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EPIGRAPH

“There are only two mistakes one can make along the road to truth;

not going all the way, and not starting.”

—Buddha
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ABSTRACT OF THE DISSERTATION

Expanding the toolbox of tandem mass spectrometry with algorithms
to identify mass spectra from more than one peptide

by

Jian Wang

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2013

Professor Philip E. Bourne, Chair
Professor Pieter C. Dorrestein, Co-Chair

In high-throughput proteomics the development of computational methods

and novel experimental strategies often rely on each other. In several areas, mass

spectrometry methods for data acquisition are ahead of computational methods

to interpret the resulting tandem mass (MS/MS) spectra. While there are numer-

ous situations where two or more peptides are co-fragmented in the same MS/MS

spectrum, nearly all mainstream computational approaches still make the ubiqui-

tous assumption that each MS/MS spectrum comes from only one peptide. In this

thesis we addressed problems in three emerging areas where computational tools

that relax the above assumption are crucial for the success application of these

xiv



approaches on a large-scale. In the first chapter we describe algorithms for the

identification of mixture spectra that are from more than one co-eluting peptide

precursors. The ability to interpret mixture spectra not only improves peptide

identification in traditional data-dependent-acquisition (DDA) workflows but is

also crucial for the success application of emerging data-independent-acquisition

(DIA) techniques that have the potential to greatly improve the throughput of

peptide identification. In chapter two, we address the problem of identification of

peptides with complex post-translational modification (PTM). Detection of PTMs

is important to understand the functional dynamics of proteins. Complex PTMs

resulted from the conjugation of another macromolecule onto the substrate pro-

tein. The resultant modified peptides not only generate spectrum that contains

a mixture of fragment ions from both the PTM and the substrate peptide but

they also display substantially different fragmentation patterns as compared to

conventional, unmodified peptides. We describe a hybrid experimental and com-

putational approach to build search tools that capture the specific fragmentation

patterns of modified peptides. Finally in chapter three we address the problem

of identification of linked peptides. Linked peptides are two peptides that are co-

valently linked together. The generation and identification of linked peptides has

recently been demonstrated to be a versatile tool to study protein-protein inter-

actions and protein structures, however the identification of linked peptides face

many challenges. We integrate lessons learned in the previous chapters to build

an efficient and sensitive tool to identify linked peptides from MS/MS spectra.

xv



Chapter 1

Identification of mixture spectra

from co-eluting peptides

Over the past several years there have been substantial advances in the

sensitivity of protein identification thanks to technological developments in chro-

matography and tandem MS. In shotgun proteomics, researchers can routinely

identify thousands of proteins from complex biological samples in a single exper-

iment [1, 2, 3]. But, despite this rapid progress, there are still challenging issues

that remain unsolved [4, 5]. One such challenge is that in any high throughput

MS/MS experiment only a fraction of MS/MS spectra can be identified by current

computational methods. While there are many factors contributing to this low

spectrum identification rate, recent studies suggest that one reason is the occur-

rence of co-eluting peptides. As instruments with high mass accuracy enable us

to better distinguish peptides with close precursor masses, it was recently shown

that as many as 50% of the MS/MS spectra collected in typical proteomics ex-

periments comes from more than one peptide precursor [6, 7, 8, 9], giving rise to

multiplexed or mixture MS/MS spectra. These spectra can confuse current compu-

tational methods because most mainstream approaches make the assumption that

each MS/MS spectrum comes from a single peptide. Houel et. al. estimated that

identification rates for mixture spectra can be as low as only half of those spectra

from a single peptide [9]. Thus computational methods that can handle mixture

spectra can readily improve our current ability to analyze MS/MS spectral data

1



2

in traditional experimental workflows.

More importantly, in recent years there have been numerous development in

data-independent acquisition (DIA) technologies where multiple peptide precursors

are intentionally selected for co-fragmentation in each MS/MS spectrum [10, 11,

12, 13, 14]. Recent improvements in instrumentation have made it possible to

perform DIA with high speed and high resolution in both MS and MS/MS modes.

With continuing improvements in sensitivity and dynamic ranges, these emerging

technologies can addresses some of the major disadvantages of traditional data-

dependent acquisition methods such as reproducibility of data and can potentially

increase the throughput of peptide identification by 10–20-fold [13, 15].

However despite the growing importance and the enormous potential of

mixture spectra, there is still a shortage of computational methods that can an-

alyze mixture spectra. In their pioneering work Zhang et. al. described the first

database search method for mixture spectra, ProbIDtree [16] and showed that it

is possible to identify co-eluting peptides from single MS/MS spectra. However

in that study not all peptides could be confidently identified and in most cases

ProbIDtree only identified the most prominent peptide in each mixture spectrum.

In addition, ProbIDtree’s accuracy for identifying mixture spectra is relatively low

compared to the accuracy of current database search methods in identifying single-

peptide spectra[17]. Other methods approach the mixture spectra identification

problem by reporting spectra with more than one significant single-peptide match

and do not explicitly attempt to model the occurrence of fragment ions from more

than one peptide in the same spectrum. False Discovery Rates (FDR) are also left

unadjusted [16, 18, 19] and may result in higher than expected FDR for mixture

spectra (e.g., when co-eluting peptides share a substantial number of fragment

masses). Finally while much attention has been dedicated to computing the sta-

tistical significance of a PSMs for single-peptide spectra [20, 21], this fundamental

question still remain essentially unanswered for mixture spectra. Below we discuss

three approaches that address the challenges of identifying mixture spectra from

two peptides. This relatively simple case accounts for a large fraction of mixture

spectra present in traditional DDA workflows [8] and thus allows us to test and de-
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velop algorithmic concepts using DDA data since data from DIA workflows is still

not widely available in public repositories. We demonstrated even for this relative

simple cases we are able improve data analysis in the traditional DDA workflow

by identifying significantly more peptides compared to existing approaches.

1.1 M-SPLIT: spectral library search of mixture

spectra

Spectral library search has been recognized as a more sensitive method (as

compared to database search methods) for peptide identification from MS/MS

spectra due to the fact that spectral libraries have more information about the

actual fragmentation pattern of a particular peptide [22]. Given the inherent diffi-

culties in identifying peptides from mixture spectra, it is expected that extending

spectral library search to mixture spectra will significantly improve peptide identi-

fication rates. In order to alleviate the algorithmic bottlenecks, we describe a new

approach, M-SPLIT ( Mixture-Spectrum Partitioning using Library of Identified

Tandem mass spectra), that is able to reliably and efficiently identify peptides

from mixture spectra - spectra that are generated from a pair of peptides. In

brief, a mixture spectrum is modeled as linear combination of two single-peptide

spectra and peptide identification is done by searching against a spectral library.

We show that efficient filtration and accurate branch-and-bound strategies can be

used to avoid the huge computational cost of searching all possible pairs. Thus

equipped, our approach is able to identify the correct matches by considering only

a minuscule fraction of all possible matches.

Beyond potentially enhancing the identification capabilities of current tan-

dem MS acquisition protocols, we argue that the availability of methods to reliably

identify MS/MS spectra from mixtures of peptides could enable the collection of

MS/MS data using accelerated chromatography setups to obtain the same or bet-

ter peptide identification results in a fraction of the experimental time currently

required for exhaustive peptide separation.
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1.1.1 Problem formulation

A mixture spectrum is defined as an MS/MS spectrum from two different

peptides and a spectral library is a collection of identified MS/MS spectra. Anal-

ogous to the identification of MS/MS spectra by comparison against a database

of known protein sequences, our goal is to identify mixture spectra by comparison

against a spectral library. More formally, we modeled a mixture spectrum M as

M = A + αB, where A and B are MS/MS spectra from two different peptides

and α, the mixture coefficient, indicates their relative abundance. Without loss

of generality, we assume that A and B are scaled to Euclidean norm 1 and that

0 ≤ α ≤ 1 (i.e., A always corresponds to the higher abundance peptide). We can

now formulate the following computational problem:

Mixture Spectrum Identification Problem (MSIP)
Input A putative mixture spectrum M and a spectral library L.
Output A constant 0 ≤ α ≤ 1 and pair of spectra A,B ∈ L,

maximizing similarity(M,A+ αB)

While there are several ways to define similarity between two peptide spec-

tra [23, 24, 25, 26], the normalized dot product (ndp) or cosine1 measure of spectral

similarity is widely accepted to be robust and makes no special assumptions con-

cerning peptide mass spectra [26]. Moreover, as we show below, cosine similarity

has a number of useful mathematical properties that allow us to derive theoretical

bounds to guide our approach.

1.1.2 Simulation of mixture spectra

Since there is currently no publicly available data with validated identi-

fications of mixture MS/MS spectra, we created a dataset of simulated mixture

spectra to develop and benchmark our approach. To this end, we used the human

MS/MS spectral library from the National Institute of Standards and Technology

(ver. 6/06 ) and grouped the spectra according to their identified peptide. This

1Since all of spectra were scaled down to norm 1, ndp simply reduces to estimating the cosine
between two unit vectors. Also, we reduce the disproportionate influence of high intensity peaks
by first applying the square-root transform to all peak intensities [27]
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resulted in 27,966 groups in the library, each containing two or more spectra be-

longing to the same peptide. The spectral library was then divided into two sets: i)

a set X , which has exactly one spectrum per peptide, used to create the simulated

mixture spectra and ii) a spectral library L containing all the remaining spectra,

used for searching. All spectra in the library are first scaled to norm 1 and since

in a mixture the two peptides will most likely be present at different abundances,

mixture spectra were created by randomly selecting two spectra AX and BX from

X and linearly combining them using a predefined mixture coefficient α. In other

words, a mixture spectrum is of the form M = AX + αBX , where M represents a

simulated mixture spectrum and AX and BX represent two single-peptide spectra,

0 ≤ α ≤ 1. Below we benchmark our approach for α ∈ {0.1, 0.2, 0.5, 1}.

1.1.3 Overall algorithm

While the MSIP formulation is simple, the rapidly growing size of target

spectral libraries (already on the order of 105-106 spectra) makes searching all

possible pairs of spectra a prohibitive approach (1011 comparisons per query spec-

trum). We note that while one can pre-filter the target spectral library to consider

only combinations of spectra with the same precursor mass as the query spectrum

, such an approach would currently not provide a realistic estimate of performance

on quickly growing proteome-scale spectral libraries. By not enforcing any parent

mass filters on our performance estimates, we argue that the approach proposed

here should seamlessly scale to much larger spectral libraries and be directly appli-

cable to complex searches (e.g., metaproteomics studies). We propose two ways to

avoid the quadratic penalty of searching all pairs: first we use an efficient projected-

cosine filter to eliminate a large fraction of spectra in the library. After filtering,

we use a branch-and-bound search strategy to find the best-matching pairs by

considering only a subset of all possible pairs. The overall strategy is detailed in

pseudocode below.
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Input : Mixture Spectrum M , Spectral library L
Output: A pair of spectra: A∗, B∗ ∈ L and α∗ such that cosine

(M,A∗ + α∗B∗) is maximized

Filter the library L by retaining top K candidate spectra with highest
projected-cosine to M and create a filtered library L′

Sort the filtered library according to cosine(M, S), S ∈ L′

BestScore = 0
for i =1 to Size(L′

) do
A = ith spectrum in L′

for j = i+1 to Size(L′
) do

B = jth spectrum in L′

if upperBound(M , A, B) < BestScore then
break

else
α = estimateAlpha(M, A, B)
score = cosine(M,A + αB)
if score ≥ BestScore then

BestScore = score, A∗ = A, B∗ = B, α∗ = α
end

end
end

end
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1.1.4 Filtering with projected-cosine

While cosine is generally a good measure of spectrum similarity, a mixture

spectrum M derived from peptides A and B may have limited similarity to the

corresponding single-peptide spectra - e.g, the presence of B in the mixture results

in many unmatched peaks between M and A. We address this with a projected-

cosine similarity, a modified cosine function that only considers coordinates in M

if the corresponding coordinate in A is not zero. More precisely for two vectors A

and M , the projection of M on A (Mp(A)) is defined as:

Mp(A)[i] =

{
M [i] if A[i] > 0

0 otherwise

The projected cosine between M and A is then simply the cosine of the Mp(A) and

A:

cosp(M,A) =
Mp(A) · A∥∥Mp(A)

∥∥ ‖A‖
Given a spectrum M , the filtering step consists of computing the projected-

cosine similarity between M and all spectra in L and retaining the top most sim-

ilar matches. The filtering efficiency of projected-cosine similarity is determined

by the highest (i.e., worst) rank of a correct match of M to the library L. Note

that a correct match in L has the same peptide as M - single-peptide spectra

have one correct match, mixture spectra have two correct matches. As shown in

Figure 1.1a, the resulting ranks of correct matches indicate that projected-cosine

is an efficient filter that, in most cases, retains the correct matches at ranks less

than 500 in a library of about 27,966 spectra. In fact, for 95% of cases the correct

pair of peptides in a mixture spectrum M can be identified by considering only the

top 100 library spectra with highest projected cosine similarity to M (for α ≥ 0.2).

1.1.5 Searching with Branch-and-Bound

To better describe the concepts behind the branch and bound search strat-

egy, let us assume for the moment that a mixture spectrum M is obtained from

two single-peptide spectra with same abundance(i.e. α = 1; see Supplementary
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Figure 1.1: Effectiveness of filtering and branch-and-bound strategy: a) Cumu-
lative distributions of maximum rank for correct matches to the spectral library.
Spectra in the library are first sorted according to decreasing projected-cosine sim-
ilarity to the mixture spectrum (library containing 27,966 spectra). The rank of
correct matches are then determined. Correct matches are spectra identified as
one of the peptides in the mixture. Since each mixture spectrum has two correct
matches (it is generated from two peptides) we take the maximum (i.e., worst) rank
of the two matches. b) Effectiveness of the branch and bound strategy. To avoid
considering all pairs of spectra in the library, we derive a branch-and-bound search
strategy to eliminate a large fraction of all possible pairs. The number of evaluated
pairs of spectra is shown. Since the total number of possible pairs is 3.9× 108 and
our approach never evaluates more than 15,000 pairs, this self-adjusting strategy
achieves speedups of at least 2×104. c) Combining the projected-cosine filter (part
a) with branch-and-bound search (part b): we first filter the spectral library with
projected-cosine and retain only the top 500 candidates; the branch-and-bound
search strategy is then applied to further reduce number of pairs of spectra that
needed to be evaluated. The curves for α = 0.1 clearly shows that projected-cosine
is a effective pruning filter - note that pre-filtering the library with cosine results
in the evaluation of more pairs of spectra. The combined filters typically achieve
speedups of approximately six orders of magnitude (≈ 3.9×108

500
= 7.8×105 speedups

materials for analysis when α < 1). Therefore, for any pair of spectra (A,B) we
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have the following relation for our objective function:

cos(M,A+B) =
M · (A+B)

‖M‖ ‖A+B‖
=

M · A+M · B√
A · A+B ·B + 2A ·B

=
M · A+M · B√

2 + 2A · B
≤ M · A+M · B√

2

thus we define: upperBound(M,A,B) =
M · A+M · B√

2

Assume that at certain a stage of our search the best solution we’ve seen so far

is: A∗ + B∗, and without loss of generality let us also assume cos(M,A∗) ≥
cos(M,B∗). By the above equations, we do not need to pair A∗ with any spec-

trum C such that upperBound(M,A∗, C) < cos(M,A∗ + B∗). This is because

upperBound(M,A∗, C) is never less than cos(M,A∗ + C). Moreover, a spectrum

D with cos(M,D) ≤ cos(M,C) necessarily implies that upperBound(M,A∗+D) ≤
upperBound(M,A∗+C) - thus implying that the pair (A,D) can be excluded from

consideration. This leads to the following search strategy: 1) sort spectra in the

library according to their cosine similarity to the query spectrum M; 2) set A to the

spectrum with highest cos(M,A) in the library; 3) pair A with remaining spectra

C ∈ L until we find a spectrum that has upperBound(M,A,C) < cos(M,A∗+B∗);

4) delete A from the library, and repeat from step 2.

We determine the efficiency of this method by counting the number of pairs

that are evaluated before the algorithm terminates with the optimal answer. As

shown in Figure 1.1b, in most cases we only consider hundreds to thousands of

combinations, approximately five order of magnitude less than the total number of

possible pairs (≈ 3.9× 108). To take advantage of both the projected-cosine filter

and the branch-and-bound strategy, we first filter the library with projected-cosine

to retain only the top five hundred candidates and then apply the branch-and-

bound strategy to limit the number of evaluated pairs. As shown in Figure 1.1c,

only a few hundred pairs of spectra need to considered before M-SPLIT finds the
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optimal answer. We also note that projected-cosine is a better filter than cosine -

as shown in Figure 1.1c for α = 0.1, pre-filtering the library with cosine results in

more pairs of spectra being matched to each query spectrum(yellow line).

1.1.6 Estimating the mixture coefficient α

When trying to identify a mixture spectrum M = A + αB, the mixture

coefficient α is generally not known in advance. Since an incorrect α will distort

the cosine similarity between M and its correct library matches, it is important to

estimate it correctly. To distinguish the true and estimated values of α, we denote

the estimated mixture coefficient as α̂ and compare two methods to compute α̂. In

the residual-spectrum approach, we first identify the dominant component in the

mixture (A) and construct a residual spectrum R by removing from the mixture

spectrum all common peaks between A and M . It can be shown that α̂ is directly

related to the magnitude of the residual spectrum (‖R‖) and can be estimated by

solving the following equation:

α̂ =
‖R‖2

1− ‖R‖2

In the optimal-cosine approach α̂ is chosen to maximize the cosine similarity

between M and A+ α̂B. By taking the derivative of the cosine similarity function

with respect to α̂, setting it to zero and solving for α̂ (

α̂ =
M · B − (M · A)(A · B)

M · A− (A · B)(M · B)

The performance of both methods is shown in Table 1.1. While the per-

formance of the residual-spectrum method is reasonable when α is large, the error

becomes quite substantial when α is small. By contrast, the optimal-cosine method

is robust in the presence of noise and delivers comparable performance across dif-

ferent values of α.
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Table 1.1: Mean and standard deviation of the log-2 ratios of estimated (α̂)
and true (α) mixture coefficients. While both approaches are roughly equivalent
when α ≥ 0.5, optimal-cosine estimation performs substantially better on the more
difficult cases of smaller mixture coefficients.

Residual-spectrum approach Optimal-cosine approach
True α mean standard deviation mean standard deviation
1.0 -0.1312 0.4278 -0.0393 0.4646
0.5 0.051 0.4449 -0.0103 0.4770
0.2 0.4592 0.6767 0.0816 0.5264
0.1 1.0139 0.9021 -0.0014 0.5317

1.1.7 Classification of spectral library matches

As with regular database search of MS/MS spectra from isolated peptides,

a spectral library search will always identify some top-scoring pair for any given

query. To assess whether a match is significant we consider three possible outcomes

when searching a given query spectrum S:

• No-match: S does not match any spectrum in the library

• Single-peptide match: S matches one peptide in the library.

• Mixture match: S is identified as a pair of peptides in the library.

Let A∗ + α̂ B∗ be the best pair of spectra in the library returned by M-SPLIT; we

distinguish between the possible outcomes using P and Δ defined as follows:

P = Max(cos(S,A∗), cos(S,B∗))

Δ = cos(S,A∗ + α̂B∗)− P

Intuitively, if S is from a peptide not present in the library, both A∗ and B∗ should

have low cosine similarity to S. It follows that P should be low in the No-match

case but relatively high in the other two cases. Also, in Mixture matches the term

B∗ should increase the similarity to S by a significant amount, as determined by

Δ. We thus determine the outcome of a particular match by a simple two-step

process: a) a match is classified as No-match if P is below a certain threshold; b)

distinguish Single-peptide and Mixture matches by checking whether Δ is below

or above a chosen threshold, respectively.
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To determine the actual threshold used in this process, we constructed two nega-

tive control datasets. One consists of five thousand mixture spectra (with α = 1.0)

where the peptides used to create the mixture spectra are deleted from the li-

brary. The second dataset consists of five thousand single-peptide spectra. These

two datasets were combined with another mixture dataset and searched against

the library for the best pairs of matches. As shown in Figure 1.2, when the pep-

tides are not present in the library (No-match case) P has relatively low values

(green dots) and can thus distinguish these from Single or Mixture-match cases by

placing a threshold on P (see Figure 1.3a for Precision/Recall curves).; In distin-

guishing Single-peptide from Mixture matches, Figure 1.2 shows that Δ is higher

for Mixture matches than for Single-peptide matches. However, Figure 1.2 also

shows that this threshold depends on α. To build a general model, we first choose

the threshold for cases where α ∈ {0.1, 0.2, 0.5, 1.0} and use linear regression to

obtain the relationship between Δ and α. During our experiments we also found

low-complexity spectra (i.e. spectra dominate by only a few peaks) can lead to

artificially high P or Δ, we computed a measure similar to dot-bias used in [28]

and use this to filter out any significant matches that may due to low-complexity

spectra.

1.1.8 Identification of simulated mixture spectra

Our running hypothesis is that a mixture spectrum can be identified by

matching it to a linear combination of single-peptide spectra. To test this hypoth-

esis, we simulated a series of different mixture spectra (as described in Methods)

and verified if the resulting Mixture matches correctly identified the peptides used

to construct each simulated mixture. As shown in Table 1.2, the performance of

our approach varies with α but is able to select the correct peptides in 90 − 99%

of all cases. As expected, as α decreases it becomes more difficult to identify both

peptides in the mixture spectra because the signal-to-noise ratio substantially de-

creases for the low-abundance peptide. Also, the accuracy decreases faster at a

ratio of 1:0.1, suggesting this may be the lowest α that can be handled without

substantially decreasing sensitivity. Of course, high MS/MS mass accuracy should
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Figure 1.2: Comparison of spectral library search outcomes: Searching a query
spectrum S against a spectral library has three possible outcomes: 1) No-match
when S does not match any spectrum in the library (green dots); 2) Single-peptide
match when S matches only one peptide in the library (red dots); 3) Mixture match
when S is identified as a pair of peptides in the library (pink, blue, cyan dots
represent Mixture matches when α = 1.0, 0.5, 0.1, respectively). As illustrated by
the colored sets, M-SPLIT can distinguish No-match from the rest by thresholding
P = max(cos(M,A), cos(M,B)) , shown on the x-axis. Similarly, Single-peptide
and Mixture matches can be distinguished by thresholding Δ = cos(M,A+B)−P ,
(shown on the y-axis as the distance from the main diagonal line

seamlessly elevate the performance of this approach to lower values of α.

Due to multiple factors in MS/MS data acquisition, it is possible that not

all peaks in a single-peptide spectrum will appear in a mixture spectrum containing

the same peptide. Intuitively, it is reasonable to assume that high-intensity peaks

in the single-peptide spectrum will be detectable while low-intensity peaks may

not be observed. We simulate this scenario by applying a window filter where a

peak is kept if it has rank less than or equal to N in a window of W Daltons around

its mass. We show that our method is robust against missing peaks using different

values of W and N. This is consistent with previous studies showing that one
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Figure 1.3: Classification of spectral library matches: Left: Precision/Recall
curves when distinguishing No-match from Single-peptide and Mixture matches;
decisions are made by checking whether P = max(cos(M,A), cos(M,B)) is above
a predetermined threshold. Right: Precision/Recall curves when distinguishing
Single-peptide from Mixture matches; decisions are made by checking whether
Δ = cos(M,A+B)−P is below or above a predetermined threshold (respectively).

Table 1.2: Selecting the correct pair of peptides from the spectral library; each row
indicates the percentage of cases when the top ranking pair is correct. M-SPLIT is
compared with an iterative approach where one first identifies the spectrum with
the top-scoring projected-cosine, removes shared peaks between the top-scoring
spectrum and the query spectrum and finally searches the library a second time
to identify the second peptide in the mixture. As shown here, the iterative ap-
proach is generally worse than M-SPLIT and especially error-prone for low values
of mixture coefficients, consistent with our observations on estimation of mixture
coefficients. For smaller values of α, M-SPLIT gains an advantage by simultane-
ously considering both peptides in the mixture.

Mixture coefficient (α) M-SPLIT Iterative approach
1:1 99.4 98.4
1:0.5 98.7 98.3
1:0.3 96.8 96.4
1:0.1 89.6 77.1

does not need all peaks in a spectrum for single-peptide identification purposes

- in XHunter [25], the authors speed up the computation by showing that it is

generally enough to retain only the top 20 peaks per spectrum.

Having observed that the highest-abundance peptide in a mixture can be

identified as the top ranking match using projected-cosine, one could reason that
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if the peaks from this peptide are removed from the mixture spectrum, we are

left with a non-mixture spectrum. This leads to an iterative strategy to identify

peptides in mixture spectra: first identify the spectrum with top-scoring projected-

cosine, remove shared peaks between the top-scoring spectrum and the mixture

spectrum, and search the library a second time to identify the second peptide in

the mixture. The accuracy of the iterative method is compared with that of M-

SPLIT in Table 1.2 and observed to be worse. Note that this is consistent with

our results on estimation of α: as α gets smaller, it is important to consider both

components in the mixture for accurate identification and quantification of both

peptides .

1.1.9 Peptide identification with compressed
chromatography

While the simulation experiments demonstrate the ability of M-SPLIT to

reliably identify mixture spectra against large spectral libraries, we further vali-

dated our method on experimental data. The dataset consists of six bovine pro-

teins (Apotransferrin, Carbonic Anhydrase, Catalase, Glutamate Dehydrogenase,

Lactoperoxidase, Serum Albumin) from Michrom. 500 pmol of each protein were

mixed in an equimolar ratio in an 50/50 mix of acentonitrite and water, reduced,

alkylated and trypsinized. This same sample was analyzed under two different

chromatographic time scales: one dataset was obtained with an 80-minute chro-

matography (Long dataset) while the other dataset was obtained with a short

3-minute chromatography (Short dataset). Mass Spectrometry data were acquired

on a Thermo LTQ-Orbitrap XL operating on an acquisition cycle of two consec-

utive survey scans (first in the linear ion trap, second in the Orbitrap at 60K

resolution) followed by MS/MS scans at unit resolution (linear ion trap, centroid

mode, AGC on). We note that while the high-resolution survey scans readily pro-

vide accurate precursor masses, these particular settings assign MS/MS precursor

masses based on the low-resolution survey scans, thus allowing us to verifiably

test the performance of our approach as if operating in the (still) most common

data acquisition mode. Peak lists in RAW files were converted to mzXML using
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ReAdW. Excluding the initial load and final wash periods, we obtain 251 MS/MS

spectra in the Short dataset that could possibly be mapped to spectra in the Long

dataset. Under these chromatographic conditions, we assume that each spectrum

in the Long dataset comes from only one peptide and use these as our library of

single-peptide spectra. Conversely, since the Short dataset was obtained from the

same sample with much less chromatography time, we assumed that some spec-

tra might contain pairs of peptides that had been separated in the Long run; the

Short dataset was thus used as our set of query spectra against the spectral library

defined by the Long dataset.

The Long dataset was annotated using InsPecT[29] to search SwissProt

(ver.15.9 ) with parent mass tolerance 2 Da and fragment mass tolerance 0.5 Da;

a 5% false discovery rate was enforced using a standard target/decoy strategy

[30] and no modifications were allowed. We note that while 5% FDR is generally

too high for peptide identification purposes, our main utilization of search results

was in grouping repeated spectra from the same peptide. To further increase the

coverage of peptide identification we grouped spectra in the library by assigning two

spectra to the same group if their parent masses are within tolerance (2 Da; 0.05 Da

if precursor masses are corrected using the high accuracy survey scans) and their

cosine similarity is high. Then if any spectrum in a group is annotated by InsPecT,

annotations are transferred to every member in the group. To reduce potential

errors, annotations are transferred only when coherent across all identified spectra

in the same group; otherwise all spectra in that group are considered unidentified.

Spectra in the Short dataset were annotated in two different ways: a) M-SPLIT

with parameters determined from the simulation experiments and b) by InsPecT

using the same search parameters used for the Long dataset. Out of 251 MS/MS

spectra, M-SPLIT returned a total of 187 matches (see Figure 1.4) and InsPecT

returned 22 IDs. As a first level of validation, we ran M-SPLIT without a parent

mass filter and used parent mass as an a posteriori independent test to approximate

the accuracy and sensitivity of our approach. The lack of a parent mass filter also

allows us to estimate the performance of M-SPLIT on a much larger spectral

library (e.g., proteome-scale spectral library) where searches would be conducted
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only against spectra with matching parent masses, thus resulting in a comparable

number of candidate matches. We manually compared the MS1 isotopic profile

of the query spectra to the MS1 isotopic profile of the top match(es) returned

by M-SPLIT and verified whether these were the same. Two isotopic profiles are

considered the same if both indicate the same peptide charge and if isotopic peaks

have m/z difference less than 0.05 Da. We also manually visualize both the MS1

and MS/MS spectra of Mixture match cases to verify that the matches are valid.

The estimated accuracy for both Single-peptide and Mixture matches are shown

in Table 1.3a.

Out of all 251 MS/MS spectra in the Short dataset, 64 did not match any

spectra in the Long dataset (Table 1.3b). After manual investigation of the Long

dataset, it turned out that for most cases (54/64) M-SPLIT did not find a match

because either the corresponding peptide is missing (i.e., no corresponding MS1

isotopic profile was found) or it was not selected for MS/MS (MS2 not found).

Hence, these unannotated spectra are likely a limitation in the library derived

from the Long dataset and not a shortcoming of M-SPLIT that correctly classifies

them as No-match cases. Considering the remaining ten cases as false negatives

leads to an estimate of M-SPLIT’s sensitivity of ≈ 94%(186/196). Note that

these numbers, although not identical, are close to those seen in our simulated

dataset and thus indicate that our simulation is able to capture important aspects

of mixture spectra in real chromatographic settings.

To quantify the peptide identification gain in M-SPLIT we further com-

pared the number of spectra and unique peptides identified in the Short dataset to

those obtained by InsPecT. While this comparison violates the common assump-

tion of database search methods that each spectrum comes from a single peptide,

it nevertheless mimics the typical setup in MS/MS experiments and allows us to

estimate the expected gains from using M-SPLIT. The 187 matches from the Short

dataset to the Long dataset are divided into four groups in Table 1.3b according

to their InsPecT annotations. While InsPecT is only able to annotate 22 spectra

in the Short dataset, M-SPLIT is able to successfully annotate about four times

as many spectra in the same dataset. When comparing the number of unique pep-
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Figure 1.4: Classification of spectral library matches between Short (3-min) and
Long (80-min) chromatography runs of the same sample: We assume that each
MS/MS spectrum in the Long dataset comes from only one peptide and use these
as our library of single-peptide spectra. On the other hand, since the Short dataset
was obtained from the same sample with compressed chromatography, we would
expect that some MS/MS spectra might contain pairs of peptides that were sepa-
rated in the Long run and thus use this as our set of query spectra. Each spectrum
in the Short dataset was searched against the Long dataset for the best pair and
labeled as Mixture, Single-peptide and No-match, shown here as purple, green and
blue dots, respectively.

tides identified in the Short dataset, InsPecT identified only ≈ 6% of the peptides

identified in the Long run, while M-SPLIT matches recover about ≈ 20% of all

identifications in the Long dataset, including IDs from mixture spectra.

1.1.10 Peptide identification in Yeast

To illustrate the utility of our method in a typical scenario, we further tested

M-SPLIT on a larger experimental Yeast dataset [31], generously made publicly

available in Tranche/ProteomeCommons [32] by researchers at the University of
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Table 1.3: M-SPLIT results on the compressed-chromatography (Short) dataset.
Out of 251 spectra, 186 have a match to the spectral library obtained from an
80-minute run of the same sample (Long dataset). a) Precision was estimated by
comparing the MS1 isotopic profile of each query spectrum and the top matches
returned by M-SPLIT in the Long dataset. Two isotopic profiles are considered
matched if they indicate the same peptide charge, have correlated intensities and
isotopic peaks have m/z difference ≤ 0.05 Daltons. b) M-SPLIT matches are
divided into four categories according to whether the spectra were identified by
InsPecT. c) The 64 spectra that did not match to the Long dataset were further
investigated manually. For most cases (54 out of 64) this was due to missing data
in the Long dataset - either there was no MS/MS spectra for the corresponding
MS1 precursor or no matching MS1 precursor was found. d) Number of unique
peptides identified by M-SPLIT and InsPecT.

a) All M-SPLIT matches

Category Precision
Single-peptide matches 97% (174/179)

Mixture matches 87% (7/8)

b) Identified M-SPLIT matches

Identified by InsPecT
Long dataset Short dataset Counts

No No 95
Yes No 73
No Yes 8
Yes Yes 11

c) Spectra in the Short dataset not
matched to the Long dataset

Category Counts
MS1 not found 17
MS2 not found 37

MS1 and MS2 found 10

d) Unique peptide identifications

Number of peptides identified
Method Long dataset Short dataset
InsPecT 211 14
M-SPLIT n/a 43

Vanderbilt. In brief, a tryptic digest of a Saccharomyces cerevisiae was analyzed on

an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific) and MS/MS
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spectra were acquired using a data-dependent scanning mode in which one full

MS scan (m/z 3002000) was acquired on the Orbitrap at a resolution of 60 000,

followed by 8 MS/MS scans collected on the LTQ (see [31] for full details). To

retain the utility of accurate precursor masses for a posteriori validation of search

results, InsPecT was ran with 2.5 Da parent mass tolerance and 0.5 Da fragment

mass tolerance on SGD yeast protein database (ver.5/8/2009 ); a 1% false discovery

rate was enforced using a target/decoy strategy and no modifications were allowed.

M-SPLIT was ran with default parameters against the Yeast spectral library from

NIST (ver.5/4/2009 ); a 3 Da parent mass filter was used to pre-filter the library

before the search. The results are summarized in table 1.4. In short, InsPecT is

able to identify a total of 19,297 spectra and 4,486 unique peptides. On the other

hand, M-SPLIT is able to identify 28,993 single-peptide spectra, 1,505 mixture

spectra and a total of 6,089 unique peptides. Since the Yeast dataset was acquired

with high-accuracy survey scans, this information was further used to validate our

annotations by comparing the theoretical m/z value of the peptides returned by

InsPecT/M-SPLIT and the observed precursor m/z in the corresponding survey

scans. An annotation is considered correct if the theoretical precursor m/z is

within 5ppm of the observed m/z; the estimated accuracies are summarized in

table 1.4. The comparison between M-SPLIT and InsPecT further reveals that

their annotations are same in ≈ 99% of the cases where both make an annotation,

thus demonstrating the coherence of these two independent methods.

M-SPLIT identifications indicate that mixture spectra consist of about 5%

of all identifiable spectra in the Yeast dataset, suggesting that these constitute a

modest but significant fraction of identifiable spectra in typical proteomics exper-

iments. It should be emphasized that even though the number of mixture spectra

is not large, these result in more than one peptide identification per spectrum and

thus carry more information than single-peptide spectra. In the Yeast dataset

there are a total of 28,993 single-peptide spectra identified by M-SPLIT as 5,873

unique peptides. In addition, M-SPLIT further identifies 1,505 mixture spectra

as 1,627 unique peptides, 239 of which are only identified in mixture spectra, a

summary of the overlap between the two methods is shown in figure 1.5.
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Table 1.4: M-SPLIT and InsPecT search results on the Yeast dataset [31]. a)
Numbers of identified spectra (single-peptide and mixture) and unique peptides.
b) The precision of peptide identifications was estimated by comparing the theoret-
ical precursor m/z of peptides returned by M-SPLIT or InsPecT and the observed
precursor m/z values in the corresponding MS1 scan (isotopic profile). An iden-
tification is considered correct if the difference between theoretical and observed
precursor m/z values is less than 5ppm. For mixture spectra the overall precision
is computed by dividing the number of correct peptide identifications by the total
number of identifications (i.e., twice the number of mixture spectra). The precision
for the second-peptide identifications is also shown (in parenthesis); this precision
is lower because the second peptide in the mixture is usually of low-abundance
(average α = 0.3) and thus harder to identify.

a) Spectrum and peptide identifications in the Yeast dataset

Spectrum Identifications Unique peptides
Single-peptide Mixture Total

InsPecT 19,297 n/a 19,297 4,486
M-SPLIT 28,993 1,505 30,498 6,089

b) Estimated precision in the Yeast dataset

Method Single-peptide matches Mixture matches
InsPecT 98% n/a
M-SPLIT 98% 95.7% (91.4%)

1.1.11 Discussion

Despite the success of mainstream software for peptide identification from

MS/MS spectra, the ubiquitous assumption that each spectrum arises from only

one peptide is often not valid, making the interpretation difficult in such scenarios.

To address this computational bottleneck, we propose the first spectral library-

based approach (M-SPLIT) to the identification of mixture spectra generated from

pairs of peptides. Theoretical bounds were derived to prune the search space using

branch-and-bound techniques and further improved using a new projected-cosine

metric. Thus, M-SPLIT dramatically reduces the search space by six orders of

magnitude and is able to deliver results at an average of 2 seconds/spectrum (on a

regular laptop with a Pentium Core2Duo, 1.6Ghz, 2Gb RAM), even when searching

against proteome-scale spectral libraries. Despite considering only a tiny fraction

of the whole search space, our benchmarks on both simulated and experimental

data consistently show that M-SPLIT has both high sensitivity (≈ 94%) and high
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Figure 1.5: Peptide identifications with M-SPLIT and InsPecT in yeast
dataset:Peptides identified by M-SPLIT and InsPecT are compared in a Venn
diagram indicating the numbers of unique peptides in each category.

accuracy (up to 98%).

In addition to accurate peptide identification, M-SPLIT robustly quantifies

the relative abundances of co-eluting peptides at the time of MS/MS acquisition,

as determined by the fraction of MS/MS ion current assigned to each peptide. In

principle, extending this approach to relative peptide abundances per run (e.g., in

Data Independent Acquisition setups [33]) could be as simple as adding the esti-

mated intensities over consecutive MS/MS scans followed by a posteriori computa-

tion of per-run relative abundances. It should be noted that, as in other label-free

MS-based quantification approaches [34], there are MS-specific confounding factors

that may result in distortion of the observed relative abundances (e.g., peptide-

specific ionization efficiencies) and thus require follow-up experiments to validate

the observed relative abundances.

We further note that M-SPLIT makes no assumptions about the type of

query or library spectra. While M-SPLIT was developed and tested on peptide

MS/MS spectra, the current implementation is readily applicable to any type of
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spectra. In particular, it would be straightforward to extend any target spectral

library to include spectra of common peptide and chemical contaminants and thus

reduce their negative effect on peptide identifications (by matching experimental

contaminant spectra to library contaminant spectra). By blindly identifying the

best pairs in a given spectral library, M-SPLIT automatically classifies each query

spectrum as a Mixture-match, Single-match, or No-match and thus it is a gen-

eral self-adjusting tool that can be used on experimental setups promoting the

acquisition of either/both single-peptide or/and mixture spectra.

The development of mass spectrometry algorithms typically requires large

datasets with validated identified spectra that are difficult to obtain. The unavail-

ability of datasets with validated identifications of mixture spectra was a limiting

factor that we addressed in two different ways: by generating large datasets of sim-

ulated mixture spectra and by acquiring MS/MS spectra from the same sample

using different chromatographic time-scales. The level of control afforded by the

generation of simulated mixture spectra was instrumental in determining spectrum

identifiability over a range of relative abundances of co-eluted peptides. These re-

sults were then corroborated using an experimental dataset where it was possible

to provide exhaustive manual validation. As such, we were able to determine both

the accuracy and sensitivity of our approach - a commonly difficult task since

the set of true positives (and its complementary false negatives) is typically not

known in advance. After our validation, we estimate that M-SPLIT delivers a false

negative rate of only 5% at accuracy levels of up to 98%.

Focusing M-SPLIT on the identification of mixture spectra from pairs of

peptides allowed us to derive theoretical bounds and filtration techniques that can

be extended for spectra from more complex mixtures. In particular, the utility of

the projected cosine metric is likely to increase as mixture spectra become more

complex. Also, while M-SPLIT is already able to reliably annotate mixture spectra

with inaccurate fragment masses (still the dominant MS/MS acquisition mode),

its performance is very likely to further improve for high accuracy MS/MS data.

Such data could seamlessly enable the identification of co-eluted peptides at more

disparate relative abundance ratios and would likely greatly simplify the extension
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to mixture spectra from more than two peptides.

1.2 MixDB: database search of mixture spectra

Despite the rapid growth of spectral libraries, methods based on spectral

matching suffer from the limitation that peptides cannot be identified if they have

not been observed before. Moreover, while spectral library from CID fragmenta-

tion is quite comprehensive, spectral libraries from other fragmentation methods

(e.g. ETD, HCD) are still limited. Hence database search methods are still the

mainstream approach for peptide identification. Some database search tools ap-

proach the mixture spectra identification problem by reporting spectra with more

than one significant single-peptide match and do not explicitly attempt to models

the occurrence of fragment ions from two peptides in the same spectrum. False

Discovery Rates (FDR) are also left unadjusted [16, 18, 19] and may result in

higher than expected FDR for second IDs (e.g., when co-eluting peptides share a

substantial number of fragment masses). Different from previous approaches, our

new database search tool, MixDB, uses a scoring model specifically designed for

matching spectra against more than one peptides and determines separate FDRs

for identification of single-peptide spectra and mixture spectra. Below we described

our approach for the case when a mixture spectra is from two peptides.

Similar to M-SPLIT a mixture spectrum M is modeled as an MS/MS spec-

trum from two different peptides: M = A + αB and our goal is to identify

mixture spectra by comparison against all possible pairs of peptides in a given

protein sequence database. More formally, we define a peptide sequence as a vec-

tor P = p1, p2, ...pn, where pi is non-zero if there is at least one theoretical ion

mass in the corresponding mass bin. A database D is simply a set of peptides

D = {P 1, P 2, ...P n}. We can now formulate the following computational problem:
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Mixture Spectrum Identification Problem (MSIP)
Input A putative mixture spectrum M and a sequence database D.
Output A pair of peptides P i, P j ∈ D,

maximizing PPSM(M,P i, P j)
where PPSM is a given Peptide/Peptide Spectrum Match
scoring function that describes how well a pair of peptides
(P i, P j) matches the spectrum M.

1.2.1 Filtration strategy

As in the case for spectral library search, the large number of possible

peptide candidates in a sequence database (104-105 peptides in the yeast database

after precursor mass filtering with 3Da tolerance) makes searching all possible

pairs of peptides a prohibitive approach: the resulting ≈ 1010 comparisons per

query spectrum would mean that a typical dataset of 15,000 spectra would take

≈50 days to process (based on average InsPecT runtimes, previously shown to be

≈100 times faster than SEQUEST [29]), even without considering the additional

computational burden of scoring spectra against pairs of peptides. The explosion

in the number of candidate matches per spectrum also dramatically increases the

chances for false-positive matches. We used a filtration strategy that is similar to

one introduced in M-SPLIT using the concept of project-spectrum. While in M-

SPLIT we used the normalize dot-product to evaluate how good a match between

the projected-spectrum and a candidate spectrum in spectral library, here we used

a probabilistic scoring function, which will be described below, to evaluated the

match between the projected-spectrum and a candidate peptide in the sequence

database.

The efficiency of the projected-spectrum filter is determined by the highest

(i.e., worst) rank of a correct peptide match of a mixture spectrum to the database

D. Note that a correct match in D is a match to one of the peptides generating M

– single-peptide spectra have one correct match, mixture spectra have two correct

matches and thus two correct-match ranks. As shown in Figure 1.6, the resulting

ranks of correct matches indicate that the projected-spectrum filter is an efficient

filter that, for over 96% of cases, retains both correct matches (i.e., maximum ranks)

at ranks less than 500 from about 10,000 candidate peptides (yeast database, 3 Da
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precursor mass filtering). The left panel in Figure 1.1 also shows that one of the

correct matches, presumably the higher-abundance peptide in the mixture, almost

always has rank less than 10 (i.e., minimum ranks). This means that for almost

all cases one only needs to pair the top 10 candidates with the top 500 candidates

to find the correct match. Using this strategy at most 10× 500 = 5000 candidate

pairs need to be considered, thus conferring a ≈ 10,000×10,000
2×5000

= 10, 000× speedup

compared to considering all ≈ 5 × 107 = 10,000×10,000
2

possible candidate peptide

pairs.
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Figure 1.6: Filtration efficiency: Cumulative distributions of minimum rank (left)
and maximum rank (right) for correct matches of simulated mixture spectra to
the yeast database. Candidate peptides in the database are first sorted according
to decreasing score against the corresponding projected mixture spectra (typical
number of peptide candidates after precursor mass filtering is ≈10,000). The ranks
of the correct matches are then determined. Correct matches are peptides in the
database that correspond to one of the peptides used to generate the simulated
mixture spectrum. Since each mixture spectrum has two correct matches we report
both the minimum (i.e., best) and maximum (i.e., worst) rank of the two matches
in the left/right panels, respectively. As shown, in more than 96% of cases, one
of the correct matches has rank ≤ 10 (left) while the other correct match ranks
≤ 500 (right). Thus it is sufficient to pair the top 10 candidates with the top 500
candidates to find the correct pair. Using this strategy at most 10 × 500 peptide
pairs need to be considered, resulting in a speedup of four orders of magnitude
compared with considering all ≈ 5× 107 possible peptide pairs.
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1.2.2 Scoring function for Peptide/Peptide Spectrum
Match

While scoring a peptide against an MS/MS spectrum is a well studied prob-

lem in proteomics, few scoring functions have been designed to handle more than

one peptide [16]. Here we describe a general probabilistic model for scoring Pep-

tide/Peptide Spectrum Matches (PPSMs). First we briefly review the model for

single-peptide matches (PSMs) [35] and show how to extend the approach for

PPSMs.

As described above, an MS/MS spectrum is represented as a vector of n bins,

each representing a mass interval of width δ. A bin has value zero if there is no peak

in the corresponding δ-Dalton interval otherwise it is non-zero. For experimental

MS/MS spectra the raw intensity in each bin is first transformed into peak intensity

rank (ranked from most to least intense), whereas for a theoretical spectrum bin

values indicate the ion type (e.g., b-ion or y-ion) that generates the peak. Hence

we define an experimental spectrum S = s1, s2, ...sn as a vector where si ∈ R

(peak ranks, always positive integers) and a peptide P = p1, p2, ...pn as a vector

where pi ∈ I (ion types). When multiple ion types fall into the same bin, we keep

track of all the ion types associated with that particular bin. The probability of

a peptide P generating a spectrum S is defined as Prob(S|P ) =
∏n

i=1 Prob(si|pi),
where Prob(x|y) is an arbitrary |R| × |I| matrix representing the probability that

an ion type y in the peptide generates a peak with rank x in the spectrum. When

there are multiple ions associated with a particular bin in peptide P we choose the

ion that maximizes Prob(si|pi). Formally, if we denote pij as each of the ion types

that associate with the ith bin in P then we have Prob(si|pi) = maxjProb(si|pij).
Finally, the score of a peptide P against a spectrum S is defined as the ratio of

the probability that S is generated by the peptide P versus the probability that

S is generated by a peptide string of all zeros (i.e., all peaks interpreted as noise).

We express this score as the sum of a log odds ratio:

Score(S, P ) = log

(
Prob(S|P )

Prob(S|0)
)

=

n∑
i=1

log
Prob(si|pi)
Prob(si|0) =

n∑
i=1

score(si, pi)

The values of Prob(si|pi) can be learned from a training dataset of annotated
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single-peptide spectra; similarly the noise model Prob(si|0) can be trained using

the rank distribution of unassigned peaks in the same annotated single-peptide

spectra. The learning is done separately for peptides of different precursor charge

and length to account for their different fragmentation statistics (see [35] for full

details of this model).

In order to score mixture spectrum matches, we extend this model for pairs

of peptides (P,Q). We first define a score vector as:
−−−→
Score(P, S) = [Score(s1, p1), Score(s2, p2) ... Score(sn, pn)]

where each element is the value of scoring the ith element in P against the ith

element in S. Without loss of generality we refer to the highest-abundance peptide

in the pair as P . To score a pair of peptide against the observed spectrum we first

generate a score vector for each peptide:
−−−→
Score(P, S,Hi) = [Score(s1, p1, Hi), Score(s2, p2, Hi) ... Score(sn, pn, Hi)]
−−−→
Score(Q, S, Lo) = [Score(s1, q1, Lo), Score(s2, q2, Lo) ... Score(sn, qn, Lo)]

where Hi and Lo indicates the relative abundance of P and Q. Then we combine

the two score vectors into the final score for the PPSM :

Score(M, (P,Q)) =
∑n

i=1max(Score(si, pi, Hi), Score(si, qi, Lo)).

The max operation handles the dependency among the two peptides matched to

the spectrum. This way score for a particular peak will not be double-counted

when theoretical fragment ions from both peptides matched to the same observed

peaks in the mixture spectrum.

Also noted that different scoring models are used for the high-abundance

peptide P and low-abundance peptide Q respectively to capture their difference

in fragmentation pattern. To show this we generated a dataset of 100,000 simu-

lated mixture spectra and compute their fragmentation statistic for each peptide.

As shown in Figure 1.7, fragment ions from high-abundance and low-abundance

peptides have quite different peak rank distributions. Scoring models for single-

peptide spectra do not capture these characteristics of mixture spectra. Therefore,

a scoring model that explicitly models fragment ions from pairs of peptides is

needed.

Because peptides with different charge states and length have different frag-
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Figure 1.7: Fragmentation statistics for mixture spectra: Statistics are computed from

a set of simulated mixture spectra. As shown in figure, fragment ions from high-abundance and

low-abundance peptides in mixture spectra have different distribution of peak ranks (peak ranked

from most intense to least intense). Scoring function that design only for single-peptide spectra

do not capture this characteristic of mixture spectra. Thus scoring function that distinguish and

explicitly model fragment ions from high/low-abundance peptides in mixture spectra are used in

MixDB. Probability shown in the table is the total probability that a particular ion type is being

observed in the training data, they correspond to the area under each curve.

mentation patterns [35], we divided library spectra into four categories according

to their identified peptides as shown on the left below:

a) Number of spectra per peptide category

Peptide Length
Long Short

Precursor charge, z = 2 17016 15197 Short: ≤ 13aa
Precursor charge, z = 3 6819 6949 Short: ≤ 19aa

b) Mixture spectrum categories⎧⎪⎪⎨
⎪⎪⎩

Long, z = 2
Long, z = 3
Short, z = 2
Short, z = 3

⎫⎪⎪⎬
⎪⎪⎭×

⎧⎪⎪⎨
⎪⎪⎩

Long, z = 2
Long, z = 3
Short, z = 2
Short, z = 3

⎫⎪⎪⎬
⎪⎪⎭

This separation results in a total of sixteen categories of mixture spectra

by pairing spectra from each category with spectra from another category (see
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above right); the 100,000 simulated spectra were divided into 16 sets using the

above categorization. A separate scoring model was then trained for each different

type of mixture spectra. The considered ion types were: b, b(iso), b − H2O, b −
NH3, y, y(iso), y−H2O, y−NH3, where b(iso) and y(iso) indicate the first isotopic

peak of b/y ions, respectively. We consider doubly-charged peaks for spectra from

charge two precursors and both doubly- and triply- charged peaks for spectra from

charge three precursors. Peak ranks are divided into bins as follows: 1) one rank

per bin for rank 1-20; 2) five ranks per bin for ranks 20-60; 3) ten ranks per

bin for ranks 60-150 and one last bin for all peaks ranks 150 or higher. Because

our scoring function distinguishes between high-abundance and low abundance

peptides in mixture spectra and during searching we do not know which candidate

peptide is of higher abundance, we score a query spectrum against a candidate

pair (P,Q) by comparing the observed spectrum against two theoretical spectra,

one with P and another with Q as the higher abundance peptide; the higher score

is the final PPSM score.

The performance of this scoring model is first evaluated using a set of

simulated mixture spectra generated from a different dataset than that used to

generate the training dataset. Using single-peptide spectra identified by both In-

sPecT and M-SPLIT in a previous study [36], we simulated mixture spectra with

α = 1.0, 0.5, 0.3, 0.2, 0.1 as described above. The percentage of cases where the top

peptide pair returned by MixDB is correct is shown in Table 1.5. As expected,

as α decreases the performance worsens because it becomes harder to identify the

lower abundance peptide. We also compared the performance of MixDB with M-

SPLIT, our spectral library search tool previously shown to be efficient and robust

in identifying mixture spectra. On average, M-SPLIT correctly identifies 15% more

mixture spectra than MixDB. In general, spectral library search methods have two

main advantages over database search methods: the relative intensities of differ-

ent fragment ions are known in advance and the number of peptide candidates

is smaller. In order to understand the relative importance of these two factors,

we also evaluated MixDB when searching only against peptides with spectra in

the NIST spectral library. As can be seen from Table 1.5, with a reduced search
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space, MixDB has similar performance to M-SPLIT. We also compare MixDB with

an iterative search strategy where one first identifies the highest-scoring peptide,

removes all annotated peaks from the spectrum and then uses the ”residual” spec-

trum to search against the database a second time to identify the second peptide.

As we can see in Table 1.5 when α is high, the performance of the iterative method

is comparable with that of the combined scoring function. However, as α becomes

smaller, it is better to consider both peptides at the same time.

Table 1.5: Sensitivity of selecting the correct pair of peptides from the spectral
library/protein sequence database. MixDB and M-SPLIT were evaluated on a set
of 5000 simulated mixture spectra. Each row indicates the percentage of cases
when the top ranking pair is correct; numbers in parenthesis indicate fraction of
cases when one of the top ten peptide pairs is correct. Two types of database
search were performed. In the first (MixdB), each spectrum was searched against
all Yeast tryptic peptides. In the second (MixDB*), each spectrum was searched
only against peptides with spectra in the NIST Yeast spectral library. In gen-
eral M-SPLIT spectral library search was found to have better performance than
MixDB database search. However, as shown in the fourth column, the main ad-
vantage of spectral library search was the reduction in the number of possible
peptide candidates. We also compared the MixDB’s performance with an iterative
strategy where: 1) the dominant peptide is identified; 2) peaks explained by the
top peptide match are removed from the spectrum and 3) the residual spectrum is
again searched against the database to identify the second peptide. When the mix-
ture coefficient α is high the iterative strategy has similar performance to MixDB;
however, as α becomes smaller, MixDB’s scoring of both peptides at the same time
results in considerably better performance than the iterative strategy.

Mixture coefficient (α) M-SPLIT MixDB MixDB* Iterative method
1:1 97 87 (97) 95 (98) 81
1:0.5 92 79 (92) 90 (98) 74
1:0.3 80 66 (86) 79 (92) 57
1:0.2 63 50 (77) 69 (87) 30
1:0.1 34 19 (43) 34 (70) 6

1.2.3 Classification of database search matches

A database search of MS/MS spectra will always identify some top-scoring

peptide or peptide pair for any given query spectrum, even if the true match is

not in the database. To assess whether the top match is significant we use a two-

stage classifier to distinguish true matches from false positive matches. Since our
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goal is to build a general search tool that can identify both single-peptide and

mixture spectra we consider three possible outcomes when searching a given query

spectrum S:

• No-match: S does not match any peptide in the database

• Single-peptide match: S matches one peptide in the database.

• Mixture match: S matches a pair of peptides in the database.

Classification of the top matches is done using two Support Vector Machines(SVM)

[37]. The first SVM distinguishes No-match cases from Single-peptide / Mixture

matches and the second SVM distinguishes Single-peptide matches from Mixture

matches (see Figure 1.9). To build the SVMs we consider the PPSM score described

above and several other features that have been found useful in distinguishing true

matches from false positives in single-peptide spectra, namely:

• 1) likelihood score for one peptide match: likelihood score while considering

only matched peaks from one peptide.

• 2) likelihood score divide by peptide length: score from 1) divided by the

number of amino acids in the top candidate peptide.

• 3) explained intensity: total intensity of annotated peaks divided by total

intensity of the spectrum.

• 4) fraction of b and y ions present (2 features): number of b and y ions

present in the spectrum divided by the number of b/y ions possible from the

peptide.

• 5) longest consecutive series of b and y ions (2 features).

• 6) average mass error between theoretical and observed masses.

Features 2-6 are computed separately for each peptide in the top pair, resulting in

a total of 16 feature inputs to the SVMs To train the SVM models, we constructed

two negative control datasets. The No-match dataset consists of 5000 mixture
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spectra where the peptides used to create the mixture spectra are deleted from

the database. The Single-match dataset consists of 2500 single-peptide spectra

and 2500 mixture spectra where one peptide in the mixture is removed from the

database. These two datasets were combined with another dataset of 5000 mixture

spectra (Mixture-match dataset) and searched against the database. For all sim-

ulated mixture spectra, the mixture coefficient α was selected uniformly from 0.1

to 1. The top matches from each dataset were used as training data for the SVM

models. The training is carried out in a two-step fashion. In the first step, top

matches from the No-match dataset were treated as negative cases and correct top

matches from the Single-match and Mixture-match dataset were used as positive

cases. In the second step correct top matches from the Mixture-match dataset

were used as positive cases while all top matches from the Single-match dataset

and No-match dataset were used as negative cases. The performance of the SVM

models were assessed using 10-fold cross-validation (shown in figure 1.8).

1.2.4 Estimation of False Discovery Rates

False Discovery Rates (FDRs) were estimated by extending the standard

Target-Decoy strategy for database search [30]. Depending on whether each pep-

tide in the top peptide pair comes from the Target or Decoy databases, matches

are divided into the following possibilities: TT – both peptides matched Target,

TD – the most abundant peptide matched Target and the least abundant pep-

tide matched Decoy, DT – the most abundant peptide matched Decoy and the

least abundant peptide matched Target and DD – both peptides matched Decoy.

When searching mixture spectra there are two possible outcomes for identification:

single-peptide matches and mixture matches, each with a separate corresponding

FDR. The FDR for single-peptide matches is defined as: FDRmatch = DT+DD
TT+TD

and

the FDR for mixture-spectrum identification is defined as: FDRmixture =
TD
TT

(see

figure 1.9). Note that DT and DD peptide pairs will never advance to the second

SVM because they are rejected as false positives after FDRmatch; only TD and TT

matches are considered by the second SVM as candidate mixture matches.
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Figure 1.8: Classification of database search matches: Three sets of simulated
mixture spectra were constructed: 1) spectra where both peptides match the Yeast
protein database (Mixture match), 2) spectra where only one peptide matches the
Yeast protein database (Single-peptide match) and 3) spectra where neither pep-
tide matches the Yeast protein database (No match). Each spectrum was searched
against the Yeast protein database and the top matches were used as training data
to build two SVM models: one distinguishing No-match from Mixture and Single-
peptide matches and a second SVM model distinguishing Mixture matches from
the other two types of matches. The performance of the SVMs was assessed using
cross-validation. Left: Precision/Recall curves when distinguishing No-matches
from Single-peptide and Mixture matches and Right: Precision/Recall curves
when distinguishing Single-peptide matches from Mixture matches.

1.2.5 Identification of mixture spectra in Yeast data

To illustrate the utility of our method in a typical scenario, we tested our

database search method on an experimental Yeast dataset [31], generously made

publicly available in Tranche/ProteomeCommons [32] by researchers at Vanderbilt

University. In brief, a tryptic digest of Saccharomyces cerevisiae was analyzed on

an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific) and MS/MS

spectra were acquired using a data-dependent scanning mode in which each full

MS scan (m/z 300–2000) was acquired on the Orbitrap at resolution 60,000, fol-

lowed by 8 MS/MS scans collected on the LTQ (see [31] for full details). The

data were analyzed using InsPecT [29], MixDB and ProbIDtree [16] with 3 Da

parent mass tolerance and 0.5 Da fragment mass tolerance against the SGD yeast
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Figure 1.9: Workflow of SVM classification and FDR estimation: Every query
spectrum searched against the database becomes assigned to some peptide pair
(PA, PB) that best matches the spectrum. Depending on whether the matched
peptides come from the Target or Decoy databases, each match falls in one of
four categories: Target/Target(TT), Target/Decoy(TD), Decoy/Target(DT), De-
coy/Decoy(DD). All matches are ranked according to their SVM1 score to assess
whether the most abundant peptide (PA) in each paired match (PA, PB) is sig-
nificant. As with the standard Target/Decoy strategy, matches with PA from
Target are considered positive matches and matches with PA Decoy are considered
negative matches. Therefore, the FDR for single-peptide matches is computed as:
FDRmatch = DT+DD

TD+TT
and the SVM1 score is thresholded to yield FDRmatch < 0.01.

Matches with SMV1 score above the threshold are then ranked by their second
SVM scores to evaluate whether the second peptide (PB) in the top match (PA, PB)
is also significant. As before, matches PB from Target database are considered pos-
itive matches and those with PB from Decoy are negative matches. Thus the FDR
for mixture matches is computed as: FDRmixture =

TD
TT

and SVM2 scores are also
thresholded such that FDRmixture < 0.01.

protein database (ver.5/8/2009 ); a 1% false discovery rate was enforced using a

target/decoy strategy and the only modification allowed was carboxamidomethyla-

tion on cysteine. Although data collected with these survey scan setting typically

features very high mass accuracy, we allowed a large precursor mass tolerance in

the searches to find possible MS/MS spectra from co-eluting peptides. In short,

InsPecT is able to identify a total of 22,658 single-peptide spectra, MixDB is able

to identify 23,930 single-peptide spectra plus 978 mixture spectra and ProbIDtree
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is able to identify 19,840 single-peptide spectra plus 821 mixture spectra. Since

the Yeast dataset was acquired with high-accuracy survey scans, this information

was further used to validate the annotations by requiring the presence of the the-

oretical monoisotopic m/z value of the identified peptides in the corresponding

survey scans. Since for low-abundance peptides the monoisotopic m/z may not be

visible in the corresponding survey scan (observed in only ≈ 0.7% of all cases and

only for the lower abundance peptide in mixture spectra), in such cases we also

check one preceding and one subsequent survey scan for the monoisotopic m/z. An

annotation is considered correct if the theoretical precursor m/z is within 5ppm

of the observed m/z; the results are summarized in Table 1.6. We first focus our

attention on single-peptide cases. As seen in Table 1.6b) all three database search

methods achieve similar precision of ≈ 97%. A more detailed comparison in Fig-

ure 1.10 shows that 78.4% and 68.2% of MixDB’s annotations overlap with those of

InsPecT and ProbIDtree, respectively. For all spectra for which both MixDB and

InspecT/ProbIDtree make an annotation, more than 96% of them have the same

peptide ID, indicating that these independent methods are consistent. Among

those spectra that are only identified by MixDB or InsPecT/ProbIDtree, we fur-

ther divide them into two categories – those where two methods identify the same

peptide as the top hit and those where the two methods have a different top hit.

Those in the ”same-top-hit” category are more likely to be correct, since differ-

ent scoring functions rank them as the same top peptide candidate. If we consider

these cases, it increases MixDB’s overlap with InsPecT and ProbIDtree to 90% and

85%, respectively, further indicating very good agreements between these different

methods. Overall, for identification of single-peptide spectra, all three database

search methods have comparable accuracy while MixDB identifies approximately

6% more spectra than InsPecT and 21% more spectra than ProbIDtree. This shows

that MixDB’s performance in identifying single-peptide spectra was not diminished

by trying to identify more than one peptide per spectrum.

For mixture spectra, MixDB identifies 978 spectra while ProbIDtree iden-

tifies a total of 821 spectra (see Table 1.6a) . MixDB identified two peptides in

each mixture spectrum, while ProbIDtree found 32 mixture spectra with more



37

Table 1.6: Search results on the Yeast dataset for MixDB, M-SPLIT, InsPecT
and ProbIDtree. a) Numbers of identified spectra (single-peptide and mixture) and
unique peptides are compared. b) To allow for identification of co-eluting peptides,
all searches were run using 3 Da precursor mass tolerance. The accurate precursor
mass information was then used a posteriori to estimate the precision of peptide
identification by comparing the theoretical precursor m/z of peptides returned by
each method and the observed precursor m/z values in the corresponding MS1 scan
(isotopic profile). An identification is considered correct if the difference between
theoretical and experimental precursor m/z values is less than 5 ppm. For mixture
spectra the precision is slightly lower because the second peptide in the mixture is
usually of low-abundance (average α = 0.3) and thus harder to identify.

a) Spectrum and peptide identifications in the Yeast dataset

Spectrum Identifications Unique Peptides
Single-pep Mixture Total Single-pep Mixture Total

MixDB 23930 978 24908 5476 1128 5802
ProbIDtree 19840 821 20660 4420 820 4739
InsPecT 22658 n/a 22658 5272 n/a 5272
M-SPLIT 28417 2567 30984 5997 2394 6684

b) Estimated precision in the Yeast dataset

Method Single-peptide matches Mixture matches
MixDB 98.3% 95.9%

ProbIDtree 97.8% 90.1%
InsPecT 97.1% n/a
M-SPLIT 97.3% 95.4%

than two identified peptides. This indicates that even though more than two iden-

tifiable co-eluting peptides may appear in one MS/MS spectrum this is relatively

rare. Thus by limiting mixture spectra to two peptides per spectra MixDB does

not lose much sensitivity in peptide identification. Furthermore, MixDB compen-

sates by identifying about 20% more mixture spectra than ProbIDtree (978 versus

821 mixture spectra). In addition, by limiting its search space MixDB is more

accurate. As shown in Table 1.6b, MixDB achieves a precision of almost 96%

while ProbIDtree has only ≈90% precision for mixture spectra. Two main reasons

contribute to MixDB’s higher precision. First, MixDB only searches up to two

peptides per spectrum (ProbIDtree attempts to look for up to eight peptides per

spectrum), thus theoretically it has a smaller search space than ProbIDtree. More
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importantly, MixDB applies different scores and FDRs for the first and second

identified peptides in each MS/MS spectrum (FDRmatch and FDRmixture, respec-

tively). This is crucial because high-abundance peptides are likely to have very

different match statistics (e.g., % explained intensity, % b/y ions presented) than

low-abundance peptides in mixture spectra. Because there are many more single-

peptide spectra than mixture spectra in this dataset, applying a single global FDR

for the combined identification of both single-peptide and mixture spectra can

lead to an underestimation of FDR for mixture spectra. Just as in the case of

ProbIDtree, it has an estimated precision of 90.1%×821+97.8%×19840
19840+821

= 97.94% or an

overall FDR of 2.06%. However, the precision for mixture spectra is only 90.1%,

bringing its FDR on mixture spectra to 9.9% which is much higher than its FDR

for single-peptide matches. In summary, we show that MixDB has both higher sen-

sitivity and precision than ProbIDtree in identifying mixture spectra while having

comparable performance to InsPecT in identifying single-peptide spectra.

Since spectral library methods are in general considered to be both more

sensitive and more accurate in peptide identification than database search meth-

ods [22], we use identifications from spectral library searches to further validate

the different database search methods. The Yeast dataset was analyzed using an

extension of the M-SPLIT algorithm [36] (see Supplementary Materials) and Spec-

traST [26] with default parameters against the Yeast spectral library from NIST

(ver.5/4/2009 ) with a precursor mass tolerance of 3 Da; a 1% false discovery rate

was enforced using the decoy library strategy described in [38]. Since we do not

allow PTMs in the database searches we also removed all the entries in the spec-

tral library that contain PTMs. To evaluate the performance of M-SPLIT, we first

compare it to SpectraST, the most popular publicly available method for peptide

spectral library search. In short we showed that both methods identified similar

number of single-peptide spectra and are consistent with each other. Only in ap-

proximately 6% of the spectra do the two methods identify different peptides as

top hits (see Supplementary Materials). Therefore, from here on we use results

from M-SPLIT as a reference to evaluate results from different database search

methods. As shown in Figure 1.10, M-SPLIT misses about ≈ 3600 single-peptide
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spectra identified by either MixDB or InsPecT. However, in 85%–90% of these

spectra, the identified peptides are not in the spectral library, indicating that M-

SPLIT has very high sensitivity and therefore we can use spectra identified by

M-SPLIT as a reference and compare the relative sensitivity of database search

methods. Figure 1.10 and Supplementary Figure 2 show that MixDB, InsPecT and

ProbIDtree identify 68%, 61.3% and 51.8% of the spectra identified by M-SPLIT,

respectively. Among these shared annotations more than 97% of them have the

same peptide annotation as M-SPLIT, again indicating that these database search

methods have high precision for single-peptide spectra. If we look further into

those spectra that are only identified by M-SPLIT but not by database search

methods, we find that for 60%, 30% and 11% of the cases MixDB, InsPecT and

ProbIDtree ,respectively, identify the same top hit as M-SPLIT. Altogether these

indicate that MixDB, InsPecT and ProbIDtree, have a sensitivity of 89%, 75%

and 58% for ranking the correct peptide as the top candidate. This implies that

these database search methods are able to correctly identify these spectra, but the

current scoring functions/SVM models do not have enough discriminative power

to distinguish experiment-wide true matches from false matches. Thus to keep

the FDR low, database search methods have to discard some possibly valid but

low-scoring matches.

Next, we turn our attention to mixture spectra. Similar to the single-

peptide case, most mixture spectra identified by database search methods but

missed by M-SPLIT corresponded to peptides that did not have spectra in the

spectral library (see Figure 1.10). Assuming the union of mixture spectra returned

by M-SPLIT and MixDB as the total number of mixture spectra in this dataset we

get that M-SPLIT has a false negative rate of 78
2567+95+78

= 0.0357 at ranking the

correct peptide pair as the top candidate and 95
2567+95

= 0.0274 at the classification

stage. Similar calculations for ProbIDtree results estimate the false negative rate

of M-SPLIT as 0.056 and 0.0403 at ranking and classifying, respectively. This

agrees with what we observed before [36] and again shows that M-SPLIT has high

sensitivity and can also be used as a reference to compare database search methods

for the identification of mixture spectra.
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Figure 1.10: Comparison of identifications from MixDB, M-SPLIT, InsPecT,
and ProbIDtree: All pairwise comparisons between MixDB, M-SPLIT, InsPecT
and ProbIDtree compare identification results at 1% FDR as determined by the
Target/Decoy strategy. In each pairwise comparison, spectra identified by both
methods (in the intersection, shown in purple) were assigned to the same peptide
in 96− 97% of cases, indicating that the methods are consistent and the precision
is in good agreement with our estimates. Spectra identified by one method but
not the other are subdivided into two categories: cases where the two methods
return the same peptide (peptide pair in the case of mixture matches) as the
top hit but it was below the FDR threshold for one of the methods (shown in
green) and cases where the two methods do not return the same peptide as the
top hit (shown in black). In general MixDB has high overlap with other database
search methods. For single-peptide spectra MixDB finds the same top peptide
match as other methods in 85% – 90% of cases. When using spectra identified
by spectral library search as a reference set, MixDB is able to identify 6% – 16%
more single-peptide spectra and 38% more mixture spectra than current database
search methods. Taken together, these show that MixDB has better/comparable
sensitivity and accuracy in identifying single-peptide spectra as well as significantly
higher sensitivity and accuracy in the identification of mixture spectra.

Out of the 2567 mixture spectra identified by M-SPLIT, MixDB is able to

identify 615 while ProbIDtree is able to identify 282. If we look at these cases
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closely, we find that about 2460 mixture spectra identified by M-SPLIT come from

peptides with charge 2 and 3, the only possibilities considered by MixDB. This

means MixDB has a sensitivity of 25% while probIDtree has a sensitivity of 12%.

If the two peptides in mixture spectra are considered independent and observing

that MixDB has a sensitivity of 60% for single-peptide spectra, we expect MixDB

to identify 60% ∗ 60% = 36% of all mixture spectra identified by M-SPLIT. This

calculation makes the assumption that the two peptides are present at similar

abundance, which, as shown in previous section, is the easiest scenario for iden-

tification of both peptides in mixture spectra. In practice, one peptide is present

at lower abundance in most mixture spectra and in the yeast dataset, the average

mixture coefficient α estimated by M-SPLIT is only 0.3. Thus having a sensitivity

of 25% is a reasonable performance for MixDB. In addition, for a large fraction

of mixture spectra (1051/1953) that MixDB did not classify as mixture matches,

it identified the same top peptide pair per spectrum as M-SPLIT, but again the

current SVM model does not have enough discriminative power to separate true

matches from false positives. The extension of more sophisticated statistical mod-

els that have been proposed for single-peptide spectra [21] to mixture spectra is

likely to increase the sensitivity of database search methods.

In order to estimate how the presence of more than one peptide affects

current computational techniques in peptide identification, we performed a more

detailed comparison between MixDB and InsPecT on the 2567 mixture spectra

identified by M-SPLIT. As described above, the problem of peptide identification

consists of two sub-tasks: 1) ranking the correct peptide as the top scoring can-

didate per spectrum among all the other peptide candidates in the database and

2) experiment-wide discrimination of correct peptide matches from false, but top

scoring matches. We evaluated how the presence of more than one peptide affected

each of these tasks. First we compared whether InsPecT and MixDB are able to

correctly rank one of the peptides in the mixture as the correct top match. As

shown in Figure 1.11, InsPecT is able to rank one of the correct peptides at the

top for 75% of cases. On the other hand, MixDB is able to achieve this goal for

more than 95% of the cases and is further able to rank both correct peptides as
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the top for 65% of cases. This shows that by relaxing the assumption that each

MS/MS spectrum comes from only one peptide, we gain a sensitivity of ≈ 20% in

ranking the correct peptides in mixture spectra as top candidates. At a 1% false

discovery rate, InsPecT is able to classify 53% of all mixture spectra as single-

peptide matches, while MixDB is able to classify 68% of cases as matches, with

24% of these classified as mixture matches. Since each mixture spectrum contains

information for two peptides and InsPecT is able to identify one peptide for 53%

of the cases, this means InsPecT is able to recover about 53% × 0.5 = 26.5% of

all peptide information in mixture spectra. In contrast, MixDB is able to identify

both peptides in 24% of cases while identifying one peptide in another 43% of

cases, thus resulting in a recovery rate of 24% + 43% × 0.5 = 46% of all iden-

tification contained in mixture spectra. Recall that MixDB and InsPecT have a

sensitivity of 68% and 61.3% for identifying single-peptide spectra. This means

that the presence of co-eluting peptides does not interfere significantly with the

ability of current database search methods to identify the most dominant peptides

(only a 9% drop in sensitivity). As for MixDB the sensitivity for the presence of

co-eluting peptides does not affect its ability to identify the most dominant peptide

in the spectra, since for mixture spectra it also has a sensitivity of approximately

68%.

1.2.6 Discussion

As increasingly more complex samples are analyzed in high-throughput pro-

teomic experiments [7] and new data acquisition protocols evolve [10, 11, 12, 39],

the occurrence and detectability of co-eluting peptides per MS/MS spectrum is

likely to increase. The almost ubiquitous assumption that most mainstream com-

putational methods make, namely that every MS/MS spectrum comes from one

peptide affects their ability to identify spectra from co-eluting peptides [9]. While

in this study the effect is only moderate for InsPecT, a ≈ 10% decrease in sen-

sitivity was observed, it is also worth noting that mixture spectra contain more

information than single-peptide spectra. In our analysis of a yeast dataset, M-

SPLIT, MixDB and ProbIDtree identified 5997, 5476 and 4420 unique peptides



43

2567 mixture spectra

InsPecT MixDB
Iden�fied at least 
one correct 
pep�de as top hit1925 2467

1361

Classified as 
matches

Iden�fied both 
pep�des as top 
match

1666

6151103

801

Classified as 
single-
matches

Classified as 
mixture-
matches

Figure 1.11: Comparison of InsPecT and MixDB result on mixture spectra:
To study how the presence of co-eluting peptides affects database search results,
mixture spectra identified by M-SPLIT were searched against the Yeast database
using MixDB and InsPecT. InsPecT was able to rank one of the correct peptides as
the top match in 75% of cases, while MixDB was able to rank one of the peptides as
the top match in 95% of cases and ranked both correct peptides as the top match
in 65% of cases, showing that MixDB gains 20% higher sensitivity in spectrum
identification by relaxing the assumption that each spectrum comes from only
one peptide. After imposing score thresholds at 1% FDR, InsPecT was able to
classify 53% of cases as single-peptide matches, while MixDB was able to classify
24% of cases as mixture matches and an additional 43% of cases as single-peptide
matches. Since each mixture spectrum contains information for two peptides,
InsPecT recovers 27% = 53%×0.5 and MixDB recovers 46%=24%+43%×0.5 of
the peptide information contained in mixture spectra.

from 28417, 23930 and 19840 single-peptide spectra, respectively. However, they

were able to identify 2394, 1128, and 820 unique peptides from 2567, 978, 821

mixture spectra, thus revealing MixDB’s rate of 1128/978=115% peptide IDs per

mixture spectrum versus 5476/23930=23% peptide IDs per single-peptide spec-

trum. These results show that if dynamic range challenges can be addressed (e.g.,

by selectively isolating precursors of comparable abundance [39]) then protocols

designed to generate mixture spectra have the potential to substantially improve

peptide identifications while considerably decreasing the number of MS/MS scans

required to obtain these identifications. In addition, due to the lower-abundance

nature of most of second IDs from mixture spectra, they are less likely to be sam-

pled again by the instrument and may not even be detectable without a co-eluting
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peptide. Altogether, methods that consider more than one peptide per MS/MS

spectrum can potentially double the sensitivity in recovering peptide information

from mixture MS/MS spectra.

However, this higher information content comes at a cost in that the com-

binatorial explosion of searching for best peptide pairs dramatically increases the

search space for mixture spectra. Thus, effective filtration strategies and special

consideration for controlling the FDR become crucial in achieving high precision

in the identification of mixture spectra. Similar to the development of any mass

spectrometry algorithm, a large dataset of reliably identified spectra is crucial and

is often hard to come by. In this study we addressed this issue with comprehensive

simulations and by taking advantage of the public availability of the yeast spec-

tral library [40] and experimental data [31]. Spectral library search methods are

in general considered to be more sensitive and accurate for peptide identification

[22] and in this case the yeast spectral library is also comprehensive (i.e., only

a small fraction of peptides identified by database search method are not in the

library). Thus we can use identifications from spectral library searches as the refer-

ence ”truth” and comprehensively benchmark various aspects of different database

search methods. We showed that MixDB has good sensitivity and high precision

in identifying both single-peptide spectra and mixture spectra.

The development of computational methods and novel experimental strate-

gies often rely on each other. For example, because mainstream computational

approaches assume each MS/MS spectra comes from one peptide, development of

chromatography and mass spectrometry protocols has focused on making this as-

sumption valid for most cases. However, with a new generation of algorithms that

are able to identify mixture spectra, experimental protocols designed to generate

mixture spectra may lead to many interesting applications. There are already

several alternative data acquisition approaches that rely on mixture spectra to

overcome the limitations of current instrument scan rates [10, 11, 12]. Mixture

spectra also arise from peptides that are covalently linked in the sample, examples

include disulfide bridges [41], SUMOlyated peptides [42] and peptides from cross-

linking experiments [43, 44]. The identification of these cross-linked peptides can
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provide valuable information on protein structures and interactions. Thus solving

the problem of peptide identification from mixture spectra represents an important

step toward addressing related and emerging problems in proteomics.

1.3 MixGF: computing statistical significance
for mixture spectra matches

Previous sections shows that MixDB can accurately and efficiently identify

mixture spectra and comparison with other database search methods shows that

MixDB can identify significantly more mixture spectra [17]. However it still only

identifies about half as many mixture spectra as our mixture spectral library search

tool M-SPLIT [36]. Comparison of the results between the two methods reveals

that current version of MixDB suffers from relative low sensitivity due to its limited

ability to separate true matches from false positives - still an ongoing research

problem even for the case of single-peptide spectra [18, 21, 20, 21]. Capitalizing on

recent advances using a generating function approach to rigorously compute the

statistical significance of PSM, we propose to extend the MS-GF [21] approach.

Below we first show how to rigorously compute statistical significance for a PPSM

in mixture spectra. Applying this approach (MixGF) on both simulated and real

datasets, we show that MixGF improves the sensitivity of identification of mixture

spectra by 26-76% over MixDB [17] and by 110-162% over ProbIDtree [16].

1.3.1 Scoring function for mixture spectrum

We represent a tandem mass (MS/MS) spectrum as a real-value vector

with N bins where each bin represents a mass interval of width δ Da (δ depends

on instrument resolution). For an experimental spectrum: V = v1...vN , each

vi is the sum of the intensity of all peaks fall into the ith bin. We represent

a peptide P as a set of prefix residue masses (PRMs) which is defined as the

sum of amino acid mass for each peptide prefix. For P with PRMs: p1....pn,

we define pn as the parentmass and note that for each pi, we can compute a set

of theoretical fragment ions, Tpi, that can be generated from the peptide. For

example, if we consider only b and y ions, a singly charged b-ion will have mass
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pi + 1 and a singly-charged y-ion will have mass pn − pi + 1. Therefore, the

set of all theoretical fragment ions from a peptide, T , can be considered as the

union of all Tpi: T = Tp1 ∪ Tp2... ∪ Tpn . A probabilistic scoring model such as that

described in [35] defines the score for a Peptide-spectrum-match (PSM) as the sum

of scores of matching each theoretical fragment ion against the observed peak in

the spectrum. Using such additive scoring model we can then compute a combined

score for a set of theoretical fragment ions, Tpi, and associate this score with the

corresponding PRM, pi. Since the above operation can be done for any PRM, we

can construct a PRM spectrum as a spectrum: S = s1...sN where each mass bin

i has a score si that represents the log-likelihood that the peptide generated the

observed spectrum has a prefix mass i(see [45] for details). For a peptide P with

prefix masses p1....pn the score of matching it against a spectrum is the sum of

all the scores at its prefix residue masses in the PRM spectrum: SCORE(P, S) =

sp1 + sp2 ...+ spn.

We define a mixture spectrum as a spectrum from two different peptides.

When interpreting an MS/MS spectrum as a mixture spectrum M , we construct

two PRM spectra, MH and ML, to represent the two scoring models for the high

and low-abundance peptides present in the mixture spectrum, respectively. As

we showed in MixDB [17], different scoring models are needed for high and low-

abundance peptides because they have quite distinct fragmentation statistics in

mixture spectra. Without loss of generality, when matching a mixture spectrum

(M) against a pair of peptides (P , Q) we assume the first peptide is the high-

abundance peptide. Thus the score of a pair of peptides (P , Q) against a mixture

spectrum M will be the sum of scoring P with MH and scoring Q with ML:

SCORE(P , Q, M) = MH
p1
+ ...MH

pn +ML
q1
+ ...ML

qn . To avoid double counting, when

a prefix mass of P is the same as a prefix mass of Q, only the bin with the higher

score is considered and the other peptide gets a score of zero for that particular

mass position: when pi = qj : if(M
H
pi

> ML
qj
){ML

qj
= 0}else{MH

pi
= 0}.
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1.3.2 Spectral probability for a mixture spectrum

The statistical significance of a particular peptide P matched to a spec-

trum S with score T is determined by the probability that a random peptide R

(out of all possible peptides) when matched to S has a score greater or equal to T :

Pr(SCORE(R, S) > T ). From here on we will refer to this as the Single-peptide

probability in order to better distinguish it from the other definitions introduced be-

low. Analogously, to compute the statistical significance of a particular peptide pair

(P ,Q) matched to a mixture spectrum (M) with a score of T , we are interested in

two statistical questions: 1)Joint probability ≡ Pr(SCORE(R1, R2,M) > T ): the

probability that a random peptide pair (R1, R2) (out of all possible peptide pairs)

when matched toM yields a score greater or equal to T and 2) Conditional probabil-

ity ≡ Pr(SCORE(R1, R2,M) > T | R1 = P ): given a peptide P , the probability

that a random peptide R2 (out of all possible peptides) together with P when

matched to M yields a score greater or equal to T . Intuitively a Peptide/peptide

spectrum match (PPSM) can fall into three categories: 1) Correct-matches : both

peptides are correct matches; 2) Half-correct matches : one peptide is correct and

the other peptide is an incorrect match; 3) Incorrect-matches : both peptides are

incorrect matches. We are interested in separating the correct matches from in-

correct and half-correct matches. The formulation above addresses this question

in two steps. The joint probability assesses the chance that two random peptides

can have the same or higher score than the current best match. When this proba-

bility is very low, this means that at least one peptide is a statistically significant

match to the spectrum (i.e. correct or half-correct match). Once we assume that

at least one peptide is a true match, the conditional probability helps us evaluate

whether the second peptide is also a statistically significant match (i.e. correct

matches). In summary, one is looking for PPSMs with both low joint probability

and conditional probability.

In order to compute the probabilities mentioned above we need to know

the score distribution for all possible peptides and peptide pairs. The original

MS-GF [21] approach uses dynamic programming to compute the single-peptide

probability efficiently without explicitly consider the scores for all peptides. Here
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we extend this generating function approach to compute the probability for joint

and conditional probability. Let JM be a three-dimensional dynamic programming

matrix where each element JM(pi, qj, T ) stands for the joint probability that a pair

of peptides P , Q with parent mass pi and qj match to M with score higher than

or equal to T . When there are no shared peaks between P and Q this means P

matches to MH up to the pthi bin and Q matches to ML up to qthj bin. We can

define the following recurrence relationship for computing joint probability:

JM(pi, qj , T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if pi < qj :∑
all amino acids a

JM(pi, qj −mass(a), T −ML
qj
)× prob(a)

if pi > qj :∑
all amino acids a

JM(pi −mass(a), qj , T −MH
pi
)× prob(a)

if pi == qj :

∑
a1

∑
a2

JM(pi −mass(a1), qj −mass(a2), T −max

{
MH

pi

ML
qj

}
)

×prob(a1)× prob(a2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In the equation above a, a1, and a2 denote amino acids; mass(a) denotes the

mass of an amino acid and prob(a) denotes the probability that a particular amino

acid occurs in a peptide. When considering all possible peptide sequences this

probability is uniform and has a value of 1
20

for each of the 20 standard amino acids.

To better reflect the amino acid composition observed in real protein sequences we

can also obtain this probability by computing the frequency of each amino acid

in the protein sequence database against which the spectra are searched. To start

the computation of the recurrence, we initialize JM(0, 0, 0) = 1.

The computation of the conditional probability is very similar to that of

single-peptide probability, except that it is conditioned on the first peptide being

accepted as a match. Specifically, for a peptide pair (P , Q) matched to a spectrum

M with score T , we define that peptide P and Q contribute TP and TQ to the total

score, respectively. Assuming that peptide P was matched to M , we define a two-

dimensional dynamic programming matrix CM where each element, CM(qj, T |P ),
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represents the conditional probability that a peptide with parent mass qj together

with P match M with a score greater than or equal to T . To compute this prob-

ability, we first modify ML by setting all the bins corresponding to a prefix mass

of P to zero if MH has a higher score at the same location. Then Conditional

probability can be computed using the following recursion:

CM(qj, T |P ) =
∑

all amino acids a

CM(qj −mass(a), T −ML(qj)|P )× prob(a)

We initialize the recurrence with the base case: CM(0, TP |P ) = 1. The base case

starts at score TP rather than zero because the first peptide P already contributes

TP to the total score.

We note that even though the joint probability assesses whether at least one

peptide is a significant match to the spectrum, it does not determine which peptide

is the significant match in the case only one peptide is significant match. More

importantly, when calculating the conditional probability one assumes that the first

peptide is a true match but it is unclear which peptide is the first peptide from the

joint probability assessment. In order to resolve this ambiguity, for a candidate

peptide pair (P ,Q) matched to a spectrum M , we compute their respective single-

peptide probabilities and the peptide with lower (i.e. statistically more significant)

single-peptide probability is designated as the first peptide.

1.3.3 Approximating joint probability

The dynamic programming approach above enables us to compute the Joint

probability without explicitly computing the scores for all peptide pairs. However

the computational complexity still scales exponentially with the number of peptides

that possibly generated the observed spectrum (e.g., quadratic for two peptides).

Thus it is desirable to find a way to approximate this probability efficiently. To

derive this approximation we borrow an intuition from the definition of conditional

probability where the joint probability of two random events (R1, R2), is equal to

the probability of one event times the conditional probability of the second event

given the first event: Prob(R1 ∧ R2) = Prob(R1)×Prob(R2|R1). Analogously we
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can decompose the joint-probability question into two simpler questions: 1) what

is the probability of finding a random peptide that matches toM with a score equal

or better than TP ? and 2) once we find a first peptide P what is the probability of

finding a random peptide that together with P scores equal or higher than T when

matched to M? Note that the first question is just the single-peptide probability

and the second question can be answered with the conditional probability. There-

fore we can define the following approximation: Pr(SCORE(R1, R2,M) > T ) ≈
Pr(SCORE(R1,M) > TP )×Pr(SCORE(R1, R2,M) > T |R1 = P ). From here on

we refer to this approximation as the Product-probability. While this formulation

is not exactly equivalent to the definition of joint probability (because it does not

explicitly consider the dependencies between all possible pairs of peptides that can

be matched to the mixture spectrum), both single-peptide probability and condi-

tional probability can be computed efficiently in linear time and we show in the

next section that this approximation is sufficiently accurate for our main use of

joint-probability – to separate correct from incorrect matches to mixture spectra.

1.3.4 Classification of matches

Since a typical proteomic dataset contain both single-peptide and mixture

spectra we consider three possible outcomes when searching a given query spectrum

M : 1) No-match: M does not match any peptide in the database; 2) Single-peptide

match: M matches one peptide in the database and 3) Mixture match: M matches

a pair of peptides in the database. We start out by assuming that each query

spectrum is a putative mixture spectrum and considered its top-scoring PPSM.

Then a two-step procedure is used to separate true mixture matches from false

mixture matches. At the first stage, all PPSMs with joint probability greater than

a threshold are filtered out and considered as incorrect mixture matches. Then

PPSMs with conditional probability greater than a threshold are also filtered out

and are considered as half-correct mixture matches. The probability thresholds

are determined such that it enforces a particular false discovery rate (FDR, see

next section). All PPSMs that pass both the joint and conditional probability

threshold are considered as Mixture-matches. Next all the remaining spectra that
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Joint probability < 
threshold1*

Condi�onal probability < 
threshold2

Single-matches

Mixture-matches

Peptide pair matches: (A + B) 

Yes
No

YesNo

Single-pep�de probability < 
threshold3

No-matches

No Yes

Peptide matches: A

*Probability thresholds are 
detemined by a enforcing a false 
discoery rate using target-decoy 
approach

Figure 1.12: Classification of matches: All query spectra are first assumed to
be putative mixture spectra and their top-scoring PPSMs are considered. PPSMs
with joint and conditional probability passing a particular threshold are classified
as Mixture-matches – spectra that match to two peptides in the database. The
probability threshold for each joint and conditional probability is determined by
enforcing a particular FDR using a target/decoy approach. Next, spectra that
do not pass either probability threshold are treated as single-peptide spectra by
considering the first peptide in each PPSM as the peptide match to the spectrum.
Then single-peptide probabilities are calculated and those with probability passing
a FDR-determined threshold are considered as Single-matches – spectra that match
to only one peptide in the database.

do not pass either probability threshold are re-considered as single-peptide spectra.

Each PPSM is converted into a PSM by considering the first peptide as the match

to the spectrum. Single-peptide probabilities are computed for all PSMs and a

probability threshold is determined to enforce a FDR for single-peptide spectra.

The workflow of this classification procedure is illustrated in Figure 1.12.

1.3.5 Estimation of False Discovery Rates

In the classification step of PPSMs, the probability thresholds are de-

termined such that they enforce a certain FDR. For the joint probability we

are interest in the FDR that an incorrect mixture match is accepted as half-

correct or correct matches: FDRJoint = #incorrect
#correct+#half−correct

. For the condi-
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tional probability we only want to accept correct matches thus we are interest

in the FDR that half-correct or incorrect matches are accepted as correct matches:

FDRConditional =
#incorrect+#half−correct

#correct
. Each of the above FDR can be estimated

by extending the Target-Decoy Approach (TDA) for single-peptide spectra [30].

However, the assumptions used in TDA first need to be generalized to the case of

PPSMs and their validity also need to be tested. The detailed derivation of the

TDA approach for PPSM will be described in next section, we first summarize

the main results below. In a set of PPSMs if we define TT to be the number of

PPSMs where both peptide matches are from the target database; TD or DT to

be the number of cases one peptide is from the target while the other peptide is

from the decoy database and DD to be the cases where both peptides are from

the decoy database, the two FDRs mentioned above can be computed using the

following formula:

FDRJoint =
DD
TT

FDRConditional =
1/2(TD+DT )

TT
.

1.3.6 Derivation of TDA for mixture spectra

False Discovery Rate (FDR) can be estimated by extending the Target-

Decoy Approach (TDA) for database search [30]. Each top scoring peptide-peptide-

spectrum match (PPSM) can be one of the following type: TT – both peptide

matches are from the target database, TD or DT – one peptide is from the target

while the other peptide is from the decoy database and DD – both peptides are

from the decoy database. A peptide from the target database can be either a

correct (C) or incorrect match (I) and a peptide from a decoy database is by

definition an incorrect match. Therefore matches in each type can be further

divided into subtypes: for example, TT can be divided into TTCC , TTCI , TT IC,

and TT II where the superscript indicates whether the peptide match is correct

or not. We can write the number of PPSMs belonging to each type as a sum of
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PPSMs belonging to its subtypes:

TT = TTCC + TTCI + TT IC + TT II (1.1)

TD = TDCI + TDII (1.2)

DT = DT IC +DT II (1.3)

DD = DDII (1.4)

TDA assumes that an incorrect peptide match has equal chance of coming from

the target or the decoy database. Therefore matches of II type has equal chance

of being TT , TD, DT and DD, making the number of II matches in equation 1-4

approximately the same: DDII = DT II = TDII = TT II . By similar argument,

the number of matches of type CI in equation 2 and the number of matches of

type IC in equation 3 should roughly be same as those in equation 1. Hence to

extend the TDA to mixture spectra we made the following assumptions:

DD = DDII = DT II = TDII = TT II (1.5)

TTCI = TDCI (1.6)

TT IC = DT IC (1.7)

To test whether these TDA assumptions hold true, we constructed a set of simu-

lated mixture spectra (see next section) and extracted the top-scoring matches of

type II, CI and CI returned by MixDB. Then we computed the relative frequency

of each peptide match being from the target or decoy database. As shown in Fig-

ure 1.13a, matches of type II has ∼ 25% chance of being TT , TD, DT , and DD.

Figure 1.13b shows that within range of random variation, matches of type CI has

equal probability of being TT and TD while Figure 1.13c shows that matches of

types IC, has equal chance of being TT and DT . Taken together, these results

show that the TDA assumption can be generalized to mixture spectra.

By substitution and rearranging terms, we can redefine the CI and IC term

in equation 1 to be:

TTCI = TD −DD (1.8)

TT IC = DT −DD (1.9)
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As described in the Method section, for MixGF, two different FDRs needed to be

computed, one is used to determine the probability threshold for joint probability

and the other for determining the threshold for conditional probability. For joint

probability we want to accept PPSMs that are of the type TTCC , TTCI , TT IC

and reject matches of the type TT II . Thus we are interest in controlling the

following FDR: FDRJoint = TT II

TTCI+TTIC+TTCC . For conditional probability one

wants to accept matches of the type TTCC and reject matches of the other types.

The FDR of the conditional probability can then be defined as: FDRCond =
1/2(TT IC+TTCI)+TT II

TT
. The 1/2 in the equation accounts for the fact that matches of

IC and CI type contribute one correct match and one incorrect match. Substituting

the terms defined above, we get:

FDRJoint =
DD

TT
(1.10)

FDRConditional =
1/2((TD −DD) + (DT −DD)) +DD

TT
(1.11)

=
1/2(TD +DT )

TT
(1.12)

1.3.7 Testing the TDA assumption for mixture spectra

In order to test whether the TDA assumption can be extended to the case

of mixture spectra, we generated a set of simulated spectra of type CI, IC and

II. We started with two NIST spectral libraries [40], one from Yeast and one

from E. Coli. Then we removed from the E. Coli spectral library any entries

that have a peptide matched to protein sequences in Yeast. This is to ensure

that any peptide matches to a spectrum from the E. Coli library is an incorrect

match when searching a Yeast protein sequence database. Mixture spectra of

type II are simulated by linearly combining two spectra from the E.Coli library

while mixture spectra of type CI and IC are simulated by linearly combining one

spectrum from the Yeast library and one spectrum from the E. Coli library. All the

simulated mixture spectra were searched against a Yeast protein sequence database

using MixDB [17]. The top-scoring match of type II. CI and IC are extracted.

Then we compute the frequency that each match is from TT , TD, DT and DD

respectively. Each experiment was performed on a set of three thousand simulated



55

mixture spectra (one thousand for each type: II, CI, CI). The experiment was

repeated twenty times to estimate the random fluctuations in the data.

1.3.8 Datasets and Data Processing

The performance of MixGF was first evaluated on a set of simulated mix-

ture spectra. As described before [36], mixture spectra were created by linearly

combining two single-peptide spectra with mixture coefficients selected from 0.3

to 1.0. Mixture coefficient is a parameter that reflects the relative abundance of

the two peptides present in the mixture spectrum. In addition, MixGF was tested

on two experimental datasets. In brief, the Yeast dataset [31] is from a tryptic di-

gest of Saccharomyces cerevisiae that was analyzed on an LTQ Orbitrap XL mass

spectrometer (Thermo Fisher Scientific) and MS/MS spectra were acquired using

a data-dependent scanning mode in which each full MS scan (m/z 300–2000) was

acquired on the Orbitrap at resolution 60,000, followed by 8 MS/MS scans collected

on the LTQ (see [31] for full details). The Human dataset is from a tryptic digest

of HEK293 cell lysate that was fractioned using Strong Cation Exchange(SCX)

and each fraction was analyzed by a LTQ Orbitrap XL ETD mass spectrometer

(Thermo Fisher Scientific) in data dependent mode. MS full scan were acquired

from m/z 350–1500 with a resolution of 60,000. The two most intense ions were

fragmented in the linear ion trap using CID and ETD (see [46] for details). For

the Human dataset only CID spectra were considered. All database searches were

performed with precursor mass tolerance of 3.0 Da and fragment mass tolerance

of 0.5 Da. For MixDB we used all the default parameters as described in [17],

except that the FDR for mixture spectra was computed using the formula de-

scribed in the previous section. For ProbIDtree, we separated all the spectra into

two sets depending on whether ProbIDtree identified only one or multiple peptide

matches to the spectrum, then an FDR was enforced using the standard TDA

method [30] for each subset. The rationale for separate FDR determination is

that we’ve shown previously that a FDR computation that combine both mix-

ture and single-peptide spectra will leads to an underestimation of the FDR for

mixture spectra [17]. The protein sequence databases used are the SGD yeast pro-
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tein database (ver.5/8/2009 ) and the Human protein database (downloaded from

NCBI refseq, ver.10/29/2010 ).

1.3.9 Separating true and false mixture spectrum matches

As described above, our main goal of computing the statistical significance

of PPSMs is to separate correct mixture matches from the half-correct and incorrect

ones. To test MixGF’s ability in these tasks, we constructed a set of simulated

mixture spectra by linearly combining pairs of single-peptide spectra. Since we

know a priori the peptides that generated each simulated mixture spectrum, we

can extract the top-scoring correct, half-correct and incorrect matches returned

by MixDB and compute their joint and conditional probabilities. As shown in

Figure 1.14a, joint probability does a very good job at separating correct matches

from incorrect matches. However there is considerable overlap between the joint-

probability of correct-matches and that of half-correct matches (see Figure 1.14b).

Further investigation of cases in the overlap region shows that for correct-matches

usually both peptides contribute moderate scores to the final combined score. On

the other hand for the half-correct matches the correct peptide often contributes a

very high score and thus even when paired with an incorrect match, the resulting

combined high score still yields a low joint-probability. Intuitively in order to

separate half-correct matches from correct matches we need to look for cases that

have high combined score as well as both peptides contributing significantly to the

total score. The concept of conditional probability defined above aims to address

exactly this question - is the score of the peptide pair (P,Q) significantly higher

than that of the single peptide P ? As illustrated in Figure 1.14c, conditional

probability indeed is a better feature to separate correct matches from half-correct

matches. Therefore a two-step procedure is used to separate correct matches from

false matches: at the first stage of MixGF, joint-probability is used to filter out

incorrect matches and then conditional probability is used to filter out half-correct

matches.
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1.3.10 Joint-probability improves the detection of mixture

spectra.

For mixture spectra, we expect joint probability to perform better at sep-

arating correct matches from incorrect matches by explicitly considering two pep-

tides. Intuitively we expect that single-peptide probabilities for correct peptide

matches to mixture spectra to be higher (i.e. worse) than those for correct matches

to single-peptide spectra. This is because the presence of a second peptide in mix-

ture spectra which will allow more peptides to match to the spectrum with high

score. However for false matches, the single-peptide probability distribution re-

mains roughly the same for both single-peptide and mixture spectra because they

are random matches in either case. Therefore the distribution of single-peptide

probabilities between correct and incorrect matches should be less well-separated

for mixture spectra than for single-peptide spectra. To show this we generated a

series of simulated mixture spectra where the first peptide is mixed with a second

peptide at 100%, 50%, 30% of the first peptide’s total intensity and then com-

puted the single-peptide probability, joint probability and product probability for

the correct matches as well as the top-scoring incorrect matches. The performance

of each probability function in separating correct from incorrect matches is shown

in Table 1.7. As expected when the second peptide is at relatively low abundance

(i.e. 30%), the performance of single-peptide probability and joint probability is

similar as the mixture spectrum is more similar to a single-peptide spectrum. How-

ever as we increase the relative abundance of the second peptide, joint probability

performs considerably better at separating correct matches from incorrect matches.

Thus we expect that as mixture spectra with more peptides become more common

in experiments, joint probability and its approximation will substantially improve

our ability to identify mixture spectra.

1.3.11 Product probabilities accurately estimate

joint probabilities

Since it is computationally expensive to compute the joint probability ex-

actly, we seek to approximate it by a product of single-peptide probability and
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Table 1.7: A set of simulated paired-peptide mixture spectra were constructed
with mixture coefficients α = 1.0, 0.5, 0.3. Single-peptide probability, joint-
probability and product-probability were computed for the correct matches as well
as the top-scoring incorrect matches returned by MixDB. Then each probability
was used to separate correct from incorrect matches. The sensitivity of accepting
correct matches at different FDR levels is shown.

Probability False discovery rate (FDR)
1% 2% 5%

α = 1.0 Single-probability 71.9 74.7 81.8
Joint-probability 93.4 94.7 96.6
Product-
probability

93.6 94.0 96.7

α = 0.5 Single-probability 85.7 87.5 92.0
Joint-probability 93.5 94.3 96.0
Product-
probability

92.6 94.1 96.1

α = 0.3 Single-probability 89.4 90.8 92.8
Joint-probability 90.2 91.8 93.8
Product-
probability

90.4 91.7 93.8

conditional probability, both of which can be computed efficiently. Using our sim-

ulated mixture spectra dataset, we compare the joint probability and its approxi-

mation. As shown in Figure 1.15, in most cases the joint probability is accurately

approximated by product probability as most data points clustered tightly along

the main diagonal. For correct matches, the product probability is sometimes lower

than the true joint probability. This can be attributed to the fact that the approx-

imation does not explicitly consider all pairs of peptides - since P is fixed there

are less opportunities for false positive matches to achieve high scores and thus

the resulting spectral probability can be smaller in such cases. However, the range

of probabilities where this underestimation occurs is well below the range where

incorrect matches tend to occur. Therefore for the purpose of separating correct

matches from incorrect matches, using the approximation is nearly equivalent to

computing the exact joint probability. As shown in Figure 1.15b, correct matches

and incorrect matches remain very well-separated whether using the product or

joint probability.
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1.3.12 MixGF increase the sensitivity of identification of

mixture spectra

To illustrate MixGF’s ability to identify mixture spectra in practical sce-

nario, we tested it on a yeast and a human dataset [31] that represent typical

proteomics analysis of cell lysate. We compared the performance of MixGF with

two current state-of-the-art database search methods for identification of mixture

spectra: MixDB and ProbIDtree. As shown in Figure 1.16 and Table 1.8 MixGF

is able to outperform MixDB and ProbIDtree by identifying 26-76% and 110-492%

more mixture spectra, respectively. We also compared different variants of MixGF

in which a different probability function was used at stage one to separate correct

matches from incorrect matches. They are all followed by using conditional proa-

bility at the second stage to separate correct matches from half-correct matches.

Note that the performance is very similar when using the joint probability or its

approximation (product-probability), further indicating that our approximation of

the joint probability is sufficiently accurate as a score for FDR-controlled identifi-

cations. It is perhaps a little surprising that using single-peptide probability has

comparable performance to using joint probability. As shown in previous section,

for mixture spectra, joint probability perform better at separating correct matches

from incorrect matches by explicitly considering two peptides. Further analysis

shows that this can be explained by the fact that in typical experimental datasets,

most mixture spectra have the second peptide at relatively low abundance (we

estimated that on average, the low-abundance peptides are at 1/3 of the intensity

of the high-abundance peptides [36]). As shown in the Method section when the

second peptide in the mixture is at relatively low abundance, the mixture spectrum

tends to be more similar to a single-peptide spectrum and thus the ability to sepa-

rate correct and incorrect matches using either Joint or Single-peptide probability

is similar in these cases.

1.3.13 Discussion

It is undoubtful that mixture MS/MS spectra from more than one peptide

will become increasingly common and important as advancement in technology
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Table 1.8: Total numbers of spectra and unique peptides identified by ProbIDtree,
MixDB and MixGF at 1% FDR are summarized. ‘Single’ indicates spectra from
which only one peptide is identifed and ‘Mixture’ indicates spectra from which
more than one peptides are identified. For MixGF, IDs are shown for the variant
where joint probability is used in the first stage to separate correct mixture matches
from incorrect mixture matches.

Dataset Method Identified Spectra Identified peptides
Single Mixture Total Single Mixture Total

Yeast ProbIDtree 21807 504 21807 4826 495 4936
MixDB 25033 748 25778 5702 895 5924
MixGF 28022 1320 29342 6315 1398 6637

Human ProbIDtree 28614 1433 30036 8479 1675 9153
MixDB 38855 5420 44275 13021 5735 15298
MixGF 39701 7052 46783 13027 6982 16080

and instrument allow us to analyze increasingly large numbers of molecules pre-

sented in complex biological samples. These new methods will certainly provide

us with a more complete and quantitative view of the proteome. However this

will also require the development of accurate computational tools to identify mul-

tiple peptides contain inside each MS/MS spectrum. Two fundamental questions

that are pre-requisites to build accurate computational tool: 1) To separate cor-

rect multiple-peptide-spectrum matches (mPSMs) from false positive ones and 2)

To estimate the false positive or discovery rate in a set of MPSMS. Here we try

to address these questions by computing the statistical significance of mPSMs.

Given a MS/MS spectrum database search tools can always return a top-scoring

peptide or multiple peptides matched to the query spectrum. By random chances

it is always possible to have some false peptide matches to obtain a high score.

This is especially true in the case for mixture spectra because the explosion of

the search space will dramatically increase the occurrence of high-scoring false

matches. Thus it is crucial to be able to compute the statistical significance of

mPSMs accurately. Here we show that for two-peptide cases, it is possible to com-

pute the statistical significance rigorously using the generating function approach

and show that the joint and conditional probability are very good features that can

separate true PPSMs from false positive ones. In addition we further show that the
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computationally expensive joint probability can be approximate accurately using

a product of conditional probabilities, which can be computed in linear time. In

order to estimate the false discovery rate (FDR) for mixture spectra, we extends

the traditional target-decoy approach (TDA). We noted that it is important to

perform the database search using a concatenated target-decoy sequence database

as this will allow us to estimate the occurrence of half-correct matches where one

peptide in the PPSM is correct and one peptide is incorrect. This is important

because just by random chance, they constitute a large fraction of false positive

matches in mixture spectra as compare to cases where both peptides are incorrect

and as we shown in the paper these cases are more difficult to separate from correct

matches.

Benchmarking MixGF performance on two datasets that represent typical

proteomic experiments, we further showed that the proposed approach is able to

identify 25%–415% more mixture spectra and 5%-70% more unique peptides as

compared to MixDB and ProbIDtree. It is worthwhile to point out that in the

yeast dataset, the number of mixture spectra is only about 4.71% of the single-

peptide spectra that were identified. However, in the human dataset where the

sample is much more complex, the number of identified mixture spectra increase to

be 17.76% of the single-peptide spectra that were identified by MixGF. This shows

that as the complexity of the sample increase, mixture spectra indeed constitute

a significant fraction of MS/MS spectra observed in the data. Such observation

is not new, several previous studies have reported that multiple precursors with

similar mass were observed within in precursor isolation window of many MS/MS

spectra. However, it remains unclear that whether these co-fragmented peptides

are identifiable and here we provide evidence that these peptides can be identified.

Since mixture spectra contain two peptides per spectrum, the comparison between

mixture spectra and single-peptide spectra is even more striking when we look at

the numbers of unique peptides identified. In the yeast dataset even though mix-

ture spectra is only 5% of single-peptide spectra, the number of unique peptides

identified in mixture spectra is 22.1% of the total number of peptides identified

in single-peptide spectra. For the human dataset the number of unqiue peptides
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identified in mixture spectra is even more than half of (53.6%) the number of pep-

tides identified in single-peptide spectra. These observation highlight the impor-

tance of moving away from the one-peptide-one-spectrum assumption for the next

generation of computational tools for identifying MS/MS spectra as instruments

advances and more complex samples are being analyzed in proteomic experiments.

This also show us the potential of the emerging data-independent-acquisition pro-

tocols (DIA) [] where multiple peptide precursors are purposely co-fragmented in

the same MS/MS spectra. Imagine that if all of our spectra in the human dataset

are mixture spectra, one could have potentially identified twice as many peptides

in the same experimental time.

Finally even though our focus in this paper is for mixture spectra that

come from two peptides, we did not make any special assumption in developing

our approach and thus MixGF should be readily extensible to cases for more than

two peptides. Mixture spectra from two peptide are perhaps the simplest mixture

spectra, but the concepts developed here to compute statistical significance of

mPSMs are the same for cases with more than two peptides and this relative

simple settings allow us empirically assess various aspects such as the performance

of separating true from false matches and computational efficiency of our approach

in computing the statistical significance. Therefore we believed solving the problem

for the case of two peptide represents an important step toward addressing the more

general scenario of mixture spectra from any number of peptides.
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Figure 1.13: Target/Decoy Approach (TDA) for mixture spectra: TDA assumes
that for an incorrect peptide-spectrum-match (PSM), the peptide has equal chance
of coming from the target (T) or the decoy (D) database. For a peptide-peptide-
spectrum match (PPSM) there are three kinds of incorrect matches: II–where
both peptides are incorrect and CI/IC – where one peptide is a correct match
and the other peptide is an incorrect match. Extending the TDA assumption to
mixture spectra will imply that a match of type II will have equal chance of being
TT , TD, DT or DD. Similarly a match of type CI will have equal chance of being
TT and TD while a match of type IC will have equal chance of being DT and
TT . In order to test these assumptions, we constructed a set of simulated mixture
spectra and extracted the top-scoring matches of type II, CI, and IC returned by
MixDB. Then we computed the relative frequency of each peptide being from the
target (T) or the decoy (D) database. As shown in the figure, within the range
of random variations, each incorrect peptide match (I) has approximately 50%
chance of being from the target or the decoy database, confirming that the TDA
assumption can be generalized to mixture spectra.
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Figure 1.14: Separating true matches from false matches: Mixture spectra were
simulated by a linear combination of two single-peptide spectra. Correct matches
are cases where both peptides in a PPSM are correct; incorrect matches are cases
where both peptides are incorrect and half-correct matches are cases where one
peptide is correct and one peptide is incorrect. The distribution of Joint-probability
and conditional probability for correct matches (blue bars) incorrect matches (red
bars) and half-correct matches (yellow bars) are shown. As shown in a), the
distributions of Joint-probability are well-separated between correct and incorrect
matches. However, there is considerable overlap between the Joint-probability
distribution of correct matches and half-correct matches (see b). On the other
hand, conditional probability is a better approach for separating correct matches
from half-correct matches as shown in c).
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Figure 1.15: Approximation of joint probability: Since it is computationally ex-
pensive to compute the exact joint probability for a mixture spectrum (scales expo-
nentially with the number of peptides), we approximate it using joint probability
defined as the product of Single-peptide and Conditional probabilities, which can
be computed in linear time. As shown in a): for most cases the Product-probability
accurately approximate the joint probability (most points cluster tightly around
the main diagonal). For correct-matches, there are some cases falling below the
main diagonal. This shows that the approximated probability is sometimes lower
than the true joint probability for correct matches. However, for the practical
purpose of distinguishing correct-matches and incorrect-matches, the two distri-
butions remain very well separated using either the exact joint probability or its
approximation as shown in the Precision/Recall curve on the right.
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Figure 1.16: Identification of mixture spectra in yeast and human dataset: Num-
bers of mixture spectra identified by ProbIDtree, MixDB and MixGF are com-
pared. The different variants of MixGF differ by the probability (indicated in
parenthesis) that is used in the first stage to separate correct matches from incor-
rect matches. It is always followed by using conditional probability in the second
stage to separate correct matches from half-correct matches.



Chapter 2

Identification of peptides with
complex posttranslational
modification

In recent years the focus in proteomics has shifted from cataloging the “parts

list” of gene products inside the cell toward understanding the structural and func-

tional properties of proteins in a systematic and high-throughput manner [3]. A

key step toward this goal is the comprehensive characterization of protein post-

translational modifications (PTMs). These “decorations” on the protein surface

have been shown to play crucial roles in determining a protein’s activity state,

localization, turnover rate and interactions with other proteins [47, 48]. Recent

advances in mass spectrometry (MS) and enrichment protocols that selectively

capture peptides with specific PTMs have enabled the detection of many PTMs

on a large scale, thus providing scientists with a global view on various PTMs and

their interplay at a systems level [49, 50, 51, 52, 53]. However, such success has

mostly been limited to PTMs that result from the addition of a relatively simple

chemical group to one or more amino acid residues in the proteins. Common ex-

amples include acetylation, deamidation, phosphorylation and oxidation. These

modifications can be readily identified with tandem mass spectrometry (MS/MS)

by considering characteristic shifts in peptide precursor mass as well as in modified

fragment ion masses. However, more complex PTMs, such as glycosylation [54],

Small Ubiquitin-like Modification (SUMOylation) [55] PUPylation [56] and AD-

Pribosylation [57], present a more difficult problem because the PTMs themselves

68
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are large and complex molecules rather than simple chemical moieties, creating

unusual “branched” structures for the modified peptides. As a result, these modi-

fied peptides display rather different fragmentation pattern than their unmodified

counterparts, thus new experimental and computational methods are needed for

the analysis of peptides with complex PTMs.

We propose an automated approach, Specialize (Spectra of complex PT-

Modified peptides identification tool), to derive new algorithms for any type of

modified peptide fragmentation. To illustrate the concept, we focus on one specific

example of complex PTMs (SUMOylation) and use it to demonstrate the feasi-

bility and practicality of our approach. Small Ubiquitin-like Modifiers (SUMO)

are small proteins of around 100 amino acids that reversibly attached to sub-

strate proteins to modify their functions. SUMOylation have been shown to be

involved in many cellular pathways such as cellular trafficking, cell cycle, DNA re-

pair and replication [58]. It is also implicated in several neurodegenerative diseases

such as Alzheimer’s disease and Huntington disease [59, 60]. Similar to ubiquiti-

nation, SUMOylation is regulated by a series of enzymatic reactions involving

SUMO-activating enzymes, conjugating enzymes and SUMO E3 ligases that co-

valently attach SUMO to substrate proteins via an iso-peptide bond between the

C-terminus of SUMO and a specific lysine residue on the substrate protein. Previ-

ously it was thought that SUMOylation occurred within a strict consensus motif

[XK(D/E)] [61] but more recently it has been shown that several motifs including

an “inverted” consensus motif, a hydrophobic patch motif and a phosphorylation

dictated motif exist as common localizers of SUMOylation [62]. It has also been

observed in many cases that SUMOylation can occur on lysine residues not located

within any pre-determined motif, hence the increased need for unbiased methods

to detect SUMOylated lysine residues. Upon enzymatic digestion of SUMOylated

proteins, peptides that contain the SUMO conjugation site will be covalently linked

to a C-terminal remnant or tag of SUMO, resulting in ‘y-shape-like’ linked pep-

tides (see Figure 2.1a). Unbiased detection of this type of linked peptide is the

most informative as it provides direct evidence that a protein is a SUMO substrate

as well as revealing the specific amino acid site of SUMOylation. However these
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branch-linked peptides present several challenges when being analyzed by MS/MS

methods to detect SUMOylated lysine residues.

First, the attachment of a SUMO tag to the substrate peptide inhibits

tryptic digestion due to steric hindrance and therefore inaccessibility of the en-

zyme to the SUMO-conjugated lysine residue, generating peptides with internal

lysine which are unusual in unconjugated tryptic peptides. In addition, the SUMO

tag resulting from tryptic digestion is relatively large, ranging from 20–30 residues

depending on the isoforms of SUMO. As a result the SUMO tag tends to dominate

the MS/MS spectrum and make it difficult to identify the substrate peptide using

current MS/MS methods. In order to address these issues, previous studies have

generated SUMO mutants by inserting a lysine/arginine at specific positions along

the SUMO C-termini tail so that shorter SUMO C-termini tags (4–6 residues)

can be generated upon trypsin digestion[63, 64, 65, 66, 67]. On the other hand,

alternative enzymes such as chymotrypsin, GluC and LysC can also be used to gen-

erate shorter SUMO tags (4− 12 residues) attached to the substrate peptides [68],

making them more suitable for MS/MS analysis.

Even as we circumvent these hurdles and manage to generate SUMOylated

peptides with favorable properties to be analyzed by tandem mass spectrometry,

it remains a challenge to interpret the resulting MS/MS spectra because almost all

mainstream database search algorithms are trained on MS/MS spectra from linear,

unlinked peptides. In contrast, an MS/MS spectrum from a SUMOylated peptide

contains a mixture of fragment ions from both the substrate peptide and the SUMO

tag. In addition, the linkage of two peptides together results in fragmentation

patterns that are different from those of common linear peptides. While there have

been several attempts to address these issues, none of them captured the specific

fragmentation pattern of SUMOylated peptides due to the lack of appropriate

training data [69, 70]. Here, we propose a novel experimental and computational

hybrid procedure to reliably generate large MS/MS reference data for SUMOylated

peptides which are then used to derive a database search algorithm capturing the

PTM-specific fragmentation patterns of SUMOylated peptides.
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2.1 Method overview and results

2.1.1 Fragmentation pattern of SUMOylated peptides

In order to obtain a large MS/MS dataset with identified SUMOylated pep-

tides we designed and synthesized three combinatorial peptide libraries, each with

a SUMO C-terminus tag (QQQTGG) attached via a lysine residue at different posi-

tion along the peptide (see Figure 2.2). The peptide libraries are designed with the

goal of promoting sequence diversity while also representing a realistic model of en-

dogenous SUMOylated peptides. For example, in library III the known consensus

motif for SUMOylation is incorporated into the sequence pattern. The synthetic

SUMOylated peptide libraries were analyzed using an LTQ-Orbitrap mass spec-

trometer and MS/MS spectra were identified using our proposed two-step search

strategy that takes advantage of the special design of the library peptides (see

Figure 2.2). A total of 10216 MS/MS spectra from SUMOylated peptides were

identified, corresponding to 3492 unique peptides. To our knowledge this is the

largest mass spectral dataset for SUMOylated peptides known to date. From

this training data, we studied the PTM-specific fragmentation pattern of SUMOy-

lated peptides. First the prominence of the SUMO fragment ions presented in the

MS/MS spectra was assessed by the fraction of total ion intensity corresponding

to SUMO tag fragments. As shown in Supplementary Figure 2.3, SUMO fragment

ions can contribute a large fraction of the total intensity in MS/MS spectra, rang-

ing from 10-60% of total intensity, with an average of 20%. To put these statistics

in context we also show the fractions of total intensity from linked substrate pep-

tides (light-blue) and from common, unlinked peptides (dark blue line). Since the

SUMO tag represents a significant fraction of total ion intensity in the MS/MS

spectra, our new database search method, Specialize, considers all possible frag-

ment ions from both the SUMO tag and the substrate peptide when matching a

SUMOylated peptide against a query spectrum rather than simply treating it as a

peptide with a big mass offset at lysine residue as is presently modeled in current

database search methods (see Figure 2.1b). Moreover, we use a separate scoring

model for the substrate peptide and SUMO tag to account for their difference in



72

fragmentation statistics (see Supplementary Figure 2.4a).

In addition to generating extra fragment ions, the conjugation of a SUMO

tag to a substrate peptide changes its physicochemical properties and thus changes

its fragmentation pattern in MS/MS spectra. Conceptually, fragment ions from

SUMOylated peptides can be divided into two categories: linked-fragments and

unlinked fragments (see Figure 2.1c). Linked fragment ions are from peptide frag-

ments which remain covalently linked to a second peptide. Assuming there is no

double-fragmentation, for substrate peptides, these are fragments that are linked

to the SUMO tag; for the SUMO-tag peptide, these are fragments that are linked

to the substrate peptide. In general, unlinked fragments resulted in fragmenta-

tion patterns similar to those of common, unlinked peptides (see Supplementary

Figure 2.4b) while linked-fragments resulted in fragmentation patterns substan-

tially different from those of unlinked peptides (see Supplementary Figure 2.4c).

In particular, multiply-charged fragments are more prominent (i.e. fragment ions

have more intense peaks). This makes intuitive sense because linked fragments are

covalently attached to a second peptide which contains an additional N and C-

terminus that are also available to capture additional charges. Specialize accounts

for these characteristics by introducing different ion models for linked and unlinked

fragments (e.g. linked b-ions vs. unlinked b-ions). Therefore, during training of

the Peptide-Spectrum-Match scoring function, separate probabilistic models are

used for linked and unlinked fragments.

2.1.2 Identifying SUMOylated peptides in combinatorial

peptide library

To benchmark our new database search method, Specialize, we searched

MS/MS spectra from the three synthetic peptide libraries using a standard database

search tool, InsPecT [29], with variable Lysine modifications +599.266 Da (for

SUMO tag QQQTGG) and +582.239 Da (for SUMO tag with a pyro-Q modifica-

tion). Because the training and testing data were the same for Specialize in this

case, we split the data evenly into two subsets and trained Specialize on one subset

and tested it on the other subset to avoid overfitting (i.e., 2-fold cross validation).
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Figure 2.1: Conceptual model of SUMOylated peptides a) Small Ubiquitin-like
Modifiers (SUMO) are small proteins that reversibly attach to substrate proteins
to regulate their functions. Upon enzymatic digestion of SUMO-conjugated pro-
teins, peptides that contain the SUMO conjugation site in the substrate protein
have a SUMO C-terminus remnant (or SUMO tag) covalently attached to the
lysine residue, resulting in ‘y-shaped’ peptides. Here we use QQQTGG as an ex-
ample of SUMO-tag, which is the last six amino acid residues at the C-terminus
of Human SUMO2 protein. b) SUMOylated peptides are modeled as two pep-
tides: a substrate peptide carrying a modification of mass +599 Da (the mass
of the SUMO tag) at the lysine residue and a peptide with sequence QQQTGG
carrying a modification at the C-terminus with mass equal to that of substrate
peptide (which is assumed to be 1650 Da for illustration purposes). Theoretical
fragments from a SUMOylated peptide are represented as two sets of fragment
ions, one set from the substrate peptide and another set from the SUMO tag pep-
tide. This way, different scoring models can be used for the substrate peptide and
the SUMO tag to account for their distinct fragmentation patterns. c) Fragment
ions from SUMOylated peptides are divided into two categories: linked-fragments
and unlinked fragments. Linked fragments are from peptide fragment ions that
are covalently linked to a second peptide. Linked and unlinked fragments have dif-
ferent fragmentation statistics and thus different scoring models are used to score
each type of fragment.
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Figure 2.2: Generating training data using combinatorial synthetic peptide li-
braries We designed and synthesized three combinatorial peptide libraries, each
with a SUMO tag (QQQTGG) attached via a lysine residue at a different position
along the library peptide. The sequence pattern for each library is shown on the
left. The symbols X and h stand for variable positions where multiple amino acid
residues are possible. MS/MS spectra from peptide libraries were identified using a
two-step search strategy. First for library I, since the SUMO tag is attached to the
library peptide at the first residue, this is essentially equivalent to the substrate
peptide having a prefix extension of QQQTGG. Thus, we can identify MS/MS
spectra from library I by searching a database where the sequence QQQTGG is
concatenated to the N-terminus of every possible peptide sequence in library I.
This initial set of identified MS/MS spectra from SUMOylated peptides was used
to build a SUMO-specific database search tool to identify MS/MS spectra from
libraries II and III, which are more a realistic representation of SUMOylated pep-
tides. Identified spectra from library II and III were then incorporated into the
training data to build an even better scoring model. This refined method was used
to search the spectra from all three libraries to obtain a final set of MS/MS spectra
from SUMOylated peptides.

As shown in Table 2.1, Specialize identified three to seven times more MS/MS

spectra from SUMOylated peptides than InsPecT. To provide some perspective,

we also ran InsPecT on a Yeast dataset [31] representing a typical proteomics ex-
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Figure 2.3: Contribution of ion intensity from SUMO tag We computed the
fraction of ion intensity corresponding to fragment ions from the SUMO tag in our
training data. As shown in a) the fragment ions from the SUMO tag contribute
a significant fraction (10-60%) of total intensity in the MS/MS spectra (red line).
The fractions of total ion intensity from SUMO tag peptides are compared to
those from substrate peptides (cyan), substrate peptide and SUMO tag combined
(magenta) and linear, unlinked peptides (blue). b-d) show examples of identified
MS/MS spectra from SUMOylated peptides from the synthetic peptide libraries.
Peaks explained by substrate peptides are colored blue, while peaks explained by
SUMO tag are colored in red. Peaks correspond to neutral-losses or explained
by both substrate peptide and SUMO tag are colored in black. Figure d) shows
an example in which peaks from the SUMO tag dominates the observed MS/MS
spectra.

periment designed for linear, unlinked peptides. Out of the 76,177 MS/MS spectra

in the Yeast dataset, InsPecT identified 22,658 spectra corresponding to an iden-

tification rate of 29.7%. However in the three synthetic libraries of SUMOylated

peptides, the identification rate for InsPecT drops to 3.2-16.4% (see Table 2.1),

substantially lower than that of the Yeast dataset even though the combinatorial

peptide libraries are much less complex samples than the Yeast lysate. This sup-
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ports the observations that attachment of SUMOylation tags to substrate peptides

indeed changes peptide fragmentation patterns in a way that limits the ability of

current database search tools to identify MS/MS spectra from SUMOylated pep-

tides. In contrast, using Specialize’s scoring models that capture SUMO-specific

fragmentation characteristics, the identification rate in the SUMOylated peptide

libraries was increased to 19-44.7%, which is comparable to InsPecT’s identification

rate for linear, unlinked peptides.

Table 2.1: MS/MS spectra from each synthetic peptide library were analyzed by
Specialize and InsPecT and the number of identified spectra and unique peptides
from SUMOylated peptides are shown. Numbers inside the parenthesis indicate
the identification rate which is the percentage of total number of spectra that are
identified. The Yeast dataset represents a typical proteomic experiment designed
for linear, unlinked peptides. In comparison InsPecT’s identification rate is much
lower for SUMOylated peptides as compared to unlinked peptides. On the other
hand Specialize’s identification rate for SUMOylated peptides is comparable to
InsPecT’s identification rate for unlinked peptides.

Numbers of identified spectra from SUMOylated peptides
Library I Library II Library III Yeast

InsPecT 743 (6.1%)** 1826 (16.4%) 531 (4.4%) 22658 (29.7%)
MXDB 2320 (19.0%) 4967 (44.7%) 2929 (24.2%) n/a

# of spectra 12202 11113 12177 76177

Numbers of unique SUMOylated peptide identified
Library I Library II Library III

InsPecT 543 941 385
MXDB 1018 1404 1070

2.1.3 Identifying SUMOylated peptides from cell lysate

In order to demonstrate Specialize’s ability to process biological samples,

we synthesized twenty peptides from the human myeloid cell leukemia protein

(MCL1 Human) with a SUMO tag QQQTGG attached to a lysine residue. Since

MCL-1 carries canonical SUMOylation motifs, these synthetic peptides were used

as a model for endogenous SUMOylated peptides. The samples were analyzed

using an LTQ-Orbitrap mass spectrometer and a total of 207 MS/MS spectra

from SUMOylated peptides were identified by Specialize. This corresponds to
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eighteen out of the twenty SUMOylated peptides synthesized. The remaining two

peptides which Specialize was unable to identify because they are very short (3

and 5 residues long), reflecting the general limitation of database search methods

in identifying short peptides (short peptides tend to have relatively few fragment

ions in MS/MS spectra).

To test the identification of SUMOylated peptides in complex samples, the

synthetic SUMOylated peptides from MCL1 were spiked into a Jurkat human cell

lysate background and analyzed by MS/MS (Jurkat dataset). From this dataset

Specialize was able to identify thirteen unique MCL1 SUMOylated peptides while

InsPecT was able to identify three unique SUMOylated peptides. To estimate the

sensitivity of identifying SUMOylated peptides, identified MS/MS spectra from

the pure MCL-1 dataset described above were used to build a spectral library of

MCL1 SUMOylated peptides. This spectral library was then used to search the

Jurkat data to determine a list of possible SUMOylated peptides that were selected

by the instrument for MS/MS analysis. Spectral library search identified a total

of 16 unique MCL1 SUMOylated peptides in the Jurkat lysate sample, thus this

indicates that Specialize has a sensitivity of approximately 13/16 ≈ 80%.

Specialize was also evaluated on two large-scale proteomic experiments from

two previous studies on SUMOylation in Human [62] and Arabidopsis [71]. Most

SUMOylation studies to date have focused on identifying potential substrate pro-

teins. While these studies often identify many potential substrate proteins after

immunoprecipitation, the number of SUMOylated peptides identified is usually

rather small, underscoring the current challenges in distinguishing true SUMO

substrates from immunoprecipitation artifacts [63, 68, 64, 65, 72, 66]. As shown

in Figure 2.5, in both SUMO datasets Specialize was able to increase the number

of identified SUMOylated peptides by 83–325% over what was identified by Mas-

cot [73]. A detailed comparison shows that Specialize was able to identify all the

SUMOylated peptides found by Mascot in the Arabidopsis SUMO dataset while

identifying 43 out of 64 SUMOylated peptides found by Mascot in the Human

SUMO dataset. Further investigation into these twenty one SUMOylated peptides

missed by Specialize showed that half of them either contain a phosphorylation
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that was not considered by Specialize or the substrate peptides are very long (e.g.

≥ 27a.a., see Supplementary Figure 2.6a). For the remaining cases, a common

feature is that the fragment ions from SUMO tag displays relatively low inten-

sity in the MS/MS spectra: an average of only 5% of the total intensity in the

spectrum as compared to 10-20% of the intensity for cases that were identified

by Specialize (see Supplementary Figure 2.6b). It is perhaps not surprising that

Specialize did not identify this sub-group of SUMOylated peptides because these

observed characteristics highlight the limitations of the peptide libraries used to

train Specialize. For example, the peptides in the libraries have a fixed length of

twelve residues, which reflects the average length of a tryptic peptide. However

this limited diversity in peptide length may lead to a scoring model that does not

capture the fragmentation pattern for long peptides very well. Similarly, in the

training data the SUMO tag always contributes a significant fraction (on average

20 − 25%) of the total intensity in the MS/MS spectra (see Supplementary Fig-

ure 2.3). As a result Specialize gives considerable weight to these fragment ions

from the SUMO tag when evaluating whether a SUMOylated peptide is a good

match to an MS/MS spectrum. When many fragment ions from the SUMO tag

are missing or of relatively low abundance in the MS/MS spectrum, Specialize is

likely to assign a low score. We argue that this may actually be a desirable feature

for automatic methods to have, since the presence of these fragment ions from

the SUMO tag help confirm that the PTM is a SUMOylation rather than some

other combination of sequence variation and modifications that happen to result

in the same peptide parent mass. Nevertheless, by capturing the specific fragmen-

tation characteristics of SUMOylated peptides, Specialize was clearly shown to be

able to substantially increase the identification of SUMOylated peptides in various

datasets.

2.2 Discussion

A key requirement for the development of efficient and accurate computa-

tional tools for the automatic identification of MS/MS spectra is the availability

of a sufficiently large set of identified spectra from distinct peptides. However,
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creating such a dataset for atypical classes of peptides is difficult without efficient

informatics tools to identify these spectra in the first place, a recurring “chicken-

and-egg” problem. Traditionally these reference datasets were only possible when

mass spectrometrists manually curated hundreds to thousands of MS/MS spectra,

but such an approach is very labor intensive and not scalable. We demonstrated

that combinatorial peptide libraries are an efficient way to address this challenge

by quickly generating large numbers of unique modified peptides. There is also

no need to enrich for modified peptides from a large background of unmodified

peptides because modifications are directly attached to the peptides during syn-

thesis. MS/MS spectra from the modified peptides are readily identified using a

search strategy that takes advantage of the design in the peptide libraries. Using

this approach, we observed two main characteristics that make fragmentation of

SUMOylated peptides different from those of linear, unlinked peptides. First, the

SUMO tag fragments contribute significantly to the total ion intensity in the spec-

trum and require search algorithms to consider both fragment ions from the pep-

tide and the PTM when matching spectra against SUMOylated peptides. Second,

the residual attachment of a SUMO tag to the substrate peptide generates highly

charged fragment ions that are not commonly observed in linear, unlinked pep-

tides. These differences in fragmentation statistics makes current database search

methods, which have mainly been designed based on linear, unlinked peptides,

inappropriate for identification of MS/MS spectra from SUMOylated peptides.

In our benchmark analysis of synthetic peptides, we observed that the identifica-

tion rate for a regular database search tool dropped by 2-10 fold when applied to

MS/MS spectra from SUMOylated peptides. On the other hand, the incorporation

of PTM-specific fragmentation statistics into Specialize increased the identification

rate of SUMOylated peptides and made it comparable to that of linear, unlinked

peptides. Further testing on several datasets unrelated to the training data demon-

strated that Specialize is able to identify significantly more SUMOylated peptides

from biological samples when compared to InsPecT or Mascot. These samples

originated from multiple species and different techniques were used to enrich for

the SUMOylated peptides, leading to different SUMO C-terminus tags present on
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substrate peptides. Specialize’s ability to identify SUMOylated peptides across

these samples demonstrates its robustness in identifying SUMOylated peptides

from various sources in an unbiased manner. One current limitation of our ap-

proach is that the training data may not generalize to all possible SUMOylated

peptides; this is illustrated by the handful of SUMOylated peptides identified by

Mascot but were not identified by Specialize. In principle, one could train a spe-

cific model for each subtype of SUMOylated peptides in order to maximize the

sensitivity of the search tool at detecting SUMOylated peptides (similar to what

is already done for peptides with different charge states). This would be readily

addressable in our framework as one can synthesize peptide libraries with more

diversity in sequence composition and length. Finally, the core concepts of the

proposed approach for developing a PTM-specific search method are not specific

to SUMOylation and can thus be used to develop new tools to identify peptides

with a wide range of complex PTMs.

2.3 Detailed Methods

2.3.1 Combinatorial peptide libraries of SUMOylated pep-

tides

We used combinatorial peptide synthesis to generate peptide libraries with

the following sequence patterns:

• I) K(QQQTGG)A[X]D[X]ES[X]LRAK;

• II) TALH[X]K(QQQTGG)[X]S[X]TFR;

• III) A[h]K(QQQTGG)[X][DE]T[X]FRAK.

Each peptide library was synthesized with a SUMO tag (QQQTGG) at-

tached via a lysine residue at position 1, 6 and 3 along the substrate peptides

respectively (see Figure 2.2). The letter in square brackets indicates that mul-

tiple residues are possible at that position. The possible residue choices are:

[X]=ARDEHLKMFPSTYV, and [h]=FILVYW. The sequence patterns were de-

signed to generate sufficient sequence variability as well as to provide a realis-
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tic model for SUMOylated peptides seen in real samples. In particular the se-

quence pattern for library III contains the canonical sequence motif ([XK(D/E)])

for SUMOylated peptides [61].

After synthesis, the peptides libraries were analyzed and identified using

tandem mass spectrometry. Samples from each library were injected via an auto-

sampler for separation by reverse phase chromatography on a NanoAcquity UPLC

system (Waters, Dublin, CA). Peptides were loaded onto Symmetry C18 column

(1.7 m BEH-130, 0.1 x 100 mm, Waters, Dublin, CA) with a flow rate of 1μL a

minute and a gradient of 2% Solvent B to 25% Solvent B (where Solvent A is 0.1%

Formic acid/2% ACN/water and Solvent B is 0.1% FA/2% water/ACN) applied

over 60 min with a total analysis time of 90 min. Peptides were eluted directly

into an Advance CaptiveSpray ionization source (Michrom BioResources/Bruker,

Auburn, CA) with a spray voltage of 1.4 kV and were analyzed using an LTQ

Velos Orbitrap mass spectrometer (ThermoFisher, San Jose, CA). Precursor ions

were analyzed in the FTMS at a resolution of 60,000. MS/MS was performed in

the LTQ with the instrument operated in data dependent mode whereby the top

15 most abundant ions were subjected for fragmentation.

2.3.2 Synthetic MCL1 dataset

All possible chymotryptic peptides with internal lysine residues in the hu-

man myeloid cell leukemia protein (MCL1 Human) were synthesized with a SUMO2

tag (QQQTGG) attached to the lysine residue. This corresponds to a total of

twenty SUMOylated peptides, including variants of the same peptide with SUMO

attached to different lysine positions. This set of synthesized peptides serves as a

benchmark dataset to test our algorithm and also as a reference spectral library for

identifying SUMOylated peptides in a real sample. To test our algorithm’s ability

to identify SUMOylated peptide in a complex mixture, the synthetic SUMOylated

peptides from MCL1 (125fmol/peptide) were also spiked into 1μg whole cell lysate

of the human Jurkat cell. The samples were then analyzed by LC-MS/MS as

described for the combinatorial peptide libraries.
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2.3.3 Identification of SUMOylated peptides from combi-

natorial peptide libraries

As illustrated in Figure 2.2, a two-stage search strategy was used to identify

the MS/MS spectra from the three synthetic peptide libraries. For peptide library

I, the SUMO tag is attached to the library peptide at the first residue, which is

conceptually similar to library peptides having a prefix extension of QQQTGG.

Thus MS/MS spectra from peptide library I can be identified by searching a custom

database where a prefix QQQTGG is added at the N-terminus of every possible

peptide sequence in library I. In addition to these target sequences, an E. coli

protein sequence database (downloaded from NCBI with Taxonomy ID: 511145,

ver. 08/25/2009 ) was used as the decoy database. The database search was

performed using InsPecT [29] with a 1% spectrum-level false discovery rate (FDR).

This allows one to identify an initial set of MS/MS spectra from SUMOylated

peptides which are then used to build a SUMO-specific database search method

(see next section) to identify MS/MS spectra from peptide libraries II and III

which are a more realistic representation of endogenous SUMOylated peptides.

Library II contains peptides with a SUMO tag attached near the middle of the

peptide while library III contains peptides whose sequence pattern conforms to

the canonical sequence motif [XK(D/E)] [61] for SUMOylated peptides. After

spectra from SUMOylated peptides were identified from libraries II and III, they

were incorporated our training data and used to build a better scoring model

for SUMOylated peptides. Finally, this improved method was used to re-search

the spectra from all three libraries to get a final list of MS/MS spectra from

synthetic SUMOylated peptides. Since InsPecT does not support small precursor

mass tolerance, it was run with 3 Da parent mass tolerance and 0.5 Da fragment

mass tolerance. Specialize search was run with a 50ppm precursor mass tolerance

and 0.5 Da fragment mass tolerance. To make the search space comparable, when

we compared the search result between Specialize and InsPecT, Specialize was

also run with a 3 Da parent mass tolerance. With 50ppm precursor mass tolerance

Specialize identified a total of 2357, 4967 and 2990 MS/MS spectra from libraries

I, II and III, respectively while with 3 Da precursor mass tolerance it identified
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2320, 4967 and 2929 spectra from SUMOylated peptides, respectively.

2.3.4 Building a PTM-specific database search method for

SUMOylated peptides

In general MS/MS spectra from SUMOylated peptides have two defining

characteristics: 1) they tend to contain a mixture of SUMO tag fragment ions

and substrate peptide fragment ions and 2) the attachment of the SUMO tag to

the substrate peptide makes higher-charged fragment ions much more prominent

than on spectra of unlinked peptides. To model the first characteristic we as-

sume that each SUMOylated peptide can only fragments once and conceptually

think of a SUMOylated peptide as a mixture of two peptides: a substrate peptide

carrying a modification of mass +599 Da (the mass of QQQTGG) at the lysine

residue and a peptide with sequence QQQTGG carrying a modification with mass

of the substrate peptide at the C-terminus (see Figure 2.1b). In common MS/MS

database search, one tries to evaluate how well a single candidate peptide matches

to an MS/MS spectrum; for SUMOylated peptides we evaluate how well a pair

of peptides (substrate peptide and SUMO tag) matches to a MS/MS spectrum.

In previous work (MixDB [17]) we introduced a probabilistic model that describes

how well a pair of peptides matches to a mixture MS/MS spectrum from co-eluting

peptides. The statistical framework used here extends that used in MixDB by fur-

ther capturing the specific fragmentation pattern of branch-linked peptides.

Briefly, an MS/MS spectrum is represented as a vector of n bins, each rep-

resenting a mass interval of width δ Da (δ depends on instrument resolution). An

experimental MS/MS spectrum is represented as a vector S = s1, s2, ...sn where

si represents the peak intensity rank (ranked from most to least intense) of the

highest-intensity peak in each bin. Similarly, a theoretical spectrum of a peptide

P = p1, p2, ...pn is represented as a vector where pi indicates the ion-type of the

fragment ion (e.g. b-ion or y-ion) with mass in that bin. The model captures pep-

tide fragmentation statistics by using a set of annotated MS/MS spectra to learn

the probability that each type of ion generates an observed peak with a given

rank: Prob(s|p). Similarly, a noise model, Prob(s|0), can be learned using unan-
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notated peaks in the spectrum (where the symbol 0 represents noise). The scoring

function for a Peptide Spectrum Match (PSM) is thus defined as the likelihood

ratio of the probability that the observed spectrum S is generated from the can-

didate peptide P versus the probability that the observed spectrum is generated

from noise: Score(S, P ) =
∑

Score(si, pi) =
∑

log(Prob(si|pi)
Prob(si|0) ). Since a spectrum

from a SUMOylated peptide is a mixture spectrum from two peptides, we can

represent a SUMOylated peptide as two vectors SUMO(P ) = (U, T ). The vec-

tor U = u1, u2, ...un encodes all possible fragment ions from the substrate peptide

(having the SUMO tag as a lysine modification) while the vector T = t1, t2, ...tn

contains all possible fragments from the SUMO tag (having the substrate peptide

as a C-terminus modification). In order to account for their different fragmentation

patterns, separate scoring models were learned to score U and T against S. For

example, for b-ion Specialize will uses a different scoring model for substrate pep-

tides (Score(s, bsubstrate) and the SUMO tag (Score(s, btag)). Thus, the likelihood

score that a spectrum S is generated from a pair of peptides (U, T ) is defined as:

Score(S, (U, T )) =
∑

max(Score(ui, pi), Score(ti, pi)). The max operation is used

to model the dependency between the substrate peptide and the SUMO tag - when

theoretical fragment ions from both U and T match to the same peak in the spec-

trum, the model assign the peak only to the theoretical fragment ion with higher

probability. This avoids using the same peak twice to support the identification

of substrate or tag peptides, which if not explicitly prevented will incorrectly bias

towards unusually high scores for pairs of peptides with shared masses for many

of their theoretical fragment ions.

In order to further capture the fragmentation statistics of branch-linked

peptides Specialize separates the fragment ions from a SUMOylated peptide into

linked and unlinked fragments (see Figure 2.1). Linked fragments are defined as

fragment ions that are covalently linked to a second peptide. Specialize introduces

new ion types to account for linked fragments. The original MixDB scoring model

considered the standard ion types: b, b(iso), b−H20, b−NH3, y, y(iso), y−H20, y−
NH3, where b(iso) indicates the isotopic peak of b or y ions. Specialize further adds

the ion types bX , b(iso)X , b−H2OX, b−NH3X , yX , y(iso)X, y−H2OX, y−NH3X
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to represent the corresponding linked-fragment ions that can be generated from

SUMOylated peptides. For each ion type Specialize considers charge states from

one to the precursor charge of the observed MS/MS spectrum. With these new ion

types, the fragmentation properties of linked-fragment ions were learned during

training and different probability/weights were assigned to linked and non-linked

fragment ions when matching a SUMOylated peptide against an MS/MS spectrum.

Since it is not known in advance whether each spectrum comes from a

SUMOylated peptide, both SUMOylated peptide candidates and non-SUMO pep-

tide candidates are considered during database search. SUMOylated peptide can-

didates are scored using models with both linked and unlinked fragment ions as

described above and unlinked peptides are scored using only models with unlinked

fragment ions. The top scoring peptide candidate, whether SUMOylated or not,

is taken as the final match for the particular query spectrum. We note that it is

important to consider both SUMOylated and unlinked peptide candidates when

searching a spectrum against a database even though the main goal is to identify

SUMOylated peptides. This is because an MS/MS spectrum generated from a

long, unlinked peptide can be mistaken as a shorter peptide candidate carrying

a SUMO modification at a lysine site near the N or C-terminus of the peptide.

These incorrect SUMOylated candidates can sometime obtain good scores, espe-

cially when they share a prefix/suffix with the correct unmodified peptide. Thus

considering both SUMOylated and unlinked candidates for every query spectrum

can reduce the chances of such false positive IDs.

After determining the highest-scoring match for each spectrum, top scoring

peptide-spectrum-matches (PSMs) from SUMOylated peptides are separated from

unlinked PSMs and scored using a Support Vector Machine (SVM) [37] to distin-

guish true matches from false positive ones. The features used in SVM were: 1)

likelihood score as described above; 2) likelihood score divided by peptide length

- score from 1) divided by the number of amino acids in the candidate peptide;

3) explained MS/MS intensity: total intensity of annotated peaks divided by total

intensity of the spectrum; 4-5) fraction of b and y ions present: number of b and y

ions present in the spectrum divided by the number of b/y ions possible from the
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peptide (2 features); 6-7) longest consecutive series of b and y ions (2 features).and

8) average mass error between theoretical and observed masses.

For SUMOylated peptides, each of the above features can be computed for

the substrate peptide and SUMO tag, thus resulting in a total of sixteen features.

Together with the combine likelihood score that consider fragments from both the

substrate peptide and SUMO tag (as described above) this define the final list of

seventeen features used in the SVM model for SUMOylated peptides. The SVM

model was trained using the identified MS/MS spectra from the combinatorial

libraries. For each training dataset, the correct PSMs were used as positive train-

ing data while top-scoring PSMs from the decoy database were used as negative

training data.

Finally all PSMs from SUMOylated peptides were sorted by decreasing

SVM score and FDR was determined using the standard target/decoy approach

(TDA). The rationale for separate FDR determination for SUMOylated and non-

SUMOylated peptides is that the match statistics for SUMOylated and unlinked

peptides are different, and thus their score distributions will also be substantially

different. Furthermore in typical large-scale experiments the number of SUMOy-

lated PSMs is expected to be small and thus we usually observed that an FDR

calculation that combines PSMs from SUMOylated and unlinked peptides together

tends to result in the underestimation of FDR for SUMOylated peptides.

2.3.5 Identification of SUMOylated peptides in biological

datasets

For the synthetic MCL1 SUMOylated peptides (pure MCL1 dataset), In-

sPecT search was run with 3.0Da parent mass tolerance and 0.5Da fragment mass

tolerance allowing for +599 (SUMO) and +582 (SUMO with pyro-glutamate) on

Lysine as variable modifications. Specialize was run with same parameters while

allowing the following two SUMO tags: QQQTGG and Q(-17.0265)QQTGG where

Q(-17.0265) indicates pyro-glutamate formation. The data were searched against

a database containing all synthetic MCL1 peptide sequences with an appended

E.coli sequence database (downloaded from NCBI, ver . 08/25/2009 ) as decoy.
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All SUMOylated peptide PSMs were extracted, then a 5% FDR was enforced using

the standard target/decoy strategy (TDA). We used a slightly higher FDR thresh-

old than the 1% that is usually used in typical proteomic experiment because the

number of spectra from SUMOylated peptides in the sample is usually small (i.e.

30-200 in the MCL1 dataset). As a result, it is difficult to get a robust estimation

of FDR using the TDA approach when only a very small number of decoy SUMOy-

lated PSMs are allowed to pass the FDR threshold (i.e. 0-2 PSMs). For the human

Jurkat cell lysate dataset with spiked-in MCL1 peptides (Jurkat dataset), searches

were done against a database containing all synthetic MCL1 peptide sequences and

a Human protein sequences (downloaded from NCBI Refseq, ver. 10/29/2010). To

estimate the sensitivity of identifying SUMOylated peptides in the Jurkat dataset,

identified spectra from SUMOylated peptides in the pure MCL1 dataset were com-

piled into a spectral library of MCL1 SUMOylated peptides. Then we searched

this spectral library against the Jurkat dataset using M-SPLIT [36] to identify a

list of potential SUMOylated peptides that are present in the sample and were

selected for MS/MS analysis.

The Arabidopsis SUMO dataset and its Mascot search results were obtained

from the original publication [71]. Because a subset of the MS/MS data were pro-

vided to us by the authors, only results in the following data files are considered

in this manuscript: MM cold 091609o.mzXML, MM Sumo hot 091609qṁzXML,

Vierstra Sumo 062209dṁzXML and Vierstra sumo 070109dṁzXML. The Special-

ize search was done using 50ppm precursor mass tolerance and 0.5Da fragment

mass tolerance against an Arabidopsis Thaliana protein sequence database (down-

loaded from UniProt, ver. 5/13/2012). The SUMO tag considered was QTGG and

Q(-17.0265)TGG. N-terminal acetylation (Nterm+42.011) and methionine oxida-

tion (M+15.995) were allowed as variable modifications on the substrate peptides.

All PSMs representing possible SUMOylated peptides were extracted and filtered

to have a precursor mass error less than 15ppm and a 5% FDR was enforced us-

ing the TDA approach. For the Human SUMO dataset [62], we only considered

MS/MS data that were generated in the Collision-induced dissociation (CID) mode

since our training data was generated in CID only. Mascot search results were ob-
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tained directly from the original publication [62]. The Specialize search was done

the same parameters as the Arabidopsis dataset except the search was against a

Human protein sequence database and the SUMO tags considered were QQTGG

and Q(-17.0265)QTGG.
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Figure 2.4: Comparison of fragmentation patterns of unlinked and SUMOylated
peptides: Fragmentation patterns are represented as the distributions of peak in-
tensity ranks for all peaks matched to a particular type of fragment ions; peaks are
ranked from most intense to least intense. The fragmentation pattern of substrate
peptides and SUMO tag are observed to have different statistics. For example,
as shown in a), H2O and NH3 losses from b-ions are more frequently observed
in SUMO tag peptides than in substrate peptides. To capture the fragmentation
pattern of SUMOylated peptides, fragment ions are divided into two categories:
linked-fragments and unlinked fragments (see Figure 2b in the main text). Linked
fragments are from peptide fragment ions that are covalently linked to a second
peptide. In general, unlinked fragments have fragmentation patterns similar to
that of unlinked peptides. As an example, the fragmentation patterns of y-ion
from unlinked peptide and SUMOylated peptide are compared in b). On the other
hand, linked-fragments have fragmentation patterns different from those of un-
linked peptides. In particular, it was observed that multiply-charged fragments
are more prominent as compared to unlinked peptides. The fragmentation pat-
tern of triply charged y-ion from unlinked peptides and SUMOylated peptides are
illustrated in c).
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Figure 2.5: Comparison of identification of SUMOylated peptides between Spe-
cialize, InsPecT, and Mascot The ability of Specialize to identify SUMOylated
peptides was tested on three datasets. The Jurkat dataset contains a set of 20
synthetic SUMOylated peptides from the human MCL1 protein spiked into a back-
ground of Jurkat human cell lysate. The Arabidopsis and Human SUMO datasets
were obtained from two previous proteomic studies on SUMO site identification.
The numbers of MS/MS spectra from SUMOylated peptides as well as the num-
bers of unique SUMOylated peptides identified by Specialize are compared with
those by identified InsPecT and Mascot. As shown in the Figure, Specialize is able
to improve the identification of SUMOylated peptides by 82.8%–325%.
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Figure 2.6: Features of SUMOylated peptides not identified by Specialize In the
Human SUMO dataset, Specialize identified 43 out of the 64 SUMOylated pep-
tides found by Mascot. SUMOylated peptides not identified by Specialize were
found to have two common features: a) the substrate peptides are of very long
length (≥ 27a.a.) or b) the SUMO tag does not fragment very well and thus re-
sults in peaks with relatively low intensity in the MS/MS spectrum. As shown in
a), SUMOylated peptides identified by Specialize (blue line) and peptides in the
human NIST spectral library (cyan line) have similar length distributions indicat-
ing that Specialize can identify peptides with a wide range of lengths. However, a
large fraction of SUMOylated peptides not identified by Specialize tend to be long
(≥ 25a.a.), indicating that the current model in Specialize may not generalize well
to the class of very long peptides. b) Similarly, in the synthetic peptide libraries,
the fragments from the SUMO tag usually contribute 10-20% of the total inten-
sity in the resulting MS/MS spectra (see Figure 2 in the main text). Such trends
were also observed for SUMOylated peptides identified by Specialize in the Human
SUMO dataset (blue line). However for the SUMOylated peptides not identified
by Specialize were observed to have much lower explained intensity from SUMO
tags, on average contributing only 5% of the total intensity (red line).



Chapter 3

Identification of linked peptides
from tandem mass spectra

3.1 Introduction

The study of protein-protein interactions (PPIs) is crucial to understand

how cellular system functions as a whole because proteins do not act in isolation.

Most cellular processes are carried out by large macromolecular assemblies and

regulated through complex cascades of transient protein-protein interactions [74].

For the past several years we’ve seen numerous high-throughput studies pioneering

the systematic characterizations of PPIs in model organisms [75, 76, 77]. These

studies mainly utilize two techniques: the yeast two-hybrid system, which aims at

identifying binary interactions, and affinity purifications followed by tandem mass

spectrometry analysis (TAP-MS), for the identification of multi-protein assemblies.

Together this has leaded to a rapid growth of known PPIs in human and other

model organisms. Patche and Aloy recently estimated that there are more than

one million interactions known to date [78].

Despite rapid progress, current methods are not without limitations [79].

For example, while the yeast-two hybrid method is plagued by poor reproducibil-

ity and high error rates, the more reliable TAP-MS method is time and labor

intensive. Thus it is not easy to extend these methods to routinely study the

dynamic nature of protein interactions, such as performing the same experiment

in different cell types or perform time-point experiments to deduce the temporal

92
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dynamics in interaction networks. More importantly, these techniques can only

identify whether proteins interact and at best identify the particular domains that

are involved in the interactions. This only represents the first step toward the

understanding of how proteins interact. A fuller understanding will come from

the three-dimensional structures of protein complexes as they provide mechanistic

insights that govern how interactions occur and the high specificity observed inside

the cell. Traditionally the gold-standard method in structural biology is x-ray crys-

tallography and there have been several efforts similar to structural genomics [80]

that aims to solve all protein complexes [81]. However, while we see the accelerated

growth of structure for protein monomers in the Protein Data Bank (PDB) [82],

the growth of structures for protein complexes remain relatively steady over the

years [78]. Many factors, including the large size and the transient and dynamic

nature the interactions has prevent many complexes from being solved by tradi-

tional approaches in structural biology. Thus, the developments of complementary

analytic techniques to probe the structure of large protein complexes have been

underway [83, 84, 85, 86, 87, 88].

Recently, one emerging and promising approach is to analyze protein struc-

tures and interactions by generating tandem mass (MS/MS) spectra of cross-linked

peptides [87]. The fundamental idea behind this technique is to generate and de-

tect pairs of amino acid residues that are close spatially close to each other. When

these linked pairs of residues are from the same protein (intra-protein crosslinks),

they provide distance constraints to infer the possible conformations of protein

structures. On the other hand, when the pairs of residues come from different pro-

teins (inter-protein crosslinks) they provide information about how the proteins

interact with each other. Cross-linking strategy dated back almost a decade ago,

but due to the difficulty in analyzing the convoluted MS/MS spectrum generated

from linked peptides it is not widely applied. With the recent advances in instru-

mentation there has been a renewal of interest in using this strategy help determine

protein structure and protein-protein interactions. However most studies so-far has

been focus on purified protein complexes. With today’s mass spectrometers capa-

ble of analyzing ten of thousand of spectra in a single experiment, it is valuable
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to extend this approach to study complex biological samples. One of the main

bottlenecks preventing this is lack of software that is able to search linked-peptide

spectra against large sequence database. Accordingly there has been several recent

efforts to develop computational method for the automatic identification of linked

peptides from MS/MS spectra [44, 89, 90, 91, 92, 93, 94]. However due to the lack

of large annotated training data, most current approach either use fragmentation

model borrowed from unlinked, linear peptides or learn the fragmentation statistics

from training data of limited size [44, 41] which may not generalized well across

different data. Here we used disulfide-bridged peptides as an example to describe

a generic procedure to a) efficiently generate a large mass spectral reference data

for linked peptides and b) use this data to automatically train an algorithm that

can efficiently and accurately identify linked peptides from MS/MS spectra.

3.2 Method overview and results

3.2.1 Building linked-peptide specific search method for

disulfide-bridged peptides

There are three major computational challenges in identification of linked

peptides. First, the covalent linkage of two peptides changes the physicochem-

ical properties of the peptides and generates new types of fragment ions which

display substantially different fragmentation statistics than those captured by ex-

isting models for linear, unlinked peptides. Second, while spectra from linked

peptides contain fragment ions from two peptides, almost all MS/MS database

search tools assume that each spectrum comes from a single peptide. The pres-

ence of two peptides in the same spectrum also creates a quadratic search space for

peptide candidates. Efficient techniques are thus needed to efficiently search this

vast search space. Finally, there is a small number of reliably identified publicly

available spectra to learn the fragmentation models for linked peptides and bench-

mark search strategy, thus making the development of these tools quite difficult.

In order to address these challenges we used disulfide-bridged peptides as an ex-

ample, designed and synthesized three combinatorial peptide libraries, each with



95

a cysteine residue at different position along the library peptides. The peptide li-

braries were then promoted to form random disulfide-bridged dimers and analyzed

with an LTQ-Orbitrap mass spectrometer. MS/MS spectra were identified using

a two-step search strategy (see Figure 3.1). A total of 5952 MS/MS spectra from

disulfide-bridged peptides, corresponding to 2976 unique linked-peptide pairs, were

identified.

P eptide library I:
K [AW][DE ]F [V S HY]A[DY ]S CVA[KR ]

Id e n tif ie d s pe ctra  
f ro m  d is u lf id e -
lin k e d  p e p tid e sS earch  w ith  in itia l sco rin g  

fu n ction  lea rn ed  f rom  
S U M Oyla ted  pep tides

P eptide library II:
[T W]A[LE ]H[F V ]S C VT [PS GY ]F[K R ]

P eptide library III:
[WA]V K [F L ]C [DE ]T [V S G Y]FA[K R ]

R e -b u ild  s c o rin g func tion , s p e cif ic 
fo r d is u lf id e d-b rid ged  p e p tide s

Allow library peptides to form dimers:

K
S UM O y lat io n

D isu lf ide  L ib ra ries an a lyzed  w ith  
LTQ-Orb itrap -Ve los: 
h igh -accu racy M S , 
low -accu racy M S /M S

Figure 3.1: Generating training data using combinatorial synthetic peptide li-
brary: In order to generate a sufficiently large training data for linked peptides
we designed and synthesized three combinatorial peptide libraries, each with a
cysteine residue at different position along the peptide. The letters in the square
bracket indicates that multiple residues are possible at that position. The peptides
libraries were promoted to form disulfide-bridged dimers and analyzed using LTQ-
Orbitrap-Velos mass spectrometers. MS/MS spectra from the disulfide-bridged
peptide libraries were identified using a two-step strategy. An initial set of MS/MS
spectra from disulfided-peptides were identified using scoring models learned from
SUMOylated peptides. Using this initial set of spectra as training data, we built a
scoring models specific for disulfide-peptides and used the improved scoring models
to search the data again to get a final list of spectra from disulfided peptides.

From this training data, we studied the fragmentation patterns of disulfide-

bridged peptides. We divided fragment ions from linked peptides into linked and

unlinked fragments. Linked fragments are fragment ions that remain covalently

linked to a second peptide and they are observed to have different fragmentation



96

patterns as compared to unlinked fragments. For example while a triply charged

y-ions are quite common in linked fragments from a charge three precursors (see

Figure 3.3), they are hardly observed for unlinked fragments. Furthermore we

observed that both linked and unlinked fragments from disulfide peptides have dif-

ferent fragmentation patterns when compared to conventional, unlinked peptides.

In general unlinked fragments display less intensity in the MS/MS spectrum as

compared to the fragment ions of the same type from unlinked peptides (see Fig-

ure 3.3a). On the other hand, for linked fragments, highly-charged fragments tend

to be more prominent as compared to those in unlinked peptides since linked frag-

ments are covalently attached to a second peptide that has an additional N and/or

C-termini able to capture charges(see Figure 3.3b). Finally we observed that dif-

ferent types of linked peptides tends to have different fragmentation patterns. In

Figure 3.3c, we compared the fragmentation patterns of disulfide-bridged peptides

and those of SUMOylated peptides, which are a special type of linked peptides

where the c-terminus of the peptide QQQTGG is linked to the lysine residue of

a second peptide (see Figure 3.1). Even though triply-charged y-ions are promi-

nent in both disulfide-bridged peptides and SUMOylated peptides, they are twice

as prominent in disulfide-bridged peptides as compare to those of SUMOylated

peptides. Thus ultimately we would want to build a specific probabilistic model

for each type of linked peptides in order to maximize the sensitivity of identifying

linked peptides from MS/MS spectra.

In order to account for these fragmentation characteristics of linked pep-

tides, our database search method, MXDB, used separate ion types for linked

and unlinked fragments (e.g. linked b fragments vs. normal b fragments, see

Method section). Therefore, the fragmentation statistics for linked and unlinked

fragment ions are captured separately and different probability/weights are as-

signed to linked and unlinked fragments when scoring a candidate linked peptide

against a MS/MS spectrum. To address the fact that a MS/MS spectrum from

linked peptides contain fragments from two peptides, MXDB uses a mixture frag-

mentation models similar to those used in [17] that explicitly account for the

co-fragmentations of two peptides (see Figure 3.2b). With this new probabilistic
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Figure 3.2: Fragmentation model of linked peptides: a) To account for fragment
ions from both of the cross-linked peptides, we model a linked peptide as two pep-
tides that carry a modification with mass equal to the other peptide. Therefore
to generate theoretical spectrum for a linked peptide we generate theoretical spec-
trum for each peptide separately and combined them into a theoretical spectrum
for the linked peptide. This allows us to build separate fragmentation models for
each of the linked peptide separately, accounting for their difference in fragmenta-
tion patterns. b) To capture the fragmentation characteristics of linked peptides,
we divide fragment ions into two types: linked-fragments and unlinked fragments.
Linked fragments are fragment ions that are covalently linked to a second peptide.
Linked fragments and unlinked fragments have different fragmentation pattern,
our scoring models use separate probabilistic models for each type of fragments.

scoring model MXDB also uses a two-stage search strategy where it focus on iden-

tifying only one of the linked peptide during first stage and then identify the other

linked peptide in subsequent stage (see Figure 3.4). This strategy helps us filter

the search space of all possible peptide pairs by several order of magnitudes, and

identify the correct linked peptide efficiently.

3.2.2 Identification of disulfide-bridged peptides from com-

binatorial peptide library

In order test MXDB’s ability at identifying disulfide-bridged peptides, we

searched MS/MS spectra from the three disulfide-bridged peptide libraries against
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Figure 3.3: In order to capture the specific fragmentation patterns of linked
peptides, we analyzed the fragmentation statistics of identified MS/MS spectra
from disulfide-bridged peptides in our reference dataset. Fragmentation pattern
is represented as the peak rank distribution of a particular type of ion observed
in the MS/MS spectra. Peaks are ranked from most intense to least intense. We
divide fragment ions from linked peptides into linked and unlinked fragments (see
Figure 3.2b). As shown in a), in general, unlinked fragments are less prominent
as compared to the same type of fragment ions from linear, unlinked peptides.
On the other hand, linked-fragments have highly charged fragments that are much
more prominent as compared to those from unlinked peptides. This make sense
since linked fragments are covalently attached to a second peptide and thus contain
an extra N and C-termi to acquire extra charges. Finally different types of linked
peptides also tend to have different fragmentation patterns. For example, as shown
in c), triply charged y-ions from disulfide-bridged peptides are twice as prominent
in the MS/MS spectra as compared to SUMOylated peptides.

all possible library peptide sequences. Starting with an initial scoring model
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AVK(+Δ)ELTG
MQK(+Δ)LMNWE
HEWK(+Δ)AIL
GGLITGMQSD
HLLERTK(+Δ)MNVV
.
.
.

Query 
spectrum:

extract pep�de to pair with  parent mass: Δ 

Best-scoring 
pair:

AVK(+Δ)ELTG
HEWK(+Δ)AIL

Figure 3.4: MXDB search strategy: In order to avoid the quadratic search space of
all possible peptide pairs in the database we adopted a two-steps search strategy.
During the first pass of the search, all candidate peptides in the database are
treated as peptides with modification at the allowable linking residues and with a
mass-offset equal to the difference between the parentmass of the query spectrum
and the parentmass of the candidate peptide. We score all peptide candidates
against the query spectrum and only retain the K top-scoring candidates for the
next stage where each candidate is paired with the remaining peptides in the
database that together with a combined parentmass added up to that of the query
spectrum. Finally the pair of peptides with the best score is returned.

learned from SUMOylated peptides, we identified an initial set of 4232 MS/MS

spectra from disulfide-bridged peptide at a 5% false discovery rate (FDR). From

this initial training dataset, we built an improved scoring models specific for

disulfide-bridged peptides and use it to identified an additional 31-62% more

MS/MS spectra from each peptide library (see Figure 3.5a). This support our

hypothesis that different types of linked peptides have different fragmentation pat-

terns and properly capture these fragmentation patterns can improve the sensitiv-

ity of identifying linked peptides from mass spectra.

An important goal of building better tools for the identifications of linked
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peptides is to enable the application of the crosslinking method in more complex

biological samples. Thus, we tested whether MXDB search can scale up to large

sequence databases. We appended the whole E. coli, Yeast and Human proteins

database as decoys to all possible library peptides respectively and search the

MS/MS spectra from the peptide libraries against these concatenated databases.

The effect of database size on MXDB’s sensitivity at identifying disulfide-bridged

peptides is shown in Figure3.5b). The general trend indicates that as we increase

the size of the database by a factor of 3.13, which corresponds roughly to a 9.8

times increase in the search space of linked peptides, there is a 20%-30% percent

drop in sensitivity. In general, it is expected as we increase the size of our search

space, the sensitivity of database search method will decreases. As a comparison,

we also searched a typical trypsin-digested yeast cell lysate dataset[31] using MS-

GFDB [46], a state-of-the-art database search tool for linear, unlinked peptides.

MSGFDB identified 27, 500 and 23, 300 spectra with 50 and 500ppm precursor

mass tolerance respectively. This means there is a approximately 18% drop in sen-

sitivity when we increase the size of search space ten times. Even though MXDB’s

drop in sensitivity is slightly worse than that observed in traditional database

search tool for unlinked peptides, the total search space for linked peptides is much

larger than those of unlinked peptides. Thus, this demonstrates MXDB’s ability

to identify disulfide-bridges peptides against proteome-scale sequence database.

3.2.3 Identification of cross-linked peptides from protein

complexes

Next we set out to test whether the fragmentation models we learned from

disulfide-bridged peptides can help us identify other type of linked-peptides. We

benchmarked MXDB on two MS/MS datasets from cross-linking experiments on

the S. Pombe 26S. proteasome and the Rabbit 20S proteasome complexes respec-

tively [95]. As we can see in Figure 3.6, in both datasets MXDB is able to identify

significantly more cross-linked peptides as compared to two current state-of-the art

database search tools for crosslinked peptides, xQuest [44] and pLink [94]. This

demonstrates that the fragmentation models learned from disulfide-bridged pep-
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Figure 3.5: Identification of disulfide-bridged peptides from combinatorial pep-
tide library: a) We compared the initial scoring model learned from SUMOy-
lated peptides to the specific scoring models we built for disulfide-bridged pep-
tides. The latter models improve the identification of disulfide-bridged peptides
by 30-50% in the peptide libraries, underscoring the fact that different types of
linked-peptides has different fragmentation patterns. b) To test MXDB’s ability
to identify disulfide-bridged peptides against whole-proteome sequence databases,
we concatenated the library peptide sequences to all E. coli, Yeast and Human pro-
tein sequences respectively and search the spectra from peptide libraries against
the concatenated database. MXDB was able to identify thousands of spectra from
disulfided peptides these large databases and the general trend shows that as the
search space of cross-linked peptides increase by approximately tenfold, the sensi-
tivity of identifying disulfide-bridged peptides decreases by 20-30%.

tides can serve as a starting scoring model for the identification of linked peptides

in general. We expect the sensitivity of identifying linked peptides will be further

improved, once we have enough training data to build a specific scoring models for

a specific type of cross-linked peptides.

To validate our search results, we mapped the identified cross-linked pep-

tides to homologous proteins with available crystal structures found in the Protein

Data Bank (PDB) [82]. We then computed the distance between the identified

cross-linked residue pairs. As shown in Figure 3.7, most of the identified cross-

links have distance within the range of the cross-linker used. Approximately 5.7%

of the identified cross-linked peptides have distance greater than 30Å, which is

considered to exceed the maximum distance range of the cross-linker. This is

also consistent with the FDR we estimated in the search resutlt using the Target-
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Figure 3.6: Identification of cross-linked peptides in proteasome complexes:
We compared the identification of cross-linked peptides between MXDB, pLink,
xQuest on two datasets from the crosslinking studies of proteasome complexes from
S. Pombe and Rabbit respectively. MXDB is able to identify significantly more
crosslinked peptides as compared to pLink or xQuest.

Decoy Approach (TDA). To evaluate whether MXDB can identify linked peptides

against large sequence databases we appended the whole E. Coli and Yeast protein

sequence database to all Rabbit proteasome proteins and searched the Rabbit pro-

teasome dataset against the concatenated databases. As shown in Figure 3.8, while

MXDB is still able to identify a large numbers of the cross-linked peptides, there

is also a noticeable decrease in sensitivity. Thus, ideally in order to maximize the

sensitivity of the identification of linked peptides, one would like to use a smaller

database if possible. However in contrast to the studies on the proteasome com-

plexes, which are relatively well-studied complexes, in many studies that involve

protein complexes we would not know ahead of time the proteins subunits that

constitute the complexes. To address this scenario, we noted that in cross-linking

experiments there are usually many unlinked peptides presented in the samples

that can inform us about the possible proteins presented in the complex. We

evaluated a two-pass search strategy where we first identified a list of candidate

proteins that are presented in the sample by searching for unlinked peptides and

peptides with dead-end linkers using MSGFDB. Then we tried to identify linked

peptides using MXDB and this reduced list of candidate proteins identified in the
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first pass. As shown in Figure 3.8, this search strategy is able to recover 83% of

the cross-linked peptides that are presented in the Rabbit proteasome sample while

searching the whole Rabbit protein database. Hence it represents a balance be-

tween the assumptions we have to made and the sensitivity of identifying of linked

peptides. This type of search strategy is readily applicable to many of the pro-

teomic studies where protein complexes are extracted from cell lysate background

using affinity purification methods.
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Figure 3.7: Structural validation of identified crosslinked peptides: To validate
the cross-linked peptides identified by MXDB, we mapped the cross-linked peptides
identified from the S. Pombe data to the crystal structure of a Yeast proteasome
(PDBID:1FNT) and cross-linked peptides from the Rabbit data to a crystal struc-
ture of the Mouse proteasome respectively (PDBID:3UNE). The distances between
the identified cross-linked residues were computed. When the distance is greater
than 30Å, we considered it to exceed the possible distance the cross-linker can
span. As shown in the Figure, out of all cross-linked peptides that can be mapped
to the crystal structures, approximately 5.8% of them has distance exceed the
maxmimum threshold, which is also in accord with the 5% false discovery rate we
estimated during our search.
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Figure 3.8: Identification of cross-linked peptides against proteome-scale
databases: To evaluate MXDB’s ability to identify cross-linked peptides against
proteome-scale database, we appended whole E. coli and Yeast protein sequence
databases to all Rabbit proteasome proteins and searched the Rabbit proteasome
data against the concatenated databases. Even though MXDB can identify a large
fraction of cross-linked peptides when searching against this large database there
is a considerable drop in sensitivity. To achieve a good balance between sensitivity
of identifying linked peptide and the complexity of database MXDB can handle,
we tested a two-pass search strategy where a list of candidate proteins that are
presented in the sample were constructed by identifying unlinked peptides against
all proteins in the database. Then we tried to identify cross-linked peptides by
searching against only candidate proteins identified in the first stage. As shown
this strategy allowed us to recover most of the cross-linked peptides while searching
against proteome-scale database.

3.3 Discussion

Chemical crosslinking and tandem mass spectrometry is a versatile and

high-throughput method to study protein structures and protein-protein interac-

tions. However, there are several challenges that needed to be addressed before

we can routinely apply this method on a large scale. In recent years we’ve already

seen many efforts in the development of novel cross-linkers [] and enrichment strate-

gies [] to improve our ability to separate linked peptides from a large background of
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other analytes in the sample and analyze them using mass spectrometry. Here we

focus on the identification part of the problem and show that having appropriate

computational methods can greatly improve our ability to identify linked peptides

from MS/MS spectra. It was recently showed that even for linear, unlinked pep-

tides, if they are products of different enzymatic digestion or analyzed by different

type of mass spectrometers, they display rather different fragmentation patterns

and properly model these fragmentation characteristics can greatly improve our

ability to identify peptides from MS/MS spectra []. For linked peptide, because

of their different physico-chemical properties the development of an appropriate

fragmentation models is even more needed for their identification and the task is

challenging because there is no sufficiently large public available reference dataset

for us to learn the fragmentation pattern. By using a novel strategy with combi-

natorial peptide synthesis, we show that it is possible to efficiently generate large

reference dataset. From this reference dataset we’ve show that linked-peptides

indeed have quite different fragmentation statistics than unlinked peptides, mak-

ing most current tools which mostly learn from unlinked peptide not suitable for

identifying linked peptides. By incorporating these linked-peptide specific frag-

mentation statistics into our new database search tool MXDB, we showed that we

are able to identify disulfide-bridged peptides against proteasome-scale sequence

databases. This scoring model also allow us to develop an efficient filtration strat-

egy that dramatically reduce the search space of all possible crosslinked peptides

pairs by several order of magnitude. Aside from addressing fundamental chal-

lenges in developing sensitive and accurate method to identify linked peptides, we

introduce a basic framework that can be adapted to any type of linked peptides,

which will simplify and expedite the development of computational tools for the

identification of other types of linked peptides.
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3.4 Detailed methods

3.4.1 Builidng training MS/MS data for linked peptides

We synthesized three combinatorial peptide libraries with the following se-

quence pattern:

• I) K[AW][DE]F[VSHY]A[DY]SCVA[KR];

• II) [TW]A[LE]H[FV]SCVT[PSGY]F[KR];

• III) [WA]VK[FL]C[DE]T[VSGY]FA[KR];

The letters in the square bracket indicates multiple residues are possible at those

positions. For example in library I, both Alanine (A) and Tryptophan (W) are

possible residues at the second position. The sequence pattern are designed to

have several desirable properties to facilitate identification:

1) Each library contain only one cysteine for disulfide-bond formation, this is to

make sure there is no ambiguity for assigning the linking site. The incorporation of

residues such as Proline that is known to produce MS/MS spectra with relatively

poor fragmentation [96] is kept low (theoretically 1/4 of peptides in library II

contain Proline).

2) We computed the theoretical parentmass of all possible disulfide-bridged peptide

pairs that can be formed from the library peptides and try to find sequence pattern

that can generate disulfided peptides with as many unique parentmass as possible.

3) In each variable position (i.e square bracket) we choose residues with different

physicochemical properties (e.g. hydrophobicity, polarity, size etc.) to potentially

maximize the separation of the possible library peptides with chromatography.

Each peptide library is designed to generate 26 = 64 unique peptides. The-

oretically each library can generated 64 ∗ 63/2+ 1 = 2017 unique disulfide-bridged

peptide pairs. This ensures that we have a sufficiently large training dataset to

learn the fragmentation pattern of disulfide-bridged peptides while at the same

time have a manageable search space so we can identify an initial set of of linked

peptides simply using a brute-force search strategy where all possible peptide pairs

are considered.



107

After synthesis, the peptides libraries were put in condition that promotes

the formation of disulfide-bridged dimers and were analyzed using tandem mass

spectrometry. Samples from each library were injected via an auto-sampler for sep-

aration by reverse phase chromatography on a NanoAcquity UPLC system (Wa-

ters, Dublin, CA). Peptides were loaded onto Symmetry ? C18 column (1.7 m

BEH-130, 0.1 x 100 mm, Waters, Dublin, CA) with a flow rate of 1 L a minute

and a gradient of 2% Solvent B to 25% Solvent B (where Solvent A is 0.1% Formic

acid/2% ACN/water and Solvent B is 0.1% FA/2% water/ACN) applied over 60

min with a total analysis time of 90 min. Peptides were eluted directly into an

Advance CaptiveSpray ionization source (Michrom BioResources/Bruker, Auburn,

CA) with a spray voltage of 1.4 kV and were analyzed using an LTQ Velos Orbitrap

mass spectrometer (ThermoFisher, San Jose, CA). Precursor ions were analyzed

in the FTMS at 60,000 resolution. MS/MS was performed in the LTQ with the

instrument operated in data dependent mode whereby the top 15 most abundant

ions were subjected for fragmentation.

MS/MS spectra from the disulfide-bridged peptide libraries were identified

using a two-step search strategy. As illustrated in Figure 3.1, an initial search was

done using scoring model learned from SUMOylated peptides against a database

containing the all possible library peptides and decoy peptides. Decoy peptides

were generated by randomly shuffling the amino acid in the library peptides while

retaining the position of K or R to keep the enzymatic termini of tryptic peptides.

SUMOylated peptides are a special type of linked peptides where one peptide is

always fixed to the sequence QQQTGG. Thus scoring model learned from SUMOy-

lated peptides can serve as a starting model to identify disulfide-linked peptides.

The details about the identification of SUMOylated peptides was discussed in

previous chapter. An initial set of MS/MS spectra from disulfide-peptides were

identified at a 5% FDR. From this initial training dataset, a scoring model spe-

cific to disulfide-bridged peptides were built and was used to search the spectra

from all three libraries again to get a final list of MS/MS spectra from disulfide-

bridged peptides. Unless otherwise noted, all searches with MXDB were performed

with 50ppm parent mass tolerance and 0.5 Da fragment mass tolerance. Then the
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results were filtered to have a parentmass error of less than 10ppm and a False-

Discovery-Rate(FDR) of 5% was enforced using a TDA [30] (see next sections)

3.4.2 Scoring models for linked peptides

In order to evaluate the match between a cross-linked peptide pair and a

observed spectrum we conceptually think of it as two peptides, each carrying a

modification at the cross-linked residue with mass equals to the parentmass of the

other peptide(see Figure 3.2). In regular database searches, we try to evaluate

how well a single candidate peptide matches to a MS/MS spectrum. For cross-

linked peptides we evaluated how well does a pair of peptides matches to a MS/MS

spectrum. In a previous work, MixDB [17], we introduced a probabilistic model

that describes how well a pair of peptides matches to a mixture MS/MS spectrum

from co-eluting peptides. The statistical framework used here extends that used

in MixDB by further capturing the specific fragmentation pattern of branch-linked

peptides.

Briefly, an MS/MS spectrum is represented as a vector of n bins, each rep-

resenting a mass interval of width δ Da (δ depends on instrument resolution). An

experimental MS/MS spectrum is represented as a vector S = s1, s2, ...sn where

si represents the peak intensity rank (ranked from most to least intense) of the

highest-intensity peak in each bin. Similarly, a theoretical spectrum of a peptide

P = p1, p2, ...pn is represented as a vector where pi indicates the ion-type of the

fragment ion (e.g. b-ion or y-ion) with mass in that bin. The model captures

peptide fragmentation statistics by using a set of annotated MS/MS spectra to

learn the probability that each type of ion generates an observed peak with a

given rank: Prob(s|p). Similarly a noise Prob(s|0) model can be learned using

unmatched peaks in the spectrum (where the symbol 0 represents noise). The

scoring function for a Peptide Spectrum Match (PSM) is thus defined as like-

lihood ratio of the probability that the observed spectrum S is generated from

the candidate peptide P versus the probability that the observed spectrum is

generated from noise: Score(S, P ) =
∑

Score(si, pi) =
∑

log(Prob(si|pi)
Prob(si|0) ). Since

linked peptides are represented as pairs of peptides, we can represent a linked
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peptide as two vectors (P,Q). The vector P = p1, p2, ...pn contains all possible

fragment ions from the first peptide while the vector Q = q1, q2, ...qn contains

all possible fragments ions from the second peptide. Without loss of generality,

we define the first peptide to be the dominant peptide that accounts for more

ion intensity in the observed MS/MS spectrum. This way we can account for

possible differences in fragmentation patterns between the first and second pep-

tides. The score that a spectrum S is matched to a pair of peptides (P,Q) is

thus: Score(S, (P,Q)) =
∑

imax(Score(si, pi), Score(si, qi)), where max is used

to model the dependency between the two peptides. When theoretical fragment

ions from both P , Q match to the same observed spectrum peak, the model only

uses the fragment ion with higher probability, thus avoiding using the same peak

twice to support the identification of linked peptides. If not explicitly prevented,

such double-counting will incorrectly bias unusually high scores towards pairs of

peptide candidates sharing many of their theoretical fragment ions.

In order to further capture the fragmentation statistics of crosslinked pep-

tides we further divide the set of fragment ion types into linked and non-linked

fragments (Figure 3.2). Linked fragments are fragment ions that are covalently

linked to a second peptide. Thus for every ion type that is used to describe lin-

ear peptides we introduce its corresponding linked ion type in our probabilistic

models. For example in our current implementation, we considered the ion types:

b, b(iso), b−H2O, b−NH3, y, y(iso), y −H20, y −NH3 for linear, unlinked pep-

tides, where b(iso) indicates the first 13C isotopic peak of a b-ion. Then we add

the ion types bX , b(iso)X , b−H2OX, b−NH3X , yX , y(iso)X, y−H2OX, y−NH3X

to represent the corresponding linked-fragment ions that can be generated from

linked peptides. For each ion type we consider charge states from one to the pre-

cursor charge of the observed MS/MS spectrum. With these new ion types, the

fragmentation statistics specific to linked peptide fragments can be learned during

training and different probability/weights are assigned to linked and non-linked

fragment ions.



110

3.4.3 Efficient database search for linked peptides

With a scoring function that properly models the fragmentation character-

istics of linked peptides, we can evaluate how well a pair of cross-linked peptides

match to a observed MS/MS spectrum. However, we still need to evaluate all

possible cross-linked peptide pairs in the sequence database to find the correct

match. When the size of the protein sequence database is large, it is not practical

to consider all possible peptide pairs in the database. Here we described a two-step

search strategy to allow us to find the correct cross-linked peptide matches without

considering all possible pairs. Since we model linked peptides as a pair of modified

peptides, we argue that for a linked peptide pair generating the spectrum, at least

one peptide should score reasonably well when matched to the spectrum alone.

Thus in the first stage of our search we will match every peptide candidate against

the query spectrum and sort them by their match score. In the second stage only

the top scoring peptides are then paired with the remaining candidates to find the

best-scoring linked peptide pairs.

Specifically, let S be a query spectrum with parent massMS, P be a peptide

with parent mass MP and P1, P2, ......Pn be a database containing n peptides. A

modified peptide P (Δ, t is peptide P with a mass-offset of Δ Da at the t-th amino

acid residue. For each peptide Pi in the database we consider all of its modified

variants Pm(Δ, t), where Δ is the mass difference between the mass of the spectrum

and the mass of the candidate peptide: Δ = MS −MPi
s.t.Δ > 0 and t is all valid

linking sites for the candidate peptide Pi. For example, in the case of disulfide-

bridged peptides, all cysteine residue positions are considered. We score all of

these modified candidate peptides against the query spectrum S and sort all the

peptide candidates according to their match score. As shown in Figure 3.9, when

we search our training data against a concatenated database of all library peptide

sequences and the whole E. Coli database which contain about 200,000 tryptic

peptides, we see that one of the correct peptide always ranks top 50 scoring peptides

and the other peptide always rank top 1000 scoring candidates. This mean that

rather than consider 200, 000× 200, 000 = 2× 1010 peptide pairs, we can consider

50 × 1000 = 50, 000 peptide pairs and still find the correct matches in more than
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96% of the cases. In practice we can reduce the search space further by only

consider peptide pairs such that their combined masses match the precursor mass

of the MS/MS spectrum.

0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rank according to decreasing scores

F(
x)

Minimum ranks
Maximum ranks

Figure 3.9: MXDB filtration efficiency: To evaluate the filtration efficiency of
the search strategy in MXDB, we searched the MS/MS spectra from disulfide-
bridged peptides against a concatenated database containing all library peptides
and a E. coli protein sequence database as decoy. The number of tryptic peptides
in this database is about 200, 000. We scored every candidate in the database
and sort them according to decreasing score. Then we evaluated the ranks of the
correct peptide matches in the list. A correct match is a library peptide that form
a disulfide-bridged peptides, thus each spectrum has two correct matches. The
distribution of the minimum and maximum rank of the correct peptide matches
are shown. One peptide (the higher scoring one) has rank less than 50 while
the other peptide always has a rank less than 1000. This means that we need
only pair the top 50 candidate peptides with the top 1000 candidate peptides
to find the correct cross-linked peptide pairs. This allow us to consider at most
50 × 1000 = 5 × 104 peptide pairs rather than consider all possible pairs in the
database which can amount to 1/2× 200, 000× 200, 000 = 2× 1010 candidates to
evaluate.
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3.4.4 Separation of linked-peptide matches from false pos-

itives

After database searching, the top scoring linked peptide spectrum matches

(LPSMs) scored using a Support Vector Machine (SVM) to separate true matches

from false positive ones. Features used in SVM are as followed:

• 1) likelihood score

• 2) likelihood score divide by peptide length: score from 1) divided by the

number of amino acids in the top candidate peptide.

• 3) explained intensity: total intensity of annotated peaks divided by total

intensity of the spectrum.

• 4-5) fraction of b and y ions present: number of b and y ions present in the

spectrum divided by the number of b/y ions possible from the peptide (2

features).

• 6-7) longest consecutive series of b and y ions (2 features).

• 8) average mass error between theoretical and observed masses.

Noted we can compute the above features for each of the cross-linked pep-

tide separately resulting in a total of sixteen features. These together with a com-

bined likelihood score that consider both matched peaks from both cross-linked

peptides constitute the final list of seventeen features used in the SVM. To train

the SVM we used the identified MS/MS spectra from the combinatorial library

of disulfide peptides as described in previous section. For each training dataset,

the correct LPSMs are used as positive training data while top-scoring incorrect

LPSMs from decoy database are used as negative training data.

All LPSMs are sorted according to their SVM scores and they are considered

a match if their score pass a certain threshold. The SVM score threshold is chosen

to enforce a particular false discovery rate (FDR). For a set of LPSMs the FDR is

estimated using a TDA strategy as described in [97]. Briefly because each LPSM

has two peptide match, it can fall into one of the following categories: TT–both
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peptides matches are from target database; TD/DT – one peptide from target and

another peptide from decoy database; DD–both peptides from decoy database. If

we define N type as the number of LPSMs fall in to particular category (i.e. NTT

is the number of matches of type TT ), we can then define FDR for LPSMs as:

FDRlinked =
NTD+NDT−NDD

NTT .

3.4.5 Analysis of spectra from cross-linked samples

We analyzed the data from cross-linked sample of Schizosaccharomyces

pombe (S. Pombe) and Rabbit proteasome from a previous study [95]. The

search result from xQuest was obtained from the original publication [95]. The

result from pLink was obtained by running the search tool with 50ppm precur-

sor mass tolerance and default (0.5Da) fragment mass tolerance for CID spec-

tra. The search results were filtered with 10ppm precursor mass tolerance and

5% FDR. Protein sequences for the proteasome complex are downloaded from

UniProt [98](www.uniprot.org) by extracting all proteins from the corresponding

species that contain the keyboard ”‘Proteasome”’ using the advanced search func-

tion of UniProt. To validate the identified cross-linked peptides we obtained crystal

structures of the proteasome complexes of a related species from the Protein Data

Bank (www.pdb.org) [99]. We mapped the S. Pombe proteasome sequences to the

crystal structure of Saccharomyces cerevisiae proteasome (PDBID: 1FNT) [100]

and the Rabbit proteasome sequences to the crystal structure of Mouse protea-

some (PDBID: 3UNE) [101]. Then we compute the distance between the Cα

atoms of the two cross-linked residues in each identified crosslink peptide. If the

distance is below 30Å we consider the identified cross-linked peptide is within the

distance constraints of the cross-linker. For the two-pass search we first identified

unlinked peptides by searching the data against all Rabbit protein sequences using

MSGFDB with the following variable modifications: +42 on n-terminus, +16 on

methionine and +138, +156 and +168 on lysine (for identification of peptides with

dead-end and intra-peptide crosslinkers). Search results were filtered with a 1%

FDR. Then all Rabbit proteins that contain at least one identified peptides were

extracted as candidate proteins presented in the sample. For degenerate peptides
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that are shared among multiple proteins all proteins are considered as candidates.

Next we searched for cross-linked peptides using MXDB against only on this list

of candidate proteins identified in the first stage.
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