
UC Davis
UC Davis Previously Published Works

Title
Quantifying functionals of age distributions in the wild by solving an operator equation

Permalink
https://escholarship.org/uc/item/08z8g7nj

Journal
Journal of Mathematical Biology, 75(4)

ISSN
0303-6812

Authors
Ji, Hao
Müller, Hans-Georg
Papadopoulos, Nikos T
et al.

Publication Date
2017-10-01

DOI
10.1007/s00285-017-1105-x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08z8g7nj
https://escholarship.org/uc/item/08z8g7nj#author
https://escholarship.org
http://www.cdlib.org/


Quantifying Functionals of Age Distributions in the Wild by 
Solving an Operator Equation

Hao Ji1, Hans-Georg Müller1,2, Nikos T. Papadopoulos3, and James R. Carey4

1Department of Statistics, University of California, One Shields Avenue, Davis, CA 95616, USA

3Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 
Fytokou Street, N. Ionia, GR-384 46, Volos, Greece

4Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, 
CA 95616, USA

Abstract

Residual demography is a recent concept that has proved to be a useful tool to gain insights about 

the age distributions of wild populations, especially insects. We develop an operator equation that 

permits the derivation of functionals of the age distribution in wild populations, such as mean age, 

within the framework of residual demography. Our method combines information from an 

observed captive cohort, which consists of subjects that are sampled from the wild with unknown 

ages and then raised in the laboratory until death, and from a reference cohort that consists of 

subjects raised in the laboratory since birth of the same population. Targeting functionals such as 

the mean of the wild age distribution has the advantage of avoiding strong assumptions such as 

stationarity and stability of the population that one would need when targeting the entire survival 

distribution in the wild. Our main result characterizes the existence of a solution of the operator 

equation that yields the functional of interest. The proposed method also enjoys straightforward 

and easy implementation. A data example is included illustrating an application, where one aims 

to attain the mean age of mosquitoes in the wild, based on seasonal captive cohorts from Greece 

and a simulated reference cohort, separately for various summer and fall months.
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1 Introduction

Information about the age distribution and survival of insect and animal populations is of 

much interest in ecology and biodemography. In particular, for insect populations, many of 

the existing methods, such as the use of mechanical damage, chemical analysis and gene 

expression, are expensive, require major training and calibration efforts, and do not 

guarantee accuracy at older ages (Rao and Carey (2015)). Analysis of captive cohorts of 
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insects has emerged as a useful method to reveal the characteristics of wild aging 

populations (see for example Müller et al. (2004); Carey et al. (2008); Carey et al. (2012); 

Müller et al. (2007); Goldstein (2009); Vaupel (2009)). In this paper, we develop a method to 

obtain certain functionals of the wild age distribution with observed data from residual 

demographical profiles and information from laboratory reference cohorts which involves 

solving an operator equation. Our main result below provides sufficient criteria for the 

existence of a solution of this equation.

The approach and operator equation are motivated by data that consist of residual 

demographical profiles of 1504 West Nile virus mosquitoes (Culex pipens). These 

mosquitoes were randomly and repeatedly sampled from the wild population at an unknown 

age. They were then transferred to captive cohorts that were reared out in the laboratory with 

the date of transfer and the time from transfer to death recorded for each of the mosquitoes 

in the cohort. Data collection began in June 2013 and lasted six months. Further background 

on this study can be found in Papadopoulos et al. (2015). Of interest are accompanying 

changes in the residual lifespans, see the exploratory plot in Figure 1, which shows the data 

from this study, overlaid with a smooth nonparametric local least squares fit for the 

conditional mean function E(y|X = x), where x is the capture date and y is the captive 

lifetime. It is of great interest to gain insights on aging in the wild by utilizing these or 

similar data, which requires the development of appropriate methodological tools.

One approach to gain such insight is residual demography, where a reference cohort of 

mosquitoes is raised independently from the captive cohort in the laboratory under identical 

laboratory conditions from birth. Under basic assumptions on the dependency of mortality 

on age and current environment, no age-bias of captive cohort sampling, and stationarity and 

stability of the population (Preston et al. (2001)), a demographic convolution equation 

relates the unknown wild age distribution, the observed survival function from the observed 

captive cohort and the observed survival function of the reference cohort. This convolution 

equation has been derived under suitable assumptions and is related to renewal theory (see 

Lotka (1939); Cox (1962); Feller (2008)). It suggests to adopt a deconvolution method 

(Müller et al. 2007) to extract the survival distribution of the wild population.

Due to the necessary strong assumptions when targeting the survival distribution, such as 

stationarity of the population, we aim here at the simpler target to obtain functionals of the 

age distribution of the wild population. Since targeting of the entire age distribution requires 

deconvolution, which is sensitive to the choice of various tuning parameters (Müller et al. 

2007), we target here instead functionals of the age distribution in the wild, such as mean 

age.

2 Functionals of the Age Distribution in the Wild

For an individual which is captured at unknown age W, then enters the captive cohort and 

dies after an observed residual life time in captivity C, age-at-death D can be written as
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Throughout the paper, we assume that D ∈ [0, T] for some sufficiently large T, which is 

plausible since lifespan is a bounded quantity in biological applications. Let FX(t) = P(X ≤ t) 

denote the distribution function, F̄
X(t) = 1 − FX(t) the survival function,  the 

probability density function, λX(t) = fX(t)/F̄
X(t) the hazard rate, and  the 

cumulative hazard rate of a non-negative random variable X. Here the choice X = W will 

label these quantities for subjects in the wild, X = C for subjects in the captive cohort, and X 
= R for subjects in the reference cohort. Furthermore, the density of the distribution of age-

at-capture, which is the same as the density of age-in-the-wild, under the unbiased sampling 

condition that we impose, is denoted by fW. The corresponding cumulative distribution 

function is FW.

To further motivate our approach, we illustrate the estimated densities fC of the distribution 

of age-at-death or equivalently survival in the captive cohorts that were obtained for the 

months June–November from the data in Figure 1. These densities were obtained with 

kernel estimators (Silverman 1986).

Our target in general are functionals of the wild age distribution. Given a specific function 

, that is chosen based on a specific feature of interest 

inherent in the wild age distribution FW, we define a linear functional

(1)

An important example is the expected value of age in the wild population,

where h(w) = w. Examples of other functionals of interest include the variance of the age 

distribution in the wild, which is related to the second moment,

from which we can obtain Var(W) = EW2−(EW)2. Another example is the population 

proportion of subjects that are younger than a specific age,

where 1{w ≤ t} is the indicator function. Targeting higher order moments or proportions for 

tails of the distribution is more challenging than targeting the mean due to decreased 

numerical stability, which means that one needs larger sample sizes for the reference cohort 
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and associated more precise estimates of the survival schedule of subjects under laboratory 

conditions to target such more complex functionals.

We adopt the following assumptions from Müller et al. (2007), where also the biological 

motivation for these assumptions is given:

1. The force of mortality depends only on the age of an individual and the current 

environment, and does not depend on past environmental exposure.

2. Age-bias of captures in the wild is negligible.

3. The population is stable, and birth rates are stationary throughout the observation 

period, or capture period.

A fourth assumption that was made in Müller et al. (2007) concerns the stationarity of the 

population, meaning that hazard rates depend on age of an individual but not on calendar 

time. As survival may depend on changing environmental conditions such as variations in 

food supply, this assumption may be violated in certain situations. However, this assumption 

is only needed in order to target survival rates in the wild but is not needed for inference on 

the age distribution, which is our goal here. Specifically, we note that the third assumption 

above is not the same as requiring a stationary age distribution. In fact, since we target 

functionals of the age distribution that is present at the time of capture of flies from the wild, 

this age distribution is allowed to change in dependence on the capture time (referring to its 

calendar time). To illustrate our methods, in Section 5 we obtain estimates of the mean age 

in the wild for cohorts that are sampled at different calendar times and have different age 

distributions.

Under assumptions 1–3, the following convolution equation (Müller et al. (2007)) holds, 

which characterizes the relationship between FC, FW and FR, and is given by:

(2)

based on the relationship F̄
R(t) = e−ΛR(t). Now define the kernel function,

(3)

which can be deduced from the reference cohort, since this cohort provides information 

about F̄
R. For a function β ∈ L2([0, T]), we then introduce the function

(4)
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and observe that γβ ∈ L2([0, T]). Now we consider a linear functional of type (1), where we 

make the dependency on β explicit,

(5)

using equation (2). Importantly, for any given β ∈ L2([0, T]), the r.h.s of (5) and therefore 

the functional Γβ can be evaluated, using information available from the captive cohort.

Now, going back to (1), we have specified a function h ∈ L2([0, T]) of interest. Since we can 

evaluate functionals of type (5), our goal is therefore to find a function β such that

(6)

whence we then obtain

(7)

So, if equation (6) can be solved, we have devised a tool to evaluate the bio-demographically 

relevant quantity H(FW).

3 Existence of a Solution

Since existence of a function β satisfying (6) allows us to obtain the target functional, it is of 

interest to study conditions under which existence is guaranteed. Define linear operators  : 

L2([0, T]) →

(8)

Following Yang et al. (2011) (see also Kato (1995); Baker (1973)) we define the adjoint 

operator * : L2([0, T]) → L2([0, T]) of ,

(9)

We next consider the two compound operators 1 =  ∘ * and 2 = * ∘ 

(10)
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(11)

where

are the kernels of these linear operators. Note that 1 and 2 are linear Hilbert-Schmidt 

operators with L2 kernels (see section V.3 of Kato (1995)). According to the spectral 

theorem for Hilbert-Schmidt operators, the kernels of 1 and 2 can be decomposed in the 

following way

where  are the shared eigenvalues of the two compound operators and ψ1, 
ψ2, … and ϕ1, ϕ2, … are orthonormal eigenfunctions for 1 and for 2, respectively, with

where δij is the Kronecker delta. Furthermore, one has  for positive σk, k = 1, 
2, ….

We refer to the sequences ψ1, ψ2, … and ϕ1, ϕ2, … as singular functions and to the 

sequence σ1, σ2, … as singular values, where σ1 ≥ σ2 ≥ … ≥ 0. We use the following 

singular representation of the operators  and * to characterize solutions β, which can be 

found in section V.3 of Kato (1995) or in Conway (1985).

Proposition

Operators  and * can be represented as

(12)

Now assume that  and  form an orthonormal basis of L2([0, T]), 

respectively, so that we may represent, in the L2 sense, the functions β and h as follows:
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With the singular representation in (12), (6) becomes

(13)

Now we are in a position to characterize the existence of a solution function β of (6).

Theorem

Given a linear operator  : L2([0, T]) → L2([0, T]) with kernel g(t,w) and its adjoint 
operator * as defined in (8) and (9), and the singular representations described in (12), let 

 and  be the eigenfunctions of the compound operators 1 and 2 defined 
in (10) and (11), and σk the singular values. Assume the function h can be expanded as 

 and the condition

is satisfied and it holds that σk = 0 implies hk = 0. Then there exists a function

(14)

that satisfies (6).

This result implies that the existence of β depends on properties of both the specified 

function h(w) that characterizes the targeted functional and the kernel function g(t,w). If the 

basic assumptions in the theorem are satisfied, (14) provides an explicit construction for the 

solution β of the operator equation.

Proof—In order to show the existence of a solution, consider the construction
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where  for σk > 0 and βk = 0 for σk = 0.

Plugging in the representation into right hand side of (6), it follows that

By the assumptions, hk = 0 when σk = 0 for all k, so that

Therefore, the proposed β is a solution of (6).

4 Implementation

In this section, we introduce the numerical procedures to solve the operator equation (3), 

aiming to obtain the target H(FW) for a given h(w). Based on the previous discussion, we 

propose to fit the function β according to (6), (14) by minimizing the squared L2 distance

(15)

To minimize (15) numerically, we discretize the variables w and t, followed by a least 

squares algorithm. Specifically, we first choose regular time grids for both age at capture w 
and captive lifetime t from 0 to the maximum remaining lifespan of individuals from the 

captive cohort, and denote these as {w1, … , wq} and {t1, … , tp}. Let Δt and Δw be the 

constant time differences of the time grids.

Define the matrix G and vector β and h as

Then the minimization simplifies to the following matrix form:

(16)

where 1q is a q-dimensional vector with all entries being 1.

Ji et al. Page 8

J Math Biol. Author manuscript; available in PMC 2018 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In (16), one encounters a least squares problem, where the corresponding responses are 

h(wi), i = 1, 2, …, q, and the predictors are xi1 = g(t1, wi), xi2 = g(t2, wi), ….

Note that the survival function F̄
R in g(t,w) is estimated with the empirical version based on 

the available reference cohort. In the case where data are censored, i.e. individual flies are 

lost to followup, we can replace empirical distributions with empirical Kaplan-Meier 

estimators (Lo et al. (1989)). Assuming linear independence of predictors, we find β̂ = (β̂1, 
…, β̂p)T = (β̂(t1), …, β̂(tp))T such that

(17)

We then estimate the functional H(FW) of the wild lifetime distribution by numerical 

integration,

(18)

5 Application to Captive Cohorts of Mosquitoes

In the mosquito captive cohort data, there are 1504 mosquitoes captured during one half year 

period starting from June 2013. Remaining lifespans of the captured individuals, along with 

other information such as their physiological stage and species were recorded. We aim at 

estimating the mean age of the species in the wild with uncertainty control via 

bootstrapping. For obtaining mean age, we choose h(w) = w in (1).

To illustrate the proposed method, we use a reasonably specified simulated reference cohort, 

with age-at-death times following the Gompertz distribution, denoted by Gompertz(η, b), 
with the following probability density function,

(19)

where we specified the parameters η and b as follows: We had available an observed 

reference cohort of the same species raised in the lab, but the corresponding mean lifespan 

of this reference cohort was around 25 days, less than that of the observed captive cohort, 

which was 100 days. We therefore used the reference cohort to estimate the parameter b in 

(19) via maximum likelihood estimation and then adjusted the value of the second parameter 

η so that the mean lifespan of the simulated reference cohort matched the longest mean 

lifespan of the captive cohort samples aggregated by month, for the entire observation 

period. This procedure led to the parameters η = 0.00258 and b = 0.054. The resulting 
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reference cohort has a mean lifespan of 100 days, and covers the lifespan of the observed 

captive cohort.

To obtain the mean age in the wild for each month where the study was conducted, we 

sampled a reference cohort from the proposed Gompertz distribution, and applied the 

method described in the previous section. In order to construct confidence intervals for the 

expected age of mosquitoes in the wild for the selected month, we used the bootstrap. In the 

bootstrap approach, we sampled reference cohorts from the above Gompertz distribution 

repeatedly and sampled captive cohorts nonparametrically from the observed captive cohort 

for the selected month in each iteration, also repeatedly. We then estimated the expected age 

in the wild based on the sampled cohorts, repeating this resampling 2000 times. The 95% 

confidence intervals are constructed using lower and upper quantiles of the bootstrap 

estimates at levels 2.5% and 97.5%. The results with 2000 bootstrap iterations are listed in 

Table 1.

These results indicate that there are monthly trends in the mean age of the wild mosquito 

population. From June to August, the mean age in the wild hovers around a constant level, 

and then drops dramatically during September and October, to bounce back a bit in 

November. Compared with the residual lifetimes observed in the captive cohort as depicted 

in Figure 1, we find that mean age of the population in the wild shows an opposite trend. 

This is as expected, since flies that are on average younger when captured in October as 

compared to flies captured in June will live longer in the captive cohort than those captured 

in June. Since the results are based on a simulated reference cohort, it is worth noting that 

the actual mean age of the wild population might be off by a factor, depending on how well 

the simulated reference cohort mimics a real reference cohort. Nevertheless, the observed 

trends in the mean age of the wild population for different months are unlikely to strongly 

depend on the detailed shape of the reference cohort. From a biological perspective, a more 

youthful population in October is likely due to physiological shifts as mosquitoes prepare to 

enter hibernation mode.

6 Discussion and Conclusions

We developed an approach to infer properties of the wild age distribution that can be cast in 

the form of a functional of the age distribution within the residual demography framework. 

The method is applicable to evaluate finite moments of the wild age distribution, or 

proportions of individuals in the wild that fall into certain age brackets, as long as the 

underlying operator equation has a solution. Our theorem provides general conditions when 

such a solution exists.

By aiming at functionals of the wild age distribution instead of the distribution itself, fewer 

assumptions are needed and the approach is more robust. For the previous methods, it had to 

be assumed that the wild age density function and the population hazard rates solely depend 

on the age of an individual but do not depend on calendar time. In our illustrative example, 

dependence on month is of primary interest, and for the proposed approach the population 

stationarity assumption invoked in previous work is neither reasonable nor needed. 

Numerically, the proposed method is straightforward and easy to implement.
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Since solving the operator equation (6) amounts to solving an inverse problem, numerical 

instability can be reflected by a low condition number of the matrix G in (16), especially 

when the matrix has a large number of zero elements. This can be counteracted by choosing 

a sparser time grid in the discretization, and by choosing a smaller time upper bound for the 

time grid of the captive lifetimes t, rather than the maximum remaining lifespan in the 

observed captive cohort.

As an illustrating example, we applied the proposed method to the mosquito captive cohorts 

and simulated reference cohorts using a Gompertz distribution. We used bootstrap to provide 

confidence intervals for the estimates of the mean age of cohorts in the wild at different 

calendar times from June to November. In our application, the results are consistent with the 

survival schemes that are observed for the captive cohorts and reveal clear differences in the 

distributions of wild age for mosquitoes over different months. While of biological interest 

in itself, this may also have implications for the assessment of the potential for disease 

transmission by mosquitoes, where such transmittable diseases include Japanese 

encephalitis, meningitis or West Nile virus. Our approaches will also be useful to obtain 

information about wild age distributions and their dependency on seasonality or other 

features for other species.
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Figure 1. 
Remaining lifespan in the captive cohort versus time of capture (in days) for mosquitoes 

captured from June to November. The overlaid curve is the local least squares estimate of the 

conditional mean of remaining lifespan, given day of capture.
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Figure 2. 
Fitted density functions of captive lifespan for mosquitoes captured in different months.
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Table 1

Estimated mean ages (expected values) of Mosquito populations in the wild for each month, obtained by 

solving operator equation (6), and 95% confidence intervals for each month, obtained by bootstrapping.

Month Estimated Mean Age (in Days) 95% C.I.

June 89.10 (73.24, 105.77)

July 90.96 (78.63, 101.98)

August 86.00 (75.34, 98.63)

September 61.32 (46.91, 73.96)

October 35.18 (9.42, 51.97)

November 54.40 (38.42, 72.77)
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