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Abstract: We identify macroscopic functioning arising during a thermodynamic system’s typical and
atypical behaviors, thereby describing system operations over the entire set of fluctuations. We show
how to use the information processing second law to determine functionality for atypical realizations
and how to calculate the probability of distinct modalities occurring via the large-deviation rate
function, extended to include highly correlated, memoryful environments and systems. Altogether,
the results complete a theory of functional fluctuations for complex thermodynamic nanoscale systems
operating over finite periods. In addition to constructing the distribution of functional modalities,
one immediate consequence is a cautionary lesson: ascribing a single, unique functional modality to
a thermodynamic system, especially one on the nanoscale, can be misleading, likely masking an array
of simultaneous, parallel thermodynamic transformations that together may also be functional. In
this way, functional fluctuation theory alters how we conceive of the operation of biological cellular
processes, the goals of engineering design, and the robustness of evolutionary adaptation.

Keywords: large deviation theory; thermodynamic formalism; fluctuation spectrum; entropy rate;
fluctuation relations; nonequilibrium steady state; Maxwell’s Demon; information ratchet; Information
Processing Second Law of Thermodynamics

PACS: 05.70.Ln; 89.70.-a; 05.20.-y; 05.45.-a

1. Introduction

Almost all processes—highly correlated, weakly correlated, or correlated not at all—exhibit
statistical fluctuations. Often physical laws, such as the Second Law of Thermodynamics,
address only typical realizations—those identified by Shannon’s asymptotic equipartition
property [1] and that emerge in the thermodynamic limit of an infinite number of degrees of
freedom and infinite time [2]. Indeed, our interpretations of the functioning of macroscopic
thermodynamic cycles are so focused. What happens, though, during atypical behaviors,
during fluctuations?

The limitation to typical behaviors is particularly a concern when it comes to informa-
tion processing in thermodynamic systems or in biological processes, since fluctuations
translate into errors in performing designed computing tasks or in completing the opera-
tions required for maintenance and survival, respectively. As a consequence, one realizes
that the information processing second law (IPSL) only identifies thermodynamic function-
ing supported by a system’s typical realizations [3]. Now, since observing typical realiza-
tions is highly probable over long periods and goes to probability one in the thermodynamic
limit, a definition of system functionality based on typicality is quite useful. However, this
renders the IPSL substantially incomplete and practically inapplicable—ignoring fluctu-
ations over finite periods and in microscopic systems. This is unfortunate. For example,
while a system’s typical realizations may operate as an engine—converting thermal fluc-
tuations to useful work—even “nearby” fluctuations (atypical, but probable realizations)
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behave differently, as Landauer erasers—converting the available stored energy to dissipate
stored information. How do we account for functioning during fluctuations? And, over
long periods, how, in fact, does a fluctuating system operate at all?

The following answers these questions by introducing constructive methods that
identify thermodynamic functioning during any system fluctuation. It shows how to
use the IPSL to determine functionality for atypical realizations and how to calculate the
probability of distinct modalities occurring via the large-deviation rate function. The lesson
is that, falling short of the thermodynamic limit, one cannot attribute a unique functional
modality to a thermodynamic system.

To begin, the next section motivates our approach, reviewing its historical background
and basic set-up. The development then reviews thermodynamic functioning in informa-
tion engines and fluctuation theory proper, before bringing the two threads together to
analyze functional fluctuations in a prototype information engine.

2. From Szilard to Functional Information Engines

Arguably, Szilard’s Engine [4] is the simplest thermodynamic device—a controller
leverages knowledge of a single molecule’s position to extract work from a single thermal
reservoir. As one of the few Maxwellian Demons [5] that can be completely analyzed [6], it
exposes the balance between entropic costs dictated by the second law and thermodynamic
functionality during the operation of an information-gathering physical system. The net
work extracted exactly balances the entropic cost. As Szilard emphasized: while his single-
molecule engine was not very functional, it was wholly consistent with the second law,
only episodically extracting useful work from a thermal reservoir.

Presaging Shannon’s communication theory [7] by two decades, Szilard’s major con-
tribution was to recognize the importance of the Demon’s information acquisition and
storage in resolving Maxwell’s paradox [5]. The Demon’s informational manipulations
had an irreducible entropic cost that balanced any gain in work. The role of information in
physics [8] has been actively debated ever since, culminating in a recent spate of experi-
mental tests of the physical limits of information processing [9–15] and the realization that
the degree of the control system’s dynamical instability determines the rate of converting
thermal energy to work [6].

Though many years ago, Maxwell [5] and then Szilard [4] were among the first to draw
out the consequences of an “intelligent being” taking advantage of thermal fluctuations [16].
Szilard’s Engine, however, and ultimately Maxwell’s Demon are not very functional: Proper
energy and entropy book-keeping during their operation shows their net operation is
consistent with the second law. As much energy is dissipated by the Demon as it extracts
from the heat bath [4]. There is no net thermodynamic benefit. Are there Demons that
are functional?

Only rather recently was an exactly solvable Maxwellian engine proposed that exhib-
ited functionality, extracting net work each cycle by decreasing physical entropy at the
expense of positive change in a reservoir’s Shannon information [17]. There, the Demon
generated directed rotation leveraging the statistical bias in a memoryless information
reservoir to compensate for the transfer of high-entropy energy in a thermal reservoir to
low-entropy energy that performed the rotational work. Since then, an extensive suite of
studies analyzed more complex information engines [3,18–28]. Here, and in contrast with
several of these studies, we emphasize engines that leverage information reservoirs with
large, unrestricted memories while interacting with complex, correlated environments.

Figure 1 illustrates the general design for an information engine. The Demon, now de-
noted “State Machine”, is in contact with three reservoirs: thermal, work, and information.
Each reservoir provides a distinct thermodynamic resource which the engine transforms.
The thermal reservoir stores high-entropy energy; the work reservoir, low-entropy energy;
and the information reservoir zero-energy Shannon information. The information reservoir
consists of input and output tapes with cells storing discrete symbols.
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Figure 1. Information engine: A thermodynamically embedded state machine transforms symbols
on the input tape with Shannon entropy rate hµ to the output tape with Shannon entropy rate h′µ.
The input and output tapes comprise an information reservoir coupled, as are the thermal and work
reservoirs, to the state machine. Tape symbols come from the same alphabet, e.g., as here, the set
{A, B}. According to the information processing second law [3], by changing the Shannon entropies
of the input and output symbol sequences, the information engine functions to convert heat Q to
work W or work to heat depending on the sign of the entropy change h′µ − hµ. Positive work and
heat indicate energy flows into the Machine.

The State Machine functions step by step. To process information on the tapes, it reads
a symbol from an input cell and writes a symbol to an output tape cell and changes its
internal state. The tapes then shift one cell presenting new input and output cells to the
State Machine. In terms of the energetics, in the first step, a controller couples the symbol
read from the input tape cell to the Machine. The controller may need positive or negative
work from the work reservoir. The heat transfer is zero since, for our purposes here, we
assume the process is relatively fast. In the second step, the state of the coupled cell–system
transitions as a result of being in contact with the thermal reservoir. Then, the thermal
reservoir induces a Markovian dynamics over the coupled cell–system joint states. This
step is completely performed by the thermal reservoir and as a result there is heat transfer
between the machine and thermal reservoir. The controller is absent and so the work
carried out in this step is zero. In the third step, the controller decouples the output state
from the machine state. Again, the work here can be nonzero, but the heat flow is zero.

There are three types of functioning. In the first, the state machine extracts heat from
the thermal reservoir and performs work on the work reservoir by producing output
symbol sequences with higher entropy than the input sequences. In this case, we say the
machine functions as an engine. In the second, the machine decreases the output sequence
entropy below that of the input by extracting work from the work reservoir and dumping
that energy to the thermal reservoir. In this way, the machine acts as an information eraser.
Finally, the third (non)functionality occurs when the machine uses (wastes) work energy
to randomize output. Since the randomization of the input can happen spontaneously
without wasting work—similar to the engine mode—we say the machine functions as a
dud; it is a wasteful randomizer.

3. Environment and Engine Representations

There are two technical points that need to be called out here. First, we imagine the
engine interacts with a complex environment. This means that we allow the input sequence
to be highly correlated with a very long memory. Formally, the input sequence considered
as a stochastic process is not necessarily Markovian. Denote the probability distribution
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over the input’s bi-infinite random variable chain by P(· · · X−1X0X1 · · · ), where Xt is the
random variable at time t. Then, the input sequence’s Markov order R is as follows:

P(Xt| · · · X−1X0X1 · · · Xt) = P(Xt|Xt−R · · · Xt) .

And so, by complex environment we mean that input sequences to the machine have large
R—the environment remembers long histories. Second, even though the machine has a
finite number of states, we allow it to also have a long memory. This simply means that,
via its states, the machine can remember the last, perhaps large, number of inputs.

One concludes from the first point about complex environments that Markov chains
are not powerful enough to represent correlated inputs, especially for the general case we
analyze. We need a less restrictive representation and so use hidden Markov models (HMMs),
which are known to be more powerful in the sense that, using only a finite number of
internal states, they can represent infinite Markov-order processes. We use HMMs to
represent the mechanisms generating both input sequences and output sequences.

A process P’s HMM is given as a pair
{
S, {T(x) : x ∈ A}

}
. S is HMM’s hidden states.

T(x) for any particular x is a substochastic matrix or state-to-state transition matrix for
transitions that generate symbol x. A is the alphabet of generated symbols.

Similarly, we conclude from the second point that more powerful machinery is needed
to handle general stochastic mappings with a long memory. We use stochastic finite-state
transducers [29] as they are powerful enough to represent the mappings we use in the
following. (Several of the technical contributions stem directly from showing how to work
directly with these powerful representations.)

A transducer representation is a pair
{
S, {T(x→y) : x ∈ Ax, y ∈ Ay}

}
. S is the trans-

ducer’s states. T(x→y) for any particular x and y is a substochastic matrix or state-to-state
transition matrix for transitions that for input x generate symbol y. Ax and Ay are the
alphabet for input and output symbols.

The following will demonstrate how these choices of representation greatly facilitate
analyzing the dynamics and thermodynamics of information engines.

4. Thermodynamic Functioning: When Is an Engine a Refrigerator?

Thermodynamic functionality is defined in terms of the recently introduced information
processing second law (IPSL) [3] which bounds the thermodynamic resources required, such
as work, to perform a certain amount of information processing:

⟨W⟩ ≤ kBT ln 2 (h′µ − hµ) , (1)

where kB is Boltzmann’s constant and T is the environment’s temperature. The IPSL relates
three macroscopic system measures: the input’s Shannon entropy rate hµ, the output’s
entropy rate h′µ, and the the average work ⟨W⟩ done on the work reservoir per engine cycle:

hµ = lim
ℓ→∞

H[X0, X1, · · · , Xℓ−1]

ℓ
,

h′µ = lim
ℓ→∞

H[X′
0, X′

1, · · · , X′
ℓ−1]

ℓ
, and (2)

⟨W⟩ = lim
ℓ→∞

1
ℓ ∑

w∈Aℓ

P(w) f (w) .

Here, H[·] is the Shannon entropy of the specified random variables. f (w) is defined as
follows. Since the machine stochastically maps inputs to outputs, a given input sequence w
typically maps to many distinct output sequences. Then, f (w) denotes the average work
carried out by feeding word w to the machine, averaging over all the possible mappings
from w; see Figure 2.
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w
f(w)

g(w)

Figure 2. Input-dependent work and information: feeding in every single word w, on average the
Machine generates work f (w) and information g(w).

That is, thermodynamic functioning is determined by the signs of ⟨W⟩ and h′µ − hµ.
Since there are two possible signs for each, there are four distinct cases. However, the IPSL
forbids the cases ⟨W⟩ > 0 and h′µ − hµ < 0. And so, there are three thermodynamically
functional modes: engine, eraser, and ineffective randomizer; see Table 1 [3]. When operating
as an engine, the machine absorbs heat from the thermal reservoir and converts it to work
by mapping the input sequence to a higher entropy-rate output sequence. Thus, the net
effect is to randomize the input. When operating as an eraser, the machine reduces the
input entropy by consuming work from the work reservoir and dumping it as high-entropy
energy to the heat reservoir. In the third case, the machine does not function usefully at all.
It is an ineffective randomizer, consuming work to randomize the input string. It wastes
work, low-entropy energy.

Table 1. Thermodynamic functionings for information engines, as determined by the information
processing second law of Equation (1).

Modality Function Net Work Net Computation

Engine
Extracts high-entropy energy from the thermal
reservoir, converts it into low-entropy work by
randomizing output

⟨W⟩ > 0 h′µ − hµ > 0

Eraser
Uses low-entropy energy from work reservoir
to reduce input randomness, exhausting high-
entropy energy to thermal reservoir

⟨W⟩ < 0 h′µ − hµ < 0

Ineffective
randomizer

Wastes stored work (low-entropy energy) to ran-
domize output ⟨W⟩ < 0 h′µ − hµ > 0

5. A Functional Information Engine

To ground these ideas, consider a prototype information engine—the information
ratchet introduced in Ref. [3]. The engine, Figure 3, specifies the distribution of inputs and
the states and transition structure of the engine’s state machine. The inputs come from
flipping a coin with bias b for heads (“0”). That is, the input is a memoryless, independent,
and identically distributed (IID) stochastic process. Its generating mechanism is depicted
as the hidden Markov model in Figure 3a with two states, A and B. Together, the current
state and transition taken determine the statistics of the emitted symbol. Similarly, the
engine’s mechanism is represented by the finite-state transducer in Figure 3b. Transducer
transitions are labeled. For example, if the machine is in state B and the input is 0, then with
probability p the output emitted is 1 and the machine state changes to A. This is shown by
an edge labeled by 1|0 : p going from state A to B.
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C Db|0 1 � b|1

1 � b|1

b|0
(a) Input Information Reservoir

A B
0|0:1
0|1:q

1|1:(1− q)

0|0:(1− p)
1|0:p
1|1:1

(b) Input–Output Transducer

Figure 3. (a) Hidden Markov model that generates a biased coin input string xtxt+1 . . . with bias
Pr(X = 0) = b. Edge labels x : p indicate a state-to-state transition of probability p that emits symbol
x. (b) The information engine’s internal mechanism is a transducer. Its edge labels x|x′ : p indicate
a state-to-state transition of probability p taken on reading input symbol x that emits symbol x′.
(Reprinted from Ref. [3] with permission).

At this point, only the engine’s information processing has been specified. To design a
physical system that implements the transducer, we first define the energetics for inputs
and for machine states and transitions:

E(0) = E(1) = 0 ,

E(A) = 0 , and

E(B) = e1 ,

where e1 is a parameter. Second, we define the energetics for joint symbol-states:

E(A ⊗ 0) = 0 , E(B ⊗ 0) = −ϵ1 ,

E(A ⊗ 1) = −ϵ2 , E(B ⊗ 0) = +ϵ3 .

The energies ϵi are further constrained:

e(ϵ1−ϵ2)/kBT =
1 − e−(ϵ2+ϵ3)/kBT

1 − e−ϵ1/kBT .

Third, we specify Markovian detailed-balanced dynamics over the coupled system
(input + state machine) that is induced by the thermal reservoir; see Figure 4. To guarantee
that this dynamic generates the same stochastic mapping as the transducer in Figure 3b,
we must relate the energetics to stochastic-transition parameters p and q:

p = 1 − e−ϵ1/kBT

q = 1 − e−(ϵ2+ϵ3)/kBT .

The average work carried out on the work reservoir is then as follows:

⟨W⟩ = kBT
2

[(pb − q + qb) ln (q/p)

+ (1 − b)q ln(1 − q) + pb ln(1 − p)] . (3)
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See Ref. [3] for calculation details.
The Shannon entropy rates of input and output sequences can also be calculated directly:

hµ = H(b)

≡ −b log2 b − (1 − b) log2(1 − b) (4)

h′µ =
H(b(1 − p))

2
+

H((1 − b)(1 − q))
2

.

Thus, the energies ϵ1,2,3 and control b are the only free parameters. They control the
engine’s behavior and, through the IPSL modalities in Table 1, its functionality. Reference [3]
gives a complete analysis of this information engine’s thermodynamic functioning.

A ⌦ 0 B ⌦ 0

A ⌦ 1B ⌦ 1

1

e
� ✏1

KBT

1

e
� (✏2+✏3)

KBT

1 � e
� ✏1

KBT1 � e
� (✏2+✏3)

KBT

Figure 4. Markovian detailed balance dynamics induced by contact with the thermal reservoir in the
coupled system (input symbol and machine state).

Summarizing for general information engines, one specifies the following:

1. Input process as an HMM;
2. Markovian detailed-balance dynamic over the coupled system of input and machine

states as a finite-state transducer with consistent energy assignments.

This prepares us to analyze fluctuations in an information engine interacting with the
complex environment specified by the input process.

6. Engines in Fluctuating Environments: The Strategy

Hidden in this and often unstated, but obvious once realized, Maxwellian Demons
cannot operate unless there are statistical fluctuations. Szilard’s Engine cleverly uses and
skirts this issue since it contains only a single molecule whose behaviors, by definition,
are nothing but fluctuations—single realizations. There is no large ensemble over which
to average. The information gleaned by the engine’s control system (Demon/Machine)
is all about the “fluctuation” in the molecule’s position. And, that information allows
the engine to temporarily extract energy from a heat reservoir. In short, fluctuations are
deeply implicated in the functioning of thermodynamic systems. The following isolates the
underlying statistical mechanisms.

The distinct types of thermodynamic functioning—engine, eraser, or dud—are based
on three average quantities: average work produced ⟨W⟩, the input sequences’ Shannon
entropy rate hµ, and the output sequences’ Shannon entropy rate h′µ [3,18–28]. As a result,
their definitions concern the thermodynamic limit of infinitely long sequences being fed
into the machine. Of course, the situation is practically quite different: the engine works
with and operates due to finite-length sequences.

To overcome this—and so to develop a theory of functional fluctuations—the follow-
ing is burdened with precisely delineating the limitations inherent in the infinite-length
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definitions above. It shows that, for any finite length, the functionality definitions are
limited to describing properties of only a unique subset of events—the so-called typical
set of realizations as identified by the asymptotic equipartition property of information
theory [1]. To do this, first we redefine the three quantities—work and entropy rates—as
averages over all the possible input sequences of a given length. Second, we define three
new unweighted-average quantities, but this time they are explicitly limited to typical
realizations. Third, we demonstrate that the differences between the first three averages
and the second three can be made arbitrarily small. Since the second kind of averages
are unweighted, the closeness result tells us that the average quantities are features of the
typical set and not of any other subset of the input sequences. In point of fact, they do
not describe atypical behaviors (statistical fluctuations) and so cannot be used to define
thermodynamic functions arising from fluctuations.

One technical reason behind this result is that, for the three averages, the functions
being averaged are linearly bounded from above by the input-sequence length. The conclu-
sion is that the original quantities can give information only about system functionality
for the specific subset of typical realizations. Of course, since observing realizations in this
subset is highly probable for long sequences and has probability one in the thermodynamic
limit of infinite length, the original functionality definition is quite useful. Our goal, though,
is to show just how incomplete it is and in important ways that must be overcome to
analyze fluctuations in functioning.

In short, the following consistently extends the original definitions to other realization
subsets—the fluctuations or atypical sets. The net result is that the theory covers the set
of any realization for any finite length. Given that, we introduce a method to calculate
the new functionality for these different fluctuation subsets. This completes the picture of
functional fluctuations for finite, but long, lengths. We go on to find the large deviation
rate for the new definition of functionality. An important contribution in this is that all of
the results also apply to input sequences and machines with long memories, given that the
latter are stochastic finite-state machines. This should be contrasted with developments,
cited above, that assume memoryless or order-1 Markov systems. We return to discuss
related work at the end, once the results are presented.

7. Functioning Supported by Typical Realizations

A picture of a system’s behavioral fluctuations can be developed in terms of (and
deviations from) asymptotic equipartition. Let us review. Consider a given process P and
let Aℓ denote the set of its possible length-ℓ realizations. Then, for an arbitrary 0 < ϵ ≪ 1,
the process’ typical set is as follows:

Aℓ
ϵ ≡{w : 2−ℓ(hµ+ϵ) ≤ P(w) ≤ 2−ℓ(hµ−ϵ), w ∈ Aℓ} . (5)

This set consists of realizations whose probability scales with the process’ entropy rate [1,30,31].
Moreover, the Shannon–McMillan–Breiman theorem [7,32,33] gives the probability of ob-
serving one of these realizations. That is, for a given ϵ ≪ 1, sufficiently large ℓ∗, and
w ∈ Aℓ,

P(w ∈ Aℓ
ϵ) ≥ 1 − ϵ , (6)

for all ℓ ≥ ℓ∗. There are three lessons:

1. Asymptotic equipartition: Equation (5) says that the probability of each sequence in
the typical set decays at approximately the same rate.

2. Typicality: Equation (6) says that for large ℓ the probability of observing some typical
realization goes to one. Overwhelmingly, they are what one observes.

3. Fluctuations: Conversely, the probability of observing realizations outside the typical
set is close to zero. These are the sets of rare sequences or what we call fluctuations.
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As a result, sequences generated by a stationary ergodic process fall into one of three
partitions, as depicted in Figure 5. The first contains sequences that are never generated;
they fall in the forbidden set. The second is the typical set. And, the last contains sequences
in a family of atypical sets—realizations that are rare to different degrees. Appendix A
illustrates these for a Biased Coin Process.

Typical  
Set

Forbidden  
Set

Atypical  
Set

A1

Figure 5. For a given process, the space A∞ of all sequences is partitioned into forbidden sequences,
sequences in the typical set, and sequences neither forbidden nor typical—the atypical or rare sequences.

What does this partitioning say about fluctuations in thermodynamic functioning?
Recall the functionings identified by the IPSL, as laid out in Table 1. That is, for a given
input process, transducer, and temperature, thermodynamic functionality is controlled by
three quantities: the average work ⟨W⟩ generated by the transducer when it operates on
the input process, the Shannon entropy hµ of the input process, and the Shannon entropy
h′µ of output process.

Appendix B proves that the difference between average work ⟨W(ℓ)⟩ over all sequences
and that ⟨W(ℓ)⟩TS defined for typical set is small for sufficiently large ℓ. For all practical
purposes, they are equal. This, together with recalling that ⟨W(ℓ)⟩TS is an unweighted
average of works f (w) for w ∈ Aℓ

ϵ, provides an operational interpretation of works used in
typical-set-defined functionality.

Similarly, Appendix C proves that the average generated information, when the trans-
ducer is fed the whole set, is essentially equal to the average information generated when
the transducer is fed the typical set without probability weights.

From Equation (5), it is also clear that the Shannon entropy rate of the input process
is also a function of the typical set. This demonstrates that all three quantities—⟨W⟩,
hµ, and h′µ—effectively measure properties of the typical set and not of other (atypical)
partitions. Recalling that these three quantities also determine the thermodynamics via
the IPSL functionality highlights that the previously defined functionality is limited. Next,
we remove this limitation, extending the thermodynamic functionality to the whole set
of partitions.

8. Functioning Outside Typical Realizations

The last section established that the average work ⟨W(ℓ)⟩ and input and output
entropy rates can be used, for ℓ ≫ 1, to identify the system functionality for typical
realizations. At last, “typical” has a precise operational meaning. Moreover, as ℓ → ∞,
the fraction of information available about the functionality of realizations outside the
typical set vanishes. Since the probability of observing realizations in the typical set at
large ℓ approaches one, the definition of functionality based on ⟨W⟩ and the entropies is
very useful.

However, one should not forget that this definition is limited, applying only to one
particular subset of realizations. As a result, the associated definition of functionality gives
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an incomplete picture. How incomplete? Note that the size of the typical set grows like
2hµℓ and the size of the whole set, excluding forbidden realizations, grows as 2hℓ, where h
is the input process’ topological entropy [34]. Generally, h > hµ (except for the special class
of maximum-entropy processes, which we do not consider directly). And so, the relative
size of the typical set shrinks exponentially with ℓ as 2−(h−hµ)ℓ, even though the probability
of observing typical realizations converges to one. The lesson is that, at finite ℓ, only
considering the typical set misses exponentially many—2−(h−hµ)ℓ—possibly functional,
observable realizations. With this as motivation, we are ready to define functionality for all
realizations—typical and atypical—allowing one to describe “nearby” functionalities that
arise during fluctuations out of the typical set. The goal is a complete picture of functional
fluctuations for finite, but long, realizations.

What engine functionalities do atypical realizations support? The very first step is
to partition the set Aℓ of all possible realizations into the subsets of interest. How? We
must find a suitable, physically relevant parametrization of realization subsets. We call the
collections a process’ atypical sets, using degrees of typicality as a parameter.

A key step in the last section was to realize that functionality is defined for unweighted
sets of realizations. Recalling Equation (5)’s definition of typical set, the normalized minus
logarithm of probabilities—effectively a decay rate—of all the words in the typical set is
sandwiched by small deviations (±ϵ) from the Shannon entropy rate:

hµ − ϵ ≤ −1
ℓ

log2 P(w) ≤ hµ + ϵ .

This is the main reason why ⟨W⟩TS is approximately the unweighted average work and,
consequently, why functionality is operationally defined for an unweighted set—the typ-
ical set. This provides an essential clue as to how to partition the set Aℓ of all possible
realizations, at fixed length ℓ.

We collect all the realizations with the same probability in the same subset, labeling it
with a decay rate denoted u:

Λu,ℓ =

{
w : − log2 P(w)

ℓ
= u, w ∈ Aℓ

}
. (7)

Defining Λu = lim
n→∞

Λu,n, it is easy to show that Λu ⊂ A∞ are disjoint and partition A∞.

Technically, this definition for the (parametrized) subsets of interest is necessary to
guarantee consistency with the previously defined typical-set notion of functionality.

The parameter u, considered as a random variable, is sometimes called a self process [35].
Figure 6 depicts these subsets as “bubbles” of equal decay rate. Equation (5) says the typical
set is that bubble with a decay rate equal to the process’ Shannon entropy rate: u = hµ. All
the other bubbles contain rare events, some rarer than others, in the sense that they exhibit
faster or slower probability decay rates.

The previous section shows that for ℓ ≫ 1 the averaging operator ⟨·⟩ yields a statistic
essentially about the typical set. Now, consider the situation in which we are interested
in the functionality of another subset with decay rate u ̸= hµ. How can we use the same
operator to find the functionality arising from this subset?

If someone presents us with another process Pu whose typical set is Λu and we feed
this new process into the system, instead of the original input process, then the operator
can be used to identify the functionality of realizations in Λu. Now, the question comes up
as to whether this process exists at all and, if so, can we find it?

The answer to the first question is positive, since we made certain to define the atypical
subsets in a way consistent with the definition of the typical set. And, by definition, all the
sequences in the subset Λu have the same decay rate.

The answer to the second question is also positive. As argued earlier, we use hidden
Markov models (HMMs) as our choice of process representation. Denote process P ’s HMM
by M(P) =

{
S , {T(x) : x ∈ A}

}
. The question is now framed, What is M(Pu)?
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Typical  
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�

umax uminhµ

Figure 6. Space A∞ of all sequences partitioned into subsets Λu—isoenergy-density or equal probability-
decay-rate bubbles—in which all sequences in the same Λu have the same energy density u. The typical
set is one such bubble with energy equal to Shannon entropy rate: u = hµ. Another important class
is the forbidden set, in which all sequences do not occur. The forbidden set can also be interpreted
as the subset of sequences with infinite positive energy. By applying the map Bβ to the process and
changing β continuously from −∞ to +∞ (excluding β = 0) one can generate any atypical class of
interest ΛP

u . β → −∞ corresponds to the most probable sequences with the largest energy density
umax, β = 1 corresponds to the typical set, and β → +∞ corresponds to the least probable sequences
with the smallest energy density umin. (Reprinted with permission from Ref. [36]).

To answer, define a new process Pβ with HMM M(Pβ) =
{
S , {S(x)

β , x ∈ A}
}

. Notice
both M(Pβ) and M(P) have the same states S and same alphabet A. The substochastic
matrices of M(Pβ) are related to the substochastic matrices of M(P) via the following
construction [36,37]:

1. Pick a β ∈ R.

2. For each x ∈ A, construct a new matrix T(x)
β for which

(
T(x)

β

)
ij =

(
T(x))β

ij.

3. Form the matrix Tβ = ∑x∈A T(x)
β .

4. Calculate Tβ’s maximum eigenvalue λ̂β and corresponding right eigenvector r̂β.

5. For each x ∈ A, construct new matrices S(x)
β for which

(
S(x)

β

)
ij =

(
T(x)

β

)
ij(r̂β)j

λ̂β(r̂β)i
.

We defined the new process Pβ by constructing its HMM. We now use the latter to
produce an atypical set of interest, say, Λu,ℓ.

Theorem 1. Within the new process Pβ, in the limit ℓ → ∞, the probability of generating
realizations from the set Λu,ℓ converges to one:

lim
ℓ→∞

Pr
β
(Λu,ℓ) = 1 ,

where the energy density is as follows:

u = β−1(hµ(Pβ)− log2 λ̂β

)
. (8)
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Additionally, in the same limit, the process Pβ assigns equal energy densities (probability decay
rates) to all w ∈ Λu,ℓ.

Proof. See Ref. [38].

In this way, for large ℓ the process Pβ typically generates realizations in the set Λu,ℓ
and with the specified energy u. The process Pβ is variously called the auxiliary, driven, or
effective process [39–41].

Using Equation (8), one can show that for any u there exists a unique and distinct
β ∈ R and, moreover, that u is a decreasing function of β. And so, we can equivalently
denote the process Pβ by Pu. More formally, every word in Λu with probability measure
one is in the typical set of process Pβ. Thus, sweeping β ∈ [−∞, ∞] controls which subsets
(atypical sets) outside the typical set we focus on. And, applying the operator ⟨·⟩ determines
the engine functionality for realizations in that subset, as we now show.

9. Functional Fluctuations

Let us draw out the consequences and applications of this theory of functional fluc-
tuations. First, we ground the results by identifying the range of functionality that arises
as an information ratchet (introduced earlier) operates. Then, we turn to showing how to
calculate the probability of its fluctuating functionalities.

9.1. An Information Ratchet Fluctuates

Recall the information ratchet introduced in Section 4, but now set its Markov dynamic
parameters p = 0.2 and q = 0.6 and put it in contact with an information reservoir that
generates IID symbol sequences with bias b = 0.9. Operating the input reservoir for a
sufficiently long period, with high probability, we observe a sequence that has nearly 90%
0 s in it. Using Equations (3) and (4), we see positive work ⟨W⟩ > 0 and positive entropy
production h′µ − hµ > 0. Then, according to the IPSL functionalities in Table 1, the ratchet
typically operates as an engine.

What thermodynamic functionalities occur when the input fluctuates outside the
typical set? Sweeping β controls which subsets outside the typical set are expressed and,
consequently, which fluctuation subsets are accessible. Recall that the input process is
specified by the unifilar HMM in Figure 3a. For this input, as a result of the ratchet design,
M(Pβ) is the same as M(P), except that b is shifted to b̂ = bβ/

(
bβ + (1 − b)β

)
. Different

sequence–probability decay rates u are calculated from Equation (8). Then, feeding the new
process to the ratchet, ⟨W⟩ is calculated from Equation (3), again by changing b to b̂. Denote
this work quantity ⟨W⟩(u). Figure 7 shows the dissipated work ⟨W⟩(u) and the difference
between the output and input Shannon entropy rate versus the fluctuating decay rate u.
There are several observations to make, before associating the thermodynamic function.

First, let us locate the input typical set. This occurs at a u such that β = 1. The figure
identifies it with a vertical line, so labeled.

Second, the input process’ ground states occur as β → ∞ since u is a decreasing
function of β. As a consequence of Equation (7), this subset corresponds to the sequence
with the highest probability. In this case, this is the all-0 s sequence with umin = − log2(b) ≃
0.152. The other extreme is at umax, corresponding to the lowest-probability, allowed
sequence. This is the all-1 s sequence with umax = − log2(1 − b) ≃ 3.32. Note that there is
only a single sequence associated with umax and only one with umin.

Third, to complete the task of identifying function, we must determine the average
work ⟨W⟩ as a function of energy u. From the figure, we see that the dissipated work ⟨W⟩ is
linear in the decay rate u. Appendix D derives this and also shows that the maximum work
over all subsets—all β or all allowed decay rates u—is independent of the input process
bias. This is perhaps puzzling as bias clearly controls the ratchet’s thermodynamic behavior.
Thus, assuming an IID input, the maximum work is a property of the ratchet itself and not
the input—the maximum work playing a role rather analogous to how Shannon’s channel
capacity is a channel property.
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Figure 7. Average work ⟨W⟩(u) (blue line) and difference h′µ − hµ between output and input Shannon
entropy rate, respectively, (red dashed line) versus decay rate u for different atypical sets (fluctuations).
In this, information transducer with parameters p = 0.2 and q = 0.6 is driven by an IID input source
with bias b = 0.9. Table 1 has been used to identify functionality of different fluctuations subsets:
engine (green), eraser (red), and dud (yellow, two regions).

To better understand how the ratchet operates thermodynamically, consider the
ground state of the input process, which as just noted has only a single member, the
all-0 sequence with zero entropy rate hµ = 0. If we feed this sequence into the ratchet,
the ratchet adds stochasticity which appears in the output sequence. The first 0 fed to
the ratchet leads to a 0 on the output. For the next 0 fed in, with probability p the ratchet
outputs 1 and with probability 1 − p it outputs 0. The entropy rate of the output sequence
then is h′µ = 1

2 H(p) ≃ 0.36.
To generate this sequence, we simply use the ϵ-machine in Figure 3 with b = 1.

With this biased process as input, using Equation (3), we find ⟨W⟩(umin) ≃ 0.0875 > 0.
Table 1 then tells us that if we feed the ground state of the input process to the ratchet, it
functions as an engine. At the other extreme, Umax, the only fluctuation subset member
is the all-1 s sequence with hµ = 0. Again, the ratchet adds stochasticity and the output
has h′µ = 1

2 H(q) ≃ 0.485. To generate this input sequence, we simply use the ϵ-machine
in Figure 3 with b = 0. With this process as an input, we use Equation (3) again and
find negative work ⟨W⟩(Umax) ≃ −0.6. Table 1 now tells us that feeding in this extreme
sequence (input fluctuation) the ratchet functions as a dud.

Overall, Table 1 allows one to identify the regimes of u associated with distinct thermo-
dynamic functionality. These are indicated in Figure 7 with the green region corresponding
to engine functioning, red to eraser functioning, and yellow to dud. We conclude that the
ratchet’s thermodynamic functioning depends substantially on fluctuations and so will
itself fluctuate over time. In particular, engine functionality occurs only at relatively low
input fluctuation energies, seen on Figure 7’s left side, and encompasses the typical set, as
a consequence of our design. Rather nearby the engine regime, though, is a narrow one of
no functioning at all—a dud. In fact, though the ratchet was designed as an engine, we see
that, over most of the range of fluctuations, with the given parameter setting, the ratchet
operates as an eraser.
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9.2. Probable Functional Fluctuations

In this way, we see that typical-set functionality can be extended to all input realizations—that
is, to all fluctuation subsets. The results give insight into the variability in thermodynamic
function and a direct sense of its robustness or lack thereof. Now, we answer two questions
that are particularly pertinent in the present setting of events (sequences) whose probabili-
ties decay exponentially fast and so may be practically never observed. How probable are
fluctuations in thermodynamic functioning? And, the related question, how probable are
each of the fluctuation subsets? Exploring one example, we will show that the functional
fluctuations are, in fact, quite observable not only with short sequences, perhaps expectedly,
but also over relatively long sequences, such as ℓ = 100.

The second question calls for determining P(w ∈ Λu,ℓ). However, in the large-ℓ limit,
this quantity vanishes. So, it is rather more natural to ask how it converges to zero. Since
we are considering ergodic stationary processes, we can apply the large deviation principle:
the probability of every subset Λu,ℓ vanishes exponentially with ℓ. However, each subset
Λu,ℓ has a different exponent which is the subset’s large deviation rate [35]:

I(u) = lim
ℓ→∞

−1
ℓ

log2 P(w ∈ Λu,ℓ) .

Since all these w have the same probability decay rate u, P(w) decomposes to two com-
ponents. The first gives the number |Λu,ℓ| of sequences in the subset and the second the
probability 2−ℓu of individual sequences. That is,

I(u) = lim
ℓ→∞

−1
ℓ

log2 P(w ∈ Λu,ℓ)

= lim
ℓ→∞

−1
ℓ

log2(|Λu,ℓ|2−ℓu)

= u − lim
ℓ→∞

1
ℓ

log2(|Λu,ℓ|) .

The size of the subsets also grows exponentially with ℓ, each subset with a different
exponent. To monitor this, we define a new function:

S(u) = lim
ℓ→∞

1
ℓ

log2 |Λu,ℓ| .

Previously, we showed that S(u) = hµ(Pβ), where hµ(Pβ) is Pβ Shannon entropy and
u = β−1(hµ(Pβ)− log2 λ̂β

)
from Equation (8) [38]. These results allow one to calculate

I(u) for any subset using the following expressions:

I(u) =
(

β−1 − 1
)

hµ(Pβ)− β−1 log2 λ̂β and

u = β−1(hµ(Pβ)− log2 λ̂β

)
.

Figure 8 plots I(u) for our example information ratchets. As with the previous figure,
when realizations from the typical set are fed in, the transducer functions as an engine. We
now see that the typical set has a zero large deviation rate. That is, in the limit of infinite
length, the probability of observing realizations in the typical set goes to one. In terms of
thermodynamic functioning, the transducer operates as an engine over long periods with
probability one. Complementarily, in the infinite length limit, the probability of the other
“fluctuation” subsets vanishes.

In reality, though, one only observes finite-length sequences. And so, the operant
question here is, are functional fluctuations observable at finite lengths? As we alluded to
earlier, the expectation is that short sequences should enhance their observation.

Consider the input process in Figure 3a and assume the input’s realization length is
ℓ = 100. We have 2100 distinct input sequences that are partitioned into 101 fluctuation
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subsets with different energy densities—subsets of sequences with ℓ 0 s and 100 − ℓ 1 s
for ℓ = 0, 1, . . . , 100. Let us calculate the probability of each of these fluctuation subsets
occurring analytically. The probability of each versus its energy is shown in Figure 8 as the
blue dotted line. To distinguish it from the energy density of fluctuation subsets at infinite
length we label the energy density of each of these sets with u100; the index 100 reminds
us that we are examining input sequences of length ℓ = 100. There are 101 blue points on
the figure, each representing one of the fluctuation subsets. (Most are obscured by other
tokens, though.) If we feed the first 13 of the 101 fluctuation subsets (the first 13 blue
points on the left of the figure) to the transducer, it functions as an engine. Summing the
probabilities of these engine subsets, we see that the transducer functions as an engine 80%
of the time, which is quite probable, even though it operates on sequences of length 100
that are individually highly improbable.
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Figure 8. Probability of fluctuations in thermodynamic functioning: large-deviation rate function I(u)
(solid black line) and the theoretically predicted probability Pr(u100) of fluctuation subsets for length
ℓ = 100 input realizations (dotted–solid blue line). Star tokens denote estimates from numerical
simulation which validate the analytical results due to their close fit.

To verify the analytical results, we also performed extensive numerical simulations
that drove the ratchet with a sequence of length ℓ = 106. We divided the input sequence into
time intervals of length 100 and estimated the generated work and other observables, such
as energy, during each interval. The star tokens in Figure 7 show the estimated average
work in each interval with a decay rate u versus the decay rate itself. The numerical
estimates agree closely with the analytical result. Figure 8 also shows the probabilities of
each of these atypical subsets estimated from the simulations, which also validates the
analytical results.

Let us return to the remaining question: how probable are fluctuations in thermody-
namic functioning? The answer is given by the large deviation rate for ⟨W⟩(u). Since ⟨W⟩
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is a function of u, one can use the contraction principle [35] and relate the large deviation
rate of ⟨W⟩(u) in terms of a large deviation rate of u via the following:

Ĩ(y = ⟨W⟩(u)) = min
u:y=⟨W⟩(u)

I(u) .

Since ⟨W⟩(u) is a one-to-one function, the minimization above may be removed.

10. Discussion
10.1. Related Work

The new results here on memoryful information engines are also complementary
to previous studies of fluctuations in the efficiency of a nanoscale heat engine [42–44], a
particular form of information engine.

10.2. Relation to Fluctuation Theorems

To head off confusion, and anticipate a key theme, note that the “statistical fluctuation”
above differs importantly from the sense used to describe variations in mesoscopic quanti-
ties when controlling small-scale thermodynamic systems. This latter sense is found in the
recently famous fluctuation theorem for the probability of positive and negative entropy
production ∆S during macroscopic thermodynamic manipulations [45–51]:

Pr(∆S)
Pr(−∆S)

= e∆S .

Both kinds of fluctuation are ubiquitous, often dominating equilibrium finite-size
systems and finite and infinite nonequilibrium steady-state systems. Differences acknowl-
edged, there are important connections between statistical fluctuations in microstates
observed in steady state and fluctuations in thermodynamic variables encountered during
general control: for one, they are deeply implicated in expressed thermodynamic function.
Is a system operating as an engine—converting thermal fluctuations to useful work—or as
an eraser—depleting energy reservoirs to reduce entropy—or not functioning at all?

11. Conclusions

We synthesized statistical fluctuations—as entailed in Shannon’s Asymptotic Equiparti-
tion Property [1] and large deviation theory [35,52,53]—and functional thermodynamics—as
determined using the new informational second law [3]—to predict spontaneous variations
in thermodynamic functioning. In short, there is simultaneous, inherently parallel, thermo-
dynamic processing that is functionally distinct and possibly in competition. This strongly
suggests that, even when in a nonequilibrium steady state, a single nanoscale device or
biomolecule can be both an engine and an eraser. And, we showed that these functional
fluctuations need not be rare. This complements similar previous results on fluctuations
in small-scale engine efficiency [42,43,54]. The conclusion is that functional fluctuations
should be readily observable and the prediction experimentally testable.

A main point motivating this effort was to call into question the widespread habit of
ascribing a single functionality to a given system and, once that veil has lifted, to appreciate
the broad consequences. To drive them home, since biomolecular systems are rather like
the information ratchet here, they should exhibit measurably different thermodynamic
functions as they behave. If this prediction holds, then the biological world is vastly
richer than we thought and it will demand of us a greatly refined vocabulary and greatly
improved theoretical and experimental tools to adequately probe and analyze this new
modality of parallel functioning.

That said, thoroughness forces us to return to our earlier caveat (Section 9) concerning
not conflating various “temperatures”. If we give the input information reservoir and
the output information reservoir physical implementations, then the fluctuation indices
Uin and Uout take on thermal physical meaning and so can be related to the ratchet’s
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thermodynamic temperature T. Doing so, however, would take us too far afield here, but it
will be necessary for a complete understanding.

Looking forward, there are many challenges. First, note that technically speaking we
introduced a fluctuation theory for memoryful stochastic transducers, but by way of the
example of Ref. [3]’s information ratchet. A thoroughgoing development must be carried
out in much more generality using the tools of Refs. [29,38], if we are to fully understand the
functionality of thermodynamic processes that transform inputs to outputs, environmental
stimulus to environmental action.

Second, the role of the Jarzynski–Crooks theory for fluctuations in thermodynamic
observables needs to be made explicit and directly related to statistical fluctuations, in
the sense emphasized here. One reason is that their theory bears directly on controlling
thermodynamic systems and the resulting macroscopic fluctuations. To draw the parallel
more closely, following the fluctuation theory for transitions between nonequilibrium
steady states [55], we could drive the ratchet parameters p and q and input bias b between
different functional regimes and monitor the entropy production fluctuations to test how
the theory fares for memoryful processes. In any case, efficacy in control will also be
modulated by statistical fluctuations.

Not surprisingly, there is much to do. Let us turn to a larger motivation and perhaps
larger consequences to motivate future efforts.

As just noted, fluctuations are key to nanoscale physics and molecular biology. We
showed that fluctuations are deeply implicated both in identifying thermodynamic function
and in the very operation of small-scale systems. In fact, fluctuations are critical to life—its
proper and robust functioning. The perspective arising from parallel thermodynamic func-
tion is that, rather than fluctuations standing in contradiction to life processes, potentially
corrupting them, there may be a positive role for fluctuations and parallel thermodynamic
functioning. Once that is acknowledged, it is a short step to realize that biological evolution
may have already harnessed them to good thermodynamic effect. Manifestations are clearly
worth looking for.

It now seems highly likely that fluctuations engender more than mere health and
homeostasis. It is a commonplace that biological evolution is nothing, if not opportunistic. If
so, then it would evolve cellular biological thermodynamic processes that actively leverage
fluctuations. Mirroring Maxwell’s Demon’s need for fluctuations to operate, biological
evolution itself advances only when there are fluctuations. For example, biomolecular
mutation processes engender a distribution of phenotypes and fitnesses; fodder for driving
selection and so evolutionary innovation. This, then, is Darwin’s Demon—a mechanism that
ratchets in favorable fluctuations for a positive thermodynamic and then positive survival
benefit. The generality of results and methods here give new insight into thermodynamic
functioning in the presence of fluctuations that should apply at many different scales of
life, including its emergence and evolution.
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Appendix A. Typical Set for a Biased Coin

What is An
ϵ for a biased coin with bias b? The typical set is defined by the following:

An
ϵ = {w ∈ An : 2−n(hµ+ϵ) ≤ Pr(w) ≤ 2−n(hµ−ϵ)} .

The probability of a biased coin generating a particular sequence w with k heads is bk(1 −
b)(n−k). And so, for w to be in the typical set, we must have the following:

ℓb − nϵ

log b
1−b

≤ k ≤ nb +
nϵ

log b
1−b

.

Since k is an integer, ⌈
nb − nϵ

log b
1−b

⌉
≤ k ≤

⌊
nb +

nϵ

log b
1−b

⌋
.

For example, in the case where n = 1000, b = 0.6, and ϵ = 0.01, we have the following:

582 ≤ k ≤ 617 .

This means that those length n = 1000 sequences with 582 to 617 heads are in the typical set.

Appendix B. Work Bounds

The average work for finite length ℓ is as follows:

⟨W(ℓ)⟩ = 1
ℓ ∑

w∈Aℓ

P(w) f (w) . (A1)

Recall that f (w) is the average work generated by the transducer when fed the word w; see
Figure 2.

Now, let us say we are only interested in the engine’s functionality when operating on
sequences in a particular partition—those in the typical set. To determine the functionality,
we first define a new probability distribution for the typical set:

P̃(w) =

P(w)/ ∑
w∈Aℓ

ϵ

P(w) w ∈ Aℓ
ϵ

0 w /∈ Aℓ
ϵ

.

Using it, we define a new average work for finite ℓ sequences in the typical set:

⟨W(ℓ)⟩TS =
1
ℓ ∑

w∈Aℓ

P̃(w) f (w) .

There are two important observations. First, this statistic gives no information about works
generated by sequences outside of Aℓ

ϵ, since the probability distribution vanishes there.
Second, for every pair of typical sequences w1, w2 ∈ Aℓ

ϵ,

P̃(w1) ≃ P̃(w2) ,

since Equation (5) bounds the sequences’ probabilities: 2−ℓ(hµ+ϵ) ≤ Pr(w) ≤ 2−ℓ(hµ−ϵ).
Effectively, ⟨W(ℓ)⟩TS is an unweighted average over f (w)s for the words in the typical set.
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Now, consider Equation (A1) and decompose its righthand side into two parts: the
share of typical sequences and the share of atypical sequences:

∑
w∈Aℓ

P(w) f (w) = ∑
w∈Aℓ

ϵ

P(w) f (w) + ∑
w/∈Aℓ

ϵ

P(w) f (w) . (A2)

The second term is bounded from above:

∑
w/∈Aℓ

ϵ

P(w) f (w) ≤
 ∑

w/∈Aℓ
ϵ

P(w)

max{ f (w) : w /∈ Aℓ
ϵ}

≤ ϵ × max{ f (w) : w /∈ Aℓ
ϵ} .

f (w), the work generated by any length-ℓ sequence w ∈ Aℓ, is also bounded:

ℓαmin ≤ f (w) ≤ ℓαmax ,

where αmin and αmax are the minimum and maximum one-shot works, respectively. Here,
αmax > 0 and αmin < 0, which are due to the finiteness of energy for the machine states and
coupled input symbol states. As a result, we have:

∑
w/∈Aℓ

ϵ

P(w) f (w) ≤ ℓϵαmax .

Similarly, it has a lower bound:

∑
w/∈Aℓ

ϵ

P(w) f (w) ≥ ϵℓαmin .

Now, we turn to decompose Equation (A2)’s first term into two parts:

∑
w∈Aℓ

ϵ

P(w) f (w) = ∑
w∈Aℓ

ϵ

P(w)

∑
w∈Aℓ

ϵ

P(w)
f (w)

+ ∑
w∈Aℓ

ϵ

P(w)− P(w)

∑
w∈Aℓ

ϵ

P(w)

 f (w) . (A3)

The second term in Equation (A3) can be written as follows:

∑
w∈Aℓ

ϵ

P(w)− P(w)

∑
w∈Aℓ

ϵ

P(w)

 f (w) =

1 − 1
∑

w∈Aℓ
ϵ

P(w)

 ∑
w∈Aℓ

ϵ

P(w) f (w) ,

To go further one must note that the coefficient of the sum on the righthand side is negative.
As a result,

∑
w∈Aℓ

ϵ

P(w)− P(w)

∑
w∈Aℓ

ϵ

P(w)

 f (w)
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≤

1 − 1
∑

w∈Aℓ
ϵ

P(w)

min{ f (w) : w /∈ Aℓ
ϵ} ∑

w∈Aℓ
ϵ

P(w)

≤

1 − 1
∑

w∈Aℓ
ϵ

P(w)

ℓαmin ∑
w∈Aℓ

ϵ

P(w)

≤
(

1 − 1
1 − ϵ

)
ℓαmin .

This gives an upper bound on the second term in Equation (A3).
Similarly, one can give it a lower bound:

∑
w∈Aℓ

ϵ

P(w)− P(w)

∑
w∈Aℓ

ϵ

P(w)

 f (w) ≥
(

1 − 1
1 − ϵ

)
ℓαmax .

Using Equations (A2) and (A3) and these upper and lower bounds, we have the
following:

δmin ≤ ⟨W(n)⟩ − ⟨W(n)⟩TS ≤ δmax ,

where

δmin = ϵ

(
αmin − αmax

1 − ϵ

)
and

δmax = ϵ

(
αmax −

αmin

1 − ϵ

)
.

Recalling that αmax > 0 and αmin < 0, we have δmax > 0 and δmin < 0.
Thus, the difference between average work ⟨W(ℓ)⟩ over all sequences and that ⟨W(ℓ)⟩TS

defined for typical set is small for sufficiently large ℓ. For all practical purposes, they are
equal. This, together with recalling that ⟨W(ℓ)⟩TS is an unweighted average of works f (w)
for w ∈ Aℓ

ϵ, provides an operational interpretation of the previously defined functionality.

Appendix C. Information Bounds

The Shannon entropy rate of the output process for finite length ℓ is as follows:

∆H′(ℓ) =
1
ℓ ∑

w′∈Aℓ

P′(w′) log2 P
′(w′) .

Here, P(·) refers to the probability of output sequences under the process generated by the
transducer and w′ is an output sequence. Rewrite the sum in the form

∑
w′∈Aℓ

P′(w′) log2 P
′(w′) = ∑

w,w′∈Aℓ

P(w)P(w′|w) log2 P
′(w′) ,

where P(w′|w) is the conditional probability of the transducer generating output sequence
w′ when reading input w. Now, defining

g(w) = ∑
w′∈Aℓ

−P(w′|w) log2 P
′(w′) ,
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one writes the Shannon entropy rate in a form paralleling Equation (A1):

∆H′(ℓ) =
1
ℓ ∑

w∈Aℓ

P(w)g(w) , (A4)

where g(w) is the average information generated by the word w when passing through the
transducer; see Figure 2.

We can also monitor the information generated by feeding in only the typical set with:

∆H′
TS(ℓ) =

1
ℓ ∑

w∈Aℓ

P̃(w)g(w) .

Similar to analyzing the generated works, one decomposes the sum in Equation (A4)
into two parts:

∑
w∈Aℓ

P(w)g(w) = ∑
w∈Aℓ

ϵ

P(w)g(w) + ∑
w/∈Aℓ

ϵ

P(w)g(w) . (A5)

The second term in Equation (A5) is bounded above:

∑
w/∈Aℓ

ϵ

P(w)g(w) ≤
(

∑
w/∈An

ϵ

P(w)

)
max{g(w) : w /∈ Aℓ

ϵ}

≤ ϵ × max{g(w) : w /∈ Aℓ
ϵ}

From the definition, one sees that there are upper bounds on g(w) < ℓ, where the
bound can only be reached when the input is a Fair Coin Process and the transducer
maps every word fairly to all possible output sequences. This means the second term in
Equation (A5) is bounded from above:

∑
w/∈Aℓ

ϵ

P(w)g(w) ≤ ϵℓ .

We can similarly analyze the first term in Equation (A5):

∑
w∈Aℓ

ϵ

P(w)g(w) = ∑
w∈Aℓ

ϵ

P̃(w)g(w)

+ ∑
w∈Aℓ

ϵ

(P(w)− P̃(w))g(w) .

The second term here is negative and is bounded from below:

∑
w∈An

ϵ

(P(w)− P̃(w))g(w) =1 − 1
∑

w∈Aℓ
ϵ

P(w)

 ∑
w∈Aℓ

ϵ

P(w)g(w)

≥
(

1 − 1
1 − ϵ

)
∑

w∈Aℓ
ϵ

P(w)g(w)

≥
(

1 − 1
1 − ϵ

)
max{g(w) : w /∈ Aℓ

ϵ} ∑
w∈Aℓ

ϵ

P(w)

≥
( −ϵ

1 − ϵ

)
max{g(w) : w /∈ Aℓ

ϵ}
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≥ ℓ

( −ϵ

1 − ϵ

)
.

Combining these two bounds,

−ϵ

1 − ϵ
≤ ∆H′(ℓ)− ∆H′

TS(ℓ) ≤ ϵ ,

one concludes the average generated information, when the transducer is fed the whole set,
is essentially equal to the average information generated when the transducer is fed the
typical set without probability weights.

Appendix D. Work Is a Linear Function of Decay Rate

First, let us calculate u as a function of β. Recall that they related via u = β−1(hµ(Pβ)−
log2 λ̂β

)
.

Using step 2 and 3 for the HMM model shown in Figure 3, we have

Tβ =

[
bβ (1 − b)β

bβ (1 − b)β

]
.

Calculating the maximal eigenvalue λ̂β, we find the following:

log λβ = log2(b
β + (1 − b)β) .

The Shannon entropy of process Pβ, hµ(Pβ) is equal to the Shannon entropy of the
biased coin with bias b̂ = bβ/(bβ + (1 − b)β:

hµ(Pβ) = −
(

bβ

bβ + (1 − b)β
log2

bβ

bβ + (1 − b)β

+
(1 − b)β

bβ + (1 − b)β
log2

(1 − b)β

bβ + (1 − b)β

)
.

It is straightforward, now, to calculate u from these:

u =
−bβ

bβ + (1 − b)β
log2(b)

+
−(1 − b)β

bβ + (1 − b)β
log2(1 − b) .

In the next step, we need to calculate the work ⟨W⟩ from Equation (3) for the input
process Pβ by replacing b with b̂:

⟨W⟩(β) =
kBT

2

(
−q log(q/p) + q log(1 − q) +

cbβ

bβ + (1 − b)β

)
,

where c = (p + q) log(q/p) + p log(1 − p)− q log(1 − q). Now it is easy to see that:

⟨W⟩(u) = kBT
2

(
−q log

(
q
p

)
+ q log(1 − q)

)
+c

u + log(1 − b)
log(1 − b)− log(b)

)
.
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It is also easy to see that:

Wmax = max
β

⟨W⟩

=

{
W−

max ≡ kBT
(
− q log(p/q)− q log(1 − q)

)
c < 0

W+
max ≡ kBT

(
p log(p/q)− p log(1 − p)

)
c ≥ 0

,

which is in both cases independent of the bias for the input process b.
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