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Abstract Wind energy has been used by humans for
thousands of years. Yet, the relatively low economic
cost and availability of fossil fuels upstaged the use of
wind power. Fossil fuel resources are not renewable and
will decline until exhaustion in the future. At the same
time, humans have become aware of the adverse effects
on the environment caused by reliance on fossil fuel
energy. Wind, on the other hand, is a renewable energy
source with minimal adverse environmental impacts
that does not involve greenhouse gas emissions. Agri-
cultural irrigation systems use fossil fuel energy re-
sources in various forms. Groundwater withdrawal is
central to supplying agricultural water demand in arid
and semi-arid regions. Such withdrawal is mostly based
on water extraction with pumps powered by diesel,

gasoline, or electricity (which is commonly produced
by fossil fuels). This paper coupled the non-sorted ge-
netic algorithm (NSGA-II) as the optimization tool to
the mathematical formulation of the wind-powered
groundwater production problem to determine the po-
tential of wind energy for groundwater withdrawal in an
arid area. The optimal safe yield and the optimal size of
regulation reservoir are determined considering two ob-
jectives: (1) maximizing total extraction of groundwater
and (2) minimizing the cost of reservoir construction.
The safe yield and the two objectives are optimized for
periods lasting 1, 2, 3, 4, and 6 months over a 1-year
planning horizon. This paper’s methodology is evaluat-
ed with groundwater and wind-power data pertinent to
Eghlid, Iran. The optimal safe yield increases by in-
creasing the period length. Specifically, increasing the
period length from 1 to 6 months increases the safe yield
from 12 to 29 m3. Application of the proposed NSGA-
II-based optimization of groundwater production iden-
tifies the best design and operational variables with
computational efficiency and accuracy.

Keywords Windmill . Safe yield of water release .

Reservoir design . NSGA-II . Multi-objective
optimization

Introduction

Considering the non-renewable nature of fossil fuels and
the side effects of greenhouse gas emissions in the
environment, it is evident that using “clean and
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renewable” energy is a timely option. Research on the
replacement of fossil fuels by renewable energy sources
has shown that the initial costs of transitioning to re-
newable energies is high in comparison with the cost of
relying on fossil fuels, yet, the present value of the costs
of fossil fuel–based systems is higher over a 20-year
project life time (Cloutier and Rowley 2011). Wind is a
renewable source of energy, yet, it is weather dependent
and geographically delimited (Loáiciga 2011). Unex-
pected changes of wind speed have led researchers to
investigate the recurrent uncertainty for the purpose of
energy production. Fripp (2011) presented a model to
estimate the uncertainty in short-term forecasts of wind
power. Several authors have assessed the wind energy
potential and its possible applications in different loca-
tions of the world. Mohsen and Akash (1998), for in-
stance, evaluated the wind potential for water pumping
in Jordan and classified the sites according to their water
yield; however, they did not assess the water-use effi-
ciency. Lu et al. (2002) investigated meteorological and
wind turbine data of the Hong Kong Islands with a
simulation model to determine the annual power gener-
ation by wind turbines. They determined the wind tur-
bines’ capacity factor (the ratio of actual annual power
generation to the rated annual power generation) which
was about 0.353 to 0.5 and confirmed the potential of
wind power in that region. Al Suleimani and Rao (2000)
stated that wind energy resources in Oman are adequate
for groundwater extraction in remote locations. Accord-
ing to Keyhani et al. (2010), the wind energy potential in
Tehran, Iran, is not sufficient for electricity generation,
but it is adequate for rural energy supply, battery
charging, and water pumping. Lara et al. (2010)
established that about 17% of wind energy is usable
for pumping water with most of the energy spent during
the energy conversion process. Bhuiyan et al. (2011)
used a web tool named Wind Energy Assessment
(WEA) to analyze wind data at Kuakata, Bangladesh,
from March through September, to determine the mean
wind speed, shape factor, and scale factor.
Simultaneously, they assessed the energy generated by
a wind turbine with the rated capacity of 1 kW which
was 2243 kWh per year, and compared the
environmental benefits of wind power usage with the
harmful emissions of coal power plants to show that
advantages of using wind turbines for energy
generation. A new algorithm which was based on the
Weibull distribution was introduced by Brahmi and
Chaabene (2012) to assess the wind potential in Sfax

located in South-Eastern Tunisia, and determined the
required wind turbine blade area considering the turbine
elevation, the monthly wind energy, and the need of
pumped water. Paul et al. (2012) demonstrated wind
energy in southern Nigeria meets low-capacity electric-
ity generation. Tahani et al. (2015) investigated the
potential of wind and water energy to provide a part of
electricity in Azadi sport complex in Tehran, Iran. They
considered a 20-m-deep reservoir and two wind turbines
and applied the GAMS software and a two-stage opti-
mization method to optimize the benefit of applying
hydroelectric energy to produce electricity and deter-
mine its use.

There are several strategies to utilize wind energy.
Valdès and Raniriharinosy (2001) designed three wind-
powered water pumps which are suitable to meet the
Madagascar internal agricultural and lighting demands.
Bakos (2002) investigated and confirmed low-price
electricity generation using a wind–water power plant
system. Badran (2003) confirmed the feasibility using
wind turbines for pumping water in Jordan. Notton et al.
(2011) considered a reservoir to store water in a
pumped-storage system and suggested applying excess
wind energy to pump water to higher elevation. Garcia-
Gonzalez et al. (2008) recommended using Hydro
Pumped-Storage units to generate power due to the
variability and unpredictability of wind. Kusiak et al.
(2009) considered five algorithms to monitor power
from wind farms. The latter authors also combined data
mining and evolutionary computation to develop a
model for predicting and monitoring wind power.
Senjyua et al. (2009) controlled the output power of
wind turbine generators by regulating the pitch angle
in small power systems. Sun et al. (2011) designed an
optimal wind-powered water pumping system which
can perform at variable wind speeds. The Weibull pa-
rameters were determined using Artificial Neural Net-
work (ANN) in their model. Brown-Manrique et al.
(2018) investigated micro-irrigation system powered
by wind energy derived from windmills in Modesto
Reyes town. The average wind speed at the cited town
is 5.22 m/s which drives multi-blade windmills to pro-
duce 262.36 W and provide pumping power demand
during 15.36 h daily. One 5000-l tank satisfies the water
demand for irrigation by saving water while the wind
speed is lower than a required threshold. Shaik et al.
(2019) designed a water pumping system using a wind-
mill and stated that wind energy, solar energy, and
biomass are the best alternatives to fossil fuels due to
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their eco-friendly traits. Awad (2019) investigated the
application of windmills to supply the water pumping
power to cover the student services building’s water
needs. Results showed that the designed system can
meet the water demands. Isaías et al. (2019) reviewed
the application of renewable energy systems for irriga-
tion of arid and semi-arid regions. The latter authors
compared solar thermal pumping system, photovoltaic
solar pumping system, and a wind pumping system.
Their results demonstrated that there are technological
limitations to solar thermal energy, but nevertheless
photovoltaic solar energy has potential for pumping
irrigation water in arid and semi-arid regions. The latter
authors reported that wind power application to water
pumping was more economical and viable than a diesel-
based system in their study regions.

Assessing the potential and applications of the wind
energy is a first step in determining its functionality and
economic viability. Choosing the best application based
on site-specific characteristics, the most appropriate
equipment, and optimizing the operational schedules
are paramount for the successful use of wind energy.
Several authors have focused on optimizing the wind
power potential and its applications. Many computa-
tional resources optimization methods such as evolu-
tionary algorithm (EA), genetic algorithm (GA), non-
dominated sorting genetic algorithm (NSGA-II), linear
programming (LP), non-linear programming (NLP) etc.,
have been applied to optimizing wind energy generation
and use (Bañosa et al. 2011). Vieira and Ramos (2009)
developed an optimization model based on linear pro-
gramming in MATLAB for maximizing energy effi-
ciency in a water supply system, and established that
relying on wind turbines as a power system was not
justified economically. Kusiak et al. (2009) defined a
multi-objective optimization model considering three
objectives to evaluate the performance of wind turbines
with an evolutionary algorithm. Mustakerov and
Borissova (2010) developed a combinatorial optimiza-
tion model to determine the wind turbine type, their
number, and their placement in a wind park. Rao and
Patel (2012) reported an application of the teaching–
learning-based optimization (TLBO) algorithm for solv-
ing industrial environmental optimization problems.
The TLBO algorithm does not require the specification
of control parameters for its implementation. Ramoji
and Kumar (2014) compared the GA-based optimiza-
tion technique and TLBO optimization to minimize the
costs of a hybrid energy system and concluded the GA-

based method is better than TLBO algorithm. Keshtkar
et al. (2015) presented simulation and optimization
models to estimate the safe yield of groundwater
withdrawal by wind turbines for irrigation purposes.
Keshtkar et al. (2016) assessed the potential of wind
energy to provide agricultural water in Eghlid, Iran, and
defined an optimization model based on NLP methods
to determine the optimized cropping pattern. Ahmed
et al. (2017) investigated three renewable power systems
(standalone photovoltaic (PV) system, standalone wind
system, and standalone PV-wind hybrid system) in
search of the best one for powering irrigation works in
farms. The latter authors employed hybrid optimization
by genetic algorithms) (HOGA) simulation software
which is based on the genetic algorithm (GA) for sizing,
optimizing, and economical evaluation of the three sys-
tems. The hybrid PV–wind system and the standalone
PV system were sometimes superior depending on farm
locations. Singh and Fernandez (2018) applied a new
meta-heuristic algorithm called Cuckoo to solve a hy-
brid energy system optimization problem and compared
it with GA and PSO algorithms. Sarzaeim et al. (2018)
reported the TLBO algorithm was applied to determine
the controlling parameters of the GA.

Previous research on wind energy has focused on
assessing its potential by geographical location, improv-
ing wind turbines, and maximizing the efficiency of
energy production. Few studies have focused on the
use of wind energy for groundwater withdrawal and
assessing the groundwater safe yield. The use of elec-
tricity from conventional grids is uneconomic in many
areas due to geographical remoteness and accessibility
costs. Under appropriate meteorological conditions,
wind energy production may be feasible. It is factual
that there are many arid and semi-arid regions that use
groundwater resources to meet their water use
employing fossil-fuel energy for water pumping.
Fossil-fuel resources are non-renewable and their use
leads to a variety of adverse environmental effects.
Wind power, on the contrary, is a renewable alternative
source of energy which is available in many regions and
does not have significant harmful effects on the envi-
ronment (see, e.g., Loáiciga 2011).Wind energymay be
cost-effective compared to other sources to withdraw
groundwater with wells for various uses. Windmills are
relatively simple and generally cheap to generate wind
power for small applications compared with the more
complex turbines commonly used for commercial wind
power generation. Windmills are relatively inexpensive
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to install and easier to use and maintain than their large-
scale counterparts. The variability of suitable wind con-
ditions means that wind power is best deployed when it
is supplemented by reservoirs that store groundwater
withdrawn during windy periods and supply water dur-
ing non-productive periods. The reservoir size must be
determined considering the patterns of water use. This
work focuses on the analysis of groundwater withdrawal
fueled by wind power. This study presents a methodol-
ogy to calculate the amount of groundwater that can be
withdrawn with windmills at suitable locations. The
optimal reservoir storage size is determined to minimize
storage costs and maximize the amount of water re-
leased from the reservoir. The optimal daily safe yield
is determined over periods lasting 1, 2, 3, 4, and 6
months, and it is constant within each period. Thus,
when the optimization period length equals 1 month,
there are 12 optimized daily-safe yields over a 1-year
planning horizon; there are six optimized daily-safe
yields when the optimization period length equals 2
months over a 1-year planning horizon, etc. By defining
different optimization periods, we can simultaneously
determine their corresponding safe yields. The period
safe yield is the discharge that is obtainable from a
reservoir (connected to a groundwater extraction sys-
tem) at all times within each period of analysis. There-
fore, there is one optimized period-safe yield for each
period length. For instance, the 1-month period safe
yield equals the smallest among the 12 safe yields
obtained for 1-month periods, and this amount of water
release is available in any 1-month period of the year.
Determination of different period-safe yields allows
consumers to choose the kind of water use suitable for
that location, such as agriculture, livestock, or other
facilities where deployment of advanced energy tech-
nologies is not cost-effective. The safe yields are asso-
ciated with optimized reservoir dimensions. The opti-
mization scheme herein developed is solved with the
NSGA-II multi-objective optimization algorithm rely-
ing on data from Eghlid, Iran.

Windmills

The use of wind turbines for well-water extraction is an
old practice. They are driven by the passage of wind.
Wind turbines consist of (1) a rotor of blades which are
embedded on a central hub, (2) power transmission
system which converts the rotational motion of the

piston to reciprocating motion, and (3) a tower to hold
the power transmission components at an appropriate
height (Jain 2011). Wind turbines are classified as (1)
power plant turbines and (2) non-power plant turbines
(Jain 2011). Windmills are placed in the second catego-
ry. They operate in the speed range of 2.5–15 m/s and
can pump water from a range of depths in a reservoir.
Among the advantages of windmills are (1) application
of “clean renewable energy” and (2) low cost of ground-
water extraction in windy places. Windmill components
are shown in Fig. 1.

There are publications of the design and econom-
ic analysis of wind systems to irrigate areas in the
arid and semi-arid regions. Kose et al. (2019) used a
hybrid power generation system consisting of pho-
tovoltaic panels and wind turbine which are alterna-
tives to diesel generators for pumping applications.
Results indicated the net present value and internal
rate of return of the project were US$7361 and
12.6%, respectively. Ssenyimba et al. (2020) applied
solar–wind hybrid energy system to irrigate 1 acre
of Nakytengu banana plantation in Kalanga. This
system simulates flow behavior, static pressure, tur-
bulence intensity, and stress at a speed three times
the average wind speed in the Kalangala district
elevated at 30 m above sea level. Khattab et al.
(2020) reported an economic analysis of a stand-
alone hybrid wind/PV/diesel water pumping system
in Egypt. They compared different configurations
considering PV only, PV with horizontal axis wind
turbine, PV with vertical axis wind turbine, and PV
with horizontal axis wind turbine and diesel gener-
ator, and diesel generator only. The cited works
employed simulation approaches, without resorting
to optimization of system design. This work couples
a multi-objective optimization method with a math-
ematical model for wind-powered groundwater
production.

Multi-objective optimization problems

Multi-objective optimization problems have two or
more objective functions that must be satisfied jointly
by choosing the best values of the decision variables.
These problems are solved by obtaining a set of non-
dominated solutions that are near the global optimum. A
general equation for defining a multi-objective optimi-
zation model is as follows:
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Maximize or minimize f xð Þ x∈D ð1Þ

f : D→R ð2Þ
where in Eq. (1) f(x) = objective functions, x = vector of
decision variables, and in Eq. (2), D = decision space
and R = set of real numbers defined in Eq. (1).

Multi-objective problems can be converted to a
single-objective problem by weighting the objectives.
However, the weighting scheme introduces a subjective
factor that biases the solution of the problem at hand. A
non-subjective approach to solving multi-objective
problems is the search for a set of non-dominated solu-
tions among all possible solutions. In the case of two
objective functions, the non-dominated solutions can be
plotted as a production possibility frontier (PPF, or
Pareto front, after the Italian economist Vilfredo Pareto,
1848–1923), whose points represent combinations of
the values of the objective functions with the best
tradeoffs among objectives that are achievable for the
problem being solved.

Multi-objective evolutionary algorithms

Evolutionary algorithms can be applied to solve any
well-posed optimization problem. Bozorg-Haddad
et al. (2009, 2010) and Sabbaghpour et al. (2012)
employed the HBMO algorithm to solve optimization
problems. Fallah-Mehdipour et al. (2013, 2014) applied
genetic programming in groundwater modeling. The

NSGA-II is a well-known evolutionary algorithm which
has been used to solve many multi-objective water
optimization problems (Jahandideh-Tehrani et al.
2019). The NSGA-II evolutionary algorithm is applied
in this study to solve the optimization model.

The non-dominated sorted algorithm (NSGA-II)

The first step of the genetic evolutionary algorithm (GA)
(see Srinivas and Deb 1994) generates an initial random
population of potential solutions (called chromosomes)
and the objective functions are evaluated for this initial
population of chromosomes. The next population of
chromosomes is determined based on the evaluation
results using the last iteration’s chromosomes obtained
from crossover and mutation operators. Therefore, the
generated population of chromosomes (the current ten-
tative solutions) in each iteration of the GA is superior to
that of the previous iteration and an evolutionary trend is
created leading to a near-optimal solution.

The steps of the NSGA-II are as follows:

(a) Generate a random population of tentative solu-
tions (chromosomes) with a uniform distribution
and in the form of a C × V matrix. C and V
represent respectively the decision variables (called
genes) and chromosomes (these are the solutions or
values of the objective functions evaluated with the
current genes). The dominant and non-dominant
solutions form several Pareto fronts.

Fig. 1 Schematic of a windmill
and its components
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(b) Classify the chromosomes of the calculated Pareto
fronts with the following equation:

dI j ¼ ∑
No

n¼1

f
Injþ1
n − f

Inj−1
n

f max
n − f minn

ð3Þ

where in Eq. (3), dI j = crowded distance of the j-th
solution, No = the number of objectives of the optimi-

zation, f
Injþ1
n and f

Inj−1
n = the values of the n-th objective

functions, the index Ij
n = denotes the j-th solution cal-

culated for the n-th objective in the ranked list of
Paretos, and j − 1 and j + 1 = indices of two close

solutions. Also, f maxn and f minn = the maximum and
minimum values of the n-th objective function for the
solutions of the generated population.

The NSGA-II algorithm searches for the closest so-
lutions (those with high values of dI j ) which lead to

Pareto fronts comprising a wide range of decision-mak-
ing. As shown in Fig. 2, the Pareto fronts are ranked
from best to worst by how distant they are from an ideal
Pareto front.

(c) Select chromosomes (or solutions) using a tourna-
ment selection operator. The tournament operator
compares the solutions considering (1) their non-
dominancy rank and (2) their crowding distance (a
measure of the density of solutions in the neigh-
borhood). If a solution prevails over others, it is
selected as a parent; otherwise, a solution with the
longest crowding distance is chosen as the best
solution. Deb and Agrawal (1995) implemented a
Simulated Binary Recombination (SBX) Cross-
over operator to combine two chromosomes and
generate a new one (child chromosome). This op-
erator is similar to the cut crossover in binary data
sets. The following equations calculate a probabil-
ity distribution:

P βið Þ ¼
0:5 ηc þ 1ð Þβηc

i ; if βi≤1

0:5 ηc þ 1ð Þ 1

βηcþ2
i

; otherwise

8<
:

9=
; ð4Þ

βi ¼
2uið Þ 1

ηcþ1; if ui≤0:5
1

2 1−uið Þ
� � 1

ηcþ1

; otherwise

9>=
>;

8><
>: ð5Þ

where in Eq. (4), P(βi) = the crossover probability, βi =
the difference between the objective functions of the
parent and child, and ηc = constant which represents
the difference between parent and child. The probability
of generating close solutions to the parent increases with
increasing ηc. ui = a random value within the range [0,
1]. The difference between parent and child chromo-
somes is calculated with the following equations:

βi ¼
xchild1 −xchild2

xparent1 −xparent2

�����
����� ð6Þ

xchild1 ¼ 0:5 1þ βið Þxparent1 þ 1−βið Þxparent2

� � ð7Þ

xchild2 ¼ 0:5 1−βið Þxparent1 þ 1þ βið Þxparent2

� � ð8Þ

where in Eq. (6), xchild1 and xchild2 = values of the first and
second child chromosomes, respectively. Also, xparent1

and xparent2 = values of the first and second parent chro-
mosomes, respectively.

The other operator is mutation. The polynomial mu-
tation operator suggested by Deb and Goyal (1999) is
applied in this paper:

δi ¼
2rið Þ1= ηmþ1ð Þ−1 ; if ri < 0:5

1− 2 1−rið Þ1= ηmþ1ð Þ
h i

; if ri≥0:5

8<
:

9=
; ð9Þ

where in Eq. (9), δi = the quantity of mutation, ri = a
random value in the interval [0, 1], and ηm = the constant
of the mutation distribution. The mutation operator δ is
added to the gene value as follows:

xchild ¼ xparent þ δ ð10Þ

A new generation of combined children and parent
chromosomes is produced by evaluation of the objective
functions using the genes’ values. These chromosomes
are ranked and those with the highest ranks are selected
to be part of the next generation. Chromosomes with
lower grades are added to complete the new generation
whenever the number of selected chromosomes is less
than the population size. This keeps the population size
from one generation to the next constant.
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Methods

The wind speed distribution is variable. Seasonal and
monthly changes in wind speed are larger than those of
daily changes. Reservoirs are constructed to store the
pumped water during high wind speed and meet water
use during low wind speeds, thus allowing the optimal
use of wind energy for groundwater pumping. The
larger the reservoir, the greater the volume of water that
can be stored. At the same time, the larger the reservoir,
the more costly its construction. In view of these
tradeoffs, we consider two optimization objectives: (1)
determination of the daily-safe yield so that the total
regulated water (i.e., the total water released from the
reservoir) is maximized and (2) minimizing the reservoir
construction costs. These two objective functions are
written as follows:

Obj :
f 1 ¼ Maximize Sum Re tð Þð Þð Þ
f 2 ¼ Minimize a� bð Þ þ aþ 0:3ð Þ � bþ 0:3ð Þ− a� bð Þ½ � � hmax½ �

�

ð11Þ

in which the first objective function refers to maximiz-
ing the total regulated water (sum (Re (t))), and the
second minimizes the construction costs. Also, f = the
objective function, Re = the daily safe yield in period t
(m3), a = the length of the reservoir (m), b = the width of
the reservoir (m), and hmax = the reservoir height (m)
which was set equal to 3 m. The daily safe yield is
defined as the maximum daily discharge that is obtain-
able from a reservoir (connected to a groundwater ex-
traction system) in any day of a period of given length
(say, 1 month). Considering short planning periods
would lead to low safe yield when there is low wind
speed leading to low pumping rate during several
months of the year. Increasing the length of the planning
period may increase the safe yield and, thus, water
regulation. Therefore, the safe yield and reservoir size
are determined considering five different planning-

period lengths, that is, 1, 2, 3, 4, and 6 months. The
water released from the reservoir is set constant in all
days of any period, and this is the daily safe yield with
respect to windmill performance and reservoir storage.
Thus, the daily safe yield is defined as the largest vol-
ume of water that can be released every day in a period
of specified length. Another pertinent variable in our
analysis is the period safe yield which is equal to the
smallest optimized daily safe yield for a period of spec-
ified length (in this study, the period lengths are 1, 2, 3,
4, and 6 months). The determination of the period safe
yield for, say, a 4-month period is shown in Fig. 3. There
are three 4-month periods in 1 year, and each of them
has a daily safe yield. It is seen in Fig. 3 that the three 4-
month periods extend from day 1 through day 120, from
day 121 through day 240, and from day 241 through day
360. Their corresponding daily safe yields equal 23, 55,
and 67 m3/day, respectively, as shown in Fig. 3. The
smallest among them is 23 m3/day, and this is therefore
the period safe yield corresponding to 4-month periods.
The period safe yields for 1-, 2-, 3-, and 6-month periods
are determined analogously. The decision variables for
the five planned-period lengths are listed in Table 1. The
achievable wind energy and the available amount of
pumped groundwater must be calculated prior to opti-
mizing the safe yield. A simulation model was devel-
oped for the purpose of calculating the wind energy
usable for extracting groundwater.

Simulation model

The wind power formula is as follows (Jain 2011):

Pt ¼ 1

2
ρAv3 ð12Þ

where Pt = generated power (W) at time t, ρ = air density
(1.23 kg/m3), A = the rotor area (m2), and vt = wind
speed (m/s) at time t.

Function 1

Function 2

Pareto front: Efficient or non-dominated

solutions

Non-efficient solution: Dominated solution
Fig. 2 Pareto front for a
production-maximizing problem
with two objective functions
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The wind turbines considered in this work are wind-
mills, which produce rotational mechanical energy by
the action of wind. Windmills require minimum main-
tenance and are simple to operate. They operate in a
range of wind speed from 2.5 through 15 m/s. The
groundwater discharge (water pumping rate) is defined
as follows (Keshtkar et al. 2015):

Qt ¼ Pt � ηtð Þ= γ � HTtð Þ ð13Þ

ηt¼η Mð Þt�η Eð Þ ð14Þ

η Mð Þt ¼
0:25 if 2:5≤vt < 4:5
0:50 if 4:5≤vt < 8
1:00 if 8≤vt < 15

8<
: ð15Þ

whereQt = pumping rate (m3/s) at moment t,HTt = head
of lift (m) at time t, and ηt = total efficiency at time t

which consists of the mechanical efficiency η (M)t and
the energy efficiencyη (E). According to the Betz law
(1919), the maximum obtainable energy from wind
turbines is 59% which is the energy conversion efficien-
cy (Jain 2011). Therefore, η (E)will be equal to 0.59, γ =
specific weight of water (N/m3). The head of lift equals
the sum of the depth to groundwater (measured from the
ground surface) and the elevation of water in the reser-
voir above the ground surface, as shown in Fig. 4.

HTt ¼ HRt þ HGt ð16Þ
where HRt = the elevation of the water level in the
reservoir above the ground surface at time t (m), and
HGt = the depth to groundwater at time t (measured
from the ground surface) (m), which is assumed
constant.

The water-balance equation in the reservoir is given
by Eq. (17) (Keshtkar et al. 2015):

Stþ1 ¼ St þ Q
0
t þ Prt−Losst−Ret−Spt ð17Þ

120 240 360

23

55

67

Fig. 3 The period safe yield for a 4-month period equals the
smallest daily safe yield among the daily safe yields corresponding
to the three 4-month periods in 1 year, which is equal to 23m3/day
in the graph. The three 4-month periods are those between day 1

and day 120 (daily safe yield equals 23 m3/day), between day 121
and day 240 (daily safe yield equals 55 m3/day), and between day
241 and day 360 (daily safe yield equals 67 m3/day) as depicted in
this figure

Table 1 Decision variables and their numbers corresponding to five optimization period lengths

Decision variables and their numbers in each time period

Time period
(month)

Length of the reservoir
(a) (m)

Width of the reservoir
(b) (m)

First volume of water in the
reservoir (m3)

Daily safe yield
(m3)

Total number of
variables

1 1 1 1 12 15

2 1 1 1 6 9

3 1 1 1 4 7

4 1 1 1 3 6

6 1 1 1 2 5
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where St = the volume of water in the reservoir at time t,
St + 1 the volume of water in the reservoir at time t + 1,
Prt = volume of precipitation during period t, Losst = the
volume of water evaporation from the reservoir during
period t, Ret = the volume of water released from the
reservoir during time t, Spt = the volume of water spilled

from the reservoir during period t, and Q
0
t ¼ Qt � t

represents the volume of groundwater discharge to the
reservoir during period t. All the variables in Eq. (17) are
expressed in cubic meters. Precipitation and evaporation
are minor, thus they are neglected in Eq. (17).

The simulation model was coupled with the GA
multi-objective toolbox of MathWorks (1993) and ap-
plied to five periods whose durations are 1, 2, 3, 4, and 6
months. The daily safe yield is determined for each
period setting it constant during each period. Figure 4
shows the variables of the simulation model.

Case study

Eghlid city in Fars province of Iran was chosen as a case
study. This city is placed in a mountainous region and
has cold winters and mild summers. Minimum and
maximum temperatures of this city are respectively −

22 and 37 °C. The average annual precipitation ranges
between 300 and 330 mm within the city and between
400 and 600 mm in its villages and highlands. The wind
speed in Eghlid is considerable most of the year. Wind
speed data for Eghlid from April 2007 through April
2008 are shown in Fig. 5. These data are presented in
10-min intervals and were measured 10 m above
ground. It is seen in Fig. 5 that the average wind speed
in the second half of the year is more suitable for
windmill operation than that of the first half. Therefore,
the water withdrawal is preferable in the second half of
the year. Windmills come with different rotor sizes. The
possible pumping rate for each size of windmill rotor is
set by the manufacturer. The groundwater depth in
Eghlid is 40 m. A 12-foot windmill with the rotor
diameter equal to 3.6 m was chosen for this study.

Results and discussion

The simulation-optimization model was run for the 1-,
2-, 3-, 4-, and 6-month periods. The optimal values of
the daily safe yield and reservoir dimensions were de-
termined for these five periods. In the case of 1-month
periods, there are 12 optimized daily safe yields, i.e., one
for each month of the year, plus the reservoir width, the

Fig. 4 Schematic of the variables
present in the mathematical
model developed in the study
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reservoir length, and the initial volume of storedwater in
the reservoir, for a total of 15 decision variables. In the
case of 2-month period, there are six daily safe yields
(there are six 2-month periods in 1 year) plus the reser-
voir width, the reservoir length, and the initial volume of
water stored in the reservoir for a total of nine decision
variables. This accounting establishes that the number
of decision variables for 1-, 2-, 3-, 4-, and 6-month
periods equal 15, 9, 7, 6, and 5, respectively, as listed
in Table 1. The calculated daily safe yields are the same
for all days of each period duration (i.e., 1 month, 2
months, etc.), but differ among periods.

Sensitivity analysis tests were done to find the opti-
mum and final GA parameters by considering different
combinations of algorithm parameters and using them in
different iterations. By comparing the indexes of resulted
Pareto fronts, the best combination parameters were
determined. The Pareto fronts obtained from 10 different
optimization runs are shown in Fig. 6 for the five period
lengths. Figure 7 depicts the daily safe yields for each
period length. Recall the period safe yield equals the
smallest among the daily safe yields corresponding to a
specific period duration. For instance, Fig. 7 shows the
12 daily safe yields corresponding to a 1-month period
that can be obtained over a 1-year planning horizon. The
smallest and largest among the 12 yields equal 12 and
about 100 m3/day, respectively. The period safe yield
equals the smallest among the 12 daily safe yields be-
cause it is the only one that can be achieved in any 1-
month period over a 1-year horizon. Similar comments
apply to the other the 2-, 3-, 4-, and 6-month periods. By
comparing all five periods, it is seen in Fig. 7 that the
maximized period safe yield increases with increasing

period length. This is because long periods include more
days with high and low wind speeds than short periods,
which means that the largest water withdrawal is larger
and the smallest water withdrawal is smaller in long
periods than in short periods. By choosing a suitable
reservoir size, there are more options to store and release
water, thus producing higher period safe yields as the
period length increases. It is also seen in Fig. 7 that short
periods may have larger daily safe yields than long
periods due to few days with low wind speed in some
months. For instance, Fig. 7e shows that the maximal 6-
month daily safe yield is less than the maximal safe
yields of shorter periods. That is because there are more
days with low wind speed in a 6-month period than in
shorter periods. The best and worst obtained values of
the objective functions, period safe yield, and reservoir
dimensions are listed in Table 2 for two optimal Pareto
points. The period safe yield values for 1-month, 2-
month, 3-month, 4-month, and 6-month periods are re-
spectively equal to 12, 15, 21, 23, and 29 m3. It can be
seen that increasing the period length increases the peri-
od safe yield from 12 to 29 m3. The point of the Pareto
front at which the sum of safe yields is a maximum is the
most desirable point associated with the objective of
maximizing water release from the reservoir (see Fig. 6
and Table 2). In fact, this point defines the optimal
reservoir size to regulate water storage and maximize
the releases. Recall the wind speed range of the wind-
mills is 2.5–15m/s. It is seen in Fig. 5 that in several days
of the year the average daily wind speed is slower than
2.5 m/s or faster than 15 m/s which interrupts windmill
functioning. Therefore, there is no water production in
those days. A suitable reservoir must provide at least 12
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Fig. 5 The average daily wind
speed at 10-m elevation in Eghlid,
Iran
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m3/day of water in a 1-month period. The optimal deter-
mined reservoir length and width values to achieve the
maximum 1-month period-safe yield are respectively
equal to 64 and 60 m. In contrast, the minimum point
of the Pareto front at which the reservoir dimension is
minimum is the most desirable point given by the objec-
tive of minimizing the reservoir construction costs. The
best and worst values of the two objectives are helpful
for planning of groundwater withdrawal at the consid-
ered location. Based on the water demand and the con-
ditions in any month, one can choose suitable Pareto

front points and the corresponding reservoir dimensions.
In addition, the determination of the daily and period safe
yields in different time periods would allow farmers to
choose the best crop pattern for the available water. It is
seen in Table 2 that the number of generated populations
in 4-month and 6-month periods are 1000 and 500,
respectively. Recall the number of decision variables
time periods (listed in Table 1) were 5 and 6 s in 6-
and 4-month periods, respectively. Therefore, the solu-
tions were achieved faster for these two periods than for
shorter periods.

Fig. 6 Pareto fronts obtained from 10 optimization runs corresponding to (a) 1-month, (b) 2-month, (c) 3-month, (d) 4-month, and (e) 6-
month periods
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Concluding remarks

This study investigated the application of windmills to
extract groundwater, how to regulate it with a reservoir,
maximizing the daily and period safe yields, and mini-
mizing the reservoir construction costs over a 1-year
planning horizon. A mathematical model was developed
to calculate the water pumping rate, water storage in a
reservoir, and its distribution in different periods.
Concerning the different water demands in different

times of the year for variable crops, five different periods
of lengths equal to 1, 2, 3, 4, and 6 months were
employed to optimize reservoir size and maximize the
safe yield. This choice of planning periods helps con-
sumers in selecting the best reservoir size and determin-
ing the water supply that best fits the feasible cropping
patterns for agricultural purposes. This paper’s results
provide users with alternative applications of wind ener-
gy depending on the region and the chosen safe yield. In
locations with a wide range of daily safe yield, this

Fig. 7 Daily safe yields corresponding to (a) 1-month, (b) 2-month, (c) 3-month, (d) 4-month, and (e) 6-month periods. The period safe
yield corresponds to the smallest among the safe yields calculated for a given period length
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paper’s method can be applied to seasonal applications of
windmills, or to add generators and batteries to store wind
energy when the reservoir becomes full during periods of
high wind speed. The stored energy can be used during
times of low wind speed to supply power needed for
groundwater production. The NSGA-II multi-objective
optimization algorithm was implemented to solve the
dual-objective optimization problem. The Pareto fronts
of 10 different runs for five time periods were obtained
with the associated optimal safe yields and reservoir
sizes. Our results show that increasing the period length
from 1 to 6 months increases the period safe yield from
12 to 29 m3. The calculated reservoir dimensions are
much larger in 4- and 6-month periods compared with
other period lengths. Using larger reservoirs may save
water during periods of high wind speed and allow
improved regulation of water use during low-wind-
speed periods. This would increase the period safe yield.
This holds true until the reservoir capacity meets the
maximum possible water storage, yet, this situation
would be infeasible economically. Depending on the
crop pattern, it may not be necessary to release water
for agriculture in some periods of the year. Alternative
water uses may increase the water owner’s income and
render groundwater production driven by wind energy
more attractive. The best objective function value
concerning minimizing the reservoir construction cost
satisfies the least water release allowed, which is the
worst objective function concerning the maximizing ob-
jective. Regarding the two objective functions, one can
choose points on the Pareto fronts that yield various
optimal combinations of reservoir cost and safe yield.

Increasing the number of the windmills would increase
the safe yield. Topics for future research are (1) compar-
ing solutions on the Pareto fronts according to water
consumption patterns, (2) assessing possible projects
and their economic feasibility with respect to the choice
of planning periods concerning the period safe yield, (3)
determining agricultural decision variables in association
with the safe yield, and (4) choosing the number of
windmills and their type.
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