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Abstract

This paper describes work on the autonomous semantic network (ASN) knowledge
representation and natural language processing architecture and its implementation - the NO HANS
simulator. An ASN is an enhanced spreading activation semantic network, but one without a
centralized controller. Rather, in addition to the semantic network are types of nodes which have
the ability to change links or add nodes in the network. These nodes are activated by the energy
spreading through the underlying semantic network. Thus, the same spreading activation which
infuses the knowledge representation also drives the control mechanism as well. Because of this,
ASN's offer a compromise between the distributed but restrictive connectionist model and the
powerful but heretofore essentially serial conceptual natural language processing models.
Spreading activation is also the basis for the search capability, which is loosely based on the
connectionist winner-take-all idea. We construct a simple conceptual analyzer in this model and
indicate how it works.

1. Introduction

The goal of this work is to be able to use the conceptual style of natural language processing in a
massively-parallel form. Conceptual natural language processing merges syntactic, semantic and
world knowledge and facilitates processing by allowing high-level inferences (cf Schank and
Abelson, 1977; Dyer, 1983). One of the problems with this approach is that the number of
alternatives that needs to be searched becomes prohibitive using a serial model of computer
control. Massively-parallel architectures (cf Hillis, 1985; Fahlman, 1979) have tens of
thousands of nodes, each of which has a limited processing capability. Their forte is extremely fast
search. By casting the conceptual techniques into a form where we can utilize parallelism, we hope
to gain insights into how to increase the size and complexity of the domains which can be handled
by such systems, eventually transcending the micro-world limitiations which have plagued the
field.

In recent years there has been much work on distributed natural language processing. These
efforts fall into two main categories - connectionist and symbolic. The connectionist systems
(Cofttrell, 1985; Waltz and Pollack, 1985; Seiman and Hirst, 1985) are primarily parsers -
they produce a pattern of activation corresponding to a parse tree. They do not add a representation
of the sentence to their networks. Because of this, they are not good candidates for conceptual
analyzers - an important feature of conceptual systems is that they can build and manipulate a
representation of the input text. The symbolic systems, such as the Word Expert Parser (Small
and Rieger, 1982) do produce a representation of the new information. Unfortunately, they use a
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high-level model of parallelism. They use powerful processing units which engage in complex
communication with one-another. We would like to be able to use the simpler processing units and
communications abilities which are suited to massive-parallelism.

What we propose in this paper is a new model - the autonomous semantic network (ASN). ASN's
offer parallelism comparable to the connectionist models while potentially allowing the
sophisticated processing of the symbolic, conceptual systems.

2. Autonomous Semantic Networks

The idea underlying an ASN is a spreading-activation semantic network (cf Collins and Loftus,
1975). These systems have used a central, controlling program to direct their activity. Our
approach differs because, to take advantage of the parallelism inherent in such an architecture, it
is necessary to distribute the controller among nodes connected to the network. To do this, new
kinds of nodes were added which alter the network in response to new information. In addition to
the normal nodes and links of the spreading activation network, we add construction nodes
("c-nodes”) which can manipulate the nodes and links. These c-nodes are connected to the semantic
network and are enabled by the same activation which spreads through the network. The activation
energy which provides focus in the knowledge representation now drives the system's control
mechanisms. In this way we distribute the controller. There is also a type of node, the
Winner-take-all ("wta"), which provides a search ability by comparing the activation of network
nodes.

Although the semantic network which underlies this model is essentially connectionist, it was
felt that it was necessary to use the c-nodes, with their relatively sophisticated abilities. Current
efforts to get connectionist models to do high-level tasks still require large numbers of nodes (cf
Touretzky and Hinton, 1985). So, to retain the distributed qualities of connectionism, but to be
able to do the relatively sophisticated operations necessary for conceptual natural language
processing, the model adds the c-nodes, each with a limited ability to change the network. This way
the system is not bound by the computational limits of connectionism, but still retains its
amenability to massive-parallelism. For a detailed treatment of the ASN model see Berg (1987).

The behavior of nodes in the spreading activation portion of an ASN is like the units in a local
connectionist model (cf Feldman and Ballard,1982). They receive excitatory and inhibitory inputs
and, based on a simple activation and decay function, output activation. They are connected by three
kinds of links: activation, hierarchical-activation ("h-act") and inhibition. Activation links are
one-way connections which spread positive activation between nodes. Inhibition links are
one-way connections which spread negative activation.

The h-act links are where we begin to see the interface between the semantic network and the
c-nodes. As far as the semantic network is concerned, one of these is a pair of activation links, one
in each direction. Their importance, providing a backbone for search, will be discussed in the next
section. The input and output to the system will be through the semanitc network. Certain nodes,
called lexical-input nodes will be activated when the system is to "read" a word. When a node
designated as a lexical-output node is activated, it prints a word on the system's output. We will
identify four types of c-nodes: link-h-act, link-act , de-link and make. Link-h-act and link-act
nodes will construct a node of the appropriate type between the two nodes to which they point.
Since links are directed, these kinds of nodes use two specialized links: from and to (figure 1).
Similarly, a de-link node will remove a link between two nodes. C-nodes can also attach links
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Figure 2. A link-act node using indirection in making a link

indirectly. When a c-node manipulates a link indirectly, it changes the link not on the node to
which it points, but to the node to which the second node points (figure 2). Indirect operations by
construction nodes will be indicated by bold-face links in the figures. If there is no node connected
appropriately to one of its links, a c-node will wait until there is one (however c-nodes, like
normal nodes, are subject to becoming inactive through decay). Indirection allows us to use
intermediate nodes, or structural markers, as pointers to nodes. Structural markers serve an
analogous role to slots in a frame system; and the nodes connected to them by activation links can
be seen as the slot fillers (see section 4). A make node can introduce new nodes into the network by
creating a new node and placing an activation link from itself to the new node.

3. Distributed Search

A conceptual natural language processing system needs a search capability. We provide that by
establishing a parallel network which shadows the network of normal nodes and their h-act links.
For every normal node which has incoming h-act links there is a wta node, and corresponding to
every h-act link is a search link. Normal nodes which have no incoming h-act links are
represented by themselves in this network. The resulting network represents the inheritance
hierarchy implicit in the semantic network. The notion of wta comes from Feldman and Ballard's
winner-take-all networks. When activated, the wta node will select whichever of the nodes
connected to it by incoming search links is activated. If a wta node is connected to another by a
search link, the subordinate wta node is activated, and the winner of its search is presented 1o the
superordinate wta node. If more than one node is activated, the wta will inhibit all of them and
defer a decision until only a single node is active. This way, nodes which will be reactivated by
other nodes in the network will be selected in preference to those with spurious or poorly
supported activation. In effect, a search starting at a wta node in this network says, "find the
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(current-actor) (current-action) @urrent-object)

(disambiguaiion—concept) (current-concept)

Figure 3. The semantic network before the text is read.

instance (leaf node) in the network below you which is in focus (has the highest supported
activation).” The wta node will construct an activation link between itself and the "winner". That
way c-nodes can access the winning node indirectly through the wta node.

C-nodes can use their indirection to find the wta node associated with a normal node in the
semantic network. This is necessary because, in many cases, the wta node to be activated will not
be known a priori, and it is necessary to access it through its corresponding normal node. For
example if we want to know which instance of "cow" is currently active (or "in focus") we can
connect the node for "cow" to a c-node through a structural marker. The c-node will find the wta
node associated with the normal node (here wta-cow). An example of this is shown in section 4.
C-node links which initiate a wta search are identified as wta-from and wta-to links.

4. Example: A Simple Analyzer

To give an indication of how spreading activation can direct the analysis of a sentence, we give
an extremely oversimplified trace of how the sentence "A cow ate an apple" is processed. When a
lexical-input node is activated it activates c-nodes which change the network to reflect the word's
meaning in the context of the network. Figure 3 shows the semantic network before the sentence is
read. To simplify the presentation, the initial network has no nodes which are instances of its
concepts and the structural markers are initially unconnected. In this and subsequent figures,
h-act links will be shown as one-way nodes to emphasize their role in wta searches, although they
spread activation both ways in the semantic network.

Most of the nodes in this figure represent concepts in our taxonomy of things and events.
However, we use several structural markers. A structural marker points with an activation link
to the node which fills the indicated category. Their purpose is similar to the binders of Selman
and Hirst (1985) and Cottrell (1985). Current-concept is used to indicate which concept is
being processed. By connecting current-concept to a node with an activation link, the node
becomes accesible to c-nodes. In a similar fashion, current-actor, current-action and
current-object are used to point to those nodes which represent those categories in our
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(current-concept) (node_0)
ik from act.
(exical-input-A (current-concept )

Flgure 4. Reading "A"

instance )

act.

(current-concept)

Flgure 5. Reading "COW"

sentence. Disambiguation-concept is used to point to a node when we want a c-node 10 access
its wta node. Current-topic points to a node indicating the overall topic of the current text.

Figure 4 shows the results of activating the lexical node for "A". That node spreads activation to
a link-act node. That node constructs an activation link from current-concept indirectly
through make. The indirect reference through make causes it to construct a new node, which is
the node the link-isa wants. The result of activating those nodes creates a new node (node_0)
which is the focus of the system's attention by virtue of being connected to current-concept.

When lexical-input-COW is activated (figure 5) it spreads activation to two link-h-act
nodes. When these nodes are activated they connect the node connected to current-concept to
instance and cow. In our sentence, node_0 is identified as an instance of a cow.

When the node for "ATE" is activated, it activates c-nodes which assemble the structure of the
sentence (figure 6). Lexical-input-EAT (we ignore tense) activates several construction
nodes. The three boxes represent groups of c-nodes. The c-nodes in sub-actor change node_0
from having a link from current-concept to having one from current-actor. Sub-action
has c-nodes which make a new node (node_1) and link it to current-action and establish an
activation link from the new node to the current-actor (node_0). Sub-object's c-nodes link
the node attached to current-concept (which is the as yet unread second noun phrase in the
sentence - hence figure 6 shows the c-nodes waiting) to current-object and creates a link from
node_1 to the node attached to current-object. The three link-h-act nodes in figure 6 identify
the fillers of the current-actor, current-action and current-object roles as eater, eat and
eatee, respectively, when activated.

Activating the nodes for the second noun phrase ("a pear") works the same as the first. It will
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Figure 6. Reading "ATE"
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Figure 7. The result of the sentence.
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t

search search act.

current-camer)

Figure 8. Reading "SHE"

Flgure 9. The semantic network after the text has been read.

create a node (node_2) and link it to instance and pear. Node_2 will be identified as the
current-concept, and thus be acted on by the c-nodes activated by "ATE" and which were stalled
waiting for the second noun phrase to be read. Figure 7 shows the semantic network after the
entire sentence has been processed.

In addition to our sentence let us consider what the activation of one other lexical-input node
does. When the system reads "SHE" (figure 8) two c-nodes are activated. The first links female
to disambiguation-concept. This allows the second to access wta-female through an indirect
wta-to link. What this does is activate wta-female. The wta node will initiate a search. Here its
only link is to wta-cow. Wta-cow is activated and, in turn does a wta search. In this example,
there is only one candidate - node_0. Had there been more than one active node along the search
paths, they would have been inhibited until only one (presumably reactivated by its neighbors in
the semantic network) was active. A pointer to this "winning" node is passed up from wta-cow to
wta-female and is connected by the c-node to the current-concept, identifying it as the
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pronoun's referent.

Our presentation omits many important details of the actual analyzer. It handles definite noun
phrases, adjectives and subtle problems with using structural markers which are beyond the
scope of this short discussion. To give some flavor of how the system would analyze a text, figure 9
shows the network after it has read "A cow ate an apple. The apple was green. She also ate a brown
pear." In addition to the nodes from our sentence, node_4 represents the "eating event” of the
third sentence, node_5 is the brown pear, and node_3 is a node representing the entire text.

This analyzer has been implemented on the NO HANS system. NO HANS is a compiled Franz Lisp
program which simulates the spreading activation semantic network and the more powerful
construction and wta nodes which the network activates. NO HANS supports all of the features of
the ASN model, simulating them as a generic, massively-parallel machine. On NO HANS, the
analyzer runs the example text in approximately five minutes of real-time on a VAX 780.

6. Future Work

We currently have several directions for our research on ASN's. Our short-term goal is to use
them to address many of the issues in conceptual natural language processing. These include
handling complex sentence structure, word sense disambiguation, conflict detection, inference and
classification. A simple conflict would be produced by introducing two contradictory pieces of
information such as "Spot is a dog. He is also a pear” or introducing information which violates
knowledge already in the network. Our prototypical inference problem is "Janet hit Sue. She felt
guilty." The inference we need to make is that Janet might feel guilty for hitting Sue, thus being
the referent of the pronoun. An example of classification would be to have the system read "Clyde
is large, has four legs, big ears and a trunk™ and have the system's internal representation
indicate that Clyde is an elephant. &

For the long term, this research is aimed at understanding longer and more complex texts -
taking advantage of the distributed control to be able to consider more inferences during
processing. As massively-parallel machines come to accomodate this, and more powerful, models,
the size and breadth of natural language processing systems can increase. The parallelism will
reduce the time necessary to analyze texts. But, ultimately, for any large-scale system of this
type to be effective, progress must be made on the ability to make the abstractions and complex
inferences necessary for learning. Otherwise we become bogged down creating the representations
for every new word and concept our systems will use.
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