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ARTICLE

A comprehensive study of metabolite genetics
reveals strong pleiotropy and heterogeneity
across time and context
Apolline Gallois1,12, Joel Mefford2,12, Arthur Ko 3, Amaury Vaysse 1, Hanna Julienne1,

Mika Ala-Korpela4,5,6,7,8,9, Markku Laakso 10, Noah Zaitlen2,12*, Päivi Pajukanta 3,12* &

Hugues Aschard 1,11,12*

Genetic studies of metabolites have identified thousands of variants, many of which are

associated with downstream metabolic and obesogenic disorders. However, these studies

have relied on univariate analyses, reducing power and limiting context-specific under-

standing. Here we aim to provide an integrated perspective of the genetic basis of meta-

bolites by leveraging the Finnish Metabolic Syndrome In Men (METSIM) cohort, a unique

genetic resource which contains metabolic measurements, mostly lipids, across distinct time

points as well as information on statin usage. We increase effective sample size by an

average of two-fold by applying the Covariates for Multi-phenotype Studies (CMS) approach,

identifying 588 significant SNP-metabolite associations, including 228 new associations.

Our analysis pinpoints a small number of master metabolic regulator genes, balancing the

relative proportion of dozens of metabolite levels. We further identify associations to changes

in metabolic levels across time as well as genetic interactions with statin at both the master

metabolic regulator and genome-wide level.
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The human metabolome includes over 100,000 small
molecules, ranging from peptides and lipids, to drugs and
pollutants1. Because metabolites affect or are affected by a

diverse set of biological processes, lifestyle and environmental
exposures, and disease states2, they are routinely used bio-
markers3. Thanks to the recent technological advances, diverse
components of the metabolome are being measured in large
human cohorts, offering new opportunities to improve our
understanding of the molecular mechanisms underlying meta-
bolism and corresponding human traits and diseases4. For
example, previous work has highlighted the role of metabolites in
diseases such as Type 2 Diabetes5,6, cardiovascular, and heart
diseases7–9, and obesity3,10.

A number of genome-wide association studies (GWAS) of
metabolites have also been performed. These studies identified
hundreds of genetic variant–metabolite associations11, provided
estimation of the heritability of multiple metabolites12, and
highlighted the biological and clinical relevance of some of these
findings13. All of these studies relied on standard univariate
analyses and assessed marginal additive effects of genetic variants
only. Despite a number of advantages, univariate approaches have
limitations and the implementation of new integrative approaches
are needed to further reconstruct the complex genetic network of
gene–metabolite associations and its dependence on the context
of each individual.

Here, we explore the genetics of 158 serum metabolites
measured with nuclear magnetic resonance (NMR), including
mostly serum lipids, in 6263 unrelated men from the Finnish
Metabolic Syndrome In Men (METSIM)14 cohort. To improve
the detection of metabolite-associated variants and infer com-
plex mechanisms underlying the genetics of metabolites, we
perform a series of analyses using recently developed multi-
variate approaches as well as existing methods. First, unlike
previous metabolite GWAS11,12,15–20, we leverage the high
correlation structure between metabolites to increase the power
of association tests via the Covariates for Multi-phenotype
Studies (CMS) method21. Second, we produce an integrated
view of the genetic–metabolite network, highlighting genes with
strong pleiotropic effects while showing how integrated analysis
of such genes can be leveraged to identify likely causal variants.
Third, we examine variants with effects dependent on statin
treatment and age, two established modifiers of metabolite
profiles22 and disease risk, using bivariate heritability and
interaction analyses. Overall, our analysis provides a step

towards richer understanding of genetic regulation of meta-
bolites as a function of environmental factors.

Results
Powerful genome-wide screening. We first performed GWAS of
the 158 serum metabolites. These measurements consisted of 98
lipoproteins components (42 very-low-density lipoprotein
(VLDL), 7 IDL, 21 low-density lipoprotein (LDL) and 28 high-
density lipoprotein (HDL)), 9 amino acids, 16 fatty acids, and 35
other molecules (Supplementary Data 1 and Supplementary
Fig. 1). GWAS was performed using standard linear regression
(STD), but also using the CMS approach21, a powerful method we
recently developed for the analysis of multivariate data sets
(Online Methods). For both methods, we tested association
between each SNP and each metabolite while adjusting for
potential confounding factors, including age and medical treat-
ments (statins, beta blockers, diuretics, and fibrate). To approx-
imate the number of independent associations identified, we
grouped significant SNPs in independent linkage disequilibrium
(LD) blocks23, denoted further as regions (Online Methods). We
obtained 588 region-metabolite associations involving a total of
54 independent regions (Supplementary Data 2, 3). Figure 1a
shows that these associations are spread over the 158 metabolites:
we found 399 associations with lipoproteins (189 with VLDL, 38
with IDL, 88 with LDL and 84 with HDL), 17 with amino acids,
50 with fatty acids, and 122 with other molecules. Among these
associations, 9 were significant with STD only (1.53%), 261 with
both STD and CMS (44.39%) and 318 (54.08%) with CMS only
(Supplementary Data 4). Overall, CMS led to a 118% increase in
identified signals. Among the 588 region-metabolite associations
identified, 228 (involving 45 genes) were not identified at the
same significance level by previous large-scale metabolite
studies11,12,19,20,24–27 (Supplementary Data 1 and Supplementary
Table 6). Note that most of these new associations (78%) involved
regions previously identified with total lipids (total cholesterol,
triglyceride, LDL, and HDL)28, but were not further refined into
specific particles. As illustrated in Fig. 1b, new associations exist
for 107 of the 158 metabolites. Among these 228 associations, 1
was significant with STD only (0.4%), 63 with both STD and CMS
(27.6%) and 163 (71.5%) with CMS only. For each new associa-
tion, we further mapped the top SNPs per region to their nearest
gene. Table 1 presents the aggregated results.

Overall, the CMS approach showed good performance in these
data. First, when comparing single SNPs effect estimates between
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CMS and STD for the identified association, we observed a very
strong correlation (0.99), confirming the absence of bias owing to
the adjustment for covariates29 selected by CMS (Fig. 2a). Second,
we plotted the effect size of the SNP as a function of the

metabolite variance explained by CMS (Fig. 2b). As expected, the
additional associations identified by our method correspond to
variants with smaller effect size, captured thanks to increases in
statistical power (Supplementary Fig. 2). Third, to graphically

Table 1 New gene–metabolite associations

Chr Genea Position SNPb A1 A2 Associated metabolites Opposite association

1 PCSK9 55,505,647 rs11591147 G T IDL_CE, L_LDL_TG, M_LDL_FC, Remnant_C, S_LDL_FC,
S_VLDL_CE, VLDL_C, XL_HDL_FC, XS_VLDL_C/CE/FC,
XXL_VLDL_CE

M_HDL_C/CE/P/PL,
S_HDL_PL

1 DOCK7 63,056,112 rs1748197 G A HDL_TG, MUFA, M_HDL_TG, PC, PUFA, TotCho, TotFA,
XXL_VLDL_CE

1 CELSR2 109,818,530 rs646776 T C M_LDL_FC, S_LDL_FC/PL
1 PSRC1 109,822,166 rs599839 A G S_LDL_CE
1 GALNT2 230,294,916 rs2144300 C T ApoB, L_VLDL_*, M_VLDL_*, S_VLDL_FC/L/P/PL/TG, TG_PG,

VLDL_C/D/TG, XL_VLDL_P/TG
M_HDL_PL, S_HDL_PL

2 APOB 21,225,281 rs1042034 T C TotFA
2 GCKR 27,730,940 rs1260326 T C Remnant_C, TG_PG, VLDL_C/TG, XL_VLDL_CE/FC L_HDL_PL
3 PROK2 71,880,578 rs7622817 G A Serum_C
4 CHIC2 54,714,868 rs17083590 G A XS_VLDL_CE
4 UTP3 71,552,398 rs16845383 A G Alb
5 MARCH3 126,267,351 rs12655258 C T HDL2_C
5 MIR4634 174,223,234 rs12660057 G A M_HDL_L
6 MICB 31,236,410 rs34131062 T C S_VLDL_TG, VLDL_TG, XS_VLDL_TG
6 MIR3925 36,613,812 rs6457931 G T XL_HDL_L
8 LPL 19,832,646 rs17482753 G T ApoB, HDL_TG, MUFA, SFA, TG_PG, TotFA, VLDL_C/TG
8 TRIB1 126,485,531 rs7846466 T C L_VLDL_L, MUFA, Remnant_C, VLDL_C, XL_VLDL_C/CE/L,

XXL_VLDL_C/CE/FC
10 PCDH15 56,015,656 rs11004183 G A IDL_C/FC/L/P
10 PKD2L1 102,075,479 rs603424 G A MUFA_FA
11 CELF1 47,539,697 rs4752845 T C ApoA1 XXL_VLDL_P
11 PTPMT1 47,583,121 rs12798346 C T HDL_D, L_HDL_P, XL_HDL_PL
11 MTCH2 47,663,049 rs10838738 G A TG_PG
11 MYRF 61,551,356 rs174535 C T PUFA_FA S_HDL_TG
11 TMEM258 61,557,803 rs102275 C T MUFA, MUFA_FA HDL2_C
11 FADS1 61,569,830 rs174546 C T EstC, FAw3_FA, UnSat, XS_VLDL_L M_VLDL_FC
11 FADS2 61,597,972 rs1535 G A DHA_FA, SM, XS_VLDL_FC LA_FA, M_VLDL_P,

XL_VLDL_TG
11 FADS3 61,639,573 rs174448 G A M_VLDL_PL
11 CPT1A 68,562,328 rs17610395 C T DHA, DHA_FA, FAw3, FAw3_FA
11 APOA5 116,660,686 rs2266788 G A HDL_TG, Ile, M_HDL_TG, PUFA, Remnant_C, SFA, S_VLDL_CE,

TG_PG, VLDL_C/TG, XS_VLDL_FC, XXL_VLDL_C/CE
12 HNF1A 121,420,260 rs7979473 G A M_LDL_P
13 LINC02296 87,773,653 rs17123289 G A FreeC
15 LOC283665 58,380,442 rs12910902 T C LDL_TG, L_HDL_L, L_LDL_TG
15 LIPC 58,683,366 rs1532085 A G HDL2_C, HDL3_C, HDL_TG, IDL_CE, LDL_TG, L_HDL_TG,

L_LDL_L/TG, MUFA_FA, M_HDL_L/ TG, M_LDL_L/TG, PUFA,
Remnant_C, SFA, S_HDL_TG, S_LDL_TG, S_VLDL_C/CE/FC/L/
P/PL, TotCho, VLDL_C, XS_VLDL_C/CE/FC

FAw6_FA, LA_FA,
PUFA_FA

15 MYO1E 59,453,384 rs2306791 T C S_LDL_P/PL
16 ITGAM 31,343,769 rs4597342 T C TG_PG
16 CETP 56,991,363 rs183130 C T ApoB, HDL_TG, IDL_L/P/PL, L_LDL_C/CE/L/PL, M_HDL_TG,

Remnant_C, S_VLDL_CE, VLDL_C, XL_VLDL_CE, XS_VLDL_C/
CE/FC, XXL_VLDL_CE

HDL2_C

16 DHX38 72,144,174 rs9302635 T C SFA, TotFA
16 PMFBP1 72,230,112 rs9923575 T C UnSat
16 C16orf47 73,177,225 rs9673570 A G Tyr
19 LDLR 11,202,306 rs6511720 G T IDL_CE, LDL_TG, L_LDL_TG, M_LDL_FC, Remnant_C,

S_LDL_CE/FC, S_VLDL_CE, XS_VLDL_C/CE/FC
19 PRKCSH 11,560,347 rs755000 T G FreeC
19 APOE 45,408,836 rs405509 G T M_HDL_P/PL, PUFA
19 APOC1 45,415,640 rs445925 G A IDL_CE, M_LDL_FC, S_HDL_CE, S_LDL_CE/FC/PL, TotCho,

XS_VLDL_C/CE
19 NECTIN2 45,373,565 rs395908 G A Remnant_C
19 TOMM40 45,395,266 rs157580 A G VLDL_C, XS_VLDL_FC
20 PLTP 44,545,048 rs4810479 C T S_HDL_FC/PL

Chr. chromosome
aNearest gene from the reported SNP
bSNP strongly associated with the majority of phenotypes present in last two columns, most significant SNP for each phenotypes are listed in Supplementary Data 5
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illustrate the gain in power, we derived the equivalent increase in
sample size (Neff) achieved by decreasing the overall residual
variance (Supplementary Fig. 3), and across the 588 identified
associations (Fig. 2c).

The average gain over the ~ 95 million tests performed was
modest (Neff= 8,768). However, for the 588 significant associa-
tions, CMS leads to an average Neff of 14,000, which corresponds
to a 2.2-fold increase as compared with the baseline sample size of
6263 individuals. The maximum gain in power we observed was
equivalent to the analysis of 96,108 individuals (rs174538, in gene
TMEM258, association with HDL2_C, PCMS= 6.4 × 10−10).
Interestingly, that variant, which was only border-line nominally
significant in the standard marginal model (P= 0.058), was
reported to be associated with HDL, LDL, TG, and TC (P= 7.9 ×
10−20, P= 1.1 × 10−34, P= 3.5 × 10−28, P= 2.5 × 10−32, respec-
tively) in the Willer et al.28 study that included 188,577
individuals (Supplementary Data 5).

We next performed in silico replication for all new associations
using data from Kettunen et al.11 (N= 24,925), the only
independent study with available summary statistics for the
SNP-metabolites pair we report. Out of the 228 region-metabolite
pairs, 88 were available for in silico replication (39%). Among

those, 60 (68.2%) were replicated at a nominal threshold of 5%.
Non-replication of the remaining 28 associations is likely
explained by limited power in the replication dataset. Indeed,
we observed a strong correlation (ρ= 0.63) between the effect
sizes of top SNP per region derived from METSIM and the
strength of signal for the same variant in the Kettunen et al.11

study (Supplementary Fig. 4).
Eventually, when comparing the top SNPs from every region

associated with at least one metabolite (N= 70, see next
paragraph) with previous GWAS on coronary heart disease
(CHD)16, body mass index (BMI)17, and type 2 diabetes (T2D)18,
we observed substantial enrichment for nominally significant
association. Given a false discovery rate (FDR) at 10%, we
observed 30 significant genes for CHD, 5 for BMI, and 4 for T2D
(Supplementary Data 6 and Supplementary Note 1), indicating
some of these variants are also involved in the genetics of
common diseases.

Master regulators of lipids. We observed substantial evidence of
polygenicity and pleiotropy. Using the aforementioned SNP-gene
assignment, 147 metabolites were associated with at least one
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gene, and a total of 70 genes associated with at least one meta-
bolite. Metabolites were associated with one to nine genes, with
an average of four genes. On the other hand, genes showed high
level of pleiotropy with an average of 8.4 metabolites associated
with each gene. We found that 13 master metabolic regulator
genes (LIPC, APOA5, CETP, PCSK9, LDLR, GCKR, APOC1, LPL,
GALNT2, CELSR2, TRIB1, DOCK7, and FADS2) capture over
75% (N= 457) of all associations (Supplementary Fig. 5). As
mentioned previously, those are the nearest genes to the top
associated variants for each region. For clarity, we use those genes
throughout our study, however, this list should be considered
with caution as the genetic effects of the associated variants might
potentially be attributed to other genes. For example, we per-
formed a bioinformatics analysis using FUMA30, mapping

variants with genes based on their association with gene expres-
sion. For many regions, the variants in questions were associated
with a range of other candidate genes besides the listed ones
(Supplementary Data 7).

The extensive pleiotropic effects in this regions are illustrated
in Fig. 3, which includes all associations plotted in a Cytoscape31

network. The network highlights several known master regulatory
effects of genes. For example, CETP encodes a protein that
transports cholesterol esters and triglycerides between HDL
metabolites and VLDL metabolites. Our network clearly displays
the opposite effect of variants in CETP on HDL and VLDL. Our
results also contribute explaining the complex effect of PCSK9.
Besides its established association with LDL and VLDL, our
analyses confirm opposite associations with HDL metabolites32.
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Overall, the gene displaying the strongest pleiotropic effect was
LIPC with 75 associated metabolites, of which 34 were new
associations (11 of them were available for replication, and 8 were
replicated at a 5% p value threshold).

To better understand the role of these master regulators
we performed two additional analyses. First, we appreciate that
the observed pleiotropy for these genes is relative, because of
the strong correlation across phenotypes. To approximate the
number of independent components associated with each gene,
we derived the number of principal components (PCs) necessary
to explain percentages of the total variance of the corresponding
associated metabolites (Supplementary Table 2). Overall,
although there is, as expected, a decrease in the total number
of independent components, the number of potential mean-
ingful association remains quite high. It required on average
10%, 30%, and 50% of the PCs to explain 90%, 99%, and 99.9%
of the total variance, respectively. There was limited variability
across genes, and similar numbers were observed when focusing
only on lipoproteins. For example, for LIPC, it required 19 and
12 PCs to explain 99% of the variance of the 75 metabolites, and
the 43 lipoproteins, respectively.

Second, we synthesized the results across the lipoproteins,
which contribute to the majority of the observed associations
(Supplementary Methods and Fig. 4). Overall, the genes show
homogeneous association by lipoprotein class (particles, lipids,
phospholipids, cholesterol, cholesterol ester, free cholesterol,
and triglyceride), some variability by size (extremely large, very
large, medium, small, and very small), and strong heterogeneity
by type (VLDL, HDL, LDL, and IDL). We observed three major
patterns: (i) CETP, FADS1-2, DOCK7, and LIPC are mostly
associated with VLDL and HDL, but with differences in the size
of the associated lipoprotein: FADS1-2 and DOCK7 are enriched
for association with very large and medium size, respectively,
while CETP and LIPC displays association with lipoproteins of
all sizes; (ii) TRIB1, LPL, GCKR, GALNT2, and APOA5 are
mostly associated with VLDL of average size; and (iii) PCSK9,

LDLR, CELSR2, and APOC1 are associated primarily with large
and lipoprotein LDL. Looking at other lipoprotein associated
genes, we found that some might fit in the second categories,
but a majority appears to have more-targeted effects, being
associated with specific types and sizes (Supplementary Note 2
and Supplementary Fig. 6).

Fine mapping of LIPC leveraging pleiotropic effects. For
pleiotropic genes, we observed heterogeneity in the number of
reported top SNP across metabolites (Fig. 4b). For example, the
top SNP for APOC1 was the same across all 33 associated
metabolites (rs445925). Conversely, there were nine top SNPs
for the 75 metabolites associated with LIPC. Part of this het-
erogeneity might be explained by LD in these regions, but also
by the presence of multiple causal variants affecting different
metabolites. To investigate this possibility, we applied the
FINEMAP33 algorithm using the example of the latter LIPC
region after performing additional genotype imputation in that
region (Supplementary Methods and Supplementary Data 8).
Our analysis suggests there are at least three distinct association
sites with consistently high probabilities of causal effects from
seven SNPs and heterogeneous metabolite association patterns,
confirming the likely presence of metabolite-specific variants
within this gene (Fig. 5 and Supplementary Table 3 and Sup-
plementary Data 9).

We cross-referenced top variants of these three sites with
GWAS of common human diseases34, and functional annotations
from Haploreg35. The first site (A) is composed only of SNP
rs10468017, which was previously found associated with age-
related macular degeneration (AMD)36–38 and with LIPC
expression in human liver tissue39. The second site (B) includes
four SNPs in complete LD that were previously associated with
hypertension40 and AMD41,42. Among the four SNPs, rs2070895
is the strongest candidate in our data with a potential association
path through a regulation by USF1, a gene with a record of
association with lipids43–46. Finally, the last site (C) included two
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SNPs, among which rs113298164 clearly harbored the highest
number of relevant bio-features. It is a rare missense mutation,
which has been reported to be involved in hepatic lipase
deficiency47. Additional details on the functional annotation
analysis are provided in the Supplementary Note 3.

Deciphering the posterior probability across all SNP-
metabolite pair would be challenging because of the dimension-
ality of the fine-mapping results. However, some global patterns
were observed (Supplementary Data 9). Overall, large HDL
(L_HDL), and triglyceride in lipoprotein (L_HDL_TG, IDL_TG,
L_LDL_TG, XL_HDL_TG, LDL_TG, S_LDL_TG, M_LDL_TG,
HDL_TG, XS_VLDL_TG) appear to be influenced by all three
likely causal sites. Conversely, intermediate-density lipoproteins
(IDLs) and several fatty acids (SFA, PUFA, FAw6, TotFA) are
likely mostly influenced by sites A and B. Very small VLDL
(XS_VLDL) also display heterogeneous posterior probabilities,
highlighting mostly variants from site B as likely causal. Finally,
although the three sites showed the highest posterior probability
for most of the metabolites, other variants in the region might be
involved. For example, an additional variant (rs7177289)
displays the strongest posterior probability for the ratio of fatty
acids (FAw6_FA, MUFA_FA, LA_FA, and PUFA_FA).

Dependence of genetic effect on statin use. An important
component of the METSIM cohort is the collection of statin use
among participants. To examine changes in genetic regulation of
metabolites when taking statins, we performed an interaction test
between SNPs and statin for each of the 588 region-metabolite
associations, including the 457 associations with the 13 regulator
genes. Although no interaction test passed a Bonferroni correc-
tion for multiple testing (i.e., p < 8.5 × 10−5, Supplementary
Data 10), 83 out of the 588 region-metabolite association showed
nominally significant interactions (i.e., p value < 0.05). Based on
the q value distribution48, there were 35 significant interactions at
a 10% FDR, showing that at least some of the identified individual
SNP-metabolite effects depends on statin use status. Most of these
interactions were observed for APOC1 and TRIM1 genes, whereas
other genes (FADS1, FADS2, MARCH3, MIR3925, MIR4634, and
ITGAM) show interaction with a single metabolite. We also
checked statin interaction in follow-up data (see Online meth-
ods), and found limited interaction values, except for APOC1
region, in which 90% of interaction signals found in baseline data
were replicated at the 5% significance threshold.

Several of the 13 identified master metabolic regulator genes
showed enrichment for negative interaction effects (Fig. 6a).
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To account for the correlation between the associated phenotypes,
we performed trend tests where individual interaction statistics
where merged through a linear combination of single metabolite
interaction statistics (Supplementary Table 4 and Online
Methods). The analysis confirms the strong significance of the
enrichment for negative interaction with statin for APOC1 (P=
5.3 × 10−7, mostly associated with LDL and IDL particles), TRIB1
(P= 1.4 × 10−4, associated with VLDL particles), and LDLR (P=
2.4 × 10−4, associated with VLDL, LDL, and IDL), and nominal
significance for CETP (P= 0.026, mostly associated with VLDL
and HDL). Interestingly, previous work showed association

between APOC1 and statin-mediated lipid response49, and statin
was also shown to be associated with an upregulation of the
expression of LDLR50. Overall, our analysis suggests that the
effect of statin on metabolites might be modified by only a few
core genes, and that these interactions do not only impact LDL,
but also a range of other lipids.

Change in genetic effect with age. Another unique aspect of the
METSIM cohort is a second measurement of the same metabo-
lites, using the same technology, ~ 5 years after the baseline
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Fig. 6 Change in genetic effect as a function of aging and exposure to statins. We derived for the top variant of each of the 13 core regulator genes we
identified, a the interaction effect with statin, and b the effect on Δbf , the difference in the metabolite measurement between the two time points. In all
association tests, the allele associated with an increase level of metabolite in the marginal test at baseline measurement was defined as the coded allele.
Non-significant test are in pink, test nominally significant are in red, and test significant at 5 × 10−3 are in dark red. In agreement with the heritability
analysis most of the coefficients for Δbf are negative, indicating an overall decrease of genetic effect. Two genes, APOC1 and TRIB1, show strong enrichment
for interaction with statin
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(Online methods) for 3351 unrelated individuals. We used these
data to screen for genetic variants associated with an intra-
individual change in metabolites level across time. We applied the
same strategy as for our primary analysis but using the difference
between follow-up and baseline data divided by age difference as
outcome (Δfb ¼ f � bð Þ=ðagef � agebÞ), whereas adjusting for the
same confounding factors as baseline and covariates selected by
CMS in baseline measurements. There were 30 SNP-metabolites
pairs reaching the standard 5 × 10−8 p value threshold with either
STD or CMS (Supplementary Data 11), corresponding to eight
region-metabolite associations (Supplementary Data 12). To the
best of our knowledge, these are the first reported SNPs associated
with changes in metabolic activity during aging. These associa-
tions involved seven metabolites: S-HDL-TG, VLDL-C, DHA,
DHA/FA, LA/FA, Faw3/FA, FAw6/FA, and six genes: PDZRN4,
LGMN, FADS1, FADS2, TNIK, LIPC. Four of these associations
were genome-wide significant in the marginal association at
baseline (P < 5 × 10−8). The four new signals were observed for
S_HDL_TG, VLDL_C, LA_FA and Faw6_FA. We also performed
age interaction test on the linear regression between Δbf and
significant SNPs (Online methods). However, none of the age
interaction p values was significant.

As for the SNP-by-statin interaction analysis, we observed
strong concordant effects for the 13 master metabolic regulator
genes (Fig. 6b), and performed trend tests to assess the
significance of these results. Our analysis showed a strong
enrichment for negative genetic effect on all associated metabo-
lites, with 10 out of 13 genes showing nominal significance for an
overall decrease of genetic effect with the difference in metabolite
between the two time points. The strongest decrease was observed
for APOA5 (P= 4.6 × 10−6) and LDLR (P= 3.0 × 10−5). The
three genes unaffected were LIPC, LPL, PCSK9, suggesting that
the effect of these genes remain persistent with aging, although
the relative importance of LIPC across some associated
metabolites might be affected. For example, LIPC showed strong
positive association with Δbf of the Ratio of omega-6 fatty acids to
total fatty acids (P= 1.6 × 10−7) and a decrease in Triglycerides
in medium HDL (P= 2.4 × 10−6).

Finally, to examine global changes of genetic regulation of
metabolites across time we also estimated heritability for each
phenotype at each time point as well as the genetic and
environmental correlations of the same phenotype between time
points using bivariate linear mixed models51,52. Figure 7 and
Supplementary Data 13 give heritability values for each
metabolite, in both baseline and follow-up data. To avoid any
bias in heritability estimation, we computed it on samples present
in both baseline and follow-up studies and excluded those who
were present in baseline study only. The average heritability
decreased from 24.9% at baseline to 18.8% at follow-up, with only
30.8% (p value < 2e-9) having higher heritability at follow-up. The
sample size was not large enough to estimate genetic correlation
with low standard error, but the average estimate of 0.92, and the
strong correlation of fixed effect sizes between time points
(Supplementary Table 5), suggests that increasing environmental
variance as opposed to decreased genetic variance underlie the
reduction in heritability. If true, this result might also explain the
absence of SNP-by-age interaction signal in our previous analysis.

Discussion
Metabolites have been implicated as important factors in many
human diseases3,5–10 and identifying the genetic variants con-
trolling circulating metabolites and their relationship to clinical
and environmental characteristics is one of the many challenges
facing the human genetics community. Here, we address these
questions for the analysis of 158 metabolites measured in more

than 6263 individuals. Our study identified a large number of new
region-metabolite associations and highlighted a small number of
master metabolic regulator genes that likely play a role in bal-
ancing the relative proportion of circulating serum lipids. Indeed,
75% of the 588 identified gene-metabolites association only
involved 13 genes, with the top one, LIPC, being associated with
75 metabolites. We further showed that genetic effects on meta-
bolites in general, and of these core genes in particular, is mod-
ified by statin and aging. More precisely, SNP-by-statin
interaction highlighted three genes, APOC1, TRIB1, and LDLR, as
modifiers of the statin effect on lipids. Two of them, APOC1 and
LDLR, have already been discussed in previous work as candi-
dates for varying the magnitude of statin-mediated reduction in
total and LDL-cholesterol. As for aging, all analyses we conducted
pointed toward an increase of the environmental variance, lead-
ing to a decreased role of genetics among older individuals.

Our study introduces several novelties. We performed a large-
scale application of the CMS method we recently developed. For
each metabolite-SNP association test, the approach selects addi-
tional metabolites that can be used as covariates in a standard
linear model, in order to reduce the residual variance. In these
data, CMS resulted in an average power gain equivalent to a 1.4-
fold increase in sample size. However, among the identified
associations, the average gain corresponded to a 2.2-fold increase
(i.e., to an effective sample size of ~ 14,000 individuals). In the
most extreme case, the gain in power was equivalent to the
analysis of > 96,000 individuals, thus demonstrating the strong
potential for this approach in future studies. We also performed a
large-scale genome-wide study exploring genetic effect on change
in circulating metabolites between two time points, providing
both individual SNPs GWAS and co-heritability results derived
using a bivariate linear mixed model applied to individual-
level data.

To better understand the role of the master regulators in the
etiology of lipoprotein components, which contributed the vast
majority of the reported associations, we performed a series of
analyses that highlighted a limited number of association pat-
terns. Overall, three genes LIPC, LDLR, and PCSK9 showed global
effects, and were associated with all types and sizes of metabolites.
On the other hand, some equally pleiotropic genes (in terms of
total association reported), such as APOA5 and GCKR, appear to
affect specific types of lipids, and VLDL in particular. Many of the
master regulator variants also display different top associated
variants depending on the metabolites analyzed. Although some
of this variability might be owing to LD in these regions, our fine
mapping of the LIPC region showed that the pleiotropic effect of
at least some of these genes is likely owing to multiple genetic
variants with heterogeneous effects on the associated metabolites.

More systematic fine mapping of all identified associations is
out of the scope of this work as it would require high-density
SNPs data including rare variants. Future fine-mapping studies
may further improve resolution by leveraging functional
annotations53,54. Moreover, the fine-mapping analysis we per-
formed for LIPC demonstrated how multi-trait associations
might help identify likely causal variants. However, we used a
naive approach that simply aggregates univariate fine-mapping
results. More advanced methodologies integrating all information
into a single framework could provide more-accurate posterior
probabilities on likely causal variants.

Finally, the observation of age and statin interactions further
highlights the utility of obtaining extensive clinical phenotype
data as well as collecting multiple time points, which are much
better powered to identify age effects than cohort studies.
The statin interactions suggest that genetic variation may influ-
ence the effectiveness and impact of the drug at a given dose,
and may underlie our recent observation55 that statin effects are
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non-uniform on secondary phenotypes such as fasting glucose
across individuals. Although the current study is not sufficiently
powered to examine these questions directly, it does identify
relevant genes to examine for pharmacogenomic studies of statin
in properly designed cohorts. The age interactions are also a
unique aspect of this work and raise the possibility that genetics
can impact trajectories of metabolism over an individual’s life
span. Although speculative, the most intriguing possibility is that
genetic variants could mitigate metabolic disease risk by slowing
the natural alteration of metabolic profiles across time.

There are several other shortcomings of this work. First, the
CMS approach is currently limited to the analysis of unrelated
individuals, and has a much higher computational cost than
standard linear regression. As a result, we had to remove related
individuals from our analysis and limit the screening to the 600 K

genotyped variants. We are currently developing an improved
implementation of CMS addressing these limitations. This will
allow for further increases in power thanks to the addition of
related individuals, and the analysis of imputed genotypes that
might help refine signal at associated regions. Second, TWAS
analyses would be of high interest to further explain the link
between genetic variants and circulating metabolites. However,
TWAS estimates56 were not available for many of the core
metabolic genes, but they could become feasible as larger RNA-
seq data sets across more tissues are produced. Third, our
metabolite panel included mostly serum lipids, and the presence
of a limited number of master regulators only apply to those
phenotypes. Whether other sets of related metabolites have a
similar genetic architecture, or even share the same regulators,
would have to be determined in cohort with a broader range of
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metabolites. Fourth, we mapped associated variants with the
closest gene. However, extended fine-mapping analysis, as men-
tioned above, as well as gene expression analysis across multiple
tissues might demonstrate a mode of action through other genes.

In conclusion, our study shows that the genetics of lipid
metabolites is strongly interconnected, harboring core regulator
genes with strong pleiotropic effects, and that other metabolite-
associated factors might interfere with some of these core genes,
decreasing or increasing their overall effect on metabolites. Fur-
ther characterizing such global effects would be of particularly
high interest in the assessment of drug treatments targeting
metabolites. Finally, with the increasing amount of genomic data
available, our study as well as previous work17,57, demonstrated
the importance of developing and implementing novel approa-
ches and analytical strategies that allow for a more extensive use
of the data and to move toward a more integrated perspective on
multivariate molecular phenotypes.

Methods
METSIM cohort. The METSIM cohort14 is composed of 10,197 Finnish men from
45 to 73 years old and aimed at investigating non-genetic and genetic factors
associated with Type 2 Diabetes and cardiovascular diseases. Participants were
recruited and examined between 2005 and 2010 in Kuopio town in Eastern Fin-
land. The study was approved by the ethics committee of the University of Kuopio
and Kuopio University Hospital, in accordance with the Helsinki Declaration. All
study participants gave written informed consent. For each sample, 228 serum
metabolites (lipids, lipoproteins, amino acids, fatty acids, and other low molecular
weight metabolites) measurements were made with NMR at baseline. A follow-up
study was conducted ~ 5 years after the baseline study. In all, 6496 participants
(64%) were reexamined with the same protocol and metabolites were measured a
second time using the same technology. In our study, we considered 158 variables,
including 150 raw measurements and eight ratios. Other available variables, which
were mostly percentages, were not included in the study. Besides metabolic mea-
surements, several variables were also available including drug treatment and large
group of other phenotypes. All samples were genotyped for 665,478 SNPs using the
Illumina OmniExpress chip. Genotype data went through standard quality control,
filtering individuals with missing rate below 5%, and SNPs with missing rate below
5% or with P < 10−5 in Hardy–Weinberg test.

Metabolites profiling. We used a high-throughput serum NMR platform for
metabolic profiling. Details of this platform have been published previously58,59

and it has been widely applied in genetic and epidemiological studies60,61. This
refined targeted metabolomics panel of > 100 serum metabolic phenotypes,
includes lipoprotein subclass and lipoprotein lipids, fatty acids, and amino acids
assessed by NMR from serum samples. Overall, 14 lipoprotein classes varying in
sizes were analyzed including six classes of VLDLs, one class of IDLs, three classes
LDLs, and four classes of HDLs. Within each lipoprotein particle, the concentra-
tions of the following lipids were measured: total lipids, phospholipids, total
cholesterol, cholesterol ester, free cholesterol, and triglycerides.

Data pre-processing. In order to remove outliers without reducing sample size,
we first applied inverse normal rank-transformation on every analyzed metabolite.
This was done using the rntransform function in R package GenABEL62. Because of
potential confounding effect of statins use on metabolites, we excluded all statins
users (1722 individuals) when analyzing LDL, IDL, Apolipoprotein B and cho-
lesterol. We also excluded fibrates users (25 individuals) when analyzing VLDL,
IDL, triglycerides, and chylomicron for similar reason. Finally, we removed all
individuals with a genetic relationship coefficient larger than 0.05 and used only
unrelated individuals. After filtering, there remained 6263 samples available for
analysis. For SNP data, we filtered variants with a minor allele frequency lower than
1%. In all, 609,262 SNPs remained after filtering.

Genome-wide association screening. We used two different models in the
analysis. First, we performed an STD between each metabolite (Y) and each SNP
(G), adjusted for established confounding factors (C): age and medical treatments
(statins, diuretics, fibrate, and beta blockers):

Y � βGGþ βCC ð1Þ
Then, we used the CMS algorithm to select additional covariates for each SNP-

metabolite pair tested. Consider a metabolite Yk, which we refer further as the
primary outcome. The CMS approach select potential covariates from the set of
available metabolites Yl≠k . In brief, the algorithm is divided in four steps. The first
step is the computation of marginal effects through standard linear regressions
between variables taken two by two: (i) Yk � G where G is the genetic variant
tested, (ii) Yl≠k � G where l includes a subset of candidate covariates (see next

paragraph), and (iii) Yk � Yl≠k . The second step consists in filtering covariates
based on a multivariate test between G and all Yl≠k . In practice, it uses a
Multivariate analysis of variance (MANOVA), which is applied iteratively,
removing one by one covariates potentially associated to the genetic variant tested,
until G does not display association with Yl≠k in the MANOVA. The third step is
the filtering of covariates based on Yl≠k � G association conditional on Yk � G
association (see Supplementary Methods). It is a stepwise procedure that removes
progressively covariates that are potentially associated with G. The last step consists
in a linear regression between predictor and outcome, adjusted for the selected
covariates (YL):

Yk � βGGþ βCCþ βLYL ð2Þ
To address some of the limitations of CMS, we also applied for each outcome Yk

a pre-filtering of candidate covariates Yl≠k before applying CMS. First, to avoid bias
owing to very high correlation between covariates and the outcome, we excluded all
Yl≠k explaining > 70% of the outcome variance. Second, to reduce the risk of false
positive owing to the inclusion of covariates that are hierarchical parent of the
outcome under study, we excluded from the set of initial covariates all secondary
outcome that were in the same biological group (LDL, HDL, …) as the primary
outcome. Third, to reduce the computational burden, we reduced the number of
candidate metabolites used as input of CMS to 30 through on AIC (Akaike
information criteria, Supplementary Methods, Supplementary Figures 7–9). As
showed in Supplementary Fig. 7, it allows reducing substantially the computation
time, while focusing on candidate covariates that altogether still explain a
substantial proportion of the primary outcome variance.

All reported p values, whether for marginal genetic effect, or interaction effect
have been derived using a Wald test, –i.e.,t ¼ β̂2=σ̂2β , where β̂ is the estimated

regression coefficient, σ̂2β is the estimated variance of β̂, and the statistic t follows a
chi-squared distribution with one degree of freedom.

Post-GWAS processing. The threshold used to determine significant SNPs was
calculated by dividing the standard genome-wide significant threshold of 5 × 10−8

by the number of effective tests accounting for all variants tested and all meta-
bolites. To estimate the number of effective tests, we first did a PC analysis of our
158 metabolites. Then, we calculated the number of PCs that explained 99% of the
total variance. We obtained 39 effective tests. The significance threshold was then
1.28 × 10−9.

Because of the great number of signals, we chose to summarize our results by
genomic regions, corresponding to approximately independent LD blocks. We
sliced the genome in 1703 independent regions based on a recombination map
recently described by Berisa et al.23. These regions are 10 kb to 26Mb long, with an
average size of 1.6 Mb. For each region, we kept the SNP with the best p-value
obtained by either STD or CMS. We then used the UCSC database to assign the
closest gene to each SNP, with a maximum distance of 100 kb.

GWAS of delta between baseline and follow-up. We used data from baseline
and follow-up studies to perform GWAS of the difference between the two time
points, divided by the age difference. We called that variable Δfb:

Δfb ¼
f � b

agef � ageb
ð3Þ

where f and b are metabolite measurements at follow-up and baseline, respectively.
As for baseline data analysis, we used STD and CMS approaches, with covariates
pre-selection based on AIC. Confounding factors used for the baseline analysis
were also included as covariate in all Δbf analyses. We did not adjust for baseline
value in the main analysis.

Interaction analyses. We performed two follow-up interaction analyses for subset
of SNP-metabolite associations identified in the GWAS. First, we assessed SNP-by-
age interaction effect in both baseline and follow-up analyses for the subset of SNP
showing significant effects on Δbf in metabolite levels between baseline and follow-
up (Δbf ). In practice, we applied a standard linear regression between the corre-
sponding outcome and genetic variant, adjusting for the same potential con-
founding factors as in the primary GWAS analysis, and adding the interaction term
βintG � age:

Y � βGGþ βcCþ βageageþ βintG � age ð4Þ
Second, we assessed potential SNP-by-statin interaction for the 588 regions
identified in the primary GWAS analysis. In that specific analysis, we included all
statin users (which were removed in the primary analysis for some metabolites, as
explained before) and performed linear regression between each metabolite and the
best SNP in the associated region (minimum p value). The regression was adjusted
by confounding factors and included the interaction term βintG � statin:

Y � βGGþ βcCþ βstatinstatinþ βintG � statin ð5Þ

Trend test. To assess the significance of enrichment for positive or negative effects
observed for the identified core regulator genes, we implemented a multivariate test
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of all associations that accounted for the correlation between metabolites analyzed
jointly. For each gene, we selected the top associated variants across all metabolites
(as defined in Table 1), extracted the corresponding single metabolite z score
statistics to form a vector z ¼ z1; z2; ¼ ; zkð Þ where k is the number of metabolites
analyzed. We then derived the following multivariate statistics:

T ¼
P

i¼1¼ k zi
� �2

1tΩ1
ð6Þ

where 1 is a 1 × k vector of 1, and Ω is the phenotypic correlation between the k
metabolites analyzed jointly. Under the null hypothesis of no association between
the variant tested and any of the k metabolites, T follows a central chi-square
distribution with k degree of freedom.

Heritability. We first took a set of 3342 individuals corresponding to the inter-
section between baseline and follow-up data. The baseline and follow-up pheno-
types were combined, normalized, and separated into baseline and follow-up series,
so the normalized phenotypes at baseline and follow-up were directly comparable
(i.e., equal normalized phenotypes at baseline and follow-up correspond to equal
raw phenotypes). We used GCTA's bivariate REML63 and included 10 genetic PCs,
age, and age2 as fixed effects. The effect sizes of the aformentioned fixed effects
were strongly correlated at each time point (ρ > 0.6) and there were minimal dif-
ferences in variance explained (< 5%). Heritability estimates at the two time points
were plotted using circlize R package64, whereas the complete GCTA output,
including genetic and environmental variance estimates, genetic and environ-
mental covariances, and LRT p values for genetic correlation are provided in
Supplementary Data 13.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Complete summary statistics for both the standard test and CMS, along meta-
information are available at http://statgen.pasteur.fr/Download.html. Standard GWAS
summary results are also available on the NHGRI-EBI Catalog of published GWAS. All
other data are contained in the article and its supplementary information or available
upon reasonable request.

Code availability
The GWAS association screening was performed using the CMS approach. The code
developed is available at: https://gitlab.pasteur.fr/statistical-genetics/runCMS/. The
bivariate heritability analysis was performed using GCTA’s bivariate REML https://
cnsgenomics.com/software/gcta/. Plotting of the gene-metabolites network was done
using Cytoscape: https://cytoscape.org/. All others analyses and plots were done using the
R software: https://www.r-project.org/.
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