
UC Berkeley
UC Berkeley Previously Published Works

Title
SMT-Based Dynamic Multi-Robot Task Allocation

Permalink
https://escholarship.org/uc/item/08z282p8

ISBN
978-3-031-60697-7

Authors
Tuck, Victoria Marie
Chen, Pei-Wei
Fainekos, Georgios
et al.

Publication Date
2024

DOI
10.1007/978-3-031-60698-4_20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08z282p8
https://escholarship.org/uc/item/08z282p8#author
https://escholarship.org
http://www.cdlib.org/

SMT-Based Dynamic Multi-Robot
Task Allocation

Victoria Marie Tuck1(B), Pei-Wei Chen1⋆(B), Georgios Fainekos2, Bardh
Hoxha2, Hideki Okamoto2, S. Shankar Sastry1, and Sanjit A. Seshia1

1 UC Berkeley, Berkeley CA 94704, USA {victoria tuck, pwchen,

shankar sastry, sseshia}@berkeley.edu
2 Toyota Motor North America, Research & Development, Ann Arbor MI 48105,

USA {georgios.fainekos, bardh.hoxha, hideki.okamoto}@toyota.com

Abstract. Multi-Robot Task Allocation (MRTA) is a problem that
arises in many application domains including package delivery, ware-
house robotics, and healthcare. In this work, we consider the problem of
MRTA for a dynamic stream of tasks with task deadlines and capacitated
agents (capacity for more than one simultaneous task). Previous work
commonly focuses on the static case, uses specialized algorithms for re-
strictive task specifications, or lacks guarantees. We propose an approach
to Dynamic MRTA for capacitated robots that is based on Satisfiability
Modulo Theories (SMT) solving and addresses these concerns. We show
our approach is both sound and complete, and that the SMT encoding is
general, enabling extension to a broader class of task specifications. We
show how to leverage the incremental solving capabilities of SMT solvers,
keeping learned information when allocating new tasks arriving online,
and to solve non-incrementally, which we provide runtime comparisons
of. Additionally, we provide an algorithm to start with a smaller but
potentially incomplete encoding that can iteratively be adjusted to the
complete encoding. We evaluate our method on a parameterized set of
benchmarks encoding multi-robot delivery created from a graph abstrac-
tion of a hospital-like environment. The effectiveness of our approach is
demonstrated using a range of encodings, including quantifier-free theo-
ries of uninterpreted functions and linear or bitvector arithmetic across
multiple solvers.

Keywords: Multi-Robot Task Allocation · Satisfiability Modulo Theo-
ries · Capacitated Robots · Incremental Solving · Cyber-Physical Systems
· Robotics

1 Introduction

Multi-robot systems have the potential to increase productivity by providing
point-to-point pickup and delivery services, referring to the assignment to a team
of robots of pickup and drop-off locations for transporting items under some
optimization criteria and constraints. Such services have already revolutionised
warehouse management [24] by eliminating long travel times between locations

⋆ Denotes significant contribution

2 V. Tuck et al.

for workers. New mobile robot systems are being developed for point-to-point
pickup and delivery in environments where human-robot interaction is more
likely – such as in healthcare facilities [11,5,20]. Even though multi-robot systems
in warehouses and healthcare settings share many similarities, the latter require
a higher level of assurance. Formal methods provides this level of assurance by
finding an assignment to robots if and only if one exists.

In this paper, we study the application of Satisfiability Modulo Theories
(SMT) [2] to the Multi-Robot Task Assignment (MRTA) [3,15] problem for
point-to-point pickup and delivery. We assume that the robots can execute only
a limited number of concurrent tasks and assume that tasks are generated online,
have a strict deadline, and each require only one robot. Although, as often used
in warehouse settings, a gridworld abstraction may be applicable in a health-
care environment, the dynamic nature of the environment is better addressed
through coarser abstractions (regions) within which local motion planning can be
employed [21,23]. We therefore represent the environment by a weighted graph
with nodes representing regions in the environment and weights the worst case
cost (time) to move from region to region without any dynamic obstacles. Dy-
namic obstacles operating at shorter time scales, e.g., humans walking, could be
avoided using local motion planning with safety guarantees [13,17]. Note that
this work focuses on solving the high-level planning part and leaves local motion
planning and collision avoidance to downstream planners.

Satisfiability Modulo Theories (SMT) [2] is a generalization of the Boolean
satisfiability problem that answers the question whether a formula in first-order
logic with background theories is satisfiable. Problems can be encoded as SMT
formulas and passed to SMT solvers to determine satisfiability. Such solvers
are widely used in industrial-scale applications (e.g., [18]). Given the progress
in SMT solving, our aim is to study the feasibility and scalability of solving
the aforementioned instance of the MRTA problem with an SMT formulation.
There are several reasons for investigating an SMT approach to MRTA: 1) at
its core, MRTA is a combinatorial problem with arithmetic constraints, 2) an
SMT formulation can be easily adapted to handle different variants of the MRTA
problem [3,15], e.g., with complex task dependencies [9], and 3) even satisfying
solutions without guaranteed optimality are relevant for this application since
hierarchical planning methods [21,23] can refine a non-optimal high level plan
to an optimal (with respect to distance traveled) local motion plan.

Our contributions are:

– a general, SMT-based framework leveraging quantifier-free theories of unin-
terpreted functions and bitvector or linear arithmetic for dynamic, capaci-
tated MRTA via incremental solving;

– an approach to manage complexity by dynamically changing the number of
free variables to fit the needs of the problem;

– theoretical results of completeness and soundness;

– and an experimental analysis of the runtime of our approach across different
solvers (cvc5, Z3, and Bitwuzla) for a series of static (one set of tasks) and
dynamic (tasks arriving online) benchmarks and showing that solver and
setting used affects whether or not incremental solving is beneficial.

SMT-Based Dynamic Multi-Robot Task Allocation 3

2 Related Work

Multi-Robot Task Allocation (MRTA) refers to the class of problems that en-
compasses many variants of the point-to-point pickup and delivery scheduling
and path planning for multi-robot systems. For example, pickup and delivery
tasks may have deadlines, robots may have to form a team to complete the task,
or each robot may have different capacity constraints. For a detailed taxonomy
for task allocation problems with temporal constraints, please refer to [15].

Most heuristic-based MRTA algorithms search for a plan for each robot such
that all tasks are completed while minimizing some objective. [12] employs a hy-
brid genetic algorithm where local search procedures are used as mutation opera-
tors to solve for tasks with an unlimited fleet of capacity-constrained robots. [19]
uses a nearest-neighbor based approach to cluster nearby nodes and constructs
routes for each of the clusters by mapping it to a traveling salesman problem
(TSP) while minimizing overall package delivery time. [4] adopts a marginal-cost
heuristic and a meta-heuristic improvement strategy based on large neighbor-
hood search to simultaneously perform task assignment and path planning while
minimizing the sum of differences between the actual complete time and the ear-
liest complete time over all tasks. The above heuristic-based approaches are often
scalable on problems with up to 2000 tasks, but are not able to provide complete-
ness guarantees, i.e., with hard deadlines. Moreover, heuristics are often tightly
tied to a specific problem setting which makes it non-trivial to extend to other
settings. For a recent review on state-of-the-art optimization-based approaches
to the MRTA problem, we direct readers to Chakraa et al. [3].

In contrast, many approaches that provide strong guarantees do not scale
well. [16] formulates the MRTA problem as a Mixed-Integer Linear Program-
ming (MILP) problem to simultaneously optimize task allocation and planning
in a setting where capacity-constrained robots are assigned to complete tasks
with deadlines in a grid world. However, the proposed method suffers in com-
putational performance when problem size grows large – the approach is able to
handle 20 tasks with 5 agents but the execution time is unavailable in the pa-
per. [10] promises globally optimal solution in a hospital setting by exhaustively
searching through possible combinations of locations of interest and choosing
capacity-constrained robots with minimum travel distances to complete tasks.
The approach is able to solve 197 periodic tasks over a duration of 8 hours, but
the runtime information for each solve is unknown. [7] is an linear-time temporal
logic-based approach that provides strong guarantees and appears to scale well.
However, its reliance on temporal logic may impact its ability to scale when
length of the plans is large in time, whereas we represent time abstractly. Ad-
ditionally, their approach does not allow for assigning robots new tasks before
they have finished previous tasks, which our structure supports.

In this work, we are interested in the specification satisfaction problem, which
is similar to the problem of minimizing cost where the cost goes to infinity if any
of the constraints are not satisfiable. In contrast to the heuristic-based approach,
our proposed approach is able to give completeness guarantees if solutions do
not exist, while still achieving superior performance compared to those that give
strong guarantees.

4 V. Tuck et al.

Symbol Description

Mj The jth set of tasks in a task stream S
tj Arrival time for the jth set of tasks
M Cumulative set of tasks until current time
µm Task id for a task
tm Arrival time for task m
Tm Deadline for task m
Sn Action sequence of an agent n
Sk
n Prefix of length k of agent n’s action sequence

skn The kth element of agent n’s action sequence
Π A plan for a set of agents N and set of tasks M
(ind , t

n
d , l

n
d) Action tuple for agent n at action point d

Loc(ind) Converts an action id to a location id
Γ List of assumption vars limiting number of available action points
ρ Time taken to pick up/drop off items
Dmin, Dmax Min/max number of action points needed by task set M
startm, endm Start/end time for task m
nm Agent that completes task m
Kn Each agent’s capacity for tasks at once
Ej Encoding at the jth iteration of the algorithm
M,W,P,D Move, wait, pick, drop actions
s ∈ S Location in a set of system locations
σ ∈ Σ Location id in set of location ids corresponding to the location set
Dk(Sn) Duration of a prefix of length k of agent n’s action sequence
Ck(Sn) Load of an agent n at the kth element in their action sequence

3 Problem Formulation

We use Z++ to denote the set of strictly positive integers.

3.1 Workspace Model

We assume we are given a finite set of designated system locations s ∈ S each
with a unique id σ ∈ Σ ⊂ Z+ where s ∈ R2. For example, each system location
s is a spot in a building where a robot can start, pick up an object, or drop
off an object. We are given a complete, weighted, undirected graph G = (V,E)
where V = Σ and E = {(σi, σj , wi,j)|σi ∈ Σ, σj ∈ Σ,wi,j ∈ Z+} where wi,j

is 0 if and only if σi = σj . The weight of the edge between vertices σi and
σj is wi,j . This weight wi,j denotes the travel time between the two points,
which satisfies the triangle inequality with respect to all other sites sk, i.e.,
wi,k + wk,j ≥ wi,j ∀σk ∈ Σ.

3.2 System Model

A task m is a tuple (µm, σm,i, σm,f , tm, Tm) where µm ∈ Z+ is the task’s unique
id, σm,i, σm,f ∈ Σ are the starting and ending location ids, respectively, and

SMT-Based Dynamic Multi-Robot Task Allocation 5

tm, Tm ∈ Z+ are the arrival time and deadline, respectively. i and f stand for
initial and final, respectively. Each task is to move a corresponding object, which
takes up one unit of capacity.

Sets of tasks arrive as a sequence of incoming tasks S called the task stream.
Each entry of the task stream is a tuple (Mj , tj). The first entry Mj of the
tuple is an ordered set of tasks, and the second entry is the arrival time of the
set. The arrival time tm for any task in the set is the same as the set’s arrival
time (tj = tm ∀m ∈ Mj). We use the same time in both contexts to more easily
reference the arrival time depending on if we are reference a task in the set or
the entire set. Assume t0 = 0. We assume the stream is finite with a known
total number of tasks Mmax. We require that this sequence is monotonically

increasing with respect to the second element of (Mj , tj). Let Mj =
⋃j

j′=0 Mj′

be the total set of tasks that have arrived. We constrain the task id of the first
task to be zero and all following tasks to have ids that increment by one. More
formally, ∀m ∈ Mj , µm ∈ {|Mj−1|, . . . , |Mj | − 1} with M−1 = ∅. We use

M = |Mj | for the current total number of tasks where M will change with the
context. We will sometimes notate a set of tasks as M. We require that the
unique task ids start at 0 and increase by 1 for every new task that arrives.

There exists a finite, zero-indexed, ordered set N of N agents. Each agent n
has a unique id νn ∈ {0, . . . , N −1} and a starting position ns ∈ S that may not
be unique. Each agent has a capacity Kn for tasks at one time.

We define a set of actions A that a robot can take as A = (M,σ) ∪ ({P,D},
µm) ∪(W, t). The action (M,σ) designates that the robot is moving to location s
with id σ, ({P,D}, µm) designates that the robot is picking up (P) or dropping
off (D) the task m with id µm, and (W, t) has the agent wait in the same
position for a time t ∈ Z++. We use the short-hand that Pµ = (P, µ) and
similar for drop. Each of {M,W,P,D} represent all actions of that type, e.g.
M = {(M,σ)|σ ∈ Σ}. We assume the pick and drop actions each take a pre-
specified time of ρ ∈ Z++.

The following definitions are used to define types of plans and the goals of
our algorithm. Figure 1 shows the input, example output plans, and an exam-
ple workspace. We use Sk

n to denote the prefix of length k of agent n’s action
sequence. 1α is an indicator function that is 1 when α is true and 0 otherwise.

Definition 1. Action sequence. An action sequence Sn is a finite sequence
beginning with element k = 1 where each element skn ∈ Sn is an action (skn ∈ A).

Definition 2. Plan. A plan Π for the set of agents N and set of tasks M is
an action sequence Sn with length kn for each agent n.

Definition 3. Duration of an action sequence. We compute the duration
of a prefix Sk

n of Sn as

Dk(Sn) = Σk
l=1wσl−1,σl

1sln∈M + ρ(1sln∈P + 1sln∈D) + tl1sln∈W

where σ0 = ns and σl and tl are the location ids and times, respectively, of action
l. σl = σm,i for a pick action and σm,f for a drop action. σl for a wait is the
most recent location.

6 V. Tuck et al.

Fig. 1: A task stream of sets of tasks arrives with monotonically increasing
arrival times. Five system sites are shown. Example tasks and robot paths
are shown on the right with P , D, and M used to represent the actions
succinctly. The result action sequence for the right robot is (M,P,M,D) and
(M,P,M,P,M,P,M,D,M,D,M,D). The moves between picks or drops at the same
location are used to keep a consistent structure in the plan but take no time.

Definition 4. Load of an action sequence. We compute the load of a prefix
Sk
n of Sn as Ck(Sn) = Σk

j=1(1sjn∈P − 1sjn∈D).

Definition 5. Consistent action sequence. A plan Π is made of consistent
action sequences Φ1(Π) if for each agent’s sequence it starts with a move or
wait; no capacity constraints are violated; any pick (Pm = (P, µm)) and drop
(Dm = (D,µm)) actions for a task m are immediately preceded by the move to
that point (A move that will require no time is still added if the agent ”moves” to
its current location.); pick precedes drop; drop follows pick; no two moves occur
in a row; and any object in a sequence is only picked and dropped once (ϕ1). An
empty sequence is consistent.

ϕ1(Sn) =

(
Sn = ∅

) ∨
(1)((

s1n ∈ M ∪W

)
∧
(
∀κ ∈ {1, ..., kn}. (0 ≤ Cκ(Sn)) ∧ (Cκ(Sn) ≤ Kn)

)
∧
(
skn
n /∈ M

)
∧
(
∀κ ∈ {1, ..., kn − 1}. sκn ∈ M ⇒ sκ+1

n /∈ M

)
∧(

∀m ∈ M, ∀κ ∈ {2, ..., kn}.
(
(sκn = Pm) ⇒ ((sκ−1

n = Mσm,i
)

∧ (
∨

κ′>κ
sκ

′

n = Dm) ∧ (∀κ′ ̸= κ ∈ {1, ..., kn}. sκ
′

n ̸= Pm))

)
∧
(
(sκn = Dm) ⇒ ((sκ−1

n = Mσm,f
) ∧ (

∨
κ′<κ

sκ
′

n = Pm)

∧ (∀κ′ ̸= κ ∈ {1, ..., kn}. sκ
′

n ̸= Dm))

)))
Φ1(Π) =∀Sn ∈ Π, ϕ1(Sn) (2)

SMT-Based Dynamic Multi-Robot Task Allocation 7

Definition 6. Completed task. Tasks with id µm in taskset M are completed
Φ2,M by a plan Π if for each task there exists a single agent n with a consistent
action sequence Sn ∈ Π that picks and drops the action. Additionally, the drop
action must be before the deadline, and the time before moving to the pick action
must be greater than or equal to the start time tm (ϕ2,m). We define the predicates
ϕpickup(m,Sn) and ϕdropoff (m,Sn) as

ϕpickup(m,Sn) = ∃κp ∈ {1, ..., kn}. sκp
n = Pm (3)

ϕdropoff (m,Sn) = ∃κd ∈ {1, ..., kn}. sκd
n = Dm (4)

ϕ2,m(Π) = ∃Sn ∈ Π (5)

st. ϕ1(Sn) ∧ ϕpickup(m,Sn) ∧ ϕdropoff (m,Sn)

∧ (∀n′ ̸= n ∈ N . ¬ϕpickup(m,Sn′) ∧ ¬ϕdropoff (m,Sn′))

∧ (Dκd
(Sn) ≤ Tm) ∧ (Dκp−2

(Sn) ≥ tm)

Φ2,M(Π) =∀m ∈ M. ϕ2,m(Π) (6)

Definition 7. We define Π |= Φ to hold when Φ(Π) is true.

Definition 8. Valid Plan. We define a valid plan Π for the set of agents N
and set of tasks M as one where each agent’s Sn is consistent and all tasks
m ∈ M are completed. An empty plan is considered valid when M = ∅. This
can be written as Π |= Φ1 ∧ Φ2,M.

Definition 9. Updated plan. A valid plan Π̂ with agent sequence lengths k̂n
is updated at a time t from a previous valid plan Π with agent sequence lengths
kn if the following conditions hold. In each agent’s action sequence there is an
equivalent prefix Ŝκ

n to that in Π where the prefix is all of Sn in Π followed by a
wait action or (sκn ∈ P∪D)∧Dk(Sn) ≥ t. This means that past actions and the
current action are unchanged. A plan can only be updated at a system location s.
A valid initial plan Π̂ is always considered updated from an empty previous plan
Π: ∀n ∈ N ,Sn = (). This empty plan will sometimes be notated as Π−1. We
also require that each agent’s action sequence is efficient and does not contain
extra waits.

Φ3,t,Π(Π̂) = ∀n ∈ N ,

(
(Skn

n =
ˆSkn
n) (7)

∧
(
(Sn = Ŝn) ∨ (ŝkn+1

n = (W, t−Dkn
(Sn)))

))
∨ ((

∃κ ∈ {1, ..., kn}. (Sκ
n = Ŝκ

n) ∧ (Dκ(Sn) ≥ t) ∧ (sκn ∈ P ∪D)

)
∧
(
∀κ ∈ {1, ..., kn}. Dκ(Ŝn) ≥ t, sκn /∈ W

))
Definition 10. Soundness. Let Φj = Φ1 ∧ Φ2,Mj

∧ Φ3,tj ,Πj−1 . An algorithm

is sound for a given finite task stream of length J if ∀j = 0, ..., J, (resultj =
sat) ⇒ (Πj |= Φj).

Definition 11. Completeness. An algorithm is complete for a given finite task
stream of length J , if ∀j = 0, ..., J, (Πj |= Φj) ⇒ (resultj = sat).

8 V. Tuck et al.

3.3 Problem Statement

Given a set of agents N , task stream S including a known number of total tasks,
and travel time graph G, after each element j in the task stream arrives at tj ,
find a valid plan Πj updated from a previous plan Πj−1 if one exists.

4 Summary of Approach

4.1 Preliminaries

We assume a basic understanding of propositional and first-order logic. Satis-
fiability Modulo Theories (SMT), a generalization of the Boolean satisfiability
problem, is the satisfiability problem for formulas with respect to a first-order
theory, or combinations of first-order theories. SMT solvers, such as Z3 [6] and
cvc5 [1], are used to solve SMT formulas, where a model is returned if the SMT
formula is satisfiable or otherwise reports unsatisfiability. Below we briefly in-
troduce three theories of interest in the paper.

The theory of Equality Logic and Uninterpreted Functions (EUF) introduces
the binary equality (=) predicate and uninterpreted functions, which maintains
the property of functional congruence stating that function outputs should be the
same when function inputs are the same. The theory of BitVectors (BV) incor-
porates fixed-precision numbers and operators, e.g. the bitwise AND operator.
Note that the modulus operator with a constant 2 can be replaced by a bitwise
AND operation using a constant 1. The theory of Linear Integer Arithmetic
(LIA) introduces arithmetic functions and predicates and constrains variables
to only take integer values. Note that v = x mod k, where x is a variable and
k and v are constants, can be translated into x = k · n + v with a fresh integer
variable n. In this paper, we only consider quantifier-free (QF) SMT formulas,
and abbreviate Quantifier-Free Bit Vector Theory (Linear Integer Arithmetic)
with Uninterpreted Functions as QF UFBV (QF UFLIA).

4.2 Encoding Literals

We introduce the notion of an action id i to describe what action an agent is
taking. The first N action ids represent going to the corresponding agent num-
ber’s starting position. For each following pair of values j, the values correspond
to picking up and dropping off the jth object, respectively.

Each agent n in N is allowed D action tuples where a tuple for an action
point d = (ind , t

n
d , l

n
d). i

n
d is the id of the action being taken, tnd is the time by

which the action corresponding to the action id ind has been completed, and lnd
is the agent’s load at the time tnd after completing the action with id ind .

For each task m ∈ M, we define the task start startm and end endm times
with agent n completing the task nm. This creates a tuple (startm, endm, nm).

4.3 Incremental Solving

For tasks arriving online, we must re-solve our SMT problem given the new
tasks. We implement this using push and pop functionalities provided by SMT

SMT-Based Dynamic Multi-Robot Task Allocation 9

solvers to retain information about previous solves. We push constraints onto
the stack and pop them before adding new tasks as explained in AddTasks().
Past action points are constrained to be constant in SavePastState().

We use assumptions-based incremental solving to adjust the number of action
points used. This allows us to force the solver to start with the minimum number
necessary and search for the sufficient number needed for a sat result if one exists.
We assume we are either given a list K of action point counts or will construct

a reasonable list by starting with the Dmin(M) = 2⌈ |M|
N ⌉ and incrementing by

two to Dmax = 2Mmax + 1 inclusive. The last value of the user provided list
must be Dmax. More about Dmax is explained in section 5. From this, we define
an assumption list Γ of booleans the same length as K. An element Γ [k] is used
as an input to the solver to designate how many action points to use. D = Dmax

in the encoding to allow for using the max number of action points if necessary
to find a satisfying assignment.

4.4 SMT Encoding

Fig. 2 includes the types of constraints that are used in our encoding. We include
all for the initial solve and then some are iteratively removed and added for
additional solves as explained in Algorithm 1. Assume tmax is set large enough
to be greater than the maximum deadline of any task to appear plus maximum
travel time between any two points. For our completeness argument, we will
assume that D = Dmax = 2Mmax + 1.

For readability, we define the following symbols:

pnd = ITE((ind & 1 = mod(N, 2)) ∧ (ind > N), 1, 0) (8)

dnd = ITE((ind & 1 = abs(mod(N, 2)− 1)) ∧ (ind > N), 1, 0) (9)

dln,md = (
∨D−1

d′=d+1
ind′ = 2µm +N + 1) ∨ False (10)

asn,m =
∨D−1

d=1
ind = 2µm +N (11)

validni,d = (N ≤ ind) ∧ (ind < 2M +N) (12)

E.1 initializes the action tuples; E.2, E.3, and E.6 relate action tuple pairs;
E.4 restricts the uninterpreted functions, E.5 and E.7 bound action point values,
E.8 restricts the task uninterpreted functions, E.9 - E.11 relate action and task
tuples; and E.12 restricts task tuples. Note that mod(N, 2) and abs(mod(N, 2)−
1) are pre-computed and are within {0, 1}.

4.5 Overall Algorithm

Algorithm 1 defines the overall algorithm. Figure 3 shows a flowchart of Algo-
rithm 1. We define the following functions for use in the algorithm:

– Push(E), Pop(E): Refers to pushes and pops for incremental solving.
– Solve(E , α): Solves the encoding E assuming α ∈ Γ returning the Result ∈

sat, unsat, unknown and satisfying assignment O if available.

10 V. Tuck et al.

Ebase(N , G, Γ,D,Kn, tmax) =(∧
n∈N

(in0 , t
n
0 , l

n
0) = (νn, 0, 0)

∧|K|−2

k=0
Γ [k]⇒ (inK[k] = νn) (E.1)∧

n∈N

∧D−2

d=1
(ind = νn)⇒ (ind+1 = νn) (E.2)∧

n∈N

∧D−1

d=1
(lnd = lnd−1 + pn

d − dn
d) ∧ (¬(ind = νn)⇒ (¬(ind−1 = ind))) (E.3)∧

σ1∈V

∧
σ2∈V

Dist(σ1, σ2) = wσ1,σ2

∧
n∈N

Loc(νn) = ns (E.4)∧
n∈N

∧D−1

d=1
(lnd ≥ 0) ∧ (lnd ≤ Kn) ∧ (ind ≥ 0) ∧ (ind = νn)⇒ (tnd = tmax)

)
(E.5)

Eupdate(N , δ, tj , D,M) =(∧
n∈N

∧D−1

d=δn
(ind ≥ N)⇒

(tnd = ITE(tnd−1 ≤ tj , tj , t
n
d−1) +Dist(Loc(ind−1), Loc(i

n
d)) + ρ) (E.6)∧

n∈N

D−1∧
d=1

¬(ind = νn)⇒ (validni,d)
)

(E.7)

Etasks(N ,M, D) =(∧
m∈M

(Loc(2µm +N) = σm,i) ∧ (Loc(2µm +N + 1) = σm,f) (E.8)∧
n∈N

∧D−1

d=1

∧
m∈M

(ind = 2µm +N)⇒ ((startm = tnd) ∧ dln,m
d) (E.9)∧

n∈N

∧D−1

d=1

∧
m∈M

(ind = 2µm + 1 +N)⇒ (endm = tnd) ∧ (nm = νn)

(E.10)∧
n∈N

∧
m∈M

(nm = νn)⇒ asn,m (E.11)∧
m∈M

(nm ≥ 0) ∧ (nm < N) ∧ (startm ≥ tm + ρ) ∧ (endm ≤ Tm)
)

(E.12)

Fig. 2: Constraints used in the encoding developed in Algorithm 1

– GetPlan(O): Taking each agent’s action points in order, for each action

point d after the 1st where ind ̸= νn, let µm = ⌊ ind−N
2 ⌋. If tnd − tnd−1 >

wLoc(ind),Loc(ind−1)
+ ρ, add (W, tnd − wLoc(ind),Loc(ind−1)

− ρ). Add (M,σm,i),

(P, µm) if mod(ind −N, 2) = 0 and (M,σm,f), (D,µm) if mod(ind −N, 2) = 1.
– SavePastState(tj , E ,O): For each agent, loop from d = 0 to d = D−1, calling

Add((ind , t
n
d , l

n
d) = Oj−1((i

n
d , t

n
d , l

n
d)), E , ∅, ∅) until (Oj−1(t

n
d) ≥ tj) | (d + 1 <

D & ind+1 = n) at which point d + 1 is saved into δνn . Return the updated
encoding and δn∈N .

In Algorithm 1, lines 1 and 2 add constraints that do not use task or arrival
time information. Lines in between 3 and 22 contain code run after waiting for
each task set to arrive. For each task set other than the 0th, line 5 saves the
state of action points that have occurred in the past or that an agent is currently
completing. In lines 6-8, we add constraints relating to the incoming set of tasks,

SMT-Based Dynamic Multi-Robot Task Allocation 11

Initialize Encoding with Ebase(N , G, Γ,D,Kn, tmax)

If j > 0: SavePastState()
Add Tasks with Etasks(N ,Mj)

Push Solver State

Add Updated
Constraints with

Eupdate(N , δ, tj , D,M)

Invoke SMT Solver
Increment Counter

k := k + 1

Convert to Plan with GetPlan()

Pop Previous
Solver State
j := j + 1

k := 0; j := 0;M = ∅

/ Ej

/ Ej ,M, δn∈N

Mj , tj

/ Ej

K[k] < Dmin(M) /

resultj ̸= sat /

(k < |K|) & (K[k] ≥ Dmin(M)) /
resultj = sat / Oj

resultj = sat / Ej ,Oj

/ Ej ,Oj−1

/ Πj

k ≥ |K| /

K[k] < Dmin(M)

Fig. 3: Flow chart of Algorithm 1 starting at the black circle. A / B denotes a
conditional A and a changed variable B. On the right is the assumption block
to manage problem size. The third row from the top (in yellow) shows pushes
and pops of the solver state.

Algorithm 1 Overall Algorithm

1: M, E0, k, j ← ∅, E0, 0, 0
2: Ej ← Ebase(N , G, Γ,Dmax,Kn, tmax)
3: WaitForTaskSet (Mj , tj)
4: if j > 0
5: Ej , δ ← SavePastState(tj , Ej ,O)
6: Ej ,M← Ej ∪ Etasks(N ,Mj),M∪Mj // Add constraints for new tasks
7: Push(Ej)
8: Ej ← Ej ∪ Eupdate(N , δ, tj , Dmax, |M|) // Update constraints due to new tasks
9: while k < |K|
10: if K[k] < Dmin(M) // Increment k if num of action points
11: k ← k + 1 // is smaller than minimum needed
12: continue
13: resultj , Oj = Solve(Ej , Γ [k]) // Invoke SMT solver
14: if resultj = sat
15: Πj = GetPlan(Oj)
16: break
17: k ← k + 1 // Unsat case – more action points may be needed
18: if resultj ̸= sat
19: return unsat
20: j ← j + 1
21: Ej ← Pop(Ej−1)
22: GoTo 3

12 V. Tuck et al.

pushing as necessary so that constraints can be popped later. The constraints
that are pushed and popped are those that are based on new information (tj
and Mj). In lines 9 to 17, we iteratively increase the number of action points
used until the problem returns sat or the sufficient number of action points is
reached in which case if the problem still returns unsat it will continue to return
unsat as is discussed in section 5. Lines 10 to 12 increase the number of action
points until the necessary number for the total number of tasks is reached. Lines
13 through 17 check the encoding with the given assumption, returning a plan
if sat and incrementing the index into the action point count list if not sat. Line
21 pops the most recent model.

5 Theoretical Results

In this section, we prove soundness and completeness for Algorithm 1 as de-
scribed in Def. 10 and 11. We assume the solver used is sound and complete for
the theories of bitvectors, uninterpreted functions, and linear integer arithmetic.
Due to space constraint, additional proofs have been moved to the appendix in
the extended version.3 . Proofs for Lemmas 1−5 and Lemmas 6−8 can be found
in Appendix A and B, respectively.

5.1 Soundness

We first state two lemmas about our algorithm providing consistent action se-
quences and completing tasks given an initial task set of M0. To help in proving
soundness, we also define strictly monotonically increasing action point times as
ϕ = ∀n ∈ N ∀d = 1, . . . , D − 1 st. ind ̸= n, tnd−1 < tnd .

Lemma 1. Consistency of action sequences. If result0 is sat, ϕ∧Π0 |= Φ1.

Proof. (Sketch) We show only move/pick or move/drop pairs will be added to
each action sequence if it is not empty. Therefore, the first action will be a
move, there will be no consecutive moves, and corresponding moves will proceed
picks/drops. Then, each second action can be mapped to the id for an action
point, which constrains picks to be before drops and vice versa. We next show
action point times are unique per agent by arguing that the alternative would
require assigning two different times to the same task start or end time. This
allows us to show picks and drops only occur once. Finally, we map loads of the
action sequence to loads in the encoding to show capacity is adhered to.

Lemma 2. Completion of tasks. If result0 is sat, Π0 |= Φ2,M for M = M0.

Proof. (Sketch) We first show that if result0 is sat, by construction each task
should be started by an agent and be completed by the same agent. Moreover,
no two agents can start or complete the same task because that would imply

3 Link to extended version: https://arxiv.org/abs/2403.11737

https://arxiv.org/abs/2403.11737

SMT-Based Dynamic Multi-Robot Task Allocation 13

that two distinct values are assigned to nm in E.10. Finally, by construction
the action point times satisfy the start time and deadline constraints, and by
mapping time values to durations of subsequences we can prove that all timing
constraints are satisfied.

We next state three lemmas that combined state that a sat result for iteration
j + 1 means our algorithm will fulfill Φj provided a previous result of sat also
led to the plan fulfilling Φj .

Lemma 3. Plans are updated. Assume (resultj = sat) ⇒ (ϕ ∧Πj |= Φj). If
resultj+1 is sat, Πj+1 |= Φ3,tj+1,Πj

.

Proof. (Sketch) We are updating from a valid plan if (resultj = sat). Consider
two cases per agent: 1) The duration of the previous action sequence is less than
tj+1. SavePastState(·) will save action points that only have times in the past,
so either the new action sequence will be the same or will include a wait. This
is because the time between the last action point of the previous assignment
and the first changed action point will be greater than just a travel time plus
a pick/drop. 2) Duration is greater than or equal to tj+1. The time of the last
action point copied from the previous assignment will be ≥ tj+1, so there will
be an equivalent prefix, and no new waits will be added.

Lemma 4. Updated consistency. Assume (resultj = sat) ⇒ (ϕ ∧Πj |= Φj).
If resultj+1 is sat, Πj+1 |= Φ1.

Proof. (Sketch) Much of the proof can be repeated from that of Lemma 1. The
key differences are the potential for added wait actions. Therefore, simple pairs
of a move and pick/drop will now occasionally be a wait, move, and pick/drop.
The waits will shift the mapping between actions and action id number but the
statements from before still hold i.e., that a task is picked before dropped and
vice versa. Action point times are still strictly monotonically increasing. We show
this by remembering that the saved action point times are strictly monotonically
increasing. We know that the new ones will be strictly monotonically increasing
and greater than tj+1, so the whole sequence will be, and we can claim pick and
drop actions only occur once as before.

Lemma 5. Updated completion. Assume (resultj = sat) ⇒ (ϕ ∧Πj |= Φj).

If resultj+1 is sat, Πj+1 |= Φ2,j+1 where Mj+1 = (
⋃j+1

j′=0 Mj′).

Proof. (Sketch) Much of the proof can be repeated from that of Lemma 2. For
tasks that are completed before the arrival time tj of new tasks, the duration
constraints are satisfied. For all action points that take place after tj , since
the encoding still constrains that each task m starts after startm and ends
before endm and we are able to map action point times to durations, the timing
constraints will be fulfilled.

In Theorem 1 and the following proof, we use the above lemmas to build an
inductive argument that our algorithm is sound.

Theorem 1. Soundness of Algorithm. Algorithm 1 is sound.

14 V. Tuck et al.

Proof. Assuming result0 = sat, the initial plan Π0 |= Φ3,t,∅ by definition. By

Lemmas 1 and 2, ϕ ∧ Π0 |= Φ1 ∧ Φ2,Mj
where Mj = M0. We have therefore

shown a base case that (result0 = sat) ⇒ (ϕ ∧Π0 |= Φ0).
We will next make an inductive argument to show that at each iteration we

are building a valid, updated plan with strictly monotonically increasing action
point times. We need to show for j ≥ 1 that ((resultj−1 = sat) ⇒ (Πj−1 |=
Φj−1)) ⇒ (resultj = sat ⇒ Πj |= Φj). We have two cases: 1) resultj−1 = sat
and 2) resultj−1 ̸= sat. By construction, the algorithm will end and return
unsat if resultj−1 ̸= sat for j > 0, so if resultj−1 ̸= sat then resultj ̸= sat
for j > 0 then each implication is true proving the statement for this case. For
j > 0, if we assume (resultj−1 = sat ⇒ Πj−1 |= Φj−1)∧ (resultj−1 = sat), then
by Lemmas 3, 4, and 5, resultj = sat implies ϕ ∧ Πj |= Φj and resultj ̸= sat
trivially satisfies the formula. This implies the desired statement of soundness:
(resultj = sat) ⇒ (Πj |= Φj).

5.2 Completeness

In the following three lemmas, we state first that Dmax is the maximum number
of action points needed for an encoding provided the max number of tasks that
will arrive is known. Then, we show that given we start with this maximum
number of action points our algorithm is complete. Finally, we state that we will
reach this number of action points in our algorithm if necessary. This allows us
to then prove completeness.

Lemma 6. Maximum number of action points. If an assignment O does
not exist for an encoding E when D = Dmax = 2M + 1 of action points then no
assignment O exists for D > Dmax.

Proof. As shown in Lemma 1, pick and drop ids will only occur once per task in
an agent’s assignment in a satisfying O. By construction, action point ids must
be either ind = n or ind ≥ N ∧ ind < 2M + N . Therefore, for an agent n, the
maximum number of action points that can be assigned to a value other than n
is 2M . Adding in the constrained 0th action point, the total is 2M + 1 = Dmax

where ind = n for d = d′ ≥ Dmax. Therefore, adding an extra action point does
not add new free variables, so an unsat result cannot turn sat by adding more
action points.

Lemma 7. Conditional Completeness. Assume Γ [|K| − 1]. If D = Dmax,
Algorithm 1 is complete.

Proof. (Sketch) We want to show that for each iteration j in Algorithm 1, if
given a plan Πj for which Πj |= Φj , we can find a satisfying assignment Oj .
We know from Lemma 6 that the maximum number of action points for our
assignment is D = Dmax per agent. Now we need to create the assignment from
the given plan.

Take the action sequence for each agent n. Set the initial action point tuple
(in0 , t

n
0 , l

n
0) = (νn, 0, 0). Find the 1-indexed subsequence of indices of pick and

drop actions. For each element k in the subsequence, let ink = 2µm + N or

SMT-Based Dynamic Multi-Robot Task Allocation 15

ink = 2µm + N + 1 where µm is the id of the task that is picked or dropped,
respectively. Set tnk = Dk(Sn) and lnd = Ck(Sn). For the task m, if skn ∈ P, set
startm = Dk(Sn). If s

k
n ∈ D, set endm = Dk(Sn). Set nm = νn. Set all remaining

action points to (νn, tmax, 0). In the full proof in the Appendix, we show that
this assignment is satisfying by going through constraints in the encoding.

Lemma 8. Increment to Dmax. Following Algorithm 1, k will eventually be
such that the number of free action points D = Dmax.

Proof. An action point d is free if it is not constrained to have ind = νn. By
inspection we see that the while loop in Lines 11 and 17 increases the index into
the action point list which changes the assumes until the last one which then
places no restriction on the encoding. By construction, the encoding can use all
Dmax action points when no assumptions are present.

Theorem 2. Completeness of Solve. Algorithm 1 is complete.

Proof. By Lemma 8, we will reach D = Dmax. By Lemma 7, we know that given
a sufficiently large D = Dmax, the algorithm is complete.

6 Experimental Analysis

In this section, we evaluate the performance of our approach for initial solves
and incremental solves for tasks arriving online. Specifically, we aim to answer
the following research questions:

RQ1: How does the initial solve scale with respect to the number of tasks,
number of agents, and number of action points? How does it scale with
respect to different theory encodings?
RQ2: How does incremental solving scale, and is it more effective than non-
incremental solving at handling tasks arriving online? How does task set
batch size affect the performance?

For the initial solve, we generated benchmarks using the Z3Py API for initial
solve in both QF UFLIA and QF UFBV. For conciseness, we abbreviate these as
LIA and BV, respectively. For incremental solving, we implement the encoding
in BV using both Z3Py and the Bitwuzla [14] Python API. For BV benchmarks,
variables are encoded using small-domain encoding.4

Our workspace model represents an indoor setting with hallways and twenty
rooms. It aims to reflect the complexities and challenges robots face in navigating
complicated indoor settings. System locations were chosen from critical regions
and travel time between pairs of locations were calculated with the approach
in [21]. Agents’ start locations and tasks start and end locations are uniformly
randomly sampled from the system locations. Our evaluation consists of two sets
of benchmarks, discussed separately in Section 6.1 and 6.2. We use Z3, Bitwuzla,
and cvc5 as state-of-the-art SMT solvers. In the following, we abbreviate S-T
as a solver setting where solver S runs on some benchmarks in theory T . All
experiments were run on an AWS EC2 c5.4xlarge instance with 16 Intel Xeon
Platinum cores running at 3.0GHz with 16GB RAM. All solvers were given a
3600 seconds timeout on each query.

4 Link to implementation and benchmarks: https://github.com/victoria-tuck/SMrTa

https://github.com/victoria-tuck/SMrTa

16 V. Tuck et al.

6.1 RQ1: Performance of Initial Solve and Comparison on Theories

Fig. 4: Cactus plot for solver runtimes. Red line represents the 3600s timeout.

We create a set of 200 benchmarks with number of tasks ranging from 10 to
30 and number of agents from 5 to 20 both with an interval of 5 and ten instances
for each combination. Task deadlines are sampled from a uniform distribution.
Minimum number of action points were used. We ran both Z3-BV and Z3-LIA,
Bitwuzla-BV, and cvc5-LIA on the initial solve benchmarks with max capacity
c equal to 2 or 3.

Figure 4 shows the cactus plot for each solver. Solvers running on BV bench-
marks consistently outperformed those running on LIA. Bitwuzla-BV performed
the best, solving 184 and 181 instances, followed by Z3-BV solving 177 and 175
with c = 3 and 2 respectively. Solvers in general seem to perform better with
larger max capacity, and we speculatively believe the constraint of c = 3 to be
easier to solve. We also conducted an experiment using the maximum number
of action points (bwz bv max ap in Fig. 4) to show that action point number
significantly affects performance.

Figure 5 shows the relation between problem size and solver performance for
Bitwuzla-BV and Z3-BV with c = 3. In both plots, runtime grows as number of
tasks grows, and when the number of tasks is fixed, a larger number of agents,
which implies a smaller minimum number of action points, tend to lead to faster
runtimes. Bitwuzla-BV generally outperforms Z3-BV on benchmarks with M >
25, while Z3-BV outperforms Bitwuzla-BV on those with M < 15.

6.2 RQ2: Performance of Incremental Solve

We create a set of 20 benchmarks with 20 agents that simulate a real world
scenario where tasks arrive continuously. With a total of 200 tasks, we assume
that each task arrives every 8 time units, and expires in t ∼ U(300, 500) time

SMT-Based Dynamic Multi-Robot Task Allocation 17

Fig. 5: Runtime analysis on Bitwuzla-BV and Z3-BV under multiple settings.
Boxes represent quantiles, circles represent outliers, and lines represent means
of runtimes. Observe that runtimes are faster when number of agents is larger.

units after its arrival. We use batch (task set) sizes b ∈ {1, 10}. For each batch
size b, the algorithm collects tasks and invokes the solver every b tasks. Due
to the superior performances in the initial solve, only Bitwuzla-BV and Z3-
BV with c = 2 were considered. Tasks are added incrementally via push/pop
functionality, and action points are added using assumption variables according
to the approach shown in Algorithm 1. For non-incremental solving, we copy
all assertions of the incremental solver without the pushes/pops to a newly
instantiated solver and assert the assumption variables.

We timed the execution of both solvers using incremental solving and non-
incremental solving. The number of total free action points across agents was also
recorded as an indicator of query difficulty. Fig. 6 shows the results of running
Bitwuzla-BV and Z3-BV with batch size equal to 1 and 10 with 200 tasks and
20 agents. We observed that performances on incremental and non-incremental
solving depend greatly on the solver and batch size – Z3-BV significantly out-
performs Bitwuzla-BV on incremental solving especially when batch sizes are
small, as shown in the blue line in Fig. 6b, while Bitwuzla-BV performs better
on non-incremental solves with larger batch sizes, as shown in the orange line in
Fig. 6c. Empirically, Z3-BV took around 260 seconds on average to solve for 200
tasks. Based on the observations, we suggest using Z3-BV/Bitwuzla-BV with
incremental/non-incremental solving when batch sizes are small/large.

Notice that there are peaks in runtime across all settings. These peaks occur
when the minimum number of action points required increases. With 20 agents
and batch size equal to 1 (10), a peak occurs every 20 (2) batches as an additional
action point is needed every 20 tasks. We speculate this to be due to an increase
of the search space when extra action points are introduced (shown via red lines
in Fig. 6). Note that runtime does not correlate to the number of action points
that have to be assigned to complete all available tasks, which is an indicator of
the number of un/re-assigned tasks (shown in green in Fig. 6).

18 V. Tuck et al.

In comparison to heuristic-based approaches [19], those approaches will be
faster but lack the guarantees of our approach. Additionally, when comparing
others with guarantees [16,4], these lack runtime information.

(a) Bitwuzla-BV with batch size = 1. (b) Z3-BV with batch size = 1.

(c) Bitwuzla-BV with batch size = 10. (d) Z3-BV with batch size = 10.

Fig. 6: Performance comparison for incremental v.s. non-incremental solves with
cap = 2.

7 Conclusion and Future Work

In this work, we present a SMT-based approach to the problem of Dynamic
Multi-Robot Task Allocation with capacitated agents. Our algorithm handles
online tasks and iteratively adjusts the size of the problem in order to manage
computational complexity. We show its efficacy on problems of up to 20 agents
and 200 tasks, showing the potential for our approach to be used in longer
settings. Future work includes extending to stochastic settings to better accom-
modate dynamic environments where a probabilistic guarantee of adherence is
desired potentially using probabilistic logics [8], and to connect our approach to
lower-level motion planning algorithms (e.g., similar to the work on satisfiability
modulo convex programming [22]). Further extensions include allowing agents
to pass objects to one another, and, specifically for hospital settings, represent-
ing complicated features like elevators. We also believe that this problem setting
can act as an SMT benchmark because, for example, without managing action

SMT-Based Dynamic Multi-Robot Task Allocation 19

points as in our approach, large numbers of action points do create problems
that are very difficult to solve as shown in Fig. 4. In conclusion, we show SMT-
based approaches can be useful in handling the computational complexity of this
combinatorial domain in an extendable way and that our framework provides a
baseline for further study of this area.

Acknowledgements. This work was supported in part by LOGiCS: Learning-
Driven Oracle-Guided Compositional Symbiotic Design for Cyber-Physical Sys-
tems, Defense Advanced Research Projects Agency award number FA8750-20-
C-0156; by Provably Correct Design of Adaptive Hybrid Neuro-Symbolic Cyber
Physical Systems, Defense Advanced Research Projects Agency award number
FA8750-23-C-0080; by Toyota under the iCyPhy Center; and by Berkeley Deep
Drive.

References

1. H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mo-
hamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds,
Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength SMT
solver. In Tools and Algorithms for the Construction and Analysis of Systems -
28th International Conference, TACAS, pages 415–442. Springer, 2022.

2. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo the-
ories. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, chapter 33, pages 1267–1329. IOS Press, second edition, 2021.

3. H. Chakraa, F. Guerin, E. Leclercq, and D. Lefebvre. Optimization techniques for
multi-robot task allocation problems: Review on the state-of-the-art. Robotics and
Autonomous Systems, 168:104492.

4. Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey. Integrated
task assignment and path planning for capacitated multi-agent pickup and delivery.
IEEE Robotics and Automation Letters, 6(3):5816–5823, 2021.

5. G. P. Das, T. M. Mcginnity, S. A. Coleman, and L. Behera. A distributed task
allocation algorithm for a multi-robot system in healthcare facilities. 80:33–58,
2015.

6. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

7. I. Gavran, R. Majumdar, and I. Saha. Antlab: A multi-robot task server. ACM
Transactions on Embedded Computing Systems (TECS), 16(5s):1–19, 2017.

8. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6, 02 1995.

9. M. Hekmatnejad, G. Pedrielli, and G. Fainekos. Optimal task scheduling with
nonlinear costs using smt solvers. In IEEE International Conference on Automation
Science and Engineering (CASE), 2019.

10. S. Jeon and J. Lee. Vehicle routing problem with pickup and delivery of multiple
robots for hospital logistics. In 2016 16th International Conference on Control,
Automation and Systems (ICCAS), pages 1572–1575. IEEE, 2016.

11. S. Jeon, J. Lee, and J. Kim. Multi-robot task allocation for real-time hospital
logistics. In IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 2465–2470, 2017.

20 V. Tuck et al.

12. R. B. Lopes, C. Ferreira, and B. S. Santos. A simple and effective evolutionary
algorithm for the capacitated location–routing problem. Computers & Operations
Research, 70:155–162, 2016.

13. K. Majd, S. Yaghoubi, T. Yamaguchi, B. Hoxha, D. Prokhorov, and G. Fainekos.
Safe navigation in human occupied environments using sampling and control bar-
rier functions. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021.

14. A. Niemetz and M. Preiner. Bitwuzla. In Computer Aided Verification - 35th
International Conference, CAV, pages 3–17. Springer, 2023.

15. E. Nunes, M. Manner, H. Mitiche, and M. Gini. A taxonomy for task alloca-
tion problems with temporal and ordering constraints. Robotics and Autonomous
Systems, 90:55–70, 2017. Special Issue on New Research Frontiers for Intelligent
Autonomous Systems.

16. T. Okubo and M. Takahashi. Simultaneous optimization of task allocation and
path planning using mixed-integer programming for time and capacity constrained
multi-agent pickup and delivery. In 2022 22nd International Conference on Con-
trol, Automation and Systems (ICCAS), pages 1088–1093. IEEE, 2022.

17. H. Parwana, M. Black, B. Hoxha, H. Okamoto, G. Fainekos, D. Prokhorov, and
D. Panagou. Feasible space monitoring for multiple control barrier functions with
application to large scale indoor navigation. 2023.

18. N. Rungta. A billion smt queries a day. In International Conference on Computer
Aided Verification, pages 3–18. Springer, 2022.

19. C. Sarkar, H. S. Paul, and A. Pal. A scalable multi-robot task allocation al-
gorithm. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 5022–5027. IEEE, 2018.

20. M. Schüle, J. M. Kraus, F. Babel, and N. Reißner. Patients’ trust in hospital
transport robots: Evaluation of the role of user dispositions, anxiety, and robot
characteristics. In 17th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 246–255, 2022.

21. N. Shah and S. Srivastava. Using deeplearning to bootstrap abstractions for hier-
archical robotplanning. In 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2022.

22. Y. Shoukry, P. Nuzzo, A. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas, and
P. Tabuada. Smc: Satisfiability modulo convex programming. Proceedings of the
IEEE, 106(9), September 2018.

23. D. Uwacu, A. Yammanuru, M. Morales, and N. M. Amato. Hierarchical planning
with annotated skeleton guidance. 7:11055–11061, 2022.

24. P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of cooper-
ative, autonomous vehicles in warehouses. 29(1):9, 2008.

A Soundness

A.1 Proof of Lemma 1: Consistency of Action Sequences.

Lemma statement: If result0 is sat, Π0 |= Φ1.

Proof. (result0 = sat) ⇒ O0 is a satisfying assignment to the encoding E0. The
construction of Π0 is deterministic, so we will only get one possible Π0 from an
assignment.

Consider any agent’s action sequence Sn ∈ Π0. If an agent’s action sequence
Sn is empty, Sn |= ϕ1. If it is not, let its length be k. By construction, ((skn =

SMT-Based Dynamic Multi-Robot Task Allocation 21

Pm) ⇒ (sk−1
n = Mσm,i

)) ∧ ((skn = Dm) ⇒ (sk−1
n = Mσm,f

)) ∀m ∈ M and

(s1n ∈ M).
Taking each action point d > 0, if validni,d is true, the point will cause the

action pair {(M,σm,i), (P, µm)} or {(M,σm,f), (D,µm)} to be added to the ac-
tion sequence Sn. Otherwise, due to E.7, ind = νn. In constructing Sn following
GetPlan(O0), we start with the 1st action point and stop adding elements to
the Sn once ind = νn. Therefore, only the pick and drop action pairs can be
added, so ∀κ = 1, . . . , k − 1 sκn ∈ M ⇒ sκ+1

n ∈ (P ∪D). (P ∪D) ∩M = ∅, so
∀κ = 1, . . . , k − 1 sκn ∈ M ⇒ sκ+1

n /∈ M) .
Because we only add the pairs mentioned earlier to the action sequence,

for any action point d and task m, if ind = 2µm + N , then s2dn = (P, µm).
Due to E.9, ind′ = 2µm + N + 1 for some d′ > d. ind = 2µm + N + 1 implies

s2d
′

n = (D,µm). d′ > d ⇒ 2d′ > 2d, so tasks will be picked before they are

dropped ((sκn = Pm) ⇒ (
∨

κ′>κ

sκ
′

n = Dn) holds where κ = 2d and κ′ = 2d′). A

similar argument can be made with E.9 - E.11 to show tasks are dropped after
they are picked.

We now show that the action point times tnd across the same agent that will
be used to create the agent’s action sequence are unique in order to show that
picks and drops only occur once. More formally, there exists some 0 < D′

n ≤ D
where

∀d = 1, . . . , D′
n − 1, ind ̸= νn (13)

∀d′ = 1, . . . , D′
n − 1 st. d ̸= d′, tnd ̸= tnd′ (14)

and
∀ d′′ st. D′

n ≤ d′′ < D, ind′′ = νn. (15)

From E.4, E.7, E.8 and wσ1,σ2 ≥ 0 ∀, σ1, σ2 ∈ Σ, Dist(Loc(ind−1), Loc(i
n
d)) ≥ 0.

Now we can find D′
n. Start with d = 1. If ind = νn, via E.2, eq. 13, 14, and

15 trivially hold with D′
n = 1. For all d > 1, if ind ̸= n, ind ≥ N by E.7. In E.6,

ITE(tnd−1 ≤ tm, tm, tnd−1) ≥ tnd−1. By definition, ρ > 0, so by E.6, tnd > tnd−1. This
sequence of times is strictly monotonically increasing, so all values are unique.
If for any action point d > 1, ind = n, let D′

n = d and by E.2, eq. 15 holds.
Eq. 13 and 14 hold by the above argument of strictly monotonically increasing
sequence. If for no action point d > 1, ind = n, let D′

n = D and eq. 15 trivially
holds while eq. 13 and 14 hold by the above argument.

We can now show

(sκn = Pm) ⇒(∀κ′ ̸= κ ∈ 1, . . . k, sκ
′

n ̸= Pm) ∀m ∈ M

(sκn = Dm) ⇒(∀κ′ ̸= κ ∈ 1, . . . k, sκ
′

n ̸= Dm) ∀m ∈ M

for each agent n. We will only consider the action points for each agent that are
used to create its action sequence (d = 0, . . . , D′

n−1). We have shown that these
times tnd are unique. Due to E.9, ind = 2µm+N ⇒ startm = tnd (if an action point
is assigned a pick up task id, startm = tnd will be assigned the time associated
with that id). If two action points d and d′ for one agent are assigned the same
task id, startm must be assigned both tnd and tnd′ . However, this is impossible

22 V. Tuck et al.

as tnd ̸= tnd′ . Therefore, only one action point for each agent can be assigned the
same pick up task id. A similar argument can be made using E.10 for drop off
task ids. When converted to an action sequence, only one pick or drop action is
added to the action sequence for each action point, so the pick and drop actions
will only occur once.

We now show that loads will not violate specifications. If the action sequence
is non-empty, by construction, C1(Sn) = 0 and Ck(Sn) = lnd where d = ⌊k

2 ⌋ due
to E.3. These load values are constrained in the encoding by E.5. The constraints
can be similarly shown for all other agents.

A.2 Proof of Lemma 2: Completion of Tasks.

Lemma statement: If result0 is sat, Π0 |= Φ2,M for M = M0.

Proof. We need to show Π0 |= ϕ2,m∀m ∈ M0. Without loss of generality, we
will show for a single task m ∈ M0 that ∃ Sn ∈ Π such that each statement in
ϕ2,m holds.

The action sequence is consistent (Sn |= ϕ1) by Lemma 1.
We show the object for task m is picked up and dropped off by agent

n (ϕpickup(m,Sn)∧ϕdropoff (m,Sn)): By E.12, for the task m, (nm ≥ 0)∧ (nm <
N). WLOG, assume nm = n. By E.11,∃ d ∈ [1, D − 1] st. ind = 2m+N. There-
fore, via GetPlan(O), Pm is added to Sn. Similarly, using E.9, Dm is added with
an action point d′ = 2m+N + 1.

We show no other agent will pick up the task (∀Sn′ ̸= Sn ∈ Π,¬ϕpickup(m,

Sn′) ∧ ¬ϕdropoff (m,Sn′)): Via E.9 and E.10, in
′

d = 2n+N or in
′

d = 2n+N + 1
will imply nm = n′. It can only be assigned one value. Therefore, neither the
pick-up or drop-off of task m will be assigned to another agent n′ or appear in
that agent’s action sequence.

We show valid durations (D(sκd
n) ≤ Tm)∧(D(s

κp−2
n) ≥ tm): Via E.2, ind−1 ̸= n

unless d− 1 = 0. We previously assume tj = 0. Therefore,

tnd − tnd−1 = Dist(Loc(ind−1), Loc(i
n
d)) + ρ [Via E.6]

= wLoc(ind−1),Loc(ind)
+ ρ [Via E.4]

= Dk(Sn)−Dk−2(Sn) [Via E.4, E.8]

with k = 2d. Via E.1, tn0 = 0, so we can map durations of the subsequences up to
and including pick and drop actions to action point times. Times are constrained
in E.12. As a note, Dk−1(Sn) = tn⌈ k

2 ⌉
− ρ, which is constrained in E.12 but we

also want to show the stronger point that the agent does not even move towards
the task until it knows about it. Duration is a sum of non-negative quantities
and tm = 0, so the second duration constraint holds.

A.3 Proof of Lemma 3: Plans are Updated.

Lemma statement: Assume (resultj = sat) ⇒ (Πj |= Φj). If resultj+1 is sat,
Πj+1 |= Φ3,tj+1,Πj

.

SMT-Based Dynamic Multi-Robot Task Allocation 23

Proof. If resultj is not sat, the statement is trivially true as the loop will exit
on line 19 before resultj+1 can be set to sat.

For the rest of the proof, we assume resultj is sat. Therefore, the right-hand
side of the implication is true, so we are updating from a valid plan Πj . Consider
the action sequences of the plan Πj . For each agent, we split into two cases: 1)
Dk(Sn) < tj+1 and 2) Dk(Sn) ≥ tj+1 where k is the length of Sn.

Start with case 1. We note that via the procedure in GetPlan(·), Dκ(Sn) will
equal an action tuple time for all κ’s where skn ∈ P∪D. Therefore, Dk(Sn) < tj+1

means that Oj(t
n
d) ≥ tj+1 will never be true and SavePastState(·) will stop at

some δn = d + 1 when d + 1 < D and ind+1 = νn. Therefore, all action points
d = 0, . . . , δn will be equivalent between the two assignments creating a prefix of
the new action sequence that is equivalent to the previous action sequence. At
this point, if there are no new action tuple times for the new assignment Oj+1

i.e., inδn = νn, the statement is true. If inδn ̸= νn, we note that tnδ−1 < tj+1. Via
E.6 and lines 21 and 6 in Algorithm 1, tnδn = tj+1+wLoc(inδn),Loc(inδn−1)

+ρ which

causes GetPlan(·) to add the specified wait. If d reaches the end of the loop past
D − 1, no new action points will be able to be assigned, so the sequence will be
the same.

Now we consider case 2. In SavePastState(·), if we instead loop until O(tnd) ≥
tj+1, δn = d for the corresponding action point d. We have already shown an
equivalent between durations and action tuple times, and this will now hold until
some part of the sequence where Dk(Sn) ≥ tj+1. By construction, this point will
exist for an element where skn ∈ P ∪D and there will not be excess waits.

A.4 Proof of Lemma 4: Updated Consistency.

Lemma statement: Assume (resultj = sat) ⇒ (Πj |= Φj). If resultj+1 is sat,
Πj+1 |= Φ1.

Proof. If resultj is not sat, the statement is trivially true as above. If tj+1 = 0,
due to SavePastState(tj+1, E ,O), δ = 1 (a vector of one’s) as when j = 0, so E.6
is removed and re-added exactly the same. The rest of the encoding adjustments

can be thought of as changing the starting set to be M0 =
j+1⋃
j′=0

Mj′ and the

proof of lemma 1 follows.
If tj+1 > 0, many of the statements of A.1 still hold. We note that the action

tuples saved in SavePastState(·) correspond to a prefix of each action sequence
in the previous plan that is also consistent. An action point may cause (W, t) for
a t > 0 value as specified in GetPlan(·) to be added after the part of the plan
that is the same as the previous plan in addition to the pick and drop actions
mentioned before. Therefore, sκn ∈ M ⇒ sκ+1

n /∈ M) ∀κ = 1, . . . , k−1 still holds.
Let wκ = |{sκn ∈ W|sκn ∈ Sk

n}|. Let κ denote the prefix such that sκn = Pm

and κ′ denote the same for the drop. Using the same definitions for d′ and d as
before, d′ > d, so κ = 2d + wκ and κ′ ≥ 2d + wκ because the actions for d′ are
added after those for d. This is similarly true for showing a task is dropped after
it’s picked up.

We have previously shown action point times tnd are strictly monotonically
increasing, even if tj ̸= 0. The difference here is that tj+1 may be different from

24 V. Tuck et al.

tj , so we want to remove the previous E.6 constraints. tnd are strictly monotoni-
cally increasing for Ej . Consider saving the state for agent n in SavePastState(·)
and that δn = δ. Given our assumption, the sequence tn0 , . . . , t

n
δ−1 will be strictly

monotonically increasing. New action point times for d ≥ δ − 1 will also be
monotonically increasing via E.6. Therefore, the pick and drop actions will still
only occur once.

Load values are similarly still constrained with the adjustment that load
values from some action points will map to three actions instead of two.

A.5 Proof of Lemma 5: Updated Completion.

Lemma statement: Assume (resultj = sat) ⇒ (Πj |= Φj). If resultj+1 is sat,

Πj+1 |= Φ2,j+1 where Mj+1 = (
⋃j+1

j′=0 Mj′).

Proof. If resultj is not sat, the statement is trivially true as above. By lemma
4, each agent’s action sequence is consistent. Pretend that tj = 0. In lines 21
and 6, E.6 and E.7 are removed and re-added the exact same and E.8 - E.12
are added for Mj . This encoding is the same as having M0 = Mj+1. (We’ll
disregard that lemmas may have been added during the previous solve as these
should only follow from what is in the encoding). We have already shown that
such a plan completes the tasks.

The difference here is from SavePastState(·) and the introduction of tj in E.6
and E.12, which will only affect the duration requirements ((D(sκd

n) ≤ Tm) ∧
(D(s

κp−2
n) ≥ tm) ∀m ∈ Mj+1). The requirement on tj in E.12 is used mainly as

a double check. We have previously shown an equivalence between action point
times and durations. The previous assignment completed its tasks so the points
saved in SavePastState(·) will not break (D(sκd

n) ≤ Tm) or (D(s
κp−2
n) ≥ tm).

For any new action points, E.6 will hold, so (D(s
κp−2
n) ≥ tm) will be true. E.12

is still required for previous tasks and will be added for new tasks, fulfilling
(D(s

κp
n) ≤ Tm).

B Completeness

B.1 Proof of Lemma 6: Maximum Number of Action Points.

As shown in Lemma 1, pick and drop ids will only occur once per task in an
agent’s assignment in a satisfying O. By construction, action point ids must be
either ind = n or ind ≥ N ∧ ind < 2M+N . Therefore, for an agent n, the maximum
number of action points that can be assigned to a value other than n is 2M .
Adding in the constrained 0th action point, the total is 2M + 1 = Dmax where
ind = n for d = d′ ≥ Dmax. Therefore, adding an extra action point does not
add new free variables, so an unsat result cannot turn sat by adding more action
points.

B.2 Proof of Lemma 7: Conditional Completeness.

Lemma statement: Assume Γ [|K| − 1]. If D = Dmax, Algorithm 1 is complete.

SMT-Based Dynamic Multi-Robot Task Allocation 25

Proof. We want to show that for each iteration j in Algorithm 1, if given a
plan Πj for which Πj |= Φj , we can find a satisfying assignment Oj . We know
from Lemma 6 that the maximum number of action points for our assignment
is D = Dmax per agent. Now we need to create the assignment from the given
plan.

Take the action sequence for each agent n. Set the initial action point tuple
(in0 , t

n
0 , l

n
0) = (νn, 0, 0). Find the 1-indexed subsequence of indices of pick and

drop actions. For each element k in the subsequence, let ink = 2µm + N or
ink = 2µm + N + 1 where µm is the id of the task that is picked or dropped,
respectively. Set tnk = Dk(Sn) and lnd = Ck(Sn). For the task m, if skn ∈ P, set
startm = Dk(Sn). If s

k
n ∈ D, set endm = Dk(Sn). Set nm = νn. Set all remaining

action points to (νn, tmax, 0).
We can now go through each constraint in the encoding to check the as-

signment is indeed satisfying. By constraining the initial point E.1 holds (The
second part is true by lemma assumption). E.2, E.4, and E.8 hold by con-
struction. The left side of E.3 holds by constraining ln0 = 0 then each lnd is
equal to the same sum that is used for load in the action sequence. The right
side holds because the consistent action sequence definition constrains each pick
and drop to only occur once ((sκn = Pm) ⇒ (∀κ′ ̸= κ ∈ 1, . . . k, sκ

′

n ̸= Pm

for pick). We previously showed an equivalence between the action tuple times
and durations as an output of GetPlan(·). The plan we are updating from
(Πj−1) is an output of GetPlan(·). Therefore, when calling SavePastState(·),
we will have two cases as in the proof of lemma 3. If the duration of the com-
mon prefix Dk(Sn) < tj and the new action sequence is exactly the old, all
of the unconstrained ind = νn, so E.6 holds. If the new sequence is not ex-
actly the old, there will be a wait of length tj − Dk(Sn), setting the first free
time tnδn = Dk+1(Sn) = Dk(Sn) + (tj − Dk(Sn)) + wLoc(inδn),Loc(inδn−1)

+ ρ. The

other times similarly follow from the durations. If the common prefix duration
Dk(Sn) ≥ tj , δn will be set such that tnδn−1 ≥ tj . The difference in pairs of
durations for the times added for tnδn−1 and after will equal the travel time plus
ρ as in E.6, so it will hold for all cases. E.5 holds because lnd is assigned based
on loads of the action sequence, which are constrained in the definition of a con-
sistent action sequence. Non-negative ids and (ind = νn) ⇒ (tnd = tmax) are true
by construction. E.7 follows from the definition of the pick and drop sets and
their conversion to the ids of the encoding. E.9 and E.10 follow from construc-
tion and the requirements of the consistent action sequence. E.11 holds because
all tasks are constrained to be completed so all nm variables will be set when
constructing. E.12 holds by the definition of a plan being for a set of agents N
and the requirements in completed task on when a task is started and when it
is ended.

B.3 Proof of Lemma 8: Increment to Dmax.

An action point d is free if it is not constrained to have ind = νn. By inspection
we see that the while loop in Lines 11 and 17 increases the index into the action
point list which changes the assumes until the last one which then places no
restriction on the encoding. By construction, the encoding can use all Dmax

action points when no assumptions are present.

	SMT-Based Dynamic Multi-Robot Task Allocation

