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IMAGE PROCESSING OF SMALL PROTEIN-CRYSTALS
IN ELECTRON MICROSCOPY
David Alan Feinberg
Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720
ABSTRACT

This electron microscope study was undertaken to determine
whether high resolution reconstructed images could be obtained from
statistically noisy micrographs by the super-position of several small
areas of images of well-ordered crystals of biological macromol-
ecules. Methods of rotational and translational alignment which use
Fourier space data were demonstrated to be superior to methods which
use Real space image data. After alignment, the addition of the
diffraction patterns of four small areas did not produce higher
resolution because of unexpected image distortion effects. A method
was developed to determine the location of the distortion origin and
.the coefficients of spiral distortion and pincushion/barrel distortion
in order to make future correction of distortions in electron

microscope images of large area crystals.
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INTRODUCT ION
A. Background: Spatial Averaging of Low-Dose Images

of Protein Crystal Gives High Resolution Structure

Improvement in the electron microscope resolution of biological
structure has been achieved by reducing radiation damage to the speci-
men. Specimen damage dug to inelastic scattering of electrons is
minimi_ed by making low electron dose exposures of specimens in highly
ordered two-dimensional crystals and then carrying out a spatial
average over the resulting statistically noisy images. (see Kuc (1)
and Glaeser (2)).

Low-dose exposure techniques have produced high resolution
2-dimensional projected structures of several biological protein

including: purple membrane of Halobacterium halobium to 6.6& resolu-

“tion, (3) catalase protein to 9A,(4) and of T4 bacteriophage gene
product 32*1.

The statistically noisy low-dose images of all the above
specimens were spatially averaged, or Fourier filtered to exhibit
their well defined average protein structure. Spatial averaging has
been done most successfully with computerized Fourier transforms.
However, laser optical techniques on optical diffractometers are also
commonly used in several laboratories. The electron diffraction
patterns of the crystalline specimens are noise filtered by setting
all spots not on the reciprocal lattice to zero. Calculating the
inverse-Fourier transform of this masked diffraction pattern gives the

well-defined, average specimen structure.



B. Problems Which Limit the Success of Spatial Averaging

Several properties are required of the specimen for spatial
averaging to be successful. THe protein molecules must be arranged in
a highly ordered 2-dimensional periodic lattice (crystal) to obtain
electron diffraction patterns. This crystal must have a large surface
area so that many unit cells are spatially averaged to show the
highest resolution protein structure in the image.

Some specimens form small but well ordered crystals, which have
too small an area for spatial averaging to show welldefined structure,
e.g., gap junction and acetyl choline receptor protein. The smali
size of these crystals is assumed to be the 1imiting factor in obtain-
ing higher resolution, This limitation may be overcome either by
improved techniques of specimen purification and crystalization, or by
the computer image processing techniques which are to be discussed in
this paper.

Another problem encountered in high resolution electron
microscopy is that distortions in the image 1imit the specimen area
usable for sﬁatial averaging. In the outer regions of the image,
distortions cause changes in unit cell magnification and orientation.
The computed diffraction patterns of distorted specimen regions have .
destructive interference of high resolution coefficients, and thus
high resolution diffraction pattern spots are absent in the patterns.
For example, the image of Gp32*l protein, used as data in the
following work, has a 3.76 percent difference in magnification between
the center and perimeter regions of the image plate and a difference

in unit cell orientation of 1.13 degrees, due to pincushion/barrel



distortion and spiral distortion. Some suggestions for correcting
these distortions are discussed later in this work.

C. Purpose: Attempts to Combine Several Areas of Low-Dose

Imaged Specimen to Develop and Implement in a Spatial Averaging

Technique; and a Method of Correcting Distortions

To overcome the limitation in spatial averaging of specimens in
small sized, well-ordered crystals (patches), the diffraction patterns
of several patches could be combined. Before coherent addition of the
computed diffraction patterns is possible, the lattice vectors of the
patches must be aligned. In this work, different methods of rota-
tional and translational alignment are compared with respect to cost,
accuracy, and the ease of including them in a dynamic image alignment
and addition computer program.

In order to corréct for the pincushion and spiral distortions in
the test specimen image, a method is developed to find the distortion
origin in the image and the distortion coefficients. The distortion
origin and coefficients could then be used in a bilinear interpolation
of the digitized image to remove the distortions.

D. A Brief Summary of the Results

For both the rotational and translational alignment of the small
areas, the methods working with diffraction patterns in Fourier space
were found to be superior to methods directly using digitized images
in real space. After the alignment of four small image areas of

*
Gp32 I protein, the combination of all their data did not show



higher resolution in the final diffraction pattern. The presence of
distortions in the test specimen image prevented the coherent addition
of diffraction spots.

A mathematical eipression for distorted unit cell lattice vectors
was derived for the first time and could be used to solve for the
unknown position of distortion origin. The bilinear interpolation
which used the distortion origin and coefficients found in this work,

did not correct for distortion in the test specimen image.



II. DATA: A LOW-DOSE IMAGE OF T4 BACTERIOPHAGE GENE
PRODUCT 32*1 (DNA HELIX-DESTABILIZING PROTEIN),
AND A HIGH-DOSE IMAGE OF SPIRILLUM SERPENS CELL WALL PROTEIN

To simulate the problems involved in aligning patches of protein
crystal from separate images, small areas of a large crystal in a
single crystal were digitized with different relative angles and
lateral displacements between them. Their unknown relative angles are
chosen not to exceed 4° because prealignment within this angle on a
laser optical bench is possible before scanning.

The high-dose image of cell wall protein (6) was used only for the
initial testing of the rotational alignment algorithms. The high-dose
image gave a diffraction pattern with strong intensity in low resolu-
tion spots which were good for testing cross-correlation algorithms.
However, due to the high level of radiation damage in these high
electron dose images, the attainable resolution is already reached in
the diffraction patterns of the seperate specimen areas, and combining
several of these areas will not show higher resolution in spatial
averaging. For this reason, a low-dose image of Gp32*l protein was
used in alignment experiments and the experiment to combine diffrac-
tion patterns. The low-dose image areas have a much lower signal-to-
noise ratio than the high-dese images and a decrease in the accuracy

of the alignment of the Spirillum serpens is expected.

Both the Spirillum serpens cell wall protein image and the

*
Gp32 1 image were made by Dr, Wah Chiu (5,6). The cell wall protein

was negatively stained and imaged with a high electron dose of approx-

imately 100 electrons/A? and at 40,000X magnification. The



unstained Gp32*I protein was glucose embedded and imaged with a low
electron dose of approximately 3 e1ectrons/2\2 and at 40,000X
magnification.

The Gp32*1 crystal is of orthorhombic space group with
2-dimens ional lattice vector constants measured to be a = 629 and
b = 47.3A.

A resolution of 3.7A has been measured in electron diffraction
patterns of large crystal areas of Gp32*l, indicating that the
specimen used for data in the following experiments is well ordered.

The images are digitized for computer processing on a Perkin-Elmer
scanning densitometer. A scanning step size of 10um is used to scan
the 6mm by 6mm areas of specimen to produce 600 by 600 square arrays
of image intensities. The 10um step represents a 2.5R step at the
specimen is used, which is considered ideal for retrieval of Fourier
coefficients of the structure out to approximately 7R resolution.

To include more unit cells in spatial averaging without having to
use a larger Fast Fourier Transforms, the 600 by 600 array is 2-by-2
averaged to make a 300 by 300 array. From this 300 by 300 array is
taken a 200 by 200 array, and this 4mm by 4mm digitized image area is
used as data for a&all subsequent work. The 2-by-2 averaging of optical
densities 1imits the attainable resolution in there image areas to

approximately 14A instead of the 7A before averaging.



111. TRANSLATIONAL ALIGNMENT

A. Translational Alignment Using a Cross-Correlation

in Real r.uce

Two protein crystals are laterally aligned when their unit cells
have the same crystallographic origin. By displacing the crystals to
the same origin, structurally similar points can be superimposed. The
maximum displacement between two crystals' origin is the length of the
unit cell due to the periodicity in the crystal.

When two crystals are laterally aligned, the cross-correlation
function (CCF) of the two crystals shows a peak or maximum value. The
general form of the CCF of any two data sets, t and h, is the

correlztizn integral;

CCF(d) = f t(x)-h(x+d) dx (1)
The value of the CCF, when evaluated at several different
displacements, will be maximized when t and h are best aligned.
Defining t and h to be the 200 by 200 érrays of image intensities and

rewritting equation (1) in discrete form gives;

0
CCF(dx.dy) = ?f g): tix,y) . -u(x+dx,y+dy) (2)
y=1 x=1

where x,y are the indexes of array elements in columns and rows

respectively, and



dx,dy are the displacements between the two arrays, *n columns
and rows respectively.

The maximum displacement to be used in the CCF is readily
calculated from the unit cell dimension. This displacement is the
number of rows and columns by which image h can be displaced without
repeating the evaluation of the CCF at an identical crystallographic
position, due to the specimen's periodic nature. The image area
covered by one unit cell, divided by the scan step size of each array

element, (pixel size), gives the maximum d, and dy at which the

CCF is to be evaluated:

. : .t _ Unit cell length x magnification in image
maximum displaceiznt = pixel size

. 62.9A x 40,000
X maximum 20x104)\

= 12.58

d ) - 47.3R x 40,000
y maximum 20x104A

= 9.46

The values calculated above are correct if the unit cells' lattice
vectors are parallel to the sampling grid of the scan. The image of
Gp32*I protein crystal was scanned at a 40° angle relative to the
lattice vectors, therefore dx maximum = 24 and dy maximum = 12 are
used. The CCF is evaluated at integer row and column displacements

and the total number of evaluations is 24 x 12 = 288 displacement

positions.,



B. Translaiional Alignment By Shifting the Phases of

Diffraction Spots in Fourier Space

The crystallographic origin of the specimen may be displaced in
real space, as described above, or equivalently changed in Fourier
s;pace by a particular change of the Fourier transform. It is shown
below that a displacement in real space, 3, is equivalent to changing
the phase of the Fourier transform by 2,§.§_ Using this property of
the Fourier transform, two protein c¢crystals are translationally
aligned by shifting the phases of their diffraction patterns. The
displacement that gives the best alignment is determined by minimizing
the phase discrepancies in a least squared error minimization program.

The relationship between a real space displacement and a change
in the Fourier transform is seen in the Fourier transform of function

$ (¥):

&(s) = f §(F) o 178y (3)
where
¢ (F}) = real space function (the image)
-5
r = spatial vector
s = spatial frequency vector

- >
&(s) = Fourier transform of ¢(r)

A spatial displacement of ¢(?) to ¢(? + 3) correspondingly changes the

Fourier transform to ¢h(§) where;
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@ pg © + -121-'5'?
4(s) = o(r+d) . e . dr

- o) - ei2rs - d (@)

Using the complex function form ofcp(%’), allows for the defining of

phase and amplituuc.

&(3) = R(3) + 1I(3) (5)
where R(s) = real component of % (%)

e s
I(s) - imaginary component ofcb(s)
R

and (%) = ARG) . el06) (6)
where A(s':) = Fourier Amplitude

= | &(3)]

VR + 1(3)2
'9(;) = Phase

arctan IGRE)
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Finally, rewriting ®,(%) in terms of phase and amplitude shows
that a real space translation by d is equivalent to shifting the

phases by +2x% §;
¢d(;) = A (;) . eie(g) eial’s‘a (7)

A@2) - e(0B) 23 -

Two Gp32*l crystals are translationally aligned to one another
by changing the phases of one of their computed diffraction patterns
until they best match the phases of the other diffraction pattern in a
least square fit. Only the phases of the reciprocal lattice reflec-

tions are used in the least squares function F(d) which is minimized:

n
Fld) = 3 g - (g, *2d, - )F (8)
1

i=1 1

ali = phase of i diffraction spot in pattern 1,

921 = phase at identical diffraction spot i in pattern 2,

3i = spatial frequency vector at diffraction spot i,
->
d = real space displacement vector (um)

(drow 20um + dCOlumn_'zo"m)’

3
]

total number of diffraction spots.
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Diffractior patterns of two 4mm square image areas of Gp32*1
protein are used for data in the above least squares function. The
two image areas are rotationally aligned but have an unknown displace-
ment between the crystalographic origin of their unit cells. Six
reciprocal lattic reflections, see Figure 1, are used in equation (8)

with the following Miller indeces:
(h,k) = (2,1); (2,0); (2,1); (3,1); (3,1); (4,0).

C. Results: Phase Shifting Method Worked Best

By fitting the phases of the two crystals' diffraction patterns, a
relative displacement between their crystallographic origins is found;
y displacement = 10.958 (.5475 rows), and x-displacement = 11.4A

(.57 columns). Using these values of d,, d,» gives an average

difference between phases of the identical diffraction spots equal to
20.6 degrees. The phases of the diffraction spots are shown in
Table 1. both beforez and after changing the phase with the above
displacements. In each 5 by 5 array, the center element (3,3) is at
the indicated row, column position in the 200 by 200 diffraction
patterns and corresponds to the reciprocal lattic reflection of
{h, k) value shown.

The real space cross-correlation method did not show a peak value
at any displacement positfon. The Cross-correlation function

-10 at all displacement

fluctuated around a value of 4.6030 x 10
positions. A position at which the two images are superimposed was

not found with this method.
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Figure 1.

i XBL798-3733

Calculated Diffractiog Pattern of T4 Bacterio-
phage Gene Product 32 I. The circled diffraction
spots are used in several of the cross-
correlation experiments.
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Table 1. The phases of selected reflections of tuo diffrection patterns of Gp32¢l protein are shown
befors and after the phase thifting of Pattera 2 to match the phases of reflections im Pattern 1,
The raflections are locoted heve in the center- . array elesent with the indicated row and colum
Tocstions a the 200 by 20; diffraction patterns.

Pattera 1 Pattern 2 Pattern 2
- {vefore phaie shifting) (after phuse shifting)
RN ab? OLeald Hae2 Kool
120 3 1% -1 8 a3 1 -% -7 -100 g -9 1722 -l4 -177
-n» - -4 o » 123 -122 -161 -1 -2 . 162 16
120 -M -3 2 -2 -9 §7  -159 -175 156 22 -155
-3 16 - 5 -9 1 1 - 175 -2 % -60 - -179 “
128 119 -1 W3 55 @ -1 -9 -9 a -9 149 -2 -4 I
W-?l COI.-II’ "-2 K-ﬂ
-8 12 -1 B -6 -2 8N B 148 -25 -18  -145 -]154 0 -133
06 125 - 50 &6 -4 =146 -131 15 9l 28 -& 122 -5
-8 125 -8 m 7 s I@ -9 -119 =107 -29 -15¢ -)4%
-57 180 - 150 -152 n oy - 97 -17F <132 -8 -160 n  -l62
=109 -8 0 « L) 1 -4 7 5 -125 -100 -110 o 21 %
AW =9 COL -1 Be?2 Kol
5 -1 -1 ws 2 137 7 -8B 15 » -120 -151 93 16 -0
6 -127 - & 117 5L -29 - 137 168 -165 154 39 109
158 -2 . 2 -15%% m 1 4] -35 - -122 21 -53
-8 122 3 -6 3 -1 0 129 -1 " - n o -106
2 16 -5 -1 -@ <73 -1 -2 117 H -166 132 -2 1@ 69
IW-T! I:DI.-MJ “-J ‘-l
28 =11 10 27 10 8 -% 12 -1y .M 87 -2 -1l 18 152
12 -6 - 17 -2 =177 -130 -1 -5 -98 -n - -180 -174
-143 W m -9 -138 # -17 “ 26 22 -138 12
176 122 ] -8 7 -1% 4 =17 -114 169 n $ -9 -I54
128 13 n » a 14 =16 114 &0 7 -1 -0 3 0

ROM =« 85 COL = 1) Hsd) Ks-}
-118 -10) -3z % ” -6 %2 27 =110 -3 -5 182 127 X 145
[ -3 ) ™ 0 - =91 21 133 -1% -29 80 ﬁ -46 61
=12 129 -1 -158 =180 125 4 -5 -76 -9 -85 -l49
-132 -8 1 -1 1R 105 169 -9 130 54
=21 A M 4 10 120 -%0 10 -l ” =54 145 -% 1318 [4)
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A cost comparison of the two methods shows that the real space
method is approximately 3 times the cost of the method of shifting the
phases in Fourier space. The phase shifting method cost approximately
$1.10 when using six diffraction spots.

The difference in cost is due to the greater number of
multiplications in evaluating the real space CCF at each new displace-
ment (4000 multiplications) than is needed in the phase shifting
method (approximately 300 multiplications). It should be noted that
the cost of the two Fast Fourier transforms ($1.60) for the phase
shifting method, is not included in this cost comparison because these
transforms must be calculated eventually to combine diffraction

patterns in the procedure, to be discussed in Chapter VI.
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IV. ROTATIONAL ALIGNMENT

A. Orientation of Specimen is Measured from

Diffraction Pattern Intensities

The two procedures of rotational alignment to be discussed in this
chapter require information on the orientation the reciprocal lattice
vectors of diffraction patterns. There are two reasons for using
diffraction patterns for rotational alignment. The first reason is
that the researcher may use a laser optical bench to see “he diffrac-
tion pattern's power spectrum (Fourier amplitude squared, A(?)Z) and
determine the orientation of the specimen crystal to within a few
degrees error. This angle is used for initial alignment of the image
on the scamning densitometer and to prealign images before -omputer
processing. This prealignment reduces the size of the angle in which
a2 computer algorithm must search for a position of rotational
alignment.

A second reason for working in Fourier space is to accomplish
rotational alignment independent of lateral displacements between the
two images. If one works in Fourier space, only the amplitude of
diffraction spots are needed for seeing the orientation of lattice
vectors, and not the phases.

B. Rotating the Image in Real Space

and Evaluating a Cross-Correlation Function in

Fourier Space
The rotational cross-correlation function is evaluated at

different angles by an iteration of the following procedures. First,
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one of two digitized images is rotated by an angular displacement
using a bilinear interpolation algorithm, to be described below.
Second, a Fast Fourier Transform is computed to give the Hiffraction
pattern of the rotated image and a station -y image's diffraction
pattern is also computed. Third, identic - iraction spots in the
above two patterns are used to evaluate the rotational cross-
correlation function, both weighted and non-weighted. By evaluating
the rotational CCF at several new angles, a cross-correlation peak
will show the angle of best alignment. These procedures of rotation,
Fourier transform, masking, and calculating the CCFs, are shown in the
flowchart in Figure 2.

To rotate a digitized image requires a method of determining new
optical densities at points located between the measured densities on
the original scanning grid. These new densities at non-integer rows
and column positions are determined with the bilinear interpolation
algorithm, (see Grano (8)). The new densities are calculated from the
four adjacent originally scanned optical densities, using the equation
shown in Figure 3. The 200 by 200 array which represents the rotated
image area, is interpolated from a slightly larger image area, a
220 by 220 array, to prevent the corners of the rotated area from
moving off of the original scanned image area, (see Figure 4).

The rotated image area in the 200 by 200 array is Fast Fourier
transformed to give a rotated diffraction pattern. The diffraction
spots of this rotated pattern are angularly displaced by the same

angle of image rotation, 2@, into ii2w array locations. These diffrac-

tion spots are usually split among two or three array elements.



Figure 2.
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START

READ PATCH 1

CALCULATE FAST FOURIER TRANSFORM OF PATCH 1

|

MASK DIFFRACTION PATTERN 1

READ PATCH 2

J

ROTATE PATCH 2 BY ANGLE ap ~e——smmm=s

CALCULATE FAST FOURIER TRANSFORM OF PATCH 2
MASK DIFFRACTION PATTERN 2
CALCULATE CCF (36) AND WCCF (s0)

|

PRINT CCF (29) AND WCCF (a6)

|

240 = 48 + ANGLE INCREMENT

86 < a8 MAXIMUM TRUE

|

FALSE

|

£

Flowchart of Real Space method of Rotational Alignment.
The image data is rotated using the bilinear interpola-
tion algorithm and the least-squares difference functions,
weighted and non-weighted (WCCF and CCF), are calculated.
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051 OS2 4
Ay
©s, l
|- Ay
Os, Os, !
1- Ox DAx

SNz (1-Ax)-((1-Ay)-So+ (Ay)-Sy)
+(Ax) - ((1-Dy) - Sy + (Ay)-S3))
Sy - value of spot at new location

$1:52,53,54- values of 4 regularly spaced
adjacent array elements

Ay,Ax - distance between Sy and S, in
units of array fraction

XBL798-3734

Figure 3. S®ilinear Interpolation Scheme. The equation shows how
the new density, S_, is calculated from the four adjacent
scanned optical deflsities.
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© - Light dots are image opticaldensities found
with scanning densitometer along regular

spoced gria

® - Dark dots are densities of image area rototed
by angle A8 using bilinear interpolation

Ay = Array of originally scanned opticaldensities
of image

Az - Imoge data array taken from A,

Az - Array of rotated image dota

XBL798-3737

Figure 4. 1llustration of how an array of optical densities, A]: is
rotated by an Angle, 48, to give an array of rotated image

data, Az. :
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Consequently, for different A0 displacements, only small relative
changes among the two or three intensities of the split diffraction
spot are usually observed.

A masking procedure is employed to include all the split
diffraction spots in the calculation of the rotational CCF of two
diffraction patterns, yet exclude most of the surrounding spots which
are due to statistical noise in the image. In this procedure, all
Fourier intensities are set to zero, except for the several
3 by 3 array element areas in which the diffraction spots are
located. The positions of these 3 by 3 subarrays are centered on the
diffraction spots of the stationary image and at identical row and
column coordinates in the rotated image's diffracton pattern. If the
angle a0 is too great then the diffraction spots may be rotated to
array elements outside of these specified 3 by 3 subarrays and in
effect these specified_subarrays are analogous to windows through
which the rotated diffraction pattern i< observed. When the diffrac-
tion pattern is rotated to the same orientation as the stationary
images' diffraction pattern, their identical diffraction spots will be
located in the same array elements and the rotational CCF will show a
peak value.

The summed least squares difference of the two masked diffraction
patterns is calculated at various angles of rotation to find the best
angle of alignment. In equation 9 below, the magnitude of the cross-
term IAljk . Azijk(A0)|, is exactly equivalent to the cro. - -
correlation function of the two patterns which shows a positive peak
when the patterns are aligned. This least square function shows a
negative peak or mipimum value at the position of the cross-

correlation peak due to the negative sign of this cross-term.
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. N 3 .:
Fao) = Y Z (M1, % k(ﬂﬁ) (9)

k=1 j=1 =1

A1 - 3 by 3 array -~ound diffraction spot k in the

ijk .

stationary pattern 1.

A2 - same 3 by 3 array in 28 rot;ted diffraction pattern 2.

ijk
A0 . = angle of rotation
N = total number of diffraction spots.

In equation 10, the squared difference of diffraction spots is
weighted by the distance between the spot and the diffraction pattern

center:

Fw(AO) =

e \/ix - 101)2 + (y - 101)?

(5 - Azijk(AG))z (10)

™M=

1 =

where W

is the weight used in the least squares fit given to the diffraction
spot which is at array index (x,y) = (row,column) and ihe center of
the computer diffraction pattern = (101,101). This gives greater
weight in the least squares fit to the higher frequency diffraction
spots, which more accurately show angujar displacements between the
two patterns. For example, in the diffraction pattern of Gp32*1

which is centered at row and column coordinates = (101,101) in the
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200 by 200 array, a 1.0° rotation of the pattern displaces the high
spatial frequency spot, 4,0 by 1.9 rows and 1.1 columns. The low
spatial frequency spot h,k = (i,O) is displaced .2 rows and .5 columns.

The above weighted and non weighted least squares functions are
evaluated at ten different angular displacements between the two image
areas. One of the images is rotated by several different angles and
the functions ar. evaluated at each new angle using six diffraction
spots: (h,k) = (2,1), (2,0), (2,1), (3,1), (3,1), (4,0).

C. Evaluating the Angular Cross-Correlation

Function Entirely in Fourier Space Without Rotating

the Image in Real Space

The following method is used to evaluate the angular CCF totally
in Fourier space, which thus eliminates the interaction of two proce-
dures; rotating the image with the bilinear interpolation and calcu-
lating the Fast Fourier Transform. Such a method was first proposed
and used by Frank and Saxton (9,10) to align non-periodic identical
biological particles in statistically noisy images. Fourier intensi-
ties are bilinearly interpolated along annuli at a common radius in
the power specta of the two images, and these intensities are used to
calculate an angular cross-correlation of the two images.

In the work presented here, intensities are bilinearly inter-
polated along arcs subtending diffraction spots in the two diffraction
patterns, and are'used to calculate the angular CCF. The arcs from
one diffraction pattern are stored in one dimensional arrays and a
rotation of the pattern is mapped into a displacement, or reindexing,

of the arcs. A rotational CCF of two diffraction patterns is
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evaluated at several different angular displacements by iteratively
reindexing the arrays of intensities of one diffraction pattern and
mi1tiplying these intensities with the intensities at the same array
index from the second stationary diffraction pattern. Thé value of
‘the Rotational CCF (RCCF) at a particular angle of rotation is equal

to the summed product of the two sets of arcs;

n m
RCCF(d) = D D hrey - Are
k=1 i=1 <!

k,itd
Arc1 = intensity(i) on arc through diffraction spot k in
k,i

»

the pattern 1.

Arc2 = jntensity (i+d) on arc through diffraction spot k in
k,i+d
’ pattern 2.
d = increment of array displacement which is equivalent

to an angular displacement

m = total number of intensities in arcs.
n= total number of diffraction spots used in the
function.

The arcs are, in effect, unfolded into linear arrays, and an angular
rotation is changed into a reindexing of the arcs from one of the two

patterns. The sampling increment along the arc is readily determined
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by the radial distance (R) from the center of the pattern to the
diffraction spot, the arc length (a8) in radians and the number of

array elements, N:

sampling increment = R_r.;—‘.‘.ﬂ

Three or more arcs can be passed through diffraction spois to
better locate spots which are split over several array elements.
Intensities are interpolated along three arcs passing through a
diffraction spot at slightly different radii from the diffraction
pattern center to make three dimensional arrays. The 3-dimensional
arrays from two diffraction patterns are multiplied and summed in the
same way as the one-dimensional arcs so that all of the data is used in
calculating the CCF. Figure (5) shows how Fourier intensities are
found along three arcs through a diffraction spot.

For both the one-arc CCF and three-arc CCF, the following

reciprocal lattice reflections are used:

(h,k) = (2,1), (2,0), (2,1), (3,1), (3,1), (4,0)

In the three-arc CCF the two additional arcs are found at #.3 array
element radial distance from the arcs used in the one-arc CCF. The
number of intensities sampled on the arcs, 100, is twice the number of
array elements, N, used in the CCF, 50, so that the displacement by

reindexing does not exceed the arc length.
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Figure 5. Illustration of bilinear interpolation of
intensities along arcs at different radii
through a diffraction spot.
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D. Results: Relative Expense of The Arc Method in Fourier

Space and the Rotation Method in Real Space

The graphs in Figure 6 and 7 display the results of the rotational
alignment experiments. The method of rotating images in real space
gave the same m{nimum at .017 radians in the least squares function,
see Figure 6, for both the weighted function and the non-weighted func-
tion. The Fourier space arc method showed cross-correlation peaks at
.0185 radians for the one-dimensional array arcs and at .0214 radians
for the three-dimensional array arcs. The positions of the maxima and
minima represent the best angles of alignment of the two images.

The difference in these angles is very small compared to the
accuracy required to coherently add the fourth order diffraction spot
(h,g)'- 4.0) from several different diffraction patterns. There is a
.0015 radians (.000026 degrees) difference between the real space rota-
tion method and the single-arc method (one-dimensional array CCF).

This angular difference results in an error of displacement between
unit cells of which is much less than the 14A attainable resolution in
the image.

The different peak position in the 3-arc method may be explained by
more statistical noise included in the three interpolated arcs than in
one-arc passing through the center of the diffraction spot. Two of the
three arcs subtend regions in which the diffraction spot may not be
located, thus more noise is included in the data. '

The fact that the weighted function in the real space rotation

method did not give a different peak position than the non-weighted
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function may be explained by the large number of low frequency diffrac-
tion spots used in the fit. The predominent number of spots at lesser
radii in sum have much greater contribution to the value of the minimi-
zation function than the more heavily weighted (4,0) spot. A different
weighting function may still improve the accuracy of the fit, perhaps
ane which is proportional to a higher power of the radius (e.g.,
radiusz).

The cost of computation time to rotationally align the two patchs
using the arc melbud was $2.00, about one fourth the cost of the rezl
space rotation method (at $7.80). The difference in cost is due to the
fact that much less computation time is required for the two fasti
fourier transforms and bilinear interpolation of arcs of 100 array
elements than is required for the real space rotation method, which
required seven image rotations and eight Fast Fourier transforms. The
cost of rotational alignment may become an important consideration when

several patchs are aligned and super-imposed.
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V. COMBINATION OF DIFFRACTION PATTERNS OF FOUR IMAGE AREAS

A. Diffraction Patterns are Combined to Give Higher Resolution

in Spatial Averaging.

Combining several diffraction patterns of aligned image areas
increases the number of unit cells to be spatially averaged, and the
combined data should therefore show higher resolution diffraction
spots. The separate specimen patchs have too few unit cells for
spatial averaging and therefore the maximum attainable resolution of
the image is not reached. The Fourier coefficients of several aligned
patchs will add with constructive interference and increase the signal-
to-noise ratio of the diffraction spots. It is necessary for the
identical diffraction spots of the several diffraction patterns to have
the same phases and position in Fourier space for their constructive-
interference to occur. The increased signal-to-noise ratio of the
diffraction spot makes the spot more discernable above the average
noise leve! in Fourier space. This better defines these spots that are
already observable in the separate diffraction patterns and shows new
diffraction spots which are not observed before combining the
patterns. The appearance of new diffraction spots in the combined
diffraction pattern is directly due to an increased number of unit
cells used in spatial averaging and results in a better defined
reconstructed image.

B. The ADDAR Computer Program Translationally Aligns and

Adds Together Several Diffraction Patterns

Diffraction patterns of image areas at the same orientation angle
are used for data in a program which shifts the phases of the patterns

for translational alignment and adds the jdentical Fourier coefficients
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from the two patterns to make a combined pattern. The Combined pattern
which results from adding two or more diffraction patterns is used for
fitting the phases of the next pattern to be added to the Combined
pattern. The method of phase shifting has been described in

section III.B. The Fourier coefficients in the 200 by 200 arrays are
combined by the addition of complex numbers. Figure 8 shows a flow
chart of the ADDAR program's procedure of combining any number of
diffraction patterns.

Four diffraction patterns of different image areas are combined
into one pattern using the ADDAR program. These image areas were rota-
tionally aligned by the method described in section IV, using the
following displacement angles in radians: (0.0), (-0.0055), (0.017),
(0.014). These diffraction patterns of rotationally aligned image
areas were stored on magnetic tape and could be read into the ADDAR
program in any sequence to see if using any one particular diffraction
pattern first gives a different final Combined Pattern.

C. Results: Resolution in Combined Pattern

The results of the addition experiment are shown in the table of
Table 2, where the reciprocal lattice reflections from a single
diffraction pattern are compared to the final Combined Pattern. The
amplitudes of these reflections show a definite chanye in signal-to-
noise ratio betweer: the diffraction spots located in the center of each

5 by 5 array and the surrounding noise spots.
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START
READ PATCH 1

4

COMPUTE THE FAS, FOURIER TRANSFORM OF Patch 1
AND STORE AS COMBINED PATTERN

N2

READ PATCH N -=

|

COMPUTE FAST FOURIER TRANSFORM OF PATCH N

|

PATCH N IS TRANSLATIONALLY ALIGNED TO COMBINED PATTERN

'

COMBINE THE IDENTICAL FOURIER COEFFICIENTS:
COMBINED PATTERN = COMBINED PATTERN + PATTERN N

l

N=N<+1]

}

TRUE

N < 4 TOTAL NUMBER OF PATCHES TO BE COMBINED

}

FALSE

PRINT COMBINED PATTERN

STOP

Fiqure 8. Flowct)ar:t of ADDAR Computer Program which adds Fourier
coefficients from aligned diffraction patterns.
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Table 2. Fourier Amplitudes in the region of six diffraction spots in
circles from one of the four diffraction patterns (separate
pattern) to be combined and from the diffraction pattern made
from combining the four patterns (combined pattern).

SEPARATE PATTERN COMBINED PATTERN .
H,K = 2,1 ROW, COLUMN = 67,104
912 596 1733 514 1321 ‘1207 162 3303 4161 1370
1295 292 1080 1035 1985 2571 1868 4358 4401 3641
1621 2914 5561 2383 694 7519 2591 (16065 4191 3648
1465 2102 2367 704 1348 4378 5219 6302 4455 1347
182 1822 988 2223 341 2932 1952 2486 4468 5816
H,K = 2.0 ROW, COLUMN = 78,119
532 1302 981 1088 2429 1012 303> 5229 3175 2661
855 797 956 462 746 1201 187" 2216 1901 3080
1152 1460 3879 1752 1845 6200 5. .6 6181 1885
924 894 1012 779 1419 1958 4417 4858 3454 2060
628 467 1548 610 2094 2150 2672 2462 479 985
H,K = 2,1 ROW, COLUMN = 90,134
233 944 1707 639 1399 2074 1269 3619 944 1044
677 735 292 2129 631 1645 843 7 2195 1486
549 1632 3854 2553 968 2795 6548 ({1084 4258 697
1285 1348 1332 450 645 2455 3517 3856 1010 3219
705 1747 265 1538 1221 2771 2983 358 3193 1911
H,K = 3,1 ROW, COLUMN = 79,143
946 509 871 436 627 2418 689 1972 2344 317
684 1995 1138 2097 901 2259 1232 7192 1168 1111
1153 576 1723 1168 123 1219 8076 (3399 4489 1371
1515 512 1908 884 2427 2818 3786 2979 1359 3277
1113 1093 1650 722 516 2239 974 2126 2036 2196
H,K = 3,1 ROW, COLUMN = 59,113
880 694 647 750 1061 3064 2781 2121 4084 4219
2381 2987 695 1533 708 2753 2186 4558 3893 2479
1528 2341 1852 1105 1380 3476 2653 (190D 6657 652
2062 1908 750 2207 1013 1957 2873 7107 2676 2121

1138 2846 478 924 1377 3391 5658 1259 2437 2423



Table 2.

Cont'd

SEPARATE PATTERS

553
1088
569
1985
1017

H,K = 4,0

1701
2232
5927
5430
2023

951
639
1944
3928
1168

1872
1805
2095
1503

328

1613
1127
1638
1145

903

37

2378

485
2089
8289
3260

COMBINED PATTERN

ROW, COLUMN =
639 3260

2783 1178

5217 3

11028 g

2295 66

56,137

2769
3350
3251
7781
6101

579
3219
2555

677
3110
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The expected appearance of new diffraction spots in the Combined
pattern, which were not seen in the seperate patterns, did not occur.
Reciprocal lattice vectors were used to determine the position of these
diffraction spots and no new amplitude peaks were discernable above the
noise level in the Combined pattern. Thus the Fourier coefficients of
these reflections did not combine constructivly to rise above the
surrounding noise.

To be certain that the total number of unit cells in the combined
pattern was sufficient to show the expected spots at new reciprocal
lattice locations, a comparison was made to a diffraction pattern of a
single crystal area which has 3 times the size of one patch. The
diffraction pattern of the larger crystal showed numerous diffraction
spots, which are not seen in the Combined Pattern. In this large
crystal, the number of spatially averaged unit cells is 3/4 the total
number in the combined pattern. Based on this comparison, the addition
of more diffraction patterns of small patches to the Combined pattern
would not show new spots.

Possible reasons for the non-coherent addition of diffraction
patterns were investigated. The algorithms used in the ADDAR program
were checked for program errors. To test the Phase shifting algorithm,
an image area was displaced by bilinear interpolation to a new origin:
2.5 row and 1, column displacement. The diffraction pattern of this
displaced image was then laterally aligned by the phase shifting
algorithm to the diffraction pattern of the original undisplaced image
area, resulting in an auto-correlation of the image area. The

algorithm found a displacement of 2.51 row and 1.1 columns, resulting
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in a .5& error of unit cell position which would not cause destructive
interference of coefficients at the missing reflections.

Checking the data used in the addition experiment revealed that the
diffraction patterns of areas of the crystal in the perimeter regions
of the image had their identical diffraction spots located at slightly
different positions;’ This discovery of the presence of distortions in
the image led the author into the distortion correction work which is

discussed in the remaining sections of this paper.
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VI. DISTORTION CORRECTION

A. Resolution in Spatial Averaging

as Limited by Distortions

Distortions in the images of periodic specimens reduce the number
of unit cells usable in spatial averaging. The presence of pincushion/
barrel and spiral distortions in images causes a change in the length
and orientation of unit cells in the perimeter region of the image.
These changes in unit cell dimensions prevent constructive interference
of high spatial frequency coeffieients. If the number of unit cells in
the central undistorted region of the image is too few, then these high
resolution diffraction spots will not be seen. In the case of a non-
periodic specimen, distortions reduce the accuracy in measuring
specimen lengths but do not reduce the resolution obtained in the image.

The general mathematical description of pincushion distortion and
spiral distortion in an image, (Hillier (11), Liebman (12)), is as
follows;

-5

Poafe e+ ool i) (13)

¥ = vector from distortion origin to the position of the specimen

in the image, in the absence of distortion.

¥' = distorted vector
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Figure 9. 11lustration of distortion effects on a
regularly spaced grid.
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-

= pincushion distortion coefficient

= spiral distortion coefficient

- +]

k = unit vector orthonormal to image plane

= unit vector in direction of ¥.

%2>

B. Presence of Distortions in the Test Image of

6p3221 Protein

Both pincushion and spiral distortions were observed in the image
of Gp32*l by changes in location of reciprocal lattice reflection
positions in diffraction patterns from different regions of the image.
A comparison of diffraction patterns of 2mm squared areas from the
perimeter of the image and the center of the image showed different
orientation and length of reciprocal lattice vectors. The reflections
in the diffraction pattern of the perimeter image region compared to
the pattern of the central region are 3.76 percent closer to the center
of the pattern and are rotated by 1.1313°.  The decrease in radial
positions of reflection represents a 3.76 percent increase in image
magnification, and this change is attributed to pincushion distortion.
The rotation of the unit cell vectors and recinrocal lattice vectors is
caused by spiral distortions as shown in equation(13) above and to a
lesser extent caus>d by the pincushion distortion as will be shown in

Section VI.C.
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Correction of distortions in an image by an interpolation method
requires the accurate determination of the center of distortion in the
image. Due to thé ?3 dependence in eqation (13) an error in locating
the distortion origin greatly reduces the accuracy of determining the
effect of distortions in different areas of the image. The origin of
distortions will be different in each image due to small differences in
the loaded position of the photographic plate in the electron micro-
scope. In the next 2 sections, a method is developed and used to find
the origin of distortions and distortion coefficients (¥,0) in the
Gp32*I image which was used as data for the experiments on alignment
and addition of specimen areas.

C. Derivation of Distorted Specimen Lattice Vectors

The expression for the distorted unit cell vectors are first
derived here in terms of the non-distorted vector r to the image
point. However, ¥ cannot be measured on the distorted image where only
the distorted vector v can be measured. By inverting equation (13),
the : is expressed in terms of ;' and :o’ a displacement vector from
the arbitrarily chosen coordinate origin to the true origin of distor-
tions. The final expression at the end of this section has only
3 unknowns, (;6,9 and ¥), and describes the effects of the
distortions on the unit cell lattice vectors in all regions of the
image. The three unknown parameters can be solved for using
measurements of distorted lattice vectors in three or more regions of

the image.
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Figure 10. Diagram shows a vector ¥ in the image
plane, (1, J), distorted by pincushion
and spiral distortions into the vector r'.
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In the following equations, all primed vectors are distorted
quantities of the corresponding unprimed vectors. Therefore the
distorted vector from the distortion origin to a point in the distorted

image is written as before;

PR R 0P x ) (14)
where
¥ = vector from distortion origin to specimen's position
without distortion.
F' = distorted vector r from distortion origin to specimen's

position.
@ = pincushion distortion coefficient
¥y = spiral distortion coefficient
= unit vector in r direction
k = unit vector orthonormal to plane of image plate
Any vector lying in the image plane, or more specifically the distorted

unit cell vector 5', can be expressed as the difference between two

measurable vectors from the distortion origin;
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b = ¥, - ¥ (15)

The ?'2 vector may be written as a distortion function, F, of

undistorted vector " and b:

r, =t b (16)
= F (?l + b)
and
" = F (r)
. *l?il3'; + gry (K x ). (17)

Knowing that the crystal lattice vector is much smaller than the "

vector, the Taylor Expansion of the function follows:
Py = F(ry +b)
-»> -+ o - > _ - ->
= F(rl) + (b-v)F(rl) + 1/2 {b-%) (b-7) F(rl)

* et = BT (18)

where
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bev) ¥ 3 ) (xi + y
{bev) r (bx = + by ay) {xi + y?)

and

(B 5)r2 = (b5) (x2 +y

]
~n
¥
d
=

Dropping the third and higher order terms in equation (18) and

substituting equation (17) for F(?l) gives;

>

Fip = F(FD + B3 (7 + vy o7+ alry -Gk x 1)

TARL K ERTNOREETACRS 09)

+29 -(FB) - RxF)* 0P K x¥)

By substituting the above equation (19) for ?'2 and equation (17) for

r'1 into equation (15), the expression of distorted lattice vector,

B’ in terms of undistorted vectors is given;
B' =b (1+ ¢|7[%) *+ 2 w(B.F) + 2 a(FB)-(k x 1)

+ Q. ?[2 (k x r). (20)
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At this point t should be recalled that an expression in terms of
measurable locations on the plate is sought for the distorted lattice
vectors a' and b'. Only the distorted vector ¥' is measured on the
plate, not r used in equation (20) above.

To find r from the measured r', equation (14) must be inverted to

give r as a function of ?', thus:
F o= f(r,v,0).

This inversion follows from the approximation that the two
distortions are separate and independent from one another. The effect
of spiral distortion is to add a vector to * which is in the directon
(k x r), orthogona to r. The amount by which this added vector
changes the magnitude ¥ s negligible compared to the effect of the
pincushion distortion vector which is in the direction ¥. Assuming
that the effect of spiral distortion is approximately a rotation of ¥
without changing r magnitude, the task of inverting is greatly
simplified. First the spiral distortion vector is subtracted from ¥

to give the vector ;9

Fym F- 03 (K x ). (21)

Using this new vector, the original equation to be inverted takes on

the form of a cubic equation,

Pr (22)
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equivalently written as,

0 r3 +tnor+m

(23)
where
n = IIW
m = [F |/
There will

be one real solution and two imaginary solutions of r if
n2/4 + m3/27 is greater than zero, which is the case since s

always nositive. The real solution of r is as follows:

‘r
’ 2 3 ’ 2 3
- m n m n n
r = 3\/7 + 2 —4 + ——27 + J'Z— - 2 _4 + 27 (24)

where

NE]

" of

v

m=-|

= F e e kx P
This rather messy equation (24) is the final form of r as a

function of (¥', v and®) and relates the observed ¥' measurements from

the plate to the expression of the distorted 3a' and B' vectors.
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It is important to see that measurements of ¥' on the plate are
made relative to an arbitrarily chosen origin, since the true origin of
distortion is not known. To go from this arbitrary origin to the
distortion origin, a vector.;0 iy edded to ¥'. The final solution is

written in terms of ?0;

Pk x P |y (25)

where ?0 is unknown displacement to the true distortion origin.

D. Solution of Least-Squares Function Determines

Distortion Origin and Coefficients.

To solve for the 3 unknown parameters (W,Q,Fo) in the above
equations, a minimization approach is used. The least squares function
to be minimized is found by subtracting the right side of the equality
in equation (20) from the distorted Tattice vectors observed at several
different locations in the image. The fun:ztion is the summed differ-
ence of the observed lattice vectors and their theoretical, (calcu-

lated) values at different positions, ?'i, on the image plate,

n
Minimization Function = Z((B'obsmved - B'calcuhted)i! (26)
i=1 k

i)

-»I -‘l 2
* (aobserved - acalcu]ated)r'
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Several measurements of ' and B' at each X positica are made from
different recip-ccal lattice reflections in the diffraction patterns of
selected image areas at r positions. The minimization function
includes measurements of three different reflections as denoted by

their h, k values.

m
Min. Function = Z Z((bébs - éa]c rz.u (h’k)J
- i

n
i=1 i=1

* (aobs - ca]c) ',(h k)J) (27)

-

where, b is found with equations 20, 24 and 25, and

'calculated

glcalc is found by using the identical equations but substituting a'

for b'.

-4
n

total number of diffraction patterns used = 7.

=
[

total number of diffraction spots used = 3.

The area of the plate covered by the single Gp 32*] crystal
specimen is shown in Figure 11. The specimen spanned most of the
longer width of the plate and was limited to the upper third region as
shown. Assuming that the distortion origin is near the plate center,
the specimen is mostly on one side of the distortion origin.

Nine areas of the Gp 32*1 protein plate were digitized with the
scanning densitometer and their diffraction patterns were obtained

using the Fast Fourier transform. A small area, 4 mm square, was



52

1 2 3 4 5 © ' o
Gp 32 crystol
0DoOoaDo 9 o D?‘J/spe:lmen
O (m ]
7a y
——
XBL798-3731

Figure 11. A drawing of 4mmx4mm areas scanned on
photographic platg. The distorted vector
to image area 8, ré.is also shown.
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chosen for the scan with the reasoning that local changes in the

lattice vectors due to distortions would be minimal over such a small
region. The 200 x 200 Fast Fourier Transform was used in exactly the
same manner as in the alignment experiments, described in Chapter II.

Three diffraction spots with (h,k) equal to (4,0) (2,1) aud (2,1)
were used to measure 3'obs and B'obs vectors. The d and B undis-
torted lattice vectors are determined from an area near the center of
the plate where the effect of distortions is assumed to be small. The
3', B' vectors are calculated from the row and column position of the
reciprocal lattice reflection.

The position of corresponding reciprocal lattice reflections varied
from one image to another, and varied by different displacements for
different lattice reflections. Table 3 shows the position, in terms of
row and coiumn, of each reflection used as data. While some reflec-
tions showed no measurable displacement from one image to the next, as
much as 2 rows displacement occurred for the (4,0) reflection. These
Tattice positions were measured by visual examination of the diffrac-
tion pattern's power spectrum, in MAGMAP display (Grano). Fractional
row and column displacements for lattice reflections split over several
array elements were approximated.

The Min. Function, eq. (27) above is minimized on the computer
using the very powerful program MINUIT from the CERN Computer
Library (13). The upper and lower boun&s of all variable parameters
are set. The function is minimized by using three different tech-

niques, first by the spline fitting approach and then by gradient
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Table 3. Location of scanmed image areas.

AREA OF IMAGE ; ry (um) r)'.(uln)
1 -45000 25000
2 -35000 25000
3 -25000 25000
4 -15000 25000
5 15000 25000
6 35000 25000
7 40000 14000
8 ' -43000 12000

9 5000 12000
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Table 4. Location of diffraction spots (row and column coordinates) in
200 by 200 calculated diffraction patterns of 9 scanned image
areas, shown in Figure 11.

IMAGE AREA (H,K) ROW COLUMN

1 (2,1) 67. 104,
(2,1) 91.5 133.

4,0) 58. 136.5

2 (2,1) 67. 104.4
(2,1) 91. ' 133.
(4,0) 57. 137.
3 67. 104.
90. 134,
55.8 138.
4 66.5 104.
90. 134,
55.6 137.
5 67. 104.
90. 134,
55.6 137.

6 67. 104.5
90.3 134,
55.8 138.

7 67. 104.5

91. 134 .4
57. 138.
8 67.4 104.
gl. 134,
57.7 137.
9 66.5 104.
90 134

55.6 137.
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methods. After the function converges to a minimum, the program
searchs for other possible minima to guard against convergence to local
minima of the function.

The least squares function of distorted lattice vectors converged
to a minimum value of 1.0 x 10f9 after being called approximately
1400 times by the CERN minimization program. The cost to run the

program was $1.10. The following values of parameters were found:

:6 = displacement to distortion origin.
roy = 18.89 mm
Pox = 10.72 mm

Y . 26886 x 107 p2

[ »]
L]

-8.2475 x 10712 g2

These values of ?o’ ¥ and @ are reasonable since they give a
calculate distortion effect which is comparable to measured distortions
in the perimeter region of the image. At image position
r; = =45000 um, r; = 25000 um, the calculated magnification
change and rotation of diffraction pattern is 4.11 percent and 1.25°,
respectively, which is similar to the observed values of 3.76 percent

and 1.13°.
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E. ODistortions Correction by Interpolation

Distortion correction reverses the effects of distortions in the
image by displacing the image points to their true geometric posi-
tions. The mathematical equations which describe the inverse distor-
tion displacements is written here as previously with prime and unprime

vectors denoting the distorted and undistorted vectors, respectively.
r'o=x'i+ty'j

F+ ¢.|r|3.F + g.[r]3 (kxr)

where

3
]

the vector to the true geometric position of intensity.

r' the vector to position of intensity with pincushion (y)

and spiral (@) distortions.

(x',y') = the position of intensity in distorted image.

A regularly spaced array of undistorted image intensities at positions
(x,y) is filled by taking intensities from the respective (x',y') posi-
tions. In this way an array of intensities representing an undistorted
image area is created from the array of distorted image intensities.

Rewritting the above equation with an image array vector.'ﬁ, in terms
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of row and column, and a vector, ﬁ, from distortion origin to area
scanned by optical densitometer, gives the following coordinates of the

intensities,

x' = (R + Ax+d) - (1+ (R +A.d)?) + R Z.(Ry + Ay.d) .

«<
)

= (Ry + Ay:d) - (1+ (R+Ad)?) + -RZ(-Rx - A, -d)

X
il

= (Rx, Ry)

vector from distortion origins to array element (0,0) of

digitized image.
-
A= (Ax, Ay) = (column, row)

= array vector from array origin element, (0,0) to position of

intensity in terms of rows and columns.
d = unit increment of row and column.

The optical density at coordinates (x',y') is found with an
interpoiation algorithm. The program first finds the integer row and
column position (x',y'), then uses the bilinear interpolation scheme to
determine the density at the non-integer array position. The density
at (x',y'), determined in this way, is then indexed by its undistorted
image position (x,y) and stored in the undistorted array at this

integer element index (x,y).
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When the bilinear interpolaticn procedure described above was first
used, it sought optical densities at positions outside of the
220 by 220 distorted image array given as data to create a 200 by 200
distortion corrected array. In order to keep the interpolation within
bounds of the 220 square array, a constant vector was subtracted from
all primed vectors thus bringing the position o7 intensities within
bounds of the array. The array of optical densities produced by the
above distortion correction interpolation procedure is Fourier trans-
formed to give a new diffraction pattern. The expected results of
diffraction spots being located in the positions of spots of the non
distorted image areas from center of the image was not seen. Instead,
the diffraction spots were split over several array elements around
their array location before the interpolation distortion correction
procedure. Therefore the distortion could not have been removed from
the image area, and instead, new distortions were apparently introduced
by the interpolation.

F. Further Suggestions for Distortion Corrections

Several problems were encountered in the work towards correcti.g
distortions in the image of Gp32*I protein. The following discussion
of these problems is written with the goal in mind of future completion
of this distortion correction method and to point out the problems
which may be inherent to other methods of approach.

The problem of locating the diffraction spois at non integer array
positions limited the accuracy of determining the distortion origin and
spiral and pincushion distortion coefficients. The position of

diffraction spots which are split over two or more array elements was
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determined by visual approximation. A better technique of locating the
exact position of diffraction spots is needed to improve the data used
in the least squares function which finds Fb, e and y.

In the distortion correction procedure of section VI.E the problem
of interpolating intensities at positions not covered in the 220 by 220
array of image data can be solved ty using a larger data array.
Ideully, a large image area which covers the central region of the
image would be scanned so that the distortion origin is located in one
of the data array elements. A limitation of the array size to a maxi-
mum size of 256 by 255 resulted from the use of the FTN4 compiler.

This limitation may be overcome by using the RUN76 compiler, or
possibly with new compilers which will be in use with the CDC7600
computer at LBL in the near future.

Error in determining the distortion origin may result from biased
image data due to the specimen covering a limited region of the image.
In the image of Gp32*I protein used in all previous experiments, the
protein crystal did not cover all quadrants of the image around the
distortion origin, as shown in Figure 13. Due to the r3 depandence
of distortions, the distorted lattice vectors are most accurately
measured from the perimeter regions of the image. A greater error
results in measuring the distortion origin in the lesser width
(y-direction) of this image which is covered by specimen only in its
upper 1/3 region.

To test the accuracy of all the distortion correction and least
squares fit of distortions origin algorithms, a test specimen is

ultimately desirable: one which is continuous and covers the entire
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area of the image. A computer simulation of image data with a known
origin of distortions and distortion coefficients could also be used to
test the algorithms. This computer simulated data array can be made by
distorting a regular grating or periodic structure with pincushion
distortions and spiral distortion§ using the equation (14) which
describe these distortions.

An alternative method to the least squares fitting of the
distortion origin and éoefficients is to use a deterministic approach
in solving for the unknowns in equation (20), (24), and (25). Specimen
lattice vectors from three different regions of the image can be used
to write three independent equations and the three unknown parameters,
?6, ¥, and O may be solved. However, the non-linearity of these
equations does not lend itself to an easy solution. Also the use of
only three image areas may increase the likelihood of data bias and
decreased accuracy in solving for the distortion origin. Such a
deterministic approach probably would not prove to be more accurate
than the least squares fit of distortion origin used here which has no
upper 1imit to the number of image areas used as data. Also the low
cost (31.10) of running the minimization program to solve for the
distortion origin and coefficients allows for a rapid and economic

solution.
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VII CONCLUSIONS

The methods of rotational and transiational alignment of protein
patches which used data from computed diffraction patterns were shown
to be more successful with respect to cost and accuracy than other
methods which used image data. The alignment and addition of four
computed diffraction patterns did not result in higher resolution due
to the presence of spiral and pincushion distortions in the test speci-
men image. Although the distortions prevented the coherent addition of
diffraction spots in these experiments, they should not be a limiting
factor if protein patches are imaged in the central region of the
photographic plate where the effect of these assumed projector lens
distortions are minimal due to their r cubed dependence.

A method of determining the origin of pincushion and spiral
distortions in images of crystalline protein has been developed in this
paper. The distortion origin and coefficients in the Gp32*I protein
image were found by minimizing a least squares function of distorted
image lattice vectors. The interpolation algorithm used to correct the
image distortions was unsuccessful. A possible problem is that the
specimen area covered only a limited region of the image and may have
caused bias in the data used to fit the distortion origin. It should
be possible to correct the distortions in images, but it will reouire
further testing of all the distortion correction algorithms using

simulated data with known distortion origin and coefficients.



63

ACKNOWLEDGEMENT

I would like to express my appreciation to Dr. Robert M. Glaeser
for his help and support in making this work possible. 1 especially
wish to thank Dr. David Grano for the use of several of his computer
programs, for his helpful instructions on the use of the LBL computer
system, and for several enlightening conversations on image pi:o-
cessing. I wish to thank Dr. Wah Chiu, Dr. Steven Hayward and Dr. Owen
Saxton for their conversations which have contributed to my education

and to this work.



64

REFERENCES

. Kuo, I. A. M. and Glaeser, R. M. (1975). “Development of

methodology for low exposure, high resolution electron microscopy

of biological specimens," Ultramicr 1, 53-66.

. Glaeser, R. M. (1971). ‘"Limitation to significant information in

biological electron microscopy as a result of radiation damage,"
J. Ultrastruct. 36, 466-482.

Unwin, P. N. T. and Henderson, R. (1975). "Molecular structure
determination by electron microscopy of unstained crystalline
specimens,” J. Mol. Biol. 94, 425-440.

Unwin, P. N. T. (1975). "Beef liver catalase ‘ructure: interpreta-
tion of electron micrographs,” J. Mol. Biol. 98, 235-242.

Chiu, W. and Hosoda, J. (1978). “"Crystallization and preliminary
electron diffraction study to 3.7& of DNA helix-destabilizing
protein Gp32*I," J. Mol. Biol. 122, 103-107.

Glaeser, R. M., Chiu, W. and Grano, D. (1979). “Structure of the
surface protein of the outer membrane of Spirillum Serpens,"”

J. Ultrastruc. Res. (in press)

Chiu, W., Private communications.

Grano, D. A. (1979). "Three-dimensional reconstructior in electron

microscopy,” Ph.D. Dissertation, University of California, Berkeley.

. Frank. J. (1973). "Computer processing of electron micrographs," in

Advanced Tzchniques in Biological Electron Microscopy, Ed. J. K.

Koehler, (Springer-Verlag, N. Y.), 215-274.



10.

11.

12.

13.

65

Saxton, W. 0. and Frank, J. (1977). "Motif detection in gquantum
noise-limited electron micrographs by cress-correlation,"
Ultramicr. 2, 219-227.

Hillier, J. (1946). "A study of distortion in electron microscopy
projection lenses," J. Appl. Phys. 17, 411-419.

Liebmann, G. (1952). "Magnetic electron microscopy projector
lenses," Proc. Phys. Soc. B65, 94-108.

James, F. and Roos, M. (1975) "MINUIT short write-up,” in LBL Math

and Computing Library.

L.5.6P0:19€0-698-169/F-103





