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Experiments with Gorenstein Liaison

Robin Hartshorne

Department of Mathematics

University of California

Berkeley, California 94720–3840

Dedicated to Silvio Greco on his 60th birthday

Abstract. We give some experimental data of Gorenstein liaison, working with

points in P
3 and curves in P

4 , to see how far the familiar situation of liaison,

biliaison, and Rao modules of curves in P
3 will extend to subvarieties of codi-

mension 3 in higher P
4 .

AMS classification numbers: 14H50, 14M07

1 The Problem

For curves in projective three-space P
3

k , the usual theory of liaison and biliaison is well

understood [9]. We will recall some of the basic facts, and then explore to what extend these

results may generalize to liaison classes of varieties of higher codimension, such as curves in

P
4 . Our method is to run experiments in various special cases, and look for examples which

may indicate how the general situation will be.

First we recall the situation in P
3

k . A curve will be a pure one-dimensional locally Cohen-

Macaulay closed subscheme of P
3 . Two curves C1 and C2 are linked if there exists a complete

intersection curveD such that D = C1 ∪ C2 set-theoretically, and

IC1,D
∼= Hom(OC2

,OD)

IC2,D
∼= Hom(OC1

,OD) .

The equivalence relation generated by linkage is called liaison . An even number of linkages

generates the equivalence relation of even liaison or biliaison .

We say that C2 is obtained from C1 by an elementary biliaison of height h if there is a

surface S in P
3 containing C1 , and C2 ∼ C1+hH on S , where ∼ denotes linear equivalence,
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and H is the hyperplane section. Here we use the theory of generalized divisors [3], so that

any curve on any surface in P
3 can be regarded as a divisor.

Then it is known that an elementary biliaison is an even liaison, and the equivalence

relation generated by elementary biliaisons is the same as even liaison [3, 4.4].

Some of the main results of liaison theory for curves in P
3 are contained in the following

theorem.

Theorem 1.1 For curves in P
3

k , we have

a) Two curves C1, C2 are in the same liaison equivalence class if and only if their Rao

modules M(Ci) = H1

∗
(ICi

(n)) are isomorphic, up to dualizing and shifting degrees. They are

in the same biliaison equivalence class if and only if M(C1) and M(C2) are isomorphic up

to shift of degrees.

b) For each finite-length graded module M0 over the homogeneous coordinate ring

R = k[x0, x1, x2, x3], there exists a smooth irreducible curve C in P
3 and an integer h,

such that M(C) ∼= M0(h).

c) For any finite length M0 6= 0, there is a minimum h for which there exist curves

C0 with M(C0) = M0(h). These are called minimal curves, and the family L0(M0) of

universal curves for M0 is an irreducible subset of the Hilbert scheme .

d) (The Lazarsfeld-Rao property): Any other curve C in the biliaison class associated

to the module M0 can be obtained by a finite number of ascending (i.e. h ≥ 0) elementary

biliaisons, plus a deformation, from a universal curve C0 in the biliaison class.

e) For any module M and any postulation character γ , the subset Hγ,M of the Hilbert

scheme of curves with postulation character γ and Rao module M is irreducible (provided it

is non-empty). (For a curve C with homogeneous coordinate ring R(C) = R/IC , we define

the postulation character γC to be the third difference function of the negative of the Hilbert

function ϕ(ℓ) = dimk R(C)ℓ of C .)

For proofs of these results, see [12] for a), b), and [9] for c), d), and e).

A curve C is arithmetically Cohen-Macaulay (ACM) if its homogeneous coordinate ring

R(C) is a Cohen-Macaulay ring. The ACM curves form a special case of the above theorem

that requires slightly modified statements.

Theorem 1.2 a) A curve C is ACM if and only if its Rao module is 0. The ACM curves

form one biliaison equivalence class.

b) Any ACM curve can be obtained from a line by a finite number of ascending elementary

biliaisons, plus a deformation.

c) The postulation character γ of an ACM curve is positive in the following sense:

γ(0) = −1; if s0 is the least integer ≥ 1 for which γ(s0) ≥ 0, then γ(n) ≥ 0 for all n ≥ s0 .
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Conversely, for every positive postulation character, there exists an ACM curve with that

character.

d) If the ACM curve C is integral, then its postulation character is connected, meaning

that {n ∈ Z | γ(n) > 0} is an interval in Z. Conversely, for every connected positive

character, there is a smooth irreducible ACM curve with that character.

e) For any positive γ , the set of ACM curves with postulation character γ is an irreducible

subset of the Hilbert scheme .

For proofs, see [1], [2], and [9].

Now our problem is to what extent do these results extend to curves in P
4 , or more

generally to subschemes of codimension ≥ 3 in any projective space?

First of all, it is clear that the definition of liaison given above using complete intersections

(which we denote by CI-liaison) is too restrictive. This has been made abundantly clear in

the work of [7] — see the report of R. Miró-Roig in this volume [11]: there are other invariants

besides the Rao module for CI-liaison in codimension 3, and using these, one can construct

many examples of curves in P
4 having the same Rao module, but not in the same CI-liaison

class.

Therefore we will take Gorenstein liaison to be the natural generalization of CI-liaison

to higher codimension. We state the definitions for curves in P
4 , though the generalization

to subschemes of any dimension in any P
4 is obvious [10].

A curve D in P
4 is arithmetically Gorenstein (AG) if its homogeneous coordinate ring

R(D) = R/ID is a Gorenstein ring, where now R = k[x0, x1, x2, x3, x4] is the coordinate

ring of P
4 . Two curves C1, C2 in P

4 are G-linked if there exists an AG curve D satisfying

the same conditions as in the definition of liaison for curves in P
3 above. The equivalence

relation generated by G-linkage is G-liaison . The equivalence relation generated by even

numbers of G-linkages is even G-liaison .

A curveC2 is obtained from C1 by an elementary G-biliaison of height h if there exists

an ACM surface X in P
4 satisfying also G1 (Gorenstein in codimension one), containing

C1 , such that C2 ∼ C1 + hH on X , where again H is the hypersurface section of X .

It is easy to see that a G-biliaison is an even G-liaison [10, §5.4]. The authors of [7]

are fond of speaking of G-liaison “as a theory of divisors on arithmetically Cohen-Macaulay

schemes,” and indeed, most of their examples of G-liaison can also be accomplished by

elementary G-biliaisons. However, the relation between these two notions is not yet clear,

so we pose it as a question.

Question 1.3 Is the equivalence relation generated by elementary G-biliaisons

equivalent to even G-liaison?
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This is true for CI-liaison in any codimension [3, 4.4], hence for G-liaison in codimension 2,

but is already unknown for curves in P
4 .

It is easy to see that evenly G-linked curves have the same Rao module, up to twist [10,

5.3.3], but the converse is unknown:

Question 1.4 If two curves C1, C2 in P
4 have isomorphic Rao modules, up to

shift in degrees, are they in the same G-liaison class? In particular, are any two

ACM curves in the same biliaison class?

(This is equivalent to asking if every ACM curve is glicci, an acronym for “Gorenstein liaison

class of a complete intersection.”)

For a given finite-length graded module M 6= 0, it is easy to see there is a minimum

twist M(h0) for which there are curves with Rao module M(h0) [10, 1.2.8]. These are called

minimal curves. Migliore has observed [10, 5.4.8] that the set of minimal curves for a given

M may not be irreducible, so we state

Problem 1.5 For a given module M 6= 0, describe the set of minimal curves

for the module M . Are they all in the same even G-liaison class?

As an analogue of the Lazarsfeld-Rao property, we ask

Question 1.6 If C is a curve with Rao module M 6= 0, can C be obtained by

a finite number of ascending elementary G-biliaisons from a minimal curve for

the module M ? For ACM curves we ask, can any ACM curve be obtained by a

finite number of ascending elementary G-biliaisons from a line?

And lastly,

Question 1.7 Does the set of curves with given Rao module M and postulation

character γ form an irreducible subset of the Hilbert scheme ?

In spite of the optimism of some of the researchers mentioned in the references, my expecta-

tion is that many of these questions will have negative answers. The purpose of this talk is

to give negative answers to a couple of these questions, and to propose potential counterex-

amples to some others. We refer to the paper [4] for more details of results only stated here,

and further references.

2 Points in P
3

Closed subschemes of dimension zero of P
3 form the first non-trivial case of codimension 3

schemes in a P
4 . Any such scheme is ACM, so the questions to consider are a) is every such

4



scheme glicci? and b) can any such scheme be obtained from a single point by a sequence of

ascending G-biliaisons (or ACM curves in P
3 )?

Since the structure of arbitrary zero-dimensional subschemes can be quite complicated

(unlike the case of zero-schemes in P
2 , the Hilbert scheme of zero-schemes of degree d in

P
3 for fixed d may not even be irreducible ! [6]), we decided to consider only reduced zero-

schemes, i.e., finite sets of points, in general position. Here general position will always mean

for a suitable Zariski-open subset of the Hilbert scheme, possibly subject to the condition

of lying in a given curve or a given surface. We begin by studying points on low degree

surfaces. It is easy to show

Proposition 2.1 Any set of n general points in P
2 can be obtained by a finite set of

ascending biliaisons (in this case CI-biliaison is equivalent to G-biliaison) from a point.

[4, 2.1]

Similarly, using the ACM curves on a nonsingular quadric surface, one can show

Proposition 2.2 Any set of n general points on a (fixed) nonsingular quadric surface

Q ⊆ P
3 can be obtained from a single point by a finite number of ascending biliaisons (by

ACM curves on Q). [4, 2.2]

On a nonsingular cubic surface the situation is more complicated.

Proposition 2.3 A set of n general points on a (fixed) nonsingular cubic surface X ⊆ P
3

can be connected by G-liaisons through sets of general points of other degrees on X to a

single point. In particular a set of n general points on X is glicci [4, 2.4]

However, in the proof, we were not able to accomplish this using ascending biliaisons

only. We had to use ascending and descending liaisons and biliaisons. For example, to treat

18 general points, one has to link up to 20, then 28 points, before linking down in many

steps to a single point.

Corollary 2.4 Any set of n ≤ 19 general points in P
3 is glicci.

Proof. Indeed, n ≤ 19 general points lie on a nonsingular cubic surface P
3 .

Our experience in these results is that points lying on surfaces of low degree 1, 2, or 3,

are manageable, but these methods fail for sets of points on higher degree surfaces. This is

consistent with the examples of ACM curves in P
4 , proved to be glicci by [7, §8]: they lie

on rational ACM surfaces which are all contained in hypersurfaces of degree 1, 2, or 3. So

we propose a problem for the first case not falling under the above results.

Problem 2.5 If Z is a set of 20 points in general position in P
3 , is Z glicci?

Can Z be obtained by ascending G-biliaisons from a point?
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3 ACM curves in P
4

Following the principle of the previous section, we focus our attention on general curves,

usually integral or nonsingular, and sufficiently general in their component of the Hilbert

scheme . Using elementary geometry of curves on the cubic scroll, the Del Pezzo surface of

degree 4, and the Castelnuovo surface of degree 5, we find

Proposition 3.1 For each possible degree d and genus g of a nondegenerate integral ACM

curve in P
4 of degree d ≤ 9, the Hilbert scheme Hd,g of such curves is irreducible , and

a general such curve can be obtained by ascending G-biliaisons from a line. In particular,

these curves are glicci. [4, 3.4]

A similar argument, using curves on the Bordiga surface of degree 6, gives the same result

for ACM curves with (d, g)=(10, 6).

Example 3.2 For (d, g)=(10, 9) the Hilbert scheme of smooth ACM curves in P
4 has

two irreducible components. To see this, first consider a nondegenerate smooth (10,9) curve

C in P
4 . Since h0(OC(2)) = 12, we find h0(IC(2)) ≥ 3. It follows that C is contained in an

irreducible surface of degree 3, which must be either a cubic scroll or the cone over a twisted

cubic curve in P
3 .

We represent the cubic scroll S as P
2 with one point blown up. If ℓ is the total transform

of a line in P
2 , and e is the class of the exceptional line, we denote a divisor D = aℓ − be

by (a; b). Then S is embedded in P
4 by H =(2; 1). In this notation there are two types of

smooth (10,9) curves, C1 = (6; 2) and C2 = (7; 4). Note that each of these is obtained by

G-biliaison from a line on S : C1 ∼ L1 + 3H where L1 = (0;−1) and C2 ∼ L2 + 3H where

L2 = (1; 1). Hence both types are ACM.

The two types are distinguished by the following properties:

a) their self-intersection on S : C2

1
= 32 while C2

2
= 33.

b) their trisecants: since S is an intersection of quadric hypersurfaces, any

trisecant to Ci must lie in S . The lines in S are of types L1, L2 above. So

we see that C1 has no trisecants, while C2 has infinitely many trisecants of

type L2 .

c) their gonality: C2 is trigonal (a g1

3
is cut out by the trisecants) while C1 is

not trigonal.

d) their multisecant planes. Let π be a plane containing the conic Γ of type

(1;0) on S . Then C1 · π = 6 and C2 · π = 7. The pencil of hyperplanes

through π cuts out a g1

4
on C1 and a g1

3
on C2 , computing the gonality of

each curve.
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Because each of these curves is contained in a unique cubic scroll, if Ct is a family of

smooth (10,9) curves, then it is contained in a family St of cubic surfaces. Hence the self-

intersection of Ct on St is constant in a family, and we conclude that neither type can

specialize to the other. Hence the Hilbert scheme of smooth curves H10,9 has two irreducible

components, represented by the two types C1 and C2 .

In contrast to the situation in P
3 (where for example, the Hilbert scheme of smooth

curves of (d, g)=(9, 10) has two disconnected components), our two components of H10,9 in

P
4 have a common intersection, formed by smooth (10,9) curves lying on the singular cubic

surface S0 , the cone over a twisted cubic curve in P
3 . In a family St of smooth cubic scrolls,

with limit S0 , both classes of lines L1, L2 have as limit a ruling L0 of the cone S0 . So the

two divisor classes C1, C2 both tend to the singular divisor class L0 + 3H on S0 . It is easy

to see this divisor class on S0 contains smooth curves. Then, imitating the proof of [5, 2.1],

cf. [5, 1.6], one can show that every smooth (10,9) curve on S0 is a limit of flat families of

curves of either type C1 or type C2 on cubic scrolls.

Note finally, since OC(2) is already nonspecial, it is easy to see that the postulation of

all ACM (10,9) curves is the same, so we have an example where the Hilbert scheme of ACM

curves with a fixed postulation is not irreducible , answering Question 1.7 above.

To show that this example is not an isolated phenomenon, we prove the following.

Theorem 3.3 Let X be a smooth ACM surface in P
4 , let C0 ⊆ X be a curve, and assume

either a) X is rational, or b) C0 ∼ aH + bK for a, b ∈ Z, where H is the hyperplane class,

and K the canonical divisor on X . Then for m >> 0, the set of curves C ∼ C0 + mH on

X , together with their deformations Ct ⊆ Xt as X moves in the family of ACM surfaces

Xt , forms an open subset of an irreducible component of the Hilbert scheme of curves in P
4 .

Proof. For m >> 0, each such curve C will lie on a unique such Xt , so the dimension

of the family of these curves will be equal to the dimension of the linear system |C| on X ,

which is equal to h0(NC/X), where N denotes normal bundle, plus the dimension of the

family of ACM surfaces X , which is equal to h0(NX/P4) by [1]. (Here the hypothesis a) or

b) of the statement guarantees that when we deform X , the divisor class C extends to the

deformed surface.) On the other hand, we know that the dimension of the family of these

curves is ≤ h0(NC/P4) by the differential study of the Hilbert scheme .

Now from the exact sequence

0 → NC/X → NC/P4 → NX/P4 ⊗OC → 0

we find

h0(NC/P4) ≤ h0(NC/X) + h0(NX/P4 ⊗OC) .
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On the other hand, consider the exact sequence

0 → NX/P4(−C) → NX/P4 → NX/P4 ⊗OC → 0 .

Since C ∼ C0 + mH , it follows from duality and Serre vanishing that hi(NX/P4(−C)) = 0

for i = 0, 1 and for m >> 0. Hence h0(NX/P4) = h0NX/P4 ⊗OC) for m >> 0.

Putting these inequalities together, we find that h0(NX/P4) is equal to the dimension of

the family of curves in question. We conclude from this that they form an open subset of a

(generically reduced) irreducible component of the Hilbert scheme .

Example 3.4 We can use this theorem to make more examples of non-irreducible

Hilbert schemes of curves with given postulation and Rao module.

A first example is furnished by the families C1 + mH and C2 + mH on the cubic scroll,

where C1, C2 are the curves of Example 3.2. For given m, they will have the same degree,

genus, and postulation; each forms an open set of an irreducible component of the Hilbert

scheme, but the two families are different because the curves have a different self-intersection

on S .

For another example, let X be a Bordiga surface, represented as P
2 with 10 points

P1, . . . , P10 blown up, where the notation (a; b1, . . . , b10) represents the divisor aℓ −
∑

biei ,

and the embedding is given by H =(4; 110). Consider the divisors

L1 = (0; 09,−1)

L2 = (1; 13, 07)

L3 = (2; 17, 03) .

On a general Bordiga surface, L1 is a line, and L2, L3 are not effective. But if P1, P2, P3 are

collinear, we get a special smooth Bordiga surface on which L2 is represented by a line. If

P1, . . . , P7 lie on a conic, we get another special Bordiga surface on which L2 is represented

by a line. It follows that Ci ∼ Li + mH are ACM curves with the same postulation on a

general Bordiga surface, for i = 1, 2, 3, and m >> 0.

By the theorem, each of these Ci forms an (open set of) an irreducible component of the

Hilbert scheme. Since L2

i = −1, L2

2
= −2, L2

3
= −3, the Ci have different self-intersection,

so the components are distinct.

Problem 3.5 Find a way to distinguish the irreducible components of the

Hilbert scheme of ACM curves in P
4 with given degree, genus, and postulation.

For example, would any of the properties suggested in a),b),c),d) of Example 3.2

force the family to be irreducible ?
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Example 3.6 Our last experiment with ACM curves is the first case of an ACM curve

not contained in a cubic hypersurface, namely smooth ACM curves with (d, g)=(20, 26).

There are such curves defined by the 4 × 4 minors of a 4 × 6 matrix of general linear

forms. These determinantal curves are glicci, by a theorem of [7] and form an irreducible

family of dimension ≤ 69 [7, 10.3].

Allowing these determinantal curves to move in linear systems on smooth ACM surfaces

X of degree 10 and sectional genus 11, we get a family of curves of dimension ≤ 74, whose

general member can be obtained by ascending G-biliaisons from a line, and hence is glicci

[4, 3.9].

On the other hand, the differential study of the Hilbert scheme shows that every irre-

ducible component of smooth curves of (d, g)=(20, 26) must have dimension ≥5d+1−g = 75.

By a subtle study of the dimensions of linear systems of curves on the ACM surface of

degree 10 mentioned above, we show that a general curve in the Hilbert scheme of (20,26)

curves cannot be obtained by ascending G-biliaisons from a line [4, 3.9]. This gives a negative

answer to the second half of Question 1.6. What remains is a problem.

Problem 3.7 Is an ACM curve with (d, g)=(20, 26) in P
4 glicci?

4 Curves on P
4 with Rao module M 6= 0

Here the questions to investigate are whether all curves with Rao module M belong to the

same G-liaison class; what do the minimal curves look like; and can an arbitrary curve with

Rao module M be obtained from a minimal curve by ascending Gorenstein biliaisons. As

yet, there is very little experimental evidence for these questions, but what little there is

shows that the situation is quite complicated.

We first consider the case M = k , of dimension one in one degree only. We can describe

completely the minimal curves in this case, which have M = k in degree 0.

Proposition 4.1 For every d ≥ 2 there are minimal curves in P
4 with Rao module M = k

in degree 0. For each d these curves form an irreducible family. The general member of the

family is a disjoint union of a line and a plane curve of degree d − 1 in general position in

P
4 . Furthermore, all of these minimal curves are in the same G-liaison class. [4, 4.1]

To begin the study of other curves with Rao module M = k , we look at smooth curves

of low degree and genus. They exhibit many different behaviors.

Example 4.2 Every smooth nondegenerate (d, g)= (5, 0) curve in P
4 lies on a cubic

scroll, has M = k in degree 1, and is obtained by G-biliaison from a minimal curve of degree

2, namely two skew lines [4, 4.3].
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Example 4.3 Smooth nondegenerate (6,1) curves in P
4 form an irreducible family.

They have M = k in degree 1. They fall into two types. The general curve C1 lies on a

Del Pezzo surface, and is obtained by a G-biliaison from two skew lines. This curve has two

trisecants. The special curve C2 lies on a cubic scroll , and is obtained by G-biliaison from

a minimal curve of degree 3. It has infinitely many trisecants. So in this case the two types

are distinguished by which minimal curve they come from under G-biliaison [4, 4.4].

Example 4.4 Smooth nondegenerate (7,2) curves form an irreducible family, whose

general member has M = k in degree 1. In this case the general member of the family

can be obtained by two different routes from minimal curves: one route is G-biliaison on

the Del Pezzo surface from a minimal curve of degree 3; the other is a G-biliaison on the

Castelnuovo surface from a minimal curve of degree 2 [4, 4.5].

Example 4.5 Next we consider smooth nondegenerate (11,7) curves in P
4 . They form

an irreducible family, whose general member has M = k in degree 2. There are such curves

on a Bordiga surface, obtained by G-biliaison in two steps: from two skew lines to a smooth

(5,0) curve on a cubic scroll , then to the (11,7) curve on the Bordiga surface. However, we

can show by counting dimensions that the general (11,7) curve does not lie on a Bordiga

surface, and cannot be obtained by ascending G-biliaisons from a minimal curve. This

provides a negative answer to the first part of Question 1.6 above [4, 4.7]. There remains a

problem.

Problem 4.6 Is a general (11,7) curve in P
4 in the G-liaison class of two skew

lines?

Minimal curves in P
4 with Rao module Ma = R/(x0, x1, x2, x3, x

a
4
) for a ≥ 2 have been

studied by Lesperance [8]. He shows

Proposition 4.7 For a ≥ 2, there are minimal curves with Rao module Ma of every degree

d ≥ a+1. A reduced minimal curve is one of the following (where we denote by P the point

(0, 0, 0, 0, 1).)

a) A disjoint union of a line and a plane curve of degree a in P
3 , where P is the point

of intersection of the line and the plane.

b) A disjoint union of plane curves of degrees a, b, with a ≤ b, where P is the point of

intersection of the two planes, and P does not lie on either curve.

c) A disjoint union of plane curves of degrees a, b, with b ≥ 1, where P is the point of

intersection of the two planes, but this time P lies on the curve of degree b. (For b = 1, we

recover type a) above.)
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d) A disjoint union of a line and an ACM curve in P
3 , where P is the point of intersection

of the line and the P
3 , and a is the least degree of a surface in P

3 containing the ACM curve,

but not containing P .

Example 4.8 In particular, the set of minimal curves of a given degree may not be

irreducible . The first example is a = 2, degree 4, where there are minimal curves of type

b), a union of two conics, and type d), a union of a line and a twisted cubic curve, which

form two irreducible families [8, 4.5].

A more serious problem arises with the question of G-liaison. Lesperance is able to show

that most of the minimal curves described in Proposition 4.7 are in the same G-liaison class

as the first (type a). However there remains an open question, of which we state the first

case.

Problem 4.9 Let C1 be a disjoint union of two conics of type b) above, and

let C2 be a disjoint union of a line and a twisted cubic curve, of type d) above.

Then both have Rao module M2 . Are they in the same G-liaison class?

Example 4.10 Applying G-biliaison on a Del Pezzo surface, we can rephrase Problem

4.9 in terms of smooth curves with (d, g)=(8, 3).

On the Del Pezzo surface X , note that the divisor class (1; 1, 04) is a conic, and two such

are disjoint. So we can take C1 = (2; 2, 04) on X , and let D1 = C1 + H = (5; 3, 14). This is

a smooth (8,3) curve.

On the other hand, (1; 05) is a twisted cubic, and (0; 04,−1) is a line not meeting it, so

we can take C2 = (1; 04,−1), and D2 = C2 + H = (4; 14, 0). This is another smooth (8,3)

curve.

The curves of type D1, D2 both have Rao module M2 , but neither type can specialize to

the other, because each lies in a unique Del Pezzo surface, and on that surface, their set of

intersection numbers with the sixteen lines are (18, 38) for D1 and (0, 14, 26, 34, 4) for D2 .

Note also that the Hilbert scheme of smooth (8,3) curves in P
4 is irreducible , but the

general curve has Rao module M = k in degree 1, and does not lie on a Del Pezzo surface.

Thus our two families of curves are locally closed irreducible subsets of H8,3 .

Both types of curves D1, D2 have self-intersection 12. However, the two types can be

distinguished by

a) their intersections with the 16 lines on X (mentioned above)

b) their multisecants: C1 has trisecant lines, but no quadrisecant, while C2 has

a quadrisecant line
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c) their multisecant planes: let π be the plane containing the conic (2; 0, 14) in

X . Then C1 · π = 6 while C2 · π = 5.

d) their gonality: C1 is hyperelliptic, with a g1

2
cut out by the hyperplanes

through π , while C2 has gonality 3, and a g1

3
is cut out by the hyperplanes

through π

e) the point P (determined by the Rao module) lies on the surface X for type

D2 , but does not lie on X for type D1 .

Now we can rephrase Problem 4.9 as

Problem 4.11 Do the two types of smooth (8,3) curves with Rao module M2

(described above) belong to the same G-liaison class?

5 Conclusion

For ACM curves in P
4 , we have shown that the family of ACM curves with given degree,

genus, and postulation may not be irreducible (3.2); we have given examples of ACM curves

that cannot be obtained by ascending Gorenstein biliaison from a line (3.6); and we have

proposed examples of ACM curves that may not be glicci (3.7).

For curves with Rao module M 6= 0, we have described the minimal curves in two

cases, illustrating their complexity (4.1),(4.7); we have given examples of curves that cannot

be obtained from a minimal curve by ascending G-biliaisons (4.5); and we have proposed

examples of curves with the same Rao modules that may not be in the same G-liaison class

(4.6),(4.9).

We have seen by example that certain families of curves with the same Rao module can

be distinguished by the least degree of an ACM surface containing the curve, or their self-

intersection on an ACM surface of least degree containing the curve, or their multisecant

lines, or their multisecant planes, or their gonality. What is lacking at this point is a better

understanding of how these geometrical properties of the curve in its embedding behave

under the operation of Gorenstein liaison .
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