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Reasoning with Inconsistent Causal Beliefs

John V. McDonnell (john.mcdonnell@nyu.edu)1

Pedro Tsividis (tsividis@mit.edu)2

Bob Rehder (bob.rehder@nyu.edu)1

Abstract
Causal reasoning is a critical part of everyday cognition.
We ask how people reason about causes when faced with
inconsistent sources of knowledge. Causal models arise
from multiple sources of information regarding their con-
stituent parameters. Knowledge sources may be incon-
sistent both within parameters (when one source says a
variable should appear often and another says it should
appear rarely), and between parameters (when depen-
dencies among parameters result in an internally incon-
sistent causal model). We provide a normative model for
resolving both these sources of conflict. An experiment
found that our model of belief integration predicted the
qualitative pattern of adults causal inferences under un-
certainty.

Keywords: Causal Learning; Causal Inference; Proba-
bilistic Modeling

Introduction
From deciding on investment strategies to predicting
others’ reactions in social situations, we are constantly
making probabilistic judgments about causal systems.
However, because we receive information from multiple
sources, we are often faced with contradictory beliefs.
Consider the problem faced by an epidemiologist trying
to understand the causes of chronic hypertension in a
particular population. She reads a review paper suggest-
ing that smoking tobacco causes hypertension in 50% of
patients, and that all other potential causes of hyperten-
sion can be ruled out. The epidemiologist knows from
survey data that 25% of the population of interest are
smokers, and (independently) that 25% have hyperten-
sion. If she assumes her maximum likelihood estimates
are true, she is left with an incoherent causal model: If
smoking is the only cause of hypertension, and is effective
half the time, then there should be half as many people
with hypertension as there are smokers. Arriving at co-
herent causal beliefs will require adjustment. Perhaps
hypertension isn’t really as prevalent as she thought, or
perhaps the smoking always causes hypertension. In this
paper, we propose a normative probabilistic model for
reasoning with these inconsistencies and explore the im-
plications of that model in an experiment in which par-
ticipants receive conflicting sources of evidence.

A Model
We assume that people’s causal inferences are based on
causal graphical models (CGMs), such as the one in Fig-
ure 1 in which C1 and C2 are believed to be indepen-
dent causes of E. For simplicity, throughout the paper
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we will assume that all variables are binary (present or
absent) and that all causal links are generative, bringing
about their effects through a noisy-or functional form.
We allow for the possibility of additional causes of E not
shown in the graph by aggregating them into a single
background cause that is always present (for a review of
graphical models, see Koller & Friedman, 2009). A fully
parameterized CGM is sufficient to answer virtually any
question one might want to ask about the variables in-
volved, including questions of conditional or joint proba-
bility, counterfactual reasoning, and predicting the effect
of interventions (Pearl, 2000). However, complications
arise when one recognizes that CGMs are constructed
from many individual beliefs held by the reasoner. Since
these beliefs may come from multiple sources that vary
in their reliability, it is inevitable that they will some-
times contradict one another. We ask: How should one
draw causal inferences in light of such inconsistencies?

To answer this question, we first note that inconsisten-
cies can be either between or across parameters, where
parameters represent one’s beliefs about each constituent
of the model. For example, a belief about the probability
of a cause being present is one constituent; a belief about
the strength of a causal relation is another. In the first
section we advance a new proposal for representing un-
certainty in CGMs and show how it solves the problem
of within-parameter conflicts. We then tackle the more
challenging problem of between-parameter conflicts.

Resolving conflicts within parameters

Consider the problem of representing the base rate of
variable C1, represented by parameter c1 in Figure 1.
We suppose that beliefs about base rates may come from
first-hand observations (observing the prevalence of C1),
explicit, instruction (e.g., hearing that C1 is uncom-
mon), and prior beliefs (e.g., a tendency to believe that
events of this type arise rarely). Because probability is
bounded to the range [0, 1], the information from each
of these sources can be encoded as a probability density
function in that range. If knowledge is represented as
a point estimate of the expected value of the variable
combined with a confidence in that point estimate, this
information can be encoded as a beta distribution. PDFs
of beta distributions representing knowledge sources for
C1 are shown at the top of Figure 1. The shape of a
beta distribution is controlled by two parameters, α and
β, constrained to be positive (we will refer to such pa-
rameters as knowledge parameters, or k-parameters, to
emphasize that they represent participants’ knowledge
and to avoid confusion with the constituent parameters).
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Figure 1: A simple common-effect causal graphical model.
Here C1 and C2 are potential causes of E. Variables of boxes
indicate the parameters of the model. Our conflict-resolution
model assumes participants encode their beliefs about each of
these variables as beta distributions, depicted alongside each
of the variables. Above, knowledge sources for c1 and m2 are
depicted, also represented as beta distributions.

The expected value of the odds is the ratio of the two
k-parameters, while their sum can be interpreted as the
confidence in that estimate.

Reconciling different beliefs encoded as beta distri-
butions is simple. Bayes’ rule gives the posterior be-
lief as the renormalized product of the prior and like-
lihood distributions. In the case of beta distribu-
tions, this is derived by summing the parameters. This
means that for the knowledge sources in Figure 1, if
we denote the k-parameters αprior, βprior, αinstruct,
βinstruct, αexp, and βexp, the posterior is simply
Beta(αprior+αinstruct+αprior, βprior+βinstruct+βprior).
This process is depicted in Figure 1 for c1.

A similar treatment can be applied to the strengths of
the causal relations in Figure 1, shown in the figure for
the case of m2. Following Cheng (1997), we assume that
each link is represented as a causal power : the propen-
sity of the cause, when present, to bring about the effect.
Because they are probabilities, beliefs about causal pow-
ers can also be stored as beta distributions.

As depicted in Figure 1, the model consists of six pa-

rameters: the base rates of C1 and C2 (c1 and c2), the
strengths of causal relationships C1 → E and C2 → E
(m1 and m2), the strength of the background causes of
E (b), and the rate at which E occurs (e). We suppose
that belief in the value of each of them is represented as
a posterior beta distribution.

Resolving conflicts between parameters

Computing the posterior beta distribution for each
model parameter does not eliminate all potential incon-
sistencies, however. As illustrated in the introduction,
when all the causes of an effect are fully described, the ef-
fect variable’s rate of occurrence is no longer free to vary.
Because the value of e is fixed, random draws from the
individual beta posteriors will never return valid causal
models (assuming infinite precision). This means we
need a way to integrate information about effects into
our beliefs over possible causal models without violating
the constraints of the model.

Following Figure 1, let V represent the set of variables
in the domain. For each v ∈ V, belief in the probability
of v is characterized by the PDF of a beta distribution,
denoted πv. These correspond to c1, c2, and e in the
figure. Next, let L be the set of causal links in a model.
For each l ∈ L, the learner’s belief in the causal power
of l is characterized by a beta-distributed PDF denoted
πl (m1 and m2 in the figure). Finally, let E ⊂ V be
the effects. For each e ∈ E, the belief in the background
causes of e is characterized by a beta-distributed PDF
denoted πe (b in the figure).

We now define the posterior over valid causal models.
Let r, m, and b be vectors describing the base rate of
every variable in V, the strength of every link in L, and
the strength of the background causes for every effect
in E, respectively. Under a noisy-or causal model, all
effects are explained by the likelihood of their causes
and the strength of those causes. This means the rate of
occurrence for an effect e is constrained to be

r′e = 1− (1− be)
∏

(l∈L)∧(le=e)

[1− rlcml] (1)

where lc and le are the cause and effect variables asso-
ciated with causal link l. Enforcing this consistency, we
can define the joint probability of a fully parameterized
model as

P (r,m,b) ∝


0 if ∃e ∈ E : re 6= r′e∏
v∈V

πv(rv)
∏
l∈L

πl(ml)
∏
e∈E

πe(be) otherwise.

(2)
This is equivalent to saying that the posterior over joint
model values is defined as the result of sampling from the
beta distributions characterizing each of the variables in
the model, discarding the inconsistent models. Our cen-
tral hypothesis is that, when inconsistencies among be-
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Figure 2: Design of the experiment.

liefs exist, people draw inferences as if they are reasoning
with the maximum a posteriori causal model.

An Experiment

One important prediction of our model is that when
faced with an invalid model, reasoners will make trade-
offs among the parameters to find a valid causal model
(Equation 2 above). We tested this hypothesis by query-
ing the adjustments individuals make to their instructed
causal model given a variety of inconsistent beliefs.

Each participant learned about four binary variables
in one of three domains: economics, meteorology, or soci-
ology. Participants learned about four relevant variables
and the beliefs of experts in their domain. In the do-
main of economics, for example, the four variables were
interest rates (moderate/high), trade deficits (moder-
ate/large), retirement savings (moderate/high), and job
mobility (moderate/high). Depending on the condition,
one or three of those variables (denoted C1, C2, and C3)
were been described as generative causes of a fourth (E).

A 2×2 design (depicted in Figure 2) explored the effect
of varying the number of causal links (one vs. three) and
the base rates of those causes (“rare” vs. “common”). In
all conditions, the effect was “somewhat common,” (oc-
curring 44% of the time), and the causes brought about
the effect half the time.

Manipulation of these two parameters should of course
result in changes to participants’ estimates of the values
of those parameters. However, because they also imply
between-parameter conflicts, they should also result in
compensating changes to other parameters in order to
yield a consistent model. For example, consider the con-
dition in which only one rare cause is instructed. Here
the participants were told about a cause happening 4
times out of 16 and bringing about its effect 50% of the
time. As indicated in the figure, these facts imply a
base rate for the effect of .125, which conflicts with its
instructed base rate of .44. Thus, the effect is under-
determined by the causes in the model. There are many
ways in which reasoners could compensate: They could

adjust the likelihood of the effect downward, increase
the likelihood of the cause, increase the causal strength
of the cause, or increase the likelihood of background
causes. Participants must choose a combination of these
adjustments to reason with a valid causal model.

Conversely, in the case where participants were in-
structed about three causes, each common, the implied
base rate of the effect is .84, that is, the effect is now
over-determined, and the reverse adjustments are needed
to help form a valid model. Note that because we did
not explicitly control the confidence subjects should hold
in their beliefs about individual parameters, we do not
make predictions regarding which variables will be ad-
justed, but rather only that some subset will be adjusted
to attain a consistent model.

To measure the adjustments made by participants, we
followed this instruction with a series of questions de-
signed to assess their beliefs about the parameters of the
causal model.

Method
Participants A total of 234 subjects were tested, consist-
ing of 114 New York University undergraduates who received
course credit and 120 online subjects who received a small
cash incentive. Subjects were randomly assigned to the 1-
link/rare, 1-link/common, 3-link/rare, and 3-link/common,
conditions. Participants whose numerically-coded responses
over the course of the experiment had a standard deviation
of less than 2 were excluded, leaving 54, 52, 57, and 47 par-
ticipants in each of the conditions, respectively.

Materials Three knowledge domains were tested: Eco-
nomics, meteorology, or sociology. In each domain, the same
four variables were used, so the same variables always played
the role of C1, C2, C3, and E. Subjects in the 3-link con-
ditions learned three causal links: C1 → E, C2 → E, and
C3 → E. Those in the 1-link conditions learned only C1 → E.

Base rate information was displayed as an instruction
screen displaying a pictorial representation of the rates at
which each of the variables was observed. Base rates of the
causes were described as occurring 25% of the time (“rare”),
or 75% (“common”). E was always depicted as occurring
44% of the time (“somewhat common”). The base rates were
illustrated using a pictorial graph showing them the values
of each variable for 16 random systems from a “survey”. For
example, 7

16
of systems were always shown to have the effect.

Causal information was conveyed in writing. For each
causal relationship, participants were told that the cause
brought about the effect 50% of the time. They were also
given a short description of the mechanism underlying the
relation. For example, if told that large trade deficits cause
high job mobility, they were also told, “The flood of cheap im-
ports means that many domestic manufacturing jobs are lost
and workers must find new employment.” Participants were
also told that experts believed there were no other causes of
the effect.

Procedure After being introduced to the domain, partic-
ipants were presented with screens presenting experts’ beliefs
about the base rates of the variables and their causal relation-
ships. After the instructions, online subjects were quizzed on
their memory for the instructions. This repeated in a loop
until they were able to correctly answer all questions.

Participants were asked four types of test questions pre-
sented in blocks. Block order was randomized. For all ques-
tion types, participants responded with an estimated prob-
ability on a scale of 1–11 by choosing one of 11 radio but-
tons, with the two extremes labeled “very unlikely” (on the
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Figure 3: Causal model parameters derived from the empir-
ical results from the experiment compared across all condi-
tions (without modeling learning or prior belief). (A) The
base rates of the causes (parameter c1). (B) The strength
of the causal links (parameter m). (C) The base rate of the
effect (parameter e). (D) The strength of alternative causes
(parameter b). Error bars are standard errors.

left) to “very likely” (on the right). The first questions were
joint probability questions. In these questions, subjects were
given the states of all four variables in their scenario and
asked to rate the likelihood of those variable states being ob-
served. All 16 possible questions formed by varying the state
of the three binary variables were asked. A second question
type consisted of conditional probability questions. For these
questions, subjects were given the state of three of the four
variables and asked to rate the likelihood of the fourth. All 8
possible conditional probability judgments formed asking for
the probability of E as a function of the presence or absence
of the three causes were asked. In addition, eight questions
asked for the probability of one of the causes with the effect
either present or absent (with the other causes always stip-
ulated to be absent). Finally, the third and fourth question
types directly queried the base rates of the four variables and
the strengths of the three potential causal links. To avoid the
possibility that subjects would forget the initial information
about the causal model, a “theory reminder” was presented
on the right side of the screen, accompanying each question.

Finally, subjects were given the chance to learn more about
their causal system by observing a sample of 32 instances
from that domain. The sample was drawn from a model in
which the causes had a base rate of .50, two causal links
(C1 → E and C2 → E) of strength .50, with no alterna-
tive causes of E. Subjects were asked to “consider how these
data might change your beliefs about the causal relation-
ships in this system and the overall likelihoods of the vari-
ables involved.” Participants were then asked to re-answer
all the previous questions. Then they cycled through once
more, again observing a sample of 32 instances, and again re-
answering the questions. These responses were used in model
fitting, but because learning effects appeared to be small the
results of these test phases will not be reported here.

Results

To characterize subjects’ judgments of joint and con-
ditional probability, we fit those judgments to a causal
model with three causes and one effect, yielding eight pa-
rameters: c1, c2, and c3 (the likelihoods of the causes),

m1, m2, and m3 (the strengths of the putative causal
links), b (the background cause of e) and e, the likeli-
hood of the effect (see the Appendix for details).

Figure 3 summarizes the effects of our two manipu-
lations on the causal model parameters. For purposes
of comparison, we only present those parameters that
were involved in a causal relationship in all conditions
(c1, m1, e, and b). A 2 × 2 ANOVA with the causes’
base rate and the number of causal links as factors was
performed for each panel. A main effect of the base rate
manipulation on estimates of base rates of C1 (plotted in
Figure 3A) confirmed the success of that manipulation
(F (1, 206) = 35.45, MSE = .034, p < .001). Impor-
tantly, the manipulation also resulted in an increase in
the prevalence of the effect (parameter e in Figure 3C,
F (1, 206) = 19.00, MSE = .074, p < .001) and a de-
crease in the strength of the background causes (param-
eter b in Figure 3D (F (1, 206) = 10.23, MSE = .058,
p < .01). That is, to accommodate the more prevalent
causes, participants compensated by increasing the base
rate of the effect and decreasing the effectiveness of al-
ternative causes, as predicted by our model. There was
no effect of the manipulation on causal strengths (pa-
rameter m1 in Figure 3B).

The manipulation of the number of causal links also
had two important effects. First, it reduced the base
rate of C1 (parameter c1 in Figure 3A, F (1, 206) = 35.45,
MSE = .073, p < .001). Second, it reduced the strength
of the C1 → E causal relationship (parameter m1 in Fig-
ure 3B, F (1, 206) = 20.67, MSE = .088, p < .001). Ap-
parently, to accommodate two additional causal links,
participants compensated by decreasing the effective-
ness of the C1 → E link, reducing both c1 and m1

as predicted by our model. Changing the number of
causal links did not have a significant effect on either
the prevalence of the effect (parameter e in Figure 3C,
F < 1) or the strength of alternative causes (Figure 3D,
F (1, 206) = 2.16, MSE = .058, p = .19). None of the
2-way interactions approached significance (all F s < 1).

Discussion

The results of this experiment supported the claim that
when people are given inconsistent information, they
draw inferences as if they’re reasoning with the most
likely causal model. Increasing the base rates resulted in
participants believing that the effect is more likely and
alternative causes are weaker. Increasing the number
of causes led participants to adjust their beliefs about
the causes, weakening both their efficacy and their base
rates. We now assess whether our theoretical model
can provide not only a good qualitative account of these
data, but an acceptable quantitative one as well.

Theoretical Modeling
Recall that although our theoretical model of uncertainty
and belief integration specifies that reasoners will adjust
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Figure 4: Causal parameters derived from the fit of the the-
oretical model. (A) The base rates of the causes (parameter
c1). (B) The strength of the causal links (parameter m). (C)
The base rate of the effect (parameter e). (D) The strength
of alternative causes (parameter b).

parameters in order to reason with a consistent causal
model, it does not specify which parameters will be ad-
justed in the absence of any information about the con-
fidence with which beliefs about those parameters are
held. To assess our model’s potential for providing a
quantitative account of the experiment, we fit it to those
results treating confidence in each constituent parame-
ter as a free parameter (a fifth control condition, not
reported here, was also fit in which subjects were in-
structed on the same model that generated the learning
data; see Procedure section). For any constituent param-
eter of the model k (a variable or causal link), confidence
is represented as a beta distribution with k-parameters
αk and βk. We recast those k-parameters into the pair
vk = αk

αk+βk
, representing the expected value of the pa-

rameter, and tk = αk+βk, representing the overall confi-
dence with which the expected value is held. We assume
that reasoners may have different levels of confidence in
the different types of parameters, represented as four free
k-parameters: tc (the base rates of the cause), tm (the
strength of the causal links), tb (the strength of the al-
ternative causes), and te (the base rate of the effect).
Because we assume that subjects do not perfectly en-
code the initial numerical information provided about
each parameter, those are free parameters as well. Let
k-parameters vm, vb, and ve represent the instructed val-
ues of m (causal link strengths, described to subjects as
.5), b (the strength of the alternative causes, described
as 0), and e (the base rate of the effect, described as .44),
respectively. vm0 was the initial strength of the links on
which subjects were not instructed. k-parameters vc−r,
vc−m vc−c represent the initial base rates of the causes in
the rare, moderate, and common conditions, respectively

(described as .25, .5, and .75).

This model was fit to the group level causal model pa-
rameters fit in the experiment. Eight parameters (c1, c2,
c3, m1, m2, m3, b, and e) were estimated per phase per
condition. This included the learning phases as well as a
fifth control condition not reported here. This involved
fitting 8 × 3 × 5 = 120 data points with 10 parame-
ters. The parameters that minimized squared error were
tc = 106, tb = 299, te = 3252, vc−r = .162, vc−m = .351,
vc−c = .485, vm = .454, vm0 = .069, vb = .122, and
ve = .7. The correlation between observed and pre-
dicted values was .964. The predictions are depicted
in Figure 4, which is analogous to Figure 3. Figure 4
reveals that the model is able to capture the effects of
the causal strength manipulation, namely the base rate
of C1 (parameter c1, Figure 4A) and the strength of
the C1 → E link (parameter m1, Figure 4B) both de-
crease as the number of causal relations increases (com-
pare with Figure 3A and B, respectively). It is also able
to reproduce the effects of the base rate manipulation
on the strength of the alternative causes (parameter b,
Figure 4D), namely, that alternative causal strength de-
creases as the base rates of the causes increase (compare
with Figure 3D). Less successfully, it predicts an increase
in the base rate of the effect with larger base rates of the
causes (parameter e, Figure 4C), although the magni-
tude of that change is much smaller than the one exhib-
ited by subjects (compare with Figure 3C). Note the in-
sensitivity of parameter e to changes in the other causal
model parameters is a manifestation of the large confi-
dence the model places on its initial value (te = 3252,
vs. all other ts < 300).

General Discussion

In ecologically valid settings, causal reasoning often takes
places with multiple knowledge sources that are poten-
tially inconsistent with one another. To specify how
causal inferences should be drawn in such situations, we
developed an account of how uncertainty about causal
models might be represented and then showed how to
derive the most likely causal model that is sensitive to
each knowledge source yet resolves inconsistencies be-
tween them. Our central hypothesis was that people
would draw causal inferences as if they were reasoning
with the most likely consistent model.

The qualitative predictions of this model were con-
firmed in an experiment manipulating two instructed
parameters: the base rates of the causes and the num-
ber of causal links. Making causes more prevalent re-
sulted in alternative causes becoming weaker and the
effect becoming more prevalent. Making causal relations
more numerous resulted in the causes becoming rarer
and other causal links becoming weaker. We know of no
other model that is capable of predicting these sorts of
effects.
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Our model also yielded moderately good quantitative
fits to the data. One result it was unable to reproduce
was participants’ tendency to adjust the likelihood of the
effect (e) when the causal base rates were adjusted but
not when the number of causes was adjusted. Moreover,
we acknowledge that these fits used a large number of pa-
rameters, necessitated by the fact that confidence in each
instructed model parameter was not specified experimen-
tally and so needed to be free parameters. We are con-
ducting follow-up studies manipulating instructed confi-
dence in the information provided to participants.

Although our representation of uncertainty was suffi-
cient to account for our empirical results, its assumption
that the distributions of the causal model parameters
are independent is unrealistic in some situations. For
example, Lu et al. (2008) have modeled the traditional
causal learning experiment as one in which the prior dis-
tribution is a two-dimensional density function on the
strength of the to-be-learned causal link and the strength
of alternative causes. Multivariate representations of un-
certainty like this may be common. In addition, one
might imagine that reasoners not only have experiential
knowledge about the base rates of variables (Figure 1),
but also about configurations of variables. Finally, in
addition to changing parameters to attain consistency,
reasoners might also change the function relating an ef-
fect to its causes (e.g., by assuming that the causes com-
bine interactively rather than independently) or even the
structure of the model itself (e.g., deleting a causal link,
as proposed by Griffiths & Tenenbaum, 2005).

One facet of the data not discussed above was the
distinction between our explicit queries (e.g., directly
querying the causal efficacy of C1) and our implicit ones,
such as judgments of conditional and joint probabil-
ity. Perhaps unsurprisingly, explicit queries more closely
resembled the likelihood information participants were
given, unadjusted for consistency, suggesting that such
questions do not invoke inconsistency resolution pro-
cesses we have specified here. We also observed (but
did not report here) that participants’ causal models
changed little as a result of observing data. Whether this
result reflected a kind of anchoring effect (initial judg-
ments influenced later ones) or participants large confi-
dence in the initial domain theories on which they were
initially instructed remain questions for future research.
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Appendix
Participants’ causal models were simultaneously fit to
participants’ judgments of conditional and joint prob-
ability. Fitting assumed that participants formed a
common-effects model with C1, C2, and C3 as potential
causes of E. The joint is defined as the probability that
the four variables will take any particular combination
of values. From the axioms of probability, we derive

p(E,C1, C2, C3) = p(E|C1, C2, C3)p(C1, C2, C3). (3)

Because C1, C2, and C3 are assumed to be independent,

p(E,C1, C2, C3) = p(E|C1, C2, C3)p(C1)p(C2)P (C3).
(4)

Assuming that the causes bring about their effects
according to a noisy-or rule, the probability that E is
present given the status of the causes is given by

p(E = 1|C1, C2, C3) = 1− (1− b)
∏

i∈{1,2,3}

(1−miCi),

(5)
where presence or absence is coded as 1 or 0, respectively.

Equations 4 and 5 are sufficient to specify the proba-
bility of any combination of the variables as a function
of the parameters c1, c2, c3, m1, m2, m3, and b.

Separate c, m, and b parameters were estimated for
each participant for each test phase. To transform re-
sponses on the 1–11 scale into probabilities, we applied
a nonlinear (power) transformation. This necessitated
fitting a power parameter, γ. Each subject’s rankings
were predicted as follows:

ratingcond(rb,i) =10pk(ri; cb,mb, Bb)
γcond + 1 (6)

ratingjoint(ob,i) =10pk(ri; cb,mb, Bb)
γjoint + 1 (7)

where rb,i and ob,i are the subject’s conditional and joint
judgments, respectively, on trial i in phase b. γs were fit
within participant and question type, and constrained to
the range [0, 5]. This resulted in 7×3 = 21 causal model
parameters and the two γ parameters (23 in total) used
to fit 32 × 3 = 96 responses. Parameters were fit using
gradient descent.

The model fits included a control condition in which
participants were instructed with a causal model that
conformed to the data they observed. The results are
not elaborated in this paper due to space constraints.

This model achieved a respectable correlation between
its predictions and the empirical data points (.950; .783
averaged over subjects).
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