 1
R=§‘:'Y=ﬂ}. s T =— (36)

"m

where we have nondimensionalized t with the inner variable T instead of t .
T and t asre related by the following
Tt ‘
T = = . S . (37)

L
m

Substitute (36) into equations (13) to (16) to obtain

TeUtL E s - e
%n-v%f', o - (39)
.%=Ufm - - L - (ko)
S R S B ; IR (41)

The main difference between the outer and the inner problem is that the latter
does not alter the order of the original system of differential equations, as
seen from:(38) to (41). Thus, ‘the initial condi‘.ticinsv (17) can be satisfied by

the inner ‘solution. As before, U;V,R and Y are assumed to be of the following

10.
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- forms

¥ =¥ +L ¥ 4'£2Y +

gy =0 , V=1 , R =7 , ¥ =0

o) 20 : o. . "o o)
and’

U =0 , V.=0 , R, =0 , ¥ =0 ; Vi=z1l

» i i i i

at -

T=0 ,
where

T.
F o= =
"o - R " °

Substituting equations (42) to (45) into (38) to (41) and equating equal
orders of ig as béforé, we obtain systems of differentiasl equations, subject
to the éppropriate initial conditions given by (46). The solution procedure
is straightforward. and the inner ekpansions of'U,V,R and ¥ are found to be,
(L)

to order O ) the following:

U= (1-D% +E (e T4rPe T3
- nt 3 >
r r
NENCES +8e T4 137 ‘T-+3_T.2- e T ur3 R R oe-2T)75
;5 o - TYe €. ) T3 I3 » o
o] ' .
+0(L )

11,

(k2)
(43)
(L)

(45)

(L6)

(k)

(48)



1T 1.1 3 2.7 T3 T
__vf1+_2® +Te " - 1)L +7(2T-2+3e S5 Te -
: r r .
o . : o]
- Te-sz-eng)iﬁ-FO-+O(£6) 5 (k9) -
R =7 +‘i'(T+e'Tv-1552'+41-(3-3e'T oI ¥ 2 T
e m =3 -3Te -7 ©
r . - B o : .
(o] _ _ ’ O. :
~6 o -
+o(L,) (50).
T Y 1" o p TP
¥==1L += (l-e "-Te " -=)L
- m' =3 -2 m
T r .
-To o o
+'3;{9..5T_+ZE4QIiQﬁloe“T4-5 iée-T4_1 p3e~T 4 pe2T -ET}
=5 2 6 . 2
O . B
~6 -
+0(L,) (51)
Applying Van Dyke's matching principles,_the constants appear in the outer
solution (32) to (35) are found as ‘
A=r_ , B=0 , C=0, D=0, E:d/i),F;o , G=0 ,Heég (52)
The outer éolution then becomes -
T-25 -2 RS P o@) (53)
r r m ooy’ n
(o] o] ) o]
= 1= 283~
Vel-Z Lo+ Hn+~o(;m) , (54)
r r
o - 7o
- = T o~ e 3~
Rer+ 26+ (-2- B+ (0@ (55)
r T 2r: 2r
[®) (0] e} o}
_ - - ~ —3‘ . =D . ._)4 . .
7ot g B R, aE LB (56)
r 2r br or r' r-
(o] (o} o] [o] (o] [e]

-
o

Equations (48)

to (51) and equafions (53‘ to (56) then constitute the solution

of the particle motion govefned_by.equations (13) to (16) when L is small.

3
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For time of order Tn? the inner solution applies and for time of order t ,
the outer solution applies.: However, it is quite inconvenient to use two
separate expansions from a practical viewpoint and a composite expansion

_.valid for all time is desirablé“‘One such composite ekpéhsion is given by.

Erdelyi6
(8,8) _ (6) , o(8) _ (8)1(s
» ’fC - i +f0 - ]i > (57)
where
féé’A) is the composite expansion
fis) is the inner expan51on to order §
féA) is the outer expans1on to order A
and [f(A) (5) denotes the inner expansion to order § of the outer
expansion f(A)
Using (57), the'composite expansions . for U,V,R and Y are
In T2 3. 54 85
U :_———--_—3— Lm+"2—__—5 Lm-f-; Lm—; Lm
r r r r r
o "o o o o
¥ e-t/Lm{( -:1_+§-2-.% Eu-)i' ¥ (_i-ﬁg—)??;(% £)33
r r3 ;5 n r3 3 r5 m ;5 n
‘0 o o o) o o)
- 2t/ = -
13t 4 8 ~5 m, 2t °h
+ ==L +=1"}+e (-=11) , . (58)
7 m ;5.,m _;5 m v
o) o} e
_ . L1228 2 th
VEl-S Lt S
r - r r
o o o ,
/L - - |
me,t  t0 N\ 1 3t\02 :3,L_~4
Te { 2 —:H)mek( 2 2 :E)Lm-k( )Lm}
3r r r
o} o ol e} o
2Y/L - |
t 1 ' :
r r .
o o}

13.



R R . L E T
r rd 2ro rl. m ry -
-’c'/i -2 - | "
1 _t°z2_3t3_ 3 th _
+ e {(= -__3)Lm_ S L3 Ll | (60)
r r r .r . ) .
(o] O_ o . (o]
-?'52”- B o1 P 553 st ~5 |
Y= e L v I (S - g S S22
r, 2rl’ n _6;5 mo B o r7 m ';5 mooom A
-O O ‘ O O (o) ) O_' (o]
/L - =3 : - '
m, t , t2\72 1.,5t53 1075
+ e {( + =)L+ (- =+ =)I° ~= L’}
r3 3;5 mo r3 2 ;5 m 55 m
o o . ) o e
2%/ - '
met Th, 1 25
+e {;5 :Lm+;5 L} (61)
) )

Results and Discussion

The exact solutions can be found by numerically integrating equations (22)

to (25), subject to the initial conditions (17) nondimensionalized as follows

_atE.=0,6=o',\7=1',§=-ro,¥=o.- (62)

Figures (2) to (5) shoﬁ.the cémparison betWeen ﬁhe_éxéct’numerical solution and

the approximatevsolution gi&en by the composite expansions (58) to (61) for

various.vélues Qf i@. Excellent agreements bétween.the numerical exacf solu~

tions and the matchéd asymptotic soiutiéns aré'indicated foriig as large‘as 0.k4.

For large values of E; (but still lgsé than l),.the approximate solutions tend

to over predict the exact values in general. The compariéoﬁs are made for

particle trajectories initiated at ;;==l, i.e., center of th¢ curve duct. Also, .
the results are presented up to the time when tﬁe particle hits the pipe wall.
or exité the pipe. }HQVing obtained the approximate éolution for the particle
mbtibp,.one can calculate,:fOr example, theuefosibn rafe'on'the'pipe.wall due
to particle impactsl |

The preéent results also apply to the mid-plane of a circular curved pipe,

1k,



as long as the fluid motion is uniform o#er the cross-section and along the
pipel. To show this analytically, we notice that the particle velocity is

v =u® +ve +we - 6
vp p°r Yo%y TS . _ v (63)

written in polar coordinates with the z-axis pointing into the paper in Fig.‘l.

- w_ is the velocity component in the increasing z-direction. Carrying out the

same-'analysié as before, we arrive at the following governing equation for the

ensemble average of the velocity components:

B %
at r "1 (64)
m .
T W;va o |
+ = R ) :
it - r T ? ' (€5)
m
aw YR .
at " (66)
m
du _ ' o ' 4
Tew - (67)
a_'p |
dt = r 2 (68)
dz _ _ : v
with initial conditions
up=_O,-vp=w ,'wp=O > T=T ¢='O, z=2 ('70)
~at t=0. The initial position of the particle is now (r_,0,2_). The general
solution to (66) is
b/
wp.=const. e s : » : (71)

15.



'which_gives, by virtue of the initial condition. on wp,

W =0 , Vo . ' (72)

Hence equation (69) becomesb

z =;O , ¥t . S : ‘ (73)
The remaining equations (6L4), (65), (67) and (68) and the initial conditions

are seen to be identical with equations (13)4(16)'and (17). Hence equations

(58) to (61) together with (72) and (73) constitute the matched asymptotic
solutiéns to equations (64)-(69). The particle trajectory will hit the pipe

wall when the following is satisfied
22+ R-r)® = &% o | . (74)

where R is the mean radius of the elbow as before and a is the radius of the
circular cross-section in this case. By virtue of (73)5 (74) can be solved

for r to obtain

r = R-—JLE-_i for R>r _ (75)
and ' |
r =R+ a2—E§ for R<r ‘ ‘ | (76)

as the conditions that the particle hits thé.wall.

Conclusion

The method of matched asymptbtic ekpansion has been épplied suCcessfully
to obtain seriéé solutions for.the‘particle trajgéforiés when Eg assﬁmes_small
valués. ‘A simple system was chosen, and.iﬁ is straightforward to extend the
analysis to, say, three-dimensional geometries, such as a éircular curved pipe.

We have already mentioned the advantages of héving close form solutions for the

16.



particle phase, eSpeéially when the motion of the fluid phase cannot be

simplified as in the present case. Finally, we mention that the same

énalysis'canvbe applied-to systems where Lm'assumes a'lafge value.
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