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Artificial intelligence (AI) is changing the landscape in medicine. AI-based applications will empower
pulmonary specialists to seize modern practice and research opportunities. Data-driven precision
medicine is already here. https://bit.ly/324tl2m
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ABSTRACT Artificial intelligence (AI) is transforming healthcare delivery. The digital revolution in
medicine and healthcare information is prompting a staggering growth of data intertwined with elements
from many digital sources such as genomics, medical imaging and electronic health records. Such massive
growth has sparked the development of an increasing number of AI-based applications that can be
deployed in clinical practice. Pulmonary specialists who are familiar with the principles of AI and its
applications will be empowered and prepared to seize future practice and research opportunities. The goal
of this review is to provide pulmonary specialists and other readers with information pertinent to the use
of AI in pulmonary medicine. First, we describe the concept of AI and some of the requisites of machine
learning and deep learning. Next, we review some of the literature relevant to the use of computer vision
in medical imaging, predictive modelling with machine learning, and the use of AI for battling the novel
severe acute respiratory syndrome-coronavirus-2 pandemic. We close our review with a discussion of
limitations and challenges pertaining to the further incorporation of AI into clinical pulmonary practice.

Introduction
The sheer volume of healthcare-related data generated from digital sources such as high-resolution
imaging, genomic studies, continuous biosensor monitoring, and electronic health records is staggering:
150 exabytes (an exabyte is one quintillion (1018) bytes or one billion gigabytes) in the United States alone,
and it grows 48% annually [1]. Its analysis is overwhelming for physicians and healthcare scientists, who,
like other humans, are limited by an ability to process only six or fewer data points simultaneously [2].
In contrast, computers can seamlessly analyse millions and even billions of data points, making artificial
intelligence (AI), and its subfields such as machine learning and deep learning, a potential game changer
for modern healthcare delivery.

Despite many obstacles, not the least of which is that AI is still in its infancy [3], AI shows great promise
for changing the way we practice pulmonary medicine. A PubMed literature search performed on May 5,
2020 using the search terms “artificial intelligence OR machine learning OR deep learning AND
pulmonary AND medicine” identified 930 articles published between 2015 and 2019. This is a five-fold
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increase compared to only 171 articles found in a similar search for the years 2010–2014. Furthermore,
our query for full-text, English language systematic and narrative reviews published from 2018 onward
using the search terms “machine learning in respiratory medicine” identified 32 scientific papers: 14
pertained to cardiac or critical care medicine, 14 were dedicated to specific lung disorders, and four
described the role of machine learning in general pulmonary medicine [4–7].

However, incorporating AI into how we process data and make medical decisions takes time. In addition
to a general lack of awareness about its potential applications, many healthcare professionals perceive AI as
a threat to medical jobs [8]. Validation studies, particularly prospective work in clinical settings, are
lacking, and some fear that over-reliance on AI might result in de-skilling our workforce as well as prompt
unsatisfactory outcomes, especially if algorithms are poorly generalisable or built on data that are not well
structured [9].

In this review, we describe several requisites of machine learning and deep learning. Using mostly
publications from the last 4 years, we also provide examples of how AI is used in pulmonary medicine: for
computer vision in medical imaging, predictive modelling with machine learning, and in the severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic. Given the narrative nature of our work,
articles were carefully selected to complement other reviews and to provide readers with a general
understanding of these topics. We close our review with a discussion of limitations and challenges
pertaining to the further incorporation of AI into clinical pulmonary practice.

A brief description of AI and machine learning
The field of AI was born at Dartmouth College (Hanover, NH, USA) in 1956 when a group of computer
scientists gathered to discuss mathematical theorems, language processing, game theory and how
computers learn from analysing training examples. At first, a rules-based system governed AI. By the
1980s, medical uses were noted, including applications in pulmonary medicine [10–12]. Rules could
represent knowledge coded into the system [13], providing direction for different clinical scenarios.
Essentially, the programmer defined what the computer had to do. This system could help guide
decision-making for interpreting ECGs, evaluating the risk of myocardial infarction and diagnosing
diseases [14]. Originally, the concept of probabilities was applied to represent uncertainties [15], and
logic-based explicit expressions of decision-rules and human-authored updates were required. Performance
was limited by low sensitivity, incomplete medical knowledge datasets and insufficient ability to integrate
probabilistic reasoning.

With machine learning, modern systems are considered artificially intelligent because they use algorithms
that enable computers (the machine) to learn functions from a specific and potentially ever-changing
dataset (a dataset is a set of samples). A function is the deterministic mapping of output values from a set
of input values such that the output value is always the same for any specific set of input values (for
example, 3×3 is always 9). By at least one definition, an algorithm is a process the computer uses to
analyse the dataset and identify patterns. Primarily, the computer programme can learn, and software can
adapt its behaviour automatically to better match the requirements of the task [16].

Functions learned from the data can be represented as simple arithmetic operations or complex neural
network architectures. In machine-learning models, training (derivation) and testing (validation) datasets
are used to help alleviate algorithmic bias (systemic errors that result in unfair outcomes such as preferring
one arbitrary group over others) [17–20]. To improve reproducibility, cross-validation is commonly
performed using multiple splits within the training set to reduce the effects of randomness of the split,
especially if datasets are small. While details of how a particular cross-validation scheme is performed
depend on the data and research question, the goal remains the same: to create an accurate model that
predicts outcomes in an externally validated dataset with minimal algorithmic bias [21].

In medicine, several machine-learning models are commonly used (table 1). For example, an artificial
neural network (ANN) is a subtype of machine learning that comprises a series of algorithms designed to
recognise underlying relationships in a set of data using a process inspired by the way neurons
communicate in the human brain. ANNs consist of multiple layers of “neurons” where each neuron in a
given layer is connected to every other neuron in adjacent layers, and the weight attributed to each
connection is optimised through an iterative process using linear algebra and calculus. The optimisation
process is both science and art, where theory often follows heuristics (figure 1).

Machine learning is challenging, in part, because of difficulties for conventional statistical analyses such as
logistic regression to isolate relationships between predictors and outcomes, especially when relationships
are nonlinear and when the number of variables is large. Furthermore, most datasets include a large
amount of noise, and information provided by the data may not allow a single best solution. This prompts
the computer to identify a series of possible solutions that match the data.
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In 2014, only AliveCor’s algorithm for detection of atrial fibrillation was approved for clinical use. Today,
it appears that medical specialties such as radiology, cardiology, dermatology and pathology are most
conducive to AI-based applications. To date, >75 AI algorithms are approved by the US Food and Drug
Administration (FDA), and one report states that AI-based medical imaging investments have grown
exponentially to USD 1.17 billion [22, 23]. To our knowledge, a number of algorithms related to
pulmonary medicine have received 510(k) premarket approval (legal, regulatory recognition that a medical
device is safe and effective) from the FDA and several more are CE-marked (Conformité Européenne is
the mandatory regulatory marking for products sold within the European Economic Area) [22, 24]
(table 2). Lagging growth in pulmonary and critical care medicine compared with some other medical
fields [22] warrants a need for increased awareness among physicians of this specialty.

Requisites of machine learning
Machine learning uses datasets, functions and algorithms to search through data and identify output
values that best match the data. However, statistical analysis, human expertise, and trial and error
modelling of potential neural networks are labour-intensive. Therefore, a precise determination of how
well each function matches the data and leads to an acceptable output is also needed. In AI jargon, this

TABLE 1 Examples of machine-learning algorithms

Example Description

Supervised learning
algorithm
Regularised regression LASSO An extension of classic regression algorithms in which a

penalty is enforced to the fitted model to minimise its
complexity and reduce the risk of overfitting

Tree-based model Classification and regression trees, random
forest, gradient boosted trees (XGBoost)

Based on decision trees (a decision support tool which is a
sequence of “if-then-else” splits are derived by iteratively
separating data into groups based on the relationship
between attributes and outcomes)

Support vector machine Linear, hinge loss, radial basis function kernel Represents data in a multidimensional feature space and fits a
“hyperplane” that best separates data based on outcomes of
interest

KNN KNN Represents data in a multidimensional feature space and uses
local information about observations closest to a new
dataset to predict outcomes for the new dataset

Neural network Deep neural networks, ANNs Nonlinear algorithms built using multiple layers of nodes that
extract features from the data and perform combinations
that best predict outcomes

Unsupervised learning
algorithm
Dimensionality reduction
algorithms

Principal component analysis, linear
discriminant analysis

Exploits inherent structure to transform data from
high-dimensional space into a low-dimensional space which
retains some meaningful attributes of the original data

LCA LCA Identifies hidden population subgroups (latent classes) in the
data. Used in datasets with complex constructs that have
multiple behaviours. The probability of class membership is
indirectly estimated by measuring patterns in the data

Cluster analysis K-means, hierarchical cluster analysis Uses inherent structures in the data to best organise data into
subgroups of maximum commonality based on some
distance measure between features

Reinforcement learning
algorithm
Reinforcement learning Markov decision process and Q learning Provides tools to optimise sequences of decision for the best

outcomes or to maximise rewards. Learns by trial and
error. An action is reinforced with the action that results in a
positive outcome (reward), and vice versa. The algorithm can
improve performance in scenarios where a learning system
can choose to repeat known decisions (exploitation) or make
novel decisions expecting to gain even greater rewards
(exploration)

KNN: K-nearest neighbour; LCA: latent class analysis; LASSO: least absolute shrinkage and selection operator; ANN: artificial neural network.
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measure of quality, of how well each function is used to match the data, is referred to as “fitness”. How
the elements of machine learning (data, functions, algorithms and fitness) work together defines three
different categories of machine learning, each of which plays a role in the elaboration of AI-based medical
decision-making (table 1).

Supervised learning refers to an algorithm in which each input of the dataset is matched to a specific
output value. The dataset must be labelled to predict known outcomes. For example, the input could be a
clinical characteristic and the output an event of interest (e.g. mortality). Once the algorithm is successfully
trained, it will be capable of making outcome predictions when applied to a new dataset. To be used
successfully, each input value of the dataset must have a target output value. This can require a large
amount of data and input can be very time-consuming. Selecting the appropriate output target value often
requires human expertise. With supervised learning, the algorithm can subsequently use each output target
value to help the learning process by comparing the outputs created by a specific function with known
outputs specified in the dataset, and use a fitness measure to search for the best function [19, 25, 26].

Unsupervised learning refers to an algorithm that finds clusters within the input data. The algorithm
identifies functions that map input datasets into clusters so that data points within each cluster are more
similar than data points in other clusters [19, 20, 27]. An example of unsupervised learning is in data
mining of electronic medical records [28], where goals are to reveal patterns for patients who share
clinical, genetic or molecular characteristics that might theoretically respond to targeted therapies directed
at a specific pathophysiology as in precision medicine.

Reinforcement learning is useful for control tasks such as those needed in robotics, or in constructing
policies where medical decisions require sequenced procedures; for example, whether a robot should move
forward or backward, or whether a treatment regimen requires changes in drug-dosing or clinical
reassessment. Reinforcement learning has been used to elaborate dynamic treatment regimens for
cardiovascular diseases, in mental illnesses where long-term treatment involves a sequence of medical
interventions, and in radiation therapy where treatment is geared to destroying cancer cells while sparing
as many normal cells as possible. Learning is often by trial and error: the function is viewed as an action
for the agent to interact favourably with its environment. If the action results in a positive outcome (often
referred to as a “reward”), that action is reinforced. An obvious challenge lies in the design of training
mechanisms that distribute positive or negative rewards appropriately. Examples include algorithms
designed for studying protocols in sepsis, sedation and mechanical ventilation [29, 30]. The technique is
particularly helpful when outcomes are not clearly supported by high-quality evidence from randomised
controlled trials or meta-analyses, or when input data include a wide selection of physiological data,
clinical notes, vital sign time series and radiological images difficult to analyse using supervised or
unsupervised learning algorithms [29].

Training data
Deep-learning neural network

Consists of layes of neurons connected via weighted edges

Training

New data
Inference

Model

Prediction

Plane

Non-plane

Plane

Plane

Input

layer Output

layer

Hidden layer

FIGURE 1 An example of an artificial neural network. Simple image classification: the model is trained on a few thousand images of planes and
non-planes, then is later able to predict if a given image is a plane or not.
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What is deep learning?
Deep learning is a subfield of AI in which features needed for a particular task are automatically learned
from the raw data. Deep learning requires costly and time-consuming human effort to accumulate raw
data, provide statistical analysis and domain expertise, as well as build experimental models with specific
feature sets and potentially complex algorithms.

Deep learning is already an integral part of our daily lives. It can be applied to all three machine-learning
modalities, and with increasing computational power and the massive datasets that make up “big data”, it
is especially promising for healthcare applications. Deep learning is used for common tasks such as
internet data searches and speech recognition on our smart phones. As our ability to manipulate

TABLE 2 Examples of Conformité Européenne (CE)-marked and US Food and Drug Administration (FDA)-approved artificial
intelligence (AI) algorithms

Name of algorithm/parent
company

Short description CE-marked US
FDA-approved

Lung nodule (chest CT)
InferRead CT Lung (InferVision) CT lung nodule detection, report generation, multi-time point analysis

and aims to aid early-stage diagnosis
Yes Yes

Lung AI (Arterys) Automatic detection of solid, part solid and ground-glass nodules and
supports Lung-RADS reporting and multi-time point analysis

Yes Yes

Veolity (MeVis Medical
Solutions)

CT lung nodule detection, segmentation, quantification, temporal
registration and nodule comparison

Yes Yes

ClearReadCT compare
(Riverain)

Compares, tracks nodules and provides nodule volumetric changes over
time for solid, part-solid and ground-glass nodules

Yes Yes

JLD-01K ( JLK Inc.) CT lung nodule detection, measures the diameter and volume of the
nodules, categorises LungRADS category

Yes No

VUNO Med-LungCT (VUNO) Quantifies pulmonary nodules and automatically categorises the
Lung-RADS

Yes No

Veye Chest (Aidence) CT lung nodule detection, nodule classification, volume quantification and
growth calculation

Yes No

RevealAI Lung (Mindshare
Medical)

Provides a malignancy similarity index from lung CT scans that aids risk
assessment of lung nodules

Yes No

COVID-19 pneumonia (chest CT)
Icolung (Icometrix) Objective quantification of disease burden in COVID-19 patients Yes No
InferRead CT Pneumonia
(InferVision)

An alert system that warns if there is a suspected positive case of
COVID-19

Yes No

Pulmonary embolism (chest CT)
Aidoc (Aidoc) Analysis of CT images and flags presence of pulmonary embolism Yes Yes

Emphysema/COPD/ILD (chest CT)
LungQ (Thirona) Lung volume segmentation and quantification, volume density analysis,

airway morphology, fissure completeness analysis
Yes Yes

LungPrint Discovery (VIDA) Provides visual and quantitative information relevant to COPD and ILD.
Provides high-density tissue quantification by lobe, trachea analysis and

quantification

Yes Yes

Lung Density Analysis (Imbio) Provides visualisation and quantification of lung regions with abnormal
tissue density. Provides a mapping of normal lung, air-trapping and

areas of persistent low density

Yes Yes

Lung texture analysis (Imbio) Transforms a chest CT into a map of the lung textures to identify ILDs
and other fibrotic conditions

Yes No

Lung densities (Quibim) Provides quantification of imaging biomarkers: lung volumes, vessel
volumes and emphysema volume ratios

Yes No

Pneumothorax (chest
radiography)
Red Dot (behold.ai) Assessment of adult chest radiographs with features suggestive of

pneumothorax
Yes Yes

Triage (Zebra Medical Vision) Identifies findings suggestive of pneumothorax based on chest
radiography; outputs an alert

Yes Yes

Pulmonary function tests
ArtiQ.PFT (ArtiQ) Automated pulmonary function test interpretation Yes No

CT: computed tomography; COVID-19: coronavirus disease 2019; ILD: interstitial lung disease; Lung-RADS: Lung Imaging Reporting and Data
System.
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images [31], language [32] and speech [33] increases, and with the advent of new hardware such as
neuromorphic chips and quantum computing, larger datasets are becoming analysable. A number of
commercial companies and academic institutions are building massive datasets in the hope that deep
learning derived algorithms will favourably impact disease prediction, prevention, diagnosis, treatment and
healthcare-related economics [34].

Deep learning often outperforms other machine-learning modalities when these huge datasets are
manipulated. This is how DeepMind’s AlphaGo defeated the world’s greatest Go player [35]. It is also how
millions of pixels are analysed to assist with medical image processing or facial recognition [36]. It often
relies on principles similar to the working of the human brain, using multiple layers of ANNs composed
of input and output layers of data representations called neurons. There are also hidden layers (neurons
that cannot be defined as either input or output layers). All layers are arranged sequentially such that a
representation of one layer is fed into the following layer [37], the depth of the network being linked to
the number of hidden and output layers (figure 1).

Inspired by the human brain with its billions of neurons interconnected via dendrites and axons, ANNs
are networks of information processing units. Complex nonlinear mappings of input/output relationships
start from simple interactions between a large number of data points. The deeper the network, the more
powerful the model in regards to its ability to learn complex nonlinear mappings. Deep learning networks
are trained by “iteration”, a process of running and re-running networks while optimising neuronal
parameters to improve performance and minimise errors. Massive datasets drive technological innovation
and a quest for better algorithms and faster computational hardware.

Applications in clinical pulmonary medicine
AI, particularly pattern recognition using deep and machine learning, has numerous potential applications
in pulmonary medicine, whether in image analysis, decision-making or prognosis prediction [5–7]. In this
section, we provide examples of how AI is also used for computer vision in medical imaging, predictive
modelling with machine learning, and in battling the novel SARS-CoV-2 pandemic (table 3).

Computer vision for lung nodule detection and prediction risk for malignancy
Computer vision is a form of deep learning where objects are identified directly from raw image pixels.
Experts first label each image with the correct diagnosis, representing what is described as “ground
truth”. Computer vision then focuses on image and video recognition that handles assigned tasks such as
object classification, detection and interpretation in order to categorise predefined outcomes.
Convolutional neural networks (CNNs) form deep learning algorithms designed to process input images,
assigning importance to various aspects in order to differentiate one image from another. The structural
architecture of CNNs is comparable to that of the connectivity pattern of neurons in the human brain,
following a hierarchical model that creates a funnel-like framework to provide a fully connected layer
where all the neurons are connected and output is processed (figure 2). Of historical interest,
state-of-the-art computer vision accuracy was favourably compared with human accuracy in
object-classification tasks. The study was based on the ImageNet Large Scale Visual Recognition
Challenge dataset (an annual competition using a publicly available dataset of random objective images
from a massive collection of human-annotated photographs) [31]. Expert-level performances were also
achieved in studies of diabetic retinopathy [56], skin lesion classification [57] and metastatic lymph node
detection [58].

Lung cancer screening using low-dose computed tomography (CT) has been shown to reduce mortality by
20% in the National Cancer Institute’s National Lung Screening Trial (NLST). It is currently included in
North American screening guidelines. False-positive results that lead to an invasive procedure are high
[59–61], but AI is being used to improve diagnostic accuracy. Studies compare performance between
expert radiologists and deep-learning algorithms using chest imaging. ARDILA et al. [38] proposed an
end-to-end approach for detecting lung cancer using only input CT data from the NLST. A
three-dimensional CNN model was created with an end-to-end analysis of whole-CT volumes using
pathology-confirmed lung cancer as ground truth in training data (a “full-volume” model). Subsequently,
CNN was trained to identify regions of interest (ROI) and to develop a CNN cancer risk prediction model
that operated on outputs from the full-volume model and cancer ROI detection model. In the testing
dataset, this model achieved an area under the receiver operating characteristic (ROC) curve of 94.4%. A
comparison group of expert radiologists had performance at or below the algorithm’s ROC. Given the
perceived “black-box” nature of deep learning, investigators did not clearly understand if the model
incorporates other features outside the ROI in its predictions. The term “black box” is used to describe
complex models, including neural networks. Sometimes, even coders do not clearly understand how their
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TABLE 3 Model training, validation, algorithm type and data source for selected studies in pulmonary medicine

First author [ref.] Population/type of
study

Source of data Main findings Reference
standard/

ground truth

Algorithm type Datasets Type of
internal

validation/
availability of

external
validation

Solid pulmonary
nodules/masses
ARDILA [38] CT chest of lung

cancer screening
patients/retrospective

NLST Prediction of cancer risk
based on CT findings

For testing dataset, ROC of
94.4% (95% CI 91.1–97.3%)
For validation set, AUC of
95.5% (95% CI 88.0–98.4%)

Histology;
follow-up

CNN 42290 CT images from
14851 patients

Not reported/
yes

BALDWIN [39] CT chest of lung
cancer screening

patients/retrospective

The IDEAL study (Artificial
Intelligence and Big Data
for Early Lung Cancer

Diagnosis)

The AUC for CNN was
89.6% (95% CI 87.6–

91.5%), compared with
86.8% (95% CI 84.3–89.1%)

for the Brock model
(p⩽0.005)

Histology;
follow-up

CNN 1397 nodules in 1187
patients

Not reported/
yes

MASSION [40] CT chest of lung
cancer screening

patients/retrospective

NLST for model derivation
and internal validation/
externally tested on
cohorts from two

academic institutions

The AUC for CNN was
83.5% (95% CI 75.4–90.7%)
and 91.9% (95% CI 88.7–
94.7%) on two different
cohorts (Vanderbilt and

Oxford University)

Histology;
follow-up

CNN 14761 benign nodules
from 5972 patients,
and 932 malignant
nodules from 575

patients

Not reported/
yes

CIOMPI [41] CT chest of lung
cancer screening

patients/retrospective

Training dataset from the
Multicentric Italian Lung

Detection trial and
validation dataset from the

Danish Lung Cancer
Screening Trial

CNN can achieve
performance at classifying

nodule type within the
interobserver variability
among human experts

(Cohen κ-statistics ranging
from 0.58 to 0.65)

Expert
consensus

CNN 1352 nodules for
training set and 453
nodules for validation

set

Random split
sample

validation/yes

NAM [42] Chest radiographs to
detect malignant

nodule/retrospective

Analysis of data collected
from Seoul National
University Hospital,

Boramae Hospital and
National Cancer Center,
University of California
San Francisco Medical

Center

Chest radiograph
classification and nodule
detection performances of

deep learning-based
automatic detection were a

range of 0.92–0.99
(AUROC)

Expert
consensus

CNN 43292 chest
radiographs from 34

676 patients

Random split
sample

validation/yes

Continued
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TABLE 3 Continued

First author [ref.] Population/type of
study

Source of data Main findings Reference
standard/

ground truth

Algorithm type Datasets Type of
internal

validation/
availability of

external
validation

WANG [43] Mediastinal lymph
node metastasis of

NSCLC from 18F-FDG
PET/CT images/
retrospective

Data collected at the
Affiliated Tumor Hospital

of Harbin Medical
University

The performance of CNN
is not significantly different

from classic
machine-learning methods
and expert radiologists

Expert
consensus

CNN 1397 lymph node
stations from 168

patients

Resampling
method/no

WANG [44] Solitary pulmonary
nodule ⩽3 cm,
histologically
confirmed

adenocarcinoma/
retrospective

Analysis of data collected
from Fudan University

Shanghai Cancer Center

Algorithm showed AUROC
of 0.892, which was higher

than three expert
radiologists in classifying
invasive adenocarcinoma
from pre-invasive lesions

Histology CNN CT scan from 1545
patients

Random split
sample

validation/no

ZHAO [45] Thin-slice chest CT
scan before surgical
treatment; nodule
diameter ⩽10 mm/

retrospective

Secondary analysis of data
from Huadong Hospital

affiliated to Fudan
University

Based on classification of
tumour invasiveness,

deep-learning algorithm
achieved better

classification performance
than the radiologists
(63.3% versus 56.6%)

Histology CNN Pre-operative
thin-slice CT; 523

nodules for training/
128 nodules for testing

Not reported/
no

Fibrotic lung
diseases
WALSH [46] HRCT showing diffuse

fibrotic lung disease
confirmed by at least

two thoracic
radiologists/
retrospective

Secondary analysis of data
from La Fondazione

Policlinico, Universitario
and University of Parma

(Italy)

Interobserver agreement
between the algorithm and
the radiologists’ majority
opinion (n=91) was good

(κw=0·69)

Expert
consensus

CNN HRCT; 929 scans for
training/89 scans for

validation

Not reported/
yes

CHRISTE [47] HRCT showing NSIP or
UIP confirmed by two
thoracic radiologists/

retrospective

HRCT dataset from the
Lung Tissue Research

Consortium

Interobserver agreements
between the algorithm and
the radiologists’ opinion
were fair to moderate
(κw=0.33 and 0.47)

Expert
consensus

CNN HRCT 105 patients (54
of NSIP and 51 for

UIP)

Not reported/
no

RAGHU [48] The
whole-transcriptome
RNA sequencing data
from transbronchial
biopsy samples/

prospective

Bronchial Sample
Collection for a Novel
Genomic Test (BRAVE)
study in 29 US and
European sites

The molecular signatures
had high specificity (88%)

and sensitivity (70%)
against diagnostic
reference pathology

(ROC-AUC 0.87, 95% CI
0.76–0.98)

Histology ML; type not reported 94 patients in clinical
utility analysis

Not reported/
no

Continued
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TABLE 3 Continued

First author [ref.] Population/type of
study

Source of data Main findings Reference
standard/

ground truth

Algorithm type Datasets Type of
internal

validation/
availability of

external
validation

PH
SWEATT [49] Peripheral blood

biobank/prospective
Peripheral blood

biobanked at Stanford
University, USA and

University of Sheffield, UK

Four distinct
immunological clusters
were identified. Cluster I

had unique sets of
upregulated proteins

(TRAIL, CCL5, CCL7, CCL4,
MIF), which was the
cluster with the least
favourable 5-year

transplant-free survival
rates (47.6%, 95% CI 35.4–

64.1%)

N/A Unsupervised ML Blood biobanked; 281
patients for discovery
cohort/104 patients for

validation cohort

Resampling
method/yes

LEHA [50] Echocardiographic
parameters/
retrospective

King’s College Hospital
(UK); University Medical
Center Gottingen and

University of Regensburg
(Germany)

Among five ML algorithms,
random forest of

regression trees is the
best method to identify PH
patients (AUC 0.87, 95% CI
0.78–0.96) with accuracy of

0.83

Right heart
catheterisation

Five ML algorithms
(random forest of
classification trees,
random forest of
regression trees,
lasso-penalised

logistic regression,
boosted classification

trees, SVM)

90 patients with
invasively determined

PAP with
corresponding

echocardiographic
estimations of PAP

Resampling
method/no

Asthma
WU [51] 100 clinical,

physiological,
inflammatory and

demographic
variables/prospective

Severe Asthma Research
Program (SARP) cohort

from National Heart, Lung,
and Blood Institutes (USA)

Four asthma clusters with
differing CS responses
were identified. Those in
CS-responsive cluster
were older, more nasal
polyps, and high blood
eosinophils. After CS,
there was the highest

increase in lung function in
this group

N/A Unsupervised ML;
MML-MKKC

346 adult asthmatics
with paired (before and
after CS) sputum data

Random split
sample

validation/no

Pleural effusion
KHEMASUWAN [52] 19 candidate clinical

variables from
retrospective cohort of
patients with pleural

infection

A tertiary care,
university-affiliated
hospital, Utah, USA

Candidate predictors of
tPA/DNase failure were
the presence of pleural
thickening (48% relative

importance) and presence
of an abscess/necrotising

pneumonia (24%)

N/A Supervised ML
(extreme gradient

boosting and coupled
with decision trees)

84 patients with
pleural infection and
received intrapleural

tPA/DNase

Random split
sample

validation/no

Continued
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TABLE 3 Continued

First author [ref.] Population/type of
study

Source of data Main findings Reference
standard/

ground truth

Algorithm type Datasets Type of
internal

validation/
availability of

external
validation

PFT interpretation
and clinical
diagnosis
TOPALOVIC [53] PFT tests and clinical

diagnosis/prospective
University Hospital Leuven

(Belgium)
Pulmonologists’

interpretation of PFTs
matched guideline in 74.4
±5.9% of cases and made
correct diagnosis in 44.6
±8.7% versus AI algorithm
matched the PFT pattern
interpretations in 100%
and assigned correct
diagnosis in 82%

(p<0.0001)

ATS/ERS
guideline and
expert panel

ML; type not reported Dataset based on 1430
historical cases/50
cases in prospective

analysis

Not reported/
yes

SARS-CoV-2
pandemic
WANG [54] CT chest of patients

with atypical
pneumonia/
retrospective

Xi’an Jiaotong University
First Affiliated Hospital,

Nanchang University First
Hospital and Xi’An No.8
Hospital of Xi’An Medical

College (China)

An internal validation
achieved a total accuracy
of 82.9% with specificity of
80.5% and sensitivity of
84%. The external testing
dataset showed a total
accuracy of 73.1% with
specificity of 67% and
sensitivity of 74%

Confirmed
nucleic acid
testing of

SARS-CoV-2

CNN CT images from 99
patients, of which 44
were confirmed cases

of SARS-CoV-2

Random split
sample

validation/no

LI [55] CT chest of patients
with atypical
pneumonia/
retrospective

Six medical centres, China AUC values for COVID-19
was 0.96 (95% CI 0.94–
0.99). Sensitivity of 90%
(95% CI 83–94%) and
specificity 96% (95% CI

93–98%)

Confirmed
nucleic acid
testing of

SARS-CoV-2

CNN 4356 chest CT
examinations from

3322 patients

Not reported/
yes

PH: pulmonary hypertension; PFT: pulmonary function test; SARS-CoV-2: severe acute respiratory syndrome-coronavirus-2; CT: computed tomography; NLST: National Lung Screening
Trial; ROC: receiver operating characteristic; AUC: area under the curve; CNN: convolutional neural network; AUROC: area under the ROC curve; NSCLC: nonsmall cell lung cancer; 18F-
FDG PET: fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography; HRCT: high-resolution computed tomography; κw: weighted κ-coefficient; NSIP: nonspecific interstitial
pneumonia; UIP: usual interstitial pneumonia; ML: machine learning; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand; CCL: C-C motif chemokine ligand; MIF:
macrophage migration inhibitory factor; N/A: not applicable; SVM: support vector machine; PAP: pulmonary arterial pressure; CS: corticosteroids; MML-MKKC: multiview
learning-multiple Kernel k-means clustering; tPA: intrapleural tissue plasminogen activator; DNase: deoxyribonuclease; ATS: American Thoracic Society; ERS: European Respiratory
Society; COVID-19: coronavirus disease 2019.
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algorithms work. Further examination using model attribution techniques may allow radiologists to take
advantage of visual features used by the algorithm to predict the risk of malignancy.

LIU et al. [62] performed a meta-analysis of 69 studies to evaluate the diagnostic accuracy of deep-learning
algorithms versus that of healthcare professionals. Deep-learning algorithms had better or equivalent
accuracy compared with readings by expert radiologists. Nonetheless, there were limitations. Firstly, all of
the referred studies were retrospective, in silico and based on previously assembled datasets. Secondly, the
reporting on handling missing information in these datasets was poor. Most studies did not state whether
portions of data were missing or how missing data were handled. Lastly, some studies [39–45] did not
externally validate findings with external datasets, missing a crucial step to evaluate the model’s
performance with completely independent datasets.

Computer vision and molecular signatures for diagnosis of pulmonary fibrosis
Despite the 2018 Fleischner Society statement expanding diagnostic recommendations for radiographic
evaluation of fibrotic lung disease, diagnosis remains challenging due to substantial interobserver
variability, even between experienced radiologists [63–65]. Deep-learning algorithms proposed by several
investigators classify fibrotic lung diseases using high-resolution computed tomography (HRCT) images.
WALSH et al. [46] used deep learning for automated classification of fibrotic lung disease on HRCT based
on the Fleischner Society and other international respiratory society guidelines. The study used a database
of 1157 anonymous HRCTs of patients with diffuse fibrotic lung disease. The performance of the
algorithm was compared with the majority vote of 91 expert thoracic radiologists. The median accuracy of
thoracic radiologists was 70.7% compared with 73.3% accuracy of the algorithm. There was a good
interobserver agreement (weighted κ-coefficient (κw) 0.69) between the algorithm and expert readings.
CHRISTE et al. [47] trained a deep-learning algorithm to classify HRCT scans of 105 cases of pulmonary
fibrosis into four diagnostic categories according to Fleischner Society recommendations and compared
performance with interpretations by two radiologists. Interobserver agreements between the algorithm and
the radiologists’ opinions were fair to moderate (κw 0.33 and 0.47).

In different studies, machine learning was used to develop an algorithm based on genomic data from
surgical biopsy samples in order to detect molecular signatures for usual interstitial pneumonia (UIP).
Signatures were concordant with the histopathological diagnosis from tissues obtained by transbronchial
biopsy [48, 66, 67]. In one study, the whole-transcriptome ribonucleic acid sequencing data from
transbronchial biopsy samples was used to train and validate the machine-learning algorithm.
Molecular signatures had high specificity (88%) and acceptable sensitivity (70%) against diagnostic
reference pathology (ROC area under the curve (AUC) 0.87, 95% CI 0.76–0.98) [48]. In addition, this
study demonstrated how a molecular classifier helped make a definitive diagnosis in patients without a
definitive UIP pattern on HRCT: positive predictive value was 81% (95% CI 54–96%) for underlying
biopsy-proven UIP. The authors cautiously suggested that results need to be interpreted in the
appropriate clinical setting and only after consideration by a multidisciplinary team according to
standard-of-care guidelines [48].

Image

ConvolutionConvolution Pooling Pooling Fully connected

Output

Feature learning

Feature maps
Feature maps

Feature maps Feature maps

Classification

FIGURE 2 An example of convolutional neural network (CNN). A sequence of layers. Each layer transforms one volume of activations to another
through a differentiable function. Three main types of layers build CNN architectures: convolutional layer, pooling layer and fully connected layer.
The convolution layers merge two sets of information with the use of a filter to produce a feature map as an output. The pooling layers reduce the
number of parameters and computation in the network. The fully connected output layer provides the final probabilities for each label as a final
classification.
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Predictive models in pulmonary hypertension, asthma, pleural infections and pulmonary function
tests
Machine learning improves prediction accuracy compared with conventional regression models. In
pulmonary hypertension-related vascular injury, for example, the roles of inflammation and cytokines are
not clearly understood. In one study, unsupervised machine learning was used to classify World Health
Organization group I pulmonary arterial hypertension (PAH) patients into proteomic immune clusters
(cytokines, chemokines and growth factors) [49]. Clinical characteristics and outcomes were subsequently
compared across clusters. Four PAH clusters with distinct proteomic profiles were identified. These
immune clusters had significant cluster-specific differences in clinical risk parameters and long-term
prognosis. Compared with other clusters, patients in cluster 1 had unique sets of upregulated proteins
(tumour necrosis factor-related apoptosis-inducing ligand, microphage migration inhibitory factor,
chemokine ligand 4, 5 and 7) and had the least favourable 5-year transplant-free survival rates (30.8%,
95% CI 17.3–54.8%) [49]. The major limitation of this study was cross-section analysis from single time
points, which may not reflect a patient’s dynamic immune phenotype in clinical practice.

In asthma, systemic steroids are often used for rescue therapy, but have numerous side-effects. Cluster
analysis has identified subphenotypes of steroid-responsive asthma using large datasets and regression
analysis [68, 69]. An unsupervised learning approach was proposed to identify differential systemic
corticosteroid response patterns. A multiview learning-multiple kernel k-means clustering (MML-MKKC)
was developed to identify patient clustering by incorporating different types of variables and assigning
them into different views based on clinical importance. MML-MKKC is a subset of cluster analysis in an
unsupervised learning algorithm that combines different data modalities by capturing view-specific data
patterns. Top relevant variables were selected from 100 clinical, physiological, inflammatory and
demographic variables obtained from 346 patients in a Severe Asthma Research Program cohort
categorised into four clusters using an MML-MKKC model. A multiclass support vector machine (SVM)
algorithm with a 10-fold cross-validation strategy was deployed. SVM is a subset of a supervised learning
algorithm to identify a hyperplane that separates a dataset based on outcomes of interest. This algorithm
identified the top 12 variables that predicted a cluster of test samples with 81% overall accuracy. The
clinical characteristics in the corticosteroid-responsive cluster were older, with the latest age at onset, more
nasal polyps and high blood eosinophils. After corticosteroids, the highest increase in lung function was
noted in this group [51]. In contrast, a cluster less responsive to corticosteroids included characteristics
such as obesity, female sex and early-onset asthma. Approximately half were African American.

Patients with empyema and complex parapneumonic effusions are sometimes treated with intrapleural
tissue plasminogen activator and deoxyribonuclease (tPA/DNase) [70]. Some require surgical intervention.
KHEMASUWAN et al. [52] used extreme gradient boosting (XGBoost) to evaluate 19 candidate predictors of
tPA/DNase failure in a retrospective cohort. XGBoost is a subset of a supervised learning algorithm
deployed to assess the importance of candidate variables in terms of their ability to predict the outcomes.
XGBoost identified pleural thickening and presence of abscess/necrotising pneumonia as risk factors for
failure of combined intrapleural agents. This was confirmed using best-subset logistic regression, a
technique that is fundamentally different from XGBoost. In the presence of these two variables (pleural
thickening and presence of abscess/necrotising pneumonia), the logistic model demonstrated an AUC of
0.981 with a sensitivity of 96% and specificity of 78%.

In order to test the value of a clinical decision support system based on the interpretation of pulmonary
function tests (PFTs), TOPALOVIC and co-workers [71–73] developed a machine-learning model using 1430
cases structured from pre-defined, established diagnoses of eight categories of respiratory disease, coupled
with software in line with gold-standard American Thoracic Society/European Respiratory Society
guidelines for PFT pattern interpretation [74]. A random sample of 50 cases with PFT and clinical
information was used to prospectively compare the accuracy in pattern recognition and diagnosis of the AI
algorithm with the performance of 120 mostly senior pulmonologists from 16 European hospitals. PFT
interpretation results from pulmonologists matched the guidelines in 74.4±5.9% of the cases (range 56–
88%) with only moderate to substantial agreement (κ=0.67). Pulmonologists made a correct diagnosis in
44.6±8.7% of the cases (range 24–62%) with large inter-rater variability (κ=0.35). In contrast, the AI
algorithm perfectly matched PFT pattern interpretations (100%), and assigned a correct diagnosis in 82%
of all cases (p<0.0001) [53]. The superior performance demonstrated by this AI algorithm for both pattern
recognition and clinical diagnosis is promising for future clinical decision-making.

AI in the SARS-CoV-2 pandemic
Novel coronavirus disease 2019 (COVID-19) has ravaged the world since its discovery as a flu-like
outbreak in Wuhan, China, in January 2020. Rapid recognition of the outbreak was, in part, related to an
AI epidemiology algorithm called BlueDot, which skimmed foreign-language news reports and official
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announcements to provide clients with news of potential epidemics [75]. The BlueDot algorithm predicted
the early spread of COVID-19 outside of Wuhan based on travel data generated from the International Air
Transport Association [75]. Previously, BlueDot algorithms successfully predicted the international spread
of the Zika virus in South Florida in 2016 [76].

In addition to infectious disease-related tracking and prediction models, AI might help elaborate early
diagnosis and treatment strategies. For example, deep learning can help diagnose COVID-19 using image
analysis from chest radiographs [77] and CT scans [54, 55, 78]. Unsupervised learning algorithms are
being developed to help predict immune response to influenza vaccine [79] and to predict an inhibitory
potency of atazanavir and remdesivir against the SARS-CoV-2 3C-like proteinase [80]. A deep-learning
algorithm called AlphaFold [81] was developed by Google DeepMind to improve protein structure
predictions, which might otherwise take many months using traditional experimental approaches. The
algorithm is used to predict the structural protein shape of COVID-19 [82], providing vital information
for COVID-19 vaccine developers [83].

There are various efforts to predict infectious cases [84], coronavirus-related mortality [85] and burden on
medical resources [86, 87]. Models use the latest data science and AI techniques to forecast outcomes.
Proposed models help authorities form public policy and be more future-informed. The complex, dynamic
and heterogeneous nature of AI-based models warrants that outcomes be continuously recalibrated using
the newest data on a daily basis [88]. However, prediction models for COVID-19 may not always be
accurate and reliable. One reason is the lack of sufficient historic data to build a model that can accurately
track and forecast the virus’s spread. Another is that many studies tend to use Chinese-based samples, and
could thus be biased [89]. Because AI prediction models mostly rely on previous disease patterns, an
outlier event with unprecedented data, such as occurred with COVID 19, can be disruptive to the model.
For these reasons, many forecasting experts avoid using AI methods and prefer using epidemiological
models such as susceptible-infected-recovered [90].

Limitations of using AI in pulmonary medicine
AI provides opportunities to improve quality of care and accelerate the evolution of precision medicine.
However, its limitations have nurtured the field of AI ethics and the study of the impact of AI on
technology, individual lives, economics and social transformation [91].

One illustration relates to how AI-based algorithms may cause iatrogenic risk to a large group of patients.
For example, hundreds of hospitals around the world use IBM Watson for recommending cancer
treatments. Algorithms based on a small number of synthetic fictional cases using limited input (real
patient data) from oncologists [92, 93] resulted in output treatment recommendations that were eventually
shown to be erroneous [94]. This supports systemic debugging, audits, extensive iteration and evidence from
robust, prospective validation studies before algorithms are widely implemented in clinical practice [95].

Another example relates to the inequities of healthcare delivery. By inputting low socioeconomic status as
a major risk factor for premature mortality [96], AI algorithms may be biased against patients of a
particular ethnicity or socioeconomic status, which might widen the gap in health outcomes. Combined
with concerns for exacerbating pre-existing inequities, the potential for embedding bias by excluding
minorities from datasets is a real hazard. Embedded prejudice must be mitigated, and massive datasets
should provide a true representative cross-section of all populations.

Another hurdle facing the use of AI in healthcare relates to a lack of prospective validation studies and
difficulty improving an algorithm’s performance. Many investigations are validated in silico by dividing a
single pre-existing dataset into a training and testing dataset. However, external validation using an
independent dataset is critical prior to implementation in a real-world environment, and inherently
opaque machine-learning algorithm black-box models should be avoided as much as possible.

Finally, the future of AI-related medical applications depends on how well safety, confidentiality and data
security can be assured. In light of hacking and data breaches, there will be little interest in using
algorithms that risk revealing patient identity [93], and of course, adverse effects on clinician workloads
may arise from an overdependence on automated machine-learning systems or increases in medical errors
[97]. One mitigating strategy uses a novel process called federated learning, so that machine-learning
models can analyse confidential, decentralised data without transfer to a central server [98]. Multiple
organisations thus share data without compromising patient privacy. The effectiveness and safety of such
techniques require prospective studies and large randomised controlled trials.

Conclusion
Data-driven decision-making in pulmonary medicine can be leveraged by incorporating machine-learning
and deep-learning algorithms into daily practice. Massive quantities of clinical, physiological,
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epidemiological and genetic data are already being analysed using algorithms that serve clinicians in the
form of manageable, interpretable and actionable knowledge that augments decision-making capacity. In
addition, AI-based data analyses provide increasingly accurate predictive modelling and lay the foundation
for genuinely data-driven precision medicine that will decompress our reliance on human resources. As
computational power evolves, algorithms will ingest and meaningfully process massive sets of data even
more quickly, more accurately and less onerously than human minds. With advances in technology and a
new generation of computer-literate physicians, future practitioners will inevitably incorporate AI into
clinical care. Considering how AI favourably affects other fields, the future is already here.

Conflict of interest: None declared.
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