
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Visual Analogy: Reexamining Analogy as a Constraint Satisfaction Problem

Permalink
https://escholarship.org/uc/item/08x3n0bz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 26(26)

ISSN
1069-7977

Authors
Yaner, Patrick W.
Goel, Ashok K.

Publication Date
2004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08x3n0bz
https://escholarship.org
http://www.cdlib.org/


Visual Analogy: Reexamining Analogy as a Constraint Satisfaction Problem

Patrick W. Yaner (yaner@cc.gatech.edu)
Ashok K. Goel (goel@cc.gatech.edu)

Artificial Intelligence Laboratory
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332-0280

Abstract

Holyoak and Thagard proposed that the retrieval and mapping
tasks of analogy can be viewed as constraint satisfaction prob-
lems, and described a connectionist implementation of their
proposal. In this paper, we describe another constraint satis-
faction method for the two tasks in the context of visual anal-
ogy: in our method, the source cases are organized in a dis-
crimination tree, and all the source cases are searchedat once.
We also present an evaluation of the method for retrieval and
mapping of 2-D line drawings from an external memory. The
evaluation is based on structural constraints, and uses subgraph
isomorphism as the similarity measure. One result is that a de-
composition of the retrieval task into feature-based reminding
and structure-based selection appears to provide little compu-
tational benefit over just selection.

Introduction
Holyoak and Thagard proposed that the retrieval (Thagard,
Holyoak, Nelson, & Gochfeld, 1990) and mapping (Holyoak
& Thagard, 1989) tasks of analogy can be productively
viewed as constraint satisfaction problems. Their proposal
incorporated structural, semantic and pragmatic constraints
and used graph isomorphism as the primary similarity mea-
sure. Their mapping system, called ACME, and the com-
plementary retrieval system, named ARCS, provided connec-
tionist implementations of their proposal. In ACME, nodes
are constructed for each map hypothesis (between a source
element and a target element), with inhibitory and excitatory
links between different nodes, and the network is run until
it reaches quiescence. The work described here builds on
Holyoak and Thagard’s proposal but seeks a different solution
to the retrieval and mapping tasks. While we also view the re-
trieval and mapping tasks as constraint satisfaction problems
(CSPs), our method for addressing the tasks (i) organizes
the source cases in a discrimination tree, (ii) uses (general-
purpose) heuristics to guide the search, (iii) performs a back-
tracking search, and (iv) searches all the source casesat once.

The goal of our current work is to develop a computational
theory ofvisualanalogy. Analogies transfer relational knowl-
edge from a source (or base) case to a target problem. De-
pending on the nature of the target and the source, the knowl-
edge transferred in an analogy may pertain to different kinds
of relations, for example, causal, functional or teleological
relations. In visual analogy, the pertinent relations are spa-
tial relations among visual elements. In a different part of
the project, we have developed a technique for transfer of
spatial knowledge, given a target problem and a source case
and given a mapping between the two (Davies & Goel, 2001,

2003). In the part described in this paper, we focus on the
retrieval and mapping tasks.

Our methodology is to start with simple problems and in-
crementally add complexity to them. This incremental na-
ture of the methodology is manifested in three ways: firstly,
visual knowledge can be of many forms, such as depictive
bit-mapped representations, sketches, or animations, but our
work deals specifically with diagrammatic knowledge rep-
resented symbolically as discrete geometric elements and
the spatial relations between them; secondly, though visual
analogies, like analogies more generally (as proposed by
Holyoak and Thagard), can involve semantic and pragmatic
constraints, we start with just the structural constraints im-
posed by requiring source and target to match structures; and
thirdly, from a graph theoretic perspective, there may be more
than one sort of graph isomorphism measure that may be the
ideal measure, such as maximal common subgraph, but we
begin with subgraph isomorphism as our metric.

The retrieval task, in this work, assumes a computer-based
library of 2D line drawings, takes as input a query (target) in
the form of a drawing (and no other information), and gives as
output the source drawings that are most similar to the target.
The mapping task takes as input a target problem and a source
case, and gives as output correspondences between the basic
elements of the source case and the target problem.

Retrieval
Following earlier work on analogical retrieval—e.g.,
MAC/FAC (Forbus, Gentner, & Law, 1995)—our retrieval
architecture supports a two-stage process for diagram
retrieval: reminding (or initial recall), and selection. The ar-
chitecture consists of (up to) six basic components: an initial
stage generating feature vectors, a process that generates a
semantic network describing the contents (spatial structure
in this case) of an drawing, a process that matches a target’s
description (semantic network) to source descriptions from
memory, a working memory with potential sources to match
with the target, and finally, an interface to the rest of the
analogy system in which this retrieval would be taking place.

The reminding task takes as input a target example and re-
turns as output references to stored drawings whose feature
vectors match that of the target. The stored drawings are
indexed by feature vectors describing their spatial elements;
the feature vector for the target is constructed dynamically.
References to those drawings with sufficiently similar feature
vectors (according to some appropriate criteria, as explained
below) are brought into the working memory. In the selec-

1482



tion stage, the semantic networks of the drawings in working
memory are matched with that of the target example. Draw-
ings whose descriptions match the target description suffi-
ciently well are collected and returned.

While the reminding stage of the retrieval process uses a
vector of features—i.e. a vector of attribute-value pairs—as a
heuristic to gauge the potential of a source drawing matching
the target drawing, the selection task uses the spatial structure
of line drawings—i.e. the qualitative arrangement of the vari-
ous shapes in them—to actually match the target to the source
drawings.

Visual cases are represented in three distinct ways: the
the drawings themselves, the feature vectors, and the net-
work of spatial relations. The representation of the draw-
ings themselves is simply object-based: a list of each visual
element, such as lines, triangles, etc., and their specific ge-
ometric properties (location, and so on). The feature vec-
tor is a multiset of the object and relation types contained
in a semantic network. A multiset is a set that can con-
tain more than one of each element (e.g.{2 ·A,3 ·B, . . .}).
Given a semantic network describing an drawing, a fea-
ture vector in our system would look something like this:
{3·rectangle,2·circle,3·leftOf,1·contains, . . .}.

A drawing is recalled, in the first stage, if the multiset of
shape and relation types contained in it is a superset of that
of the target. The method scans all stored drawings, calcu-
lating whether or not the multiset of objects and relations in
the target is a subset of the multiset of objects in each source
drawing, and returning those for which this is the case. That
is, if Q is the feature vector for the target, andS1,S2, . . . ,Sk
are the feature vectors of the drawings currently in memory,
then the method returns those drawings for whichQ⊆ Si .

Figure 1 illustrates a simple 2D line drawing and its repre-
sentation in terms of spatial relations in our system. The sys-
tem at present recognizes four types of spatial elements: in-
dividual lines, triangles, rectangles, and ellipses (circles and
squares are special cases of ellipses and rectangles, and are
not treated as being of a separate type). Also, it presently rec-
ognizes five types of relations among the elements:left-of ,
right-of , above , below , and contains . The automatic
generation of a semantic network for a target drawing works
by taking the input drawing (in XFig format) and comparing
every pair of shapes using the available predicates. If a par-
ticular predicate holds, a link is added between the associated
nodes in the semantic network, with the appropriate label. As
an example, the semantic network in Figure 1 would repre-
sent the drawing shown above it.

Memory Organization

When a source drawing is added to memory, several things
happen. First, its description is generated, the network of re-
lations describing the spatial layout of the drawing, as well
as its feature vector. Second, once this network is generated,
each “term” in the network, by which we mean a link (re-
lation) together with its incident nodes (elements), is added
to a discrimination tree. This allows the selection method to
match individual terms in the target with all terms of the same
form that appear acrossall source drawings in memory, thus
allowing all of the descriptions of all of the drawings to be
searched at once.

below

above

contains
below

above

triangle

rectangle

circleB CA

Figure 1: An example of a three-node semantic network in
our language. Each pair of objects is tested, and links added
for each relation that holds.

The selection method, described below, builds a set of po-
tential assignments for each target element, and in evaluating
these, it looks to see what terms each source element is in-
volved in, and this involves the index into memory by indi-
vidual terms. The overall scheme is to build a representation
of all possible mappings, and reduce this list by screening out
the ones that don’t work. Ones that don’t work are screened
out because they do not satisfy the constraints imposed by
the problem. This is constraint satisfaction, and this is what
it means to solve the problem by constraint satisfaction.

Constraint Satisfaction
The core of the system is the selection process. The process
finds a correspondence between the target drawing and the
source drawings in working memory, eliminating drawings
for which no correspondence can be found.

The selection problem is essentially one of matching ob-
jects (variables and constants) in the target and the source
under the constraints imposed by the terms in which they ap-
pear. The target has a set of variables (its objects, the nodes
in the semantic net) to be matched to some constants (i.e.
values) from the sources and the relationships between these
variables impose constraints on the values to which they can
be matched. This is constraint satisfaction. This algorithm
works by maintaining an index of all the terms across all of
the source descriptions. It recalls individual terms from mem-
ory and puts them together to form the complete matching.
When a source drawing is stored in memory, its description is
generated and indexed in this way, by each term that appears
in it. There is a separate table for each type of term, i.e. one
for left-of , one forabove , etc.

Treating the target elements as variables to be assigned val-
ues, the potential values are the nodes from the source de-
scriptions in memory, all of which are considered at once.
That is, the method is not performing a separate test on each

1483



source in memory, but, rather, it is running a search procedure
on the entire memory considered collectively. The constraints
on the values assigned to the variables (the target nodes) are
precisely those imposed by the subgraph isomorphism prob-
lem: if nodesA andB from the target are to be matched with
nodesX andY from memory, respectively, then, first,X and
Y must be in the same description; second, all relations that
hold betweenA andB must also hold betweenX andY, re-
spectively. If these constraints are met, thenA can be matched
with X andB can me matched withY. Here the constraints
are all either unary (say,A is a circle—a type constraint), or
binary (say,A is left of B—a relational constraint). The only
exception is the constraint that all values be from the same de-
scription, but this can be inferred from the binary constraints.

This matching process works in three phases: initializa-
tion of domains, reduction of domains, and finding the match-
ing, where matching means subgraph isomorphism. The first
phase initializes the target domains to sets of values that have
the same incoming and outgoing edges. The second phase re-
duces these domains by eliminating values that are not all in
the same drawing. These two phases reduce the selection of
values for each variable. The third phase actually computes
the isomorphism using constraint satisfaction and backtrack-
ing.

The first phase (initialize domains) works by finding nodes
in memory that “look similar” to the target nodes: if a tar-
get nodeA is incident on, say, three links whose labels are
R, S, and T, then the algorithm builds a list of all nodes
in memory—across all the source descriptions—that have at
least three incident links with labelsR, S, andT. The sec-
ond phase (reduce domains) works by ensuring that the set
of source descriptions (document IDs) that are represented in
the domain of (list of values for) each variable is the same.
This serves to eliminate any value from the domain of any
variable that does not come from a description represented in
every other variable’s domain.

These two stages are the “real” first stage of the algorithm,
and our results, described in (Yaner & Goel, 2003), showed
that the feature-vector-based first stage was really quite re-
dundant, and offered little improvement. Viewed as such, this
first stage applies two heuristics to the sources from memory:
(i) prune any individual element (as opposed to entire draw-
ings) that don’t have the same “signature” (as just described)
as the corresponding target element, and (ii) prune any terms
whose associated drawings are not represented in every target
element’s domain. The latter one enforces subgraph isomor-
phism. It is important to note that these are both logically
implied by the similarity metric that the last phase, described
below, implements. It would be an interesting experiment to
look at other heuristics that prune out mappings that might
have otherwise been returned by the last phase.

The last phase (find matchings) is the one that actually does
the work. The basic procedure is one that generates match-
ings, checking them for consistency as it goes, and backtrack-
ing when necessary. The test, here, is actual subgraph iso-
morphism: ifA is related toB in the target, then the relations
(links, edges) betweenm(A) andm(B) must include at least
those that held betweenA andB, wherem(∗) is a mapping
from target to source. This algorithm returns all valid map-
pings. The idea is that the first two phases have restricted the

set of possible mappings so that there aren’t nearly as many,
now, as there would have been if a pure depth-first search had
been done.

In general, the time complexity of depth-first search, such
as this is, is on the order ofO(kd) in the worst case, wherek is
the branching factor of the state space andd is the maximum
depth. In this case the depth is the number of elements in
the query, and the branching factor is the number of elements
across all sources in memory. However, the space complex-
ity, as with depth-first search in general, is onlyO(kd), i.e.
it’s linear in the size of the problem. Note that this is a back-
tracking search, however, so large portions of the state space
are cut off at each step. With 42 test images in memory, the
number of objects in a drawing ranging from 3 to over 50 (the
average was about 12), the number of terms in the description
ranged from a couple of dozen to over eight thousand. There
were 21 queries with this test set, with two to five spatial el-
ements in each, and up to several dozen terms. With this test
data, the system was retrieving drawings in about 9.32 sec-
onds on average (across all 21 drawings), doing an average
of about 1.49 million memory accesses (to the index of terms
across all the drawings) per retrieval.

Galatea
Since the system does retrieval essentially by producing all
possible mappings that it is capable of finding, we adapted a
version of the system to the mapping process for use in a sys-
tem calledProteus, a visual analogical reasoning system. The
transfer stage ofProteus—implemented in a system called
Galatea—is described in Davies and Goel (2001, 2003).

Galateasolves problems represented in a high-level visual
language called Covlan (Cognitive Visual Language). The
system solves these problems by analogy to existing prob-
lems whose solutions are mapped out as a sequence of trans-
formations on the knowledge states that are represented in
this language.Galateasolves the problem by taking a map-
ping between the initial knowledge states of the source and
target and mapping the transformations and generating the in-
termediate knowledge states (and mappings between them),
and thereby constructing the rest of the transformations and
knowledge states leading to the solution to the target prob-
lem. The mapping system, then, needs to connect the initial
knowledge state of the source and the target drawing. From
the perspective of retrieval and mapping, the relevant issues
pertaining toGalateaare: (1) what is that knowledge repre-
sentation, and (2) what are the nature is of the required map-
pings?

Covlan consists of knowledge states, primitive elements,
primitive relations, primitive transformations, general visual
concepts, and correspondence and transform representations.
In Covlan, all knowledge is represented as propositions. In
this paper we will only be concerned with the primitive el-
ements and the primitive visual relations. The primitive
elements arepolygon , rectangle , triangle , ellipse ,
circle , arrow , line , point , curve , and text . There is
also aset element type, with members that havein-set re-
lations back to the set they are members of, though these do
not correspond to visible entities—this is purely for group-
ing purposes. Each element is represented as a frame with
attribute slots such aslocation , size , orientation , and

1484



thickness , but these attributes will not concern us, since
mappings between attribute values are not part of the required
mappings, and thus representing them in the semantic net-
work is not necessary.

Primitive visual relations represented are touching,
above-below , right-of-left-of , in-front-of-behind ,
andoff-s-image . A typical knowledge state is represented
with a node corresponding to that knowledge state (e.g.
L14-simage1 ), and elements (which may be sets) are repre-
sented withcontains-object relations from the knowledge
state element to the visual elements themselves.

We describe next some example problems originally de-
signed forGalatea. The first example problem is a fairly sim-
ple one: dividing a pizza into some number of slices based
on analogy to the problem of dividing up a cake into some
number of pieces. In this case, there is a cake (or pizza), and
a set of people in the initial problem state. Set members are
not mapped, and the division is made in transformations in
later problem states, so the only possible mappings are cake
to pizza and set of people to set of people, or cake to set of
people and set of people to pizza. The problem, as repre-
sented inGalatea, does not contain any visual relations be-
tween the set of people and the cake (or pizza), and thus there
is nothing constraining the mapping to be the “correct” map-
ping. The latter mapping will probably lead to failure in the
transfer stage, but both are returned by our system.

A more complex and interesting example is based on Gick
and Holyoak’s fortress/tumor problem (1980). In this prob-
lem, we have an army attacking a fortress over mined roads,
and the general decides to split his army to avoid setting off
the mines, and a target case in which there is a patient with
a tumor and a doctor who wants to kill the tumor with radi-
ation. The supposed analogy is to split the beam (somehow)
to avoid killing the healthy tissue that is in the way. The vi-
sual representation of these problems has a fortress (and a
tumor represented similarly) and four roads (sections of the
body surrounding the tumor), and an army represented by an
arrow (a ray of radiation represented similarly). The “cor-
rect” analogy maps the set of roads to the set of body parts,
the fortress to the tumor, and the army to the ray. However,
there being three of each thing to match, and the particular
representation chosen not using the visual relations (though
it could have), there was nothing constraining the mapping,
and all six possible correspondences were returned. Had vi-
sual relations constrained it, the number of possible mappings
would have been smaller.

Mapping

Galatea has set up the requirements for the mapping task
such that only visual elements are to be mapped, not attribute
values, and so attribute values (which can be represented as
propositions, and hence can be represented in a semantic net-
work) are not included in the input to the mapping system. In
addition, members of sets are (generally) not to be mapped,
and so any visual element on the left-hand side of an in-set
relation can be pruned from the mapping system’s input, as
well. With these two constraints, the mapping system was
run on several sample problems, two of which were described
above. Four other problems of similar nature and size were
also run on this system.

function GENERATEMAPPINGS

1: sourceRels← first simage from source problem
2: targetRels← target problem simage
3: sRelLables← names of all relations represented in

sourceRels
4: tRels← remove fromtargetRelsall relations that don’t

match one insRelLabelsand all relations involving a
literal (i.e. attribute-value pairs)

5: tRelLabels← names of all relations represented intRels
6: sRels← remove fromsourceRelsall relations that don’t

match one intRelLabelsand all relations involving a
literal (i.e. attribute-value pairs)

7: sNodes← list of all nodes (elements) fromsRels
8: tNodes← list of all nodes (elements) fromtRels
9: domains← GENERATEDOMAINS(sNodes,

LENGTH(tNodes))
10: rDomains← GENERATEDOMAINS(tNodes,

LENGTH(sNodes))
11: f Mappings← FINDPROJECTIONS(sRels, tNodes,

tRels, domains)
12: rMappings← FINDPROJECTIONS(tRels, sNodes,

sRels, rDomains)
13: rMappings← reverse each of the mappings returned in

rMappingsso that they map source onto target properly
instead of target onto source

14: return f Mappings
⋃

rMappings

Algorithm 1: Generate Mappings

The mapping algorithm (see Algorithm 1) works as fol-
lows: the outer procedure (generate mappings) first retrieves
the named source and target representations from memory,
then applies the above heuristics to it, and finally generates
the mappings and returns them. Since it computes subgraph
isomorphism, as above, we run it both ways—attempting to
map source onto target, and also attempting to map target
onto source and reversing the returned mappings. Thus it
is possible to find the target within the source or vice versa,
finding the source within the target. The algorithm forFIND-
PROJECTIONSis identical with that of the third phase, “find
matchings”, above.

It’s important to note that this does not actually solve the
mapping problem; it particular, it returnsall mappings, so
that an additional search or evaluation stage is necessary to
find the relevent ones. This is where pragmatic and semantic
constraints may start to enter back into the picture. Our work
to date has begun with only structural constraints as an ex-
periment, and we plan to reintroduce other constraints as the
larger problem context is reintroduced.

At any rate, the cake/pizza example described above, when
run through this system, came up with two mappings: one
that maps the cake to the pizza and the set of people to the set
of people, and one that maps the cake to the set of people and
the other set of people to the pizza:

Cakemaps-toPizza
Set12maps-toSet14

1485



Cakemaps-toSet14
Set12maps-toPizza

Set12 is the set of people in first cake problem knowledge
state, and Set14 is the set of people in the first pizza problem
knowledge state.Proteus, recall, does not map members of
sets, and so the individual people are not mapped onto each
other, only the sets. The first one, obviously, is the ”correct”
one, the one that would lead to a successful transfer and eval-
uation of the problem solution.

The fortress/tumor problem was more interesting. The
heuristics pruned out the set of roads and body parts, as well
as the shapes and sizes and positions of all the elements, and
so the only details left to influence the mappings were the
fact that the elements were part of the problem. There were
three elements, thus, remaining, for each one: Fortress and
Tumor, Soldier-Path and Ray, and Set1 (the set of roads) and
Set2 (the set of body parts surrounding the tumor), and six
mappings produced:

Fortressmaps-toTumor
Soldier-Pathmaps-toRay
Set1maps-toSet2

Fortressmaps-toTumor
Soldier-Pathmaps-toSet2
Set1maps-toRay

Fortressmaps-toRay
Soldier-Pathmaps-toTumor
Set1maps-toSet2

Fortressmaps-toRay
Soldier-Pathmaps-toSet2
Set1maps-toTumor

Fortressmaps-toSet2
Soldier-Pathmaps-toTumor
Set1maps-toRay

Fortressmaps-toSet2
Soldier-Pathmaps-toRay
Set1maps-toTumor

Now, this really represents all correspondences between
three things and three things. The primary reason for this is
that the representation chosen for this particular problem does
not involve any reference-frame relations such asleft-of or
right-of . If it had, these relations would constrain the map-
pings.

Discussion
In the introduction, we mentioned Holyoak and Thagard’s
ACME system (1989) and noted the similarities and differ-
ences between our work and theirs. ANALOGY (Evans,
1968) was an even earlier AI program that performed the task
of finding similarities and differences between visual cases.
It performed simple geometric analogies of the kind that ap-
pear on many intelligence tests. Let us suppose that each of
A, B, C, D, E and F is an arrangement of simple geometric
objects, e.g., a small triangle inside a large triangle, a small
circle inside a larger circle, etc. Given an analogy A:B, and

given C and multiple choices D, E and F, ANALOGY found
which of D, E, and F had a relationship with C analogous
to that between A and B. It represented the objects and the
spatial relationships between them in the form of semantic
networks, which enabled it to compare the spatial structure of
the various arrangements. However, since ANALOGY per-
formed an exhaustive and linear search of the mappings, its
method cannot scale up to any realistic problem.

While ANALOGY was an early program that matched
symbolic descriptions of two drawings and found similari-
ties and differences between the drawings, MAGI (Ferguson,
2000) and JUXTA (Ferguson & Forbus, 1998) are two recent
systems that find mappings between symbolic representations
of two drawings (or two portions of the same drawing). These
systems use truth maintenance as the mechanism for keeping
track of new constraints and retracting old conclusions.

Our decomposition of the retrieval task into feature-based
reminding and structure-based selection is similar to that of
MAC/FAC (Forbus et al., 1995). The similarity is specially
striking because in its current stage ours deals only with struc-
tural constraints; as noted in the introduction, we plan to ex-
plore and exploit semantic and pragmatic constraints in the
next stage. However, in contrast to MAC/FAC, the experi-
ments described in (Yaner & Goel, 2003) indicate that the
two-stage decomposition of the retrieval task provides little
computational benefit over just one-stage retrieval based on
structure-based selection.

In computer-aided design, FABEL (Gebhardt, Voß,
Gräther, & Schmidt-Belz, 1997) was an early project to ex-
plore the automated reuse of diagrammatic cases. In partic-
ular, TOPO (B̈orner, Eberhard, Tammer, & Coulon, 1996),
a subsystem of FABEL, used the maximum common sub-
graph (MCS) of the target drawing with the stored drawings
for retrieve similar drawings. Gross and Do (1995) describe
a method for retrieving designs that contain a given design
pattern in the domain of architectural design. Gross and Do’s
heuristic method is very simple: given two drawings, it com-
pares the type and number of spatial elements and the spatial
relations by counting. Their method is roughly equivalent to
the first stage in the two-stage retrieval process.

In computer vision, Grimson and Huttenlocher (1991) de-
veloped a similar method for object recognition. They begin
with a model with a set of features, such as a set of poten-
tial edges in some arrangement, and sensor data with a set of
sensor features (edges, vertices, etc.); a lot of sensor features
might be noise. The task is to find a set of sensor features
that comes from one (and the same) object. Their method
matches model features to sensor features under some trans-
formations within specific limit of tolerance. The model im-
poses constraints, for instance, by its arrangement of features.
Although they do not describe it as constraint satisfaction,
their method in fact is in assigning values to variables under
unary and binary constraints imposed by the arrangement by
using a backtracking depth-first search.

Constraint satisfaction methods have become common in
AI: Prosser (1993) describes methods of constraint satisfac-
tion with backtracking; and Bayardo and Schrag (1997) pro-
vide evidence of applicability of constraint satisfaction with
backtracking for real-world intractable problems in planning
and scheduling. Our method of constraint satisfaction with

1486



backtracking, with the case memory organized into discrim-
ination trees, builds on the work of Ounis and Pas¸ca (1998).
They view the general problem of associative image retrieval
as one of computing projections over conceptual graphs rep-
resenting their content. Although they do not describe it as
a constraint satisfaction method, their algorithm, in fact, is
doing constraint satisfaction to compute the projection. How-
ever, their method is limited to constraint satisfaction with
generate and test with no backtracking.

Conclusions
We have described a constraint satisfacton method for the
retrieval and mapping tasks of analogy. Our method (i) or-
ganizes the source cases in a discrimination tree, (ii) uses
(general-purpose) heurstics to guide the search, (iii) back-
tracks (if and when needed), and (iv) searches all the source
cases at once. We also presented an evaluation of the method
for the retrieval and mapping of diagrams from an external
memory.

Our laboratory-scale experiments, with drawings contain-
ing only up to fifty spatial elements and their representations
containing only up to eight thousand terms, indicate that the
method of constraint satisfaction is fast and appears quite
promising for use in practice. On the one hand, we fully ex-
pect that the complexity of the task will significantly worsen
for larger drawings and larger libraries of drawings, but, on
the other, we also expect that it should be possible to de-
velop significantly faster methods for the task. For exam-
ple, we expect that use of spatial aggregations and abstrac-
tions to organize the representation of the spatial structure
of a drawing in the form of a linked hierarchy of semantic
networks would partition the search space performance espe-
cially for large, complex drawings (e.g. Papadias, Kalnis, &
Mamoulis, 1999). In addition, more sophisticated constraint
satisfaction techniques such as forward checking and intel-
ligent variable ordering, to name just a couple of common
ones, can be brought to bear on the problem as well, taking
advantage of structure in the knowledge representation and
the search space.

References
Bayardo, R. J., Jr., & Schrag, R. (1997). Using CSP look-

back techniques to solve real-world SAT instances. In
Proc. AAAI-97(pp. 203–208). Providence, Rhode Is-
land: AAAI Press.

Börner, K., Eberhard, P., Tammer, E.-C., & Coulon, C.-H.
(1996). Structural similarity and adaptation. In I. Smith
& B. Faltings (Eds.),Advances in Cased-Based Rea-
soning: Proc. 3rd European Workshop on Cased-Based
Reasoning(Vol. 1168, pp. 58–75). Lausanne, Switzer-
land: Springer-Verlag.

Davies, J., & Goel, A. K. (2001). Visual analogy in problem
solving. InProc. IJCAI-01(pp. 377–382). Seattle, WA:
Morgan Kaufmann Publishers.

Davies, J., & Goel, A. K. (2003). Representation issues in
visual analogy. InProc. 25th Annual Conf. Cognitive
Science Society.Boston, MA: Lawrence Erlbaum As-
sociates.

Evans, T. G. (1968). A heuristic program to solve geomet-
ric analogy problems. In M. Minsky (Ed.),Semantic
Information Processing.Cambridge, MA: MIT Press.

Ferguson, R. W. (2000). Modeling orientation effects in sym-
metry detection: The role of visual structure. In L. R.
Gleitman & A. K. Josh (Eds.),Proc. 22nd Annual Conf.
Cognitive Science Society.Philadelphia, PA: Lawrence
Erlbaum Associates.

Ferguson, R. W., & Forbus, K. D. (1998). Telling juxta-
positions: Using repetition and alignable difference in
diagram understanding. In K. Holyoak, D. Gentner, &
B. Kokinov (Eds.),Advances in Analogy Research(pp.
109–117). Sofia, Bulgaria: New Bulgarian University.

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC: A
model of similarity-based retrieval.Cognitive Science,
19(2), 141–205.

Gebhardt, F., Voß, A., Gräther, W., & Schmidt-Belz, B.
(1997). Reasoning with complex cases(Vol. 393).
Boston: Kluwer Academic Publishers.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem
solving. Cognitive Psychology, 12, 306–355.

Grimson, W. E. L., & Huttenlocher, D. P. (1991). On the
verification of hypothesized matches in model-based
recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(12), 1201–1213.

Gross, M. D., & Do, E. Y.-L. (1995). Diagram query and
image retrieval in design. InProc. 2nd Int’l Conf. on
Image Processing.Crystal City, VA: IEEE Computer
Society Press.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by
constraint satisfaction.Cognitive Science, 13(3), 295–
355.

Ounis, I., & Pas¸ca, M. (1998). RELIEF: Combining expres-
siveness and rapidity into a single system. InProc. 21st
Annual ACM SIGIR Conference(p. 266-274). Mel-
bourne, Australia: ACM Press.

Papadias, D., Kalnis, P., & Mamoulis, N. (1999). Hierarchi-
cal constraint satisfaction in spatial databases. InProc.
aaai-99.Orlando, FL: AAAI Press.

Prosser, P. (1993). Hybrid algorithms for the constraint sat-
isfaction problem. Computational Intelligence, 9(3),
268-299.

Thagard, P., Holyoak, K. J., Nelson, G., & Gochfeld, D.
(1990). Analog retrieval by constrain satisfaction.Ar-
tificial Intelligence, 46, 259–310.

Yaner, P. W., & Goel, A. K. (2003). Visual case-based rea-
soning I: Memory and retrieval. InProc. IICAI-03.Hy-
perbad, India: Springer-Verlag.

1487




