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Abstract

Fusion Rules for the Lattice Vertex Operator Algebra VL

by

Danquynh Thien Nguyen

In this thesis, we compute the fusion rules among the irreducible modules of VL -

the vertex operator algebra associated with a positive-definite even lattice L, and then

use them to determine the irreducible decomposition of fusion products of irreducible

VL-modules. Specifically, we establish the following results: the fusion product of an

untwisted VL-module and another one of twisted type is a VL-module of twisted type

while the fusion product of two twisted VL-modules is a sum of untwisted modules

satisfying a certain relation.
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Chapter 1

Introduction

The theory of vertex operator algebras is relatively new compared to other

branches of mathematics and has developed quite rapidly since its inception in the late

1980s. Motivated by the representation theory of affine Lie algebras and the “moon-

shine module” (constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in

[FLM1]), Richard Borcherds introduced the mathematical formulation of “vertex al-

gebras” in 1986 [B]. A couple of years later, with a few extra requirements, Frenkel,

Lepowsky, and Meurman modified Borcherds’s definition and introduced “vertex oper-

ator algebras” in their foundational work [FLM2] on the subject. And an active field

of mathematical research took off from there. The theory of vertex operator algebras

was motivated by and has applications in many areas of mathematics, such as number

theory, group theory, the theory of modular functions, etc. Vertex (operator) algebras

are the mathematical counterpart of what theoretical physicists call “chiral algebras” in

1



two-dimensional conformal field theory, which plays an important role in string theory.

In his original paper [B], Borcherds developed a new abstract theory of what he

called “vertex operators” by using the concrete structure of an even lattice L. Specifically,

for any such lattice, he constructed a space on which the vertex operators corresponding

to the elements in L act. These actions were shown to satisfy infinitely many relations,

which then formed the axioms in the definition of a vertex algebra. In other words, the

vertex algebra of an even lattice is the original example of vertex algebras. In this thesis,

we study the lattice vertex operator algebra VL associated with a positive-definite even

lattice and completely determine its fusion rules. For a vertex operator algebra V with

irreducible modules M1,M2, and M3, the fusion rule of type
(

M3

M1 M2

)
is defined to

be the dimension of the vector space formed by all intertwining operators of this type.

In conformal field theory, these numbers are intimately related to the fusion coefficients

Nk
ij in the operator product expansion of two conformal families [φi] and [φj ]:

[φi]× [φj ] =
∑
k

Nk
ij [φk]

Roughly speaking, the fusion coefficients Nk
ij give the scattering amplitudes of the out-

going primary fields φk when two primary fields φi and φj come into contact. We shall

see that the above equation is exactly the physical counterpart of what is called a fusion

product in mathematics literature.

Let us now give a brief overview of this thesis. We consider a positive-definite,

even, integral lattice L of rank d and denote by L◦ its dual lattice. Since L is even,

L ⊆ L◦; we set S := {λ1, · · · , λk} to be the complete set of representatives of equiv-
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alence classes of L in L◦. It is well known that {VL+λ |λ ∈ S} is the complete list of

(inequivalent) irreducible untwisted VL-modules (see [FLM] and [D1]). There are also

VL-modules of twisted type, whose construction is outlined as follows. First, denote

by L̂ be the central extension of L by the cyclic group Z2 =
〈
κ |κ2 = 1

〉
= 〈−1〉. Let

θ ∈ Aut(L̂) be an automorphism of L̂ such that θ2 = IdL̂ and θ(κ) = κ. Let Tχ be the

irreducible L̂/K-module, where K = {a−1θ(a) | a ∈ L̂}, associated to a central charac-

ter χ : Z(L̂/K) → C× which sends κK = (−1)K to −1; that is, Tχ is an irreducible

L̂/K-module on which κK = (−1)K acts as −1. Lastly, set V Tχ
L = M(1)(θ)⊗ Tχ; then

{V Tχ
L |Tχ = irreducible L̂/K-module associated to central character χ } is the complete

list of irreducible VL-modules of twisted type (see [D2]).

For any vertex operator algebra V , the fusion product of two irreducible V -

modulesM1 andM2 is defined via the universal property. The pair (M,Y) is called the

fusion product of M1 and M2 if M is a V -module and Y is an intertwining operator

of type
(

M

M1 M2

)
such that for any V -module W and any intertwining operator YW of

type
(

W

M1 M2

)
, there exists a unique V -module homomorphism f : M →W such that

YW = f ◦ Y. The fusion product of M1 and M2 is typically denoted by M1 �V M
2. If

V is a rational vertex operator algebra, then the fusion product of any two irreducible

V -modules exists [HL], in which case we use the following definition:

M1 �V M
2 :=

∑
M i

NV

(
M i

M1M2

)
M i

where M i runs over the set of equivalence classes of irreducible V -modules and the

symbol NV

(
M i

M1M2

)
denotes the dimension of the space formed by all intertwining
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operators of type
(

M i

M1M2

)
, i.e. the fusion rule of this type.

Our main object of interest, the lattice VOA VL, is known to be rational, and

thus the fusion products of its modules exist. The fusion product of two untwisted

irreducible VL-modules is a well-known result, namely VL+λ �VL VL+µ = VL+λ+µ (see

[DL], Proposition 12.9). In this thesis, we determine the other two fusion products:

VL+λ �VL V
Tχ
L and V

Tχ1
L �VL V

Tχ2
L by a method of computation briefly outlined here.

We shall invoke a result from [A2], which says that the fusion rule of type
(

M1

M2 M3

)
for VL is either 0 or 1 for any irreducible moduleM i for VL. For VL+λ�VL V

Tχ
L , we show

that it is equal to V
T
χ(λ)

L (a twisted VL-module determined by λ and χ) by showing that

the fusion rule NVL

(
V
T
χ(λ)

L

VL+λ V
Tχ
L

)
= 1 and all other fusion rules NVL

(
M

VL+λ V
Tχ
L

)
= 0

where M is any other irreducible VL-module. This assertion is proved by an explicit

construction of a non-trivial intertwining operator of this type. In almost exactly the

same way, we can determine the fusion product V Tχ1
L �VL V

Tχ2
L .

This thesis is organized as follows. In Chapter 2, we start with reviewing some

basic concepts in formal calculus, which is the underlying language of the theory of

vertex operator algebras, and then proceed with the definition of a vertex operator

algebra and its modules. This chapter also discusses some important examples of vertex

operator algebras, specifically the Virasoro VOA and affine VOAs. Chapter 3 is devoted

to the study of lattice vertex operator algebras. In the first two sections of this chapter,

we recall the definitions of intertwining operators and fusion rules, followed by the

construction of the vertex operator algebra VL and its modules. The third short section

4



recalls a well-known result by Chongying Dong and James Lepowsky [DL]. The last two

sections of Chapter 3 are the heart of this thesis, where we give detailed computations

of the two aforementioned fusion products.
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Chapter 2

Basics

2.1 Formal Calculus

Formal calculus is an important tool in the study of vertex operator algebras as

it allows one to make sense of operations on infinite sums. In this section, we recall some

fundamental definitions and concepts in formal calculus. We shall use z0, z1, z2, z3, ...

to denote mutually commuting formal variables. While the underlying field throughout

this thesis is the complex numbers C, all results should remain valid over any alge-

braically closed field of characteristic 0. In addition, as a quick note on notations, the

symbol N denotes the non-negative integers, Z the integers, and Z+ the positive inte-

gers. Letting V be a vector space, we start with a few related spaces of formal series

that are prevalent in our discussion. The vector space of formal Laurent series, which
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we shall soon encounter in the definition of a vertex operator algebra, is:

V [[z, z−1]] =

{∑
n∈Z

vnz
n | vn ∈ V

}

The space of formal Laurent polynomials:

V [z, z−1] =

{∑
n∈Z

vnz
n | vn ∈ V, all but finitely many vn = 0

}

The space of V -valued polynomials:

V [z] =

{∑
n∈N

vnz
n | vn ∈ V, all but finitely many vn = 0

}

The space of formal power series:

V [[z]] =

{∑
n∈N

vnz
n | vn ∈ V

}

And the space of formal power series with complex powers of z:

V {z} =

{∑
n∈C

vnz
n | vn ∈ V

}

An important formal series is the delta function:

δ(z) =
∑
n∈Z

zn ∈ Z[[z, z−1]]

Chapter 2 of [LL] contains a detailed discussion on many fundamental properties of

δ(z), one of which is stated here for a reason that shall become apparent as we continue

to the definition of a vertex operator algebra:

z−1
0 δ

(
z1 − z2

z0

)
− z−1

0 δ

(
z2 − z1

−z0

)
= z−1

2 δ

(
z1 − z0

z2

)

7



Here we use the binomial expansion convention: any expression of the form (z1 + z2)n,

∀n ∈ Z, is always to be expanded so that the second variable has non-negative powers:

(z1 + z2)n =
∑
k∈N

(
n

k

)
zn−k1 zk2

where
(
n

k

)
=
n · (n− 1) · · · (n− k + 1)

k!
. It is clear from this notational convention that

(z1 + z2)n 6= (z2 + z1)n unless n ≥ 0.

For v(z) =
∑

n∈Z vnz
n ∈ V [[z, z−1]], we define the formal residue Resz and the

formal derivative
d

dz
as follows:

Reszv(z) = v−1 and
d

dz
v(z) =

∑
n∈Z

nvnz
n−1

The third familiar concept, the formal exponential, is defined for f(z) ∈ V [z]:

ef(z) =
∑
n∈N

1

n!
f(z)n

We also have the formal logarithmic power series:

log(1 + af(z)) = −
∑
k∈Z+

(−a)k

k
f(z)k

for any a ∈ C and suitable f(z). These formal power series obey the familiar standard

rules: for any a, b, c ∈ C,

log(exp f(z)) = f(z)

exp(log(1 + af(z))) = 1 + af(z)

log((1 + af(z))(1 + bg(z))) = log(1 + af(z)) + log(1 + bg(z))

log(1 + af(z))c = c log(1 + af(z))

8



2.2 Vertex Operator Algebras and Modules

In this section, we introduce the precise mathematical formulation of vertex op-

erator algebras and their modules. Roughly speaking, a VOA is an infinite dimensional

Z-graded vector space in which between any two elements u and v, there are infinitely

many “products” unv where n runs over the integers (hence “infinitely many”.)

Definition 2.2.1 A vertex operator algebra V is a vector space equipped with a

linear map:

Y = Y (·, z) : V → (EndV )[[z, z−1]]

v 7→ Y (v, z) =
∑
n∈Z

vnz
−n−1 (where vn ∈ EndV )

such that for any u, v ∈ V and n ∈ Z:

1. unv = 0 if n� 0,

2. V has an element often denoted by 1, called the vacuum vector, such that:

(a) Y (1, z) = IdV and

(b) Y (u, z)1 ∈ V [[z]] and lim
z→0

Y (u, z)1 = u,

3. The Jacobi identity is satisfied:

z−1
0 δ

(
z1 − z2

z0

)
Y (u, z1)Y (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (u, z0)v, z2)

If V satisfies conditions (1) - (3), then it is called a vertex algebra . Y (v, z) is

called the vertex operator associated with v.
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4. V is Z-graded by weights :

V =
⊕
n∈Z

Vn where dim Vn <∞,∀n ∈ Z and Vn = 0 if n� 0

If v ∈ Vn, then we call v a homogeneous element of weight n and write wt(v) = n.

5. V has a distinguished homogeneous vector ω, called the Virasoro (or conformal)

vector, which satisfies:

(a) the Virasoro relation:

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0cV

where L(n) = ωn+1, ∀n ∈ Z, and cV ∈ C (the central charge of V).

(b) L(0)|Vn = n

(c) Y (L(−1)v, z) =
d

dz
Y (v, z)

A vertex operator algebra is denoted by a quadruple (V, Y,1, ω) or simply V .

Remark 2.2.1(a): It can be easily shown that wt(1) = 0 and wt(ω) = 2. The “products”

unv respect the grading of V ; that is, for any homogeneous vectors u ∈ Vi, v ∈ Vj , we

have unv ∈ Vi+j−n−1.

Remark 2.2.1(b): As we shall see in Subsection 2.3.1, the Virasoro algebra

Vir = 〈{Ln | n ∈ Z} ∪ {C}〉 is equipped with a Lie bracket that resembles the rela-

tion 5(a) above. This suggests that, under the correspondence L(n)↔ Ln, cV ↔ C, the

vector space V is a representation of the Virasoro algebra Vir.

10



Definition 2.2.2 For a vertex operator algebra V , a linear map g ∈ GL(V ) is called an

automorphism of V if g(ω) = ω and the actions of g and Y (u, z) on V are compatible

in the sense that gY (u, z)g−1 = Y (g(u), z), ∀u ∈ V .

It follows from the definition that g(1) = 1 and gVn ⊆ Vn, ∀n ∈ Z. As usual, we use

Aut(V ) to denote the group of automorphisms of V .

For the following definitions, we assume that g ∈ Aut(V ) is of finite order T , in

which case V is decomposed into eigenspaces with respect to the action of g as:

V =
T−1⊕
r=0

V r, where V r = {v ∈ V | gv = e2πir/T v}

Definition 2.2.3 A weak g-twisted V-module M is a vector space equipped with a

linear map:

YM = YM (·, z) : V → (EndM){z}

v 7→ YM (v, z) =
∑
n∈Q

vnz
−n−1 (where vn ∈ EndM)

such that for any u ∈ V r, v ∈ V,w ∈M , and 0 ≤ r ≤ T − 1:

1. unw = 0 if n� 0,

2. YM (1, z) = IdM ,

3. YM (u, z) =
∑

n∈ r
T

+Z

unz
−n−1,

4. the twisted Jacobi identity is satisfied:

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1)YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2)YM (u, z1)

= z−1
2

(
z1 − z0

z2

)− r
T

δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2)

11



Where clarification is necessary, we use (M,YM ), instead of just M , to denote a weak

g-twisted V -module.

Definition 2.2.4 Let M be a weak g-twisted V -module and N ⊆ M its subspace. If

vnN ⊆ N, ∀v ∈ V, n ∈ Q, then N is called a weak g-twisted V-submodule of M . If

the only weak g-twisted V -submodules of M are 0 and M itself, then M is said to be

irreducible.

Definition 2.2.5 An admissible g-twisted V-module is a weak g-twisted V -module

M such that:

1. M =
⊕
n∈ 1

T
N

M(n)

2. vmM(n) ⊆M(n+wtv−m−1) for any homogeneous v ∈ V and for n ∈ 1
T N,m ∈ Q.

Definition 2.2.6 Let M be an admissible g-twisted V -module and N a weak g-twisted

V -submodule of M .

1. If N =
⊕
n∈ 1

T
N

N∩M(n), then N is called an admissible g-twisted V-submodule

of M .

2. Similar to the concept of irreducibility in weak g-twisted V -modules, an irre-

ducible admissible g-twisted V -module is one which has no nontrivial admissible

submodules.

3. On the other hand, an admissible g-twisted V -module is said to be completely

reducible if it is a direct sum of irreducible admissible g-twisted V -submodules.

12



Definition 2.2.7 An ordinary g-twisted V-module is a weak g-twisted V -module

M such that:

1. M =
⊕
λ∈C

Mλ where Mλ = {w ∈M |L(0)w = λw},

2. dim Mλ <∞, ∀λ ∈ C, and

3. for any fixed λ ∈ C,Mλ+ n
T

= 0 if n� 0, n ∈ Z.

Definition 2.2.8 A vertex operator algebra V is said to be g-rational if any admissible

g-twisted V -module is completely reducible, or equivalently, if the category of admissible

g-twisted V -modules is semisimple.

Remark: When g = IdV , the phrase “g-twisted” is dropped from the above definitions

of different types of modules and a g-rational VOA is simply called rational.

Definition 2.2.9 Let M =
⊕

n∈ 1
T
NM(n) be an admissible g-twisted V -module, then

the contragredient V-module (M ′, YM ′) is:

M ′ =
⊕
n∈ 1

T
N

M(n)∗ =
⊕
n∈ 1

T
N

HomC(M(n),C)

and for any v ∈ V , any f ∈M ′, w ∈M :

〈YM ′(v, z)f, w〉 =
〈
f, YM (ezL(1)(−z−2)L(0)v, z−1)w

〉
where 〈·, ·〉 : M ′ ×M → C denotes the natural pairing 〈f, w〉 = f(w), ∀f ∈M ′, w ∈M .

Remark: The idea of contragredient modules is in essence that of dual modules. How-

ever, it is troublesome to take M ′ to be (
⊕

n∈ 1
T
NM(n))′ since it would be too large (as

M is infinite-dimensional).

13



2.3 Some Examples of VOAs

Unlike other algebraic structures such as vector spaces or groups, examples of

VOAs are difficult to find because it is difficult to construct such a structure and then

prove that the constructed structure satisfies the axioms of a vertex operator algebra.

The Moonshine module V \ is the most famous VOA whose automorphism group is the

Monster M. In this section, we present the construction of two of the most important

VOAs, the Virasoro VOA and the affine VOAs; detailed proofs of VOA axioms may

be found in [LL]. Another example, the VOA associated with a non-degenerate even

lattice, is the main focus of this thesis and its construction is delayed until Chapter 3.

2.3.1 Virasoro VOA

The Virasoro algebra, denoted by Vir, is an infinite-dimensional Lie algebra with

basis {Ln | n ∈ Z} ∪ {C} with Lie brackets:

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0C

[Lm, C] = 0

Set Vir+ =
⊕

n∈Z+ CLn, Vir− =
⊕

n∈Z+ CL−n, and Vir0 = CL0 ⊕ CC. For c, h ∈ C,

let C(c, h) = C be the one-dimensional Vir+⊕Vir0-module on which Vir+ acts trivially

while L0 · 1 = h and C · 1 = c. Now consider the induced Vir-module:

MVir(c,h) := IndVir
Vir+⊕Vir0C(c, h) = U(Vir)⊗U(Vir+⊕Vir0) C(c, h)

14



where U(·) denotes the universal enveloping algebra, and form the quotient module:

VVir(c, 0) = MVir(c, 0)
/
U(Vir)L−1(1⊗ 1) = MVir(c, 0)

/
〈L−1(1⊗ 1)〉

Set 1 := (1⊗ 1) + U(Vir)L−1(1⊗ 1) and ω := L−21 and define:

Y (·, z) : VVir(c, 0)→ (End(VVir(c, 0)))[[z, z−1]]

Y (L−21, z) = L(z) =
∑
n∈Z

Lnz
−n−2

Y (L−n−21, z) =
1

n!

(
d

dz

)n
L(z)

Then (VVir(c, 0), Y,1, ω) is a VOA, called the Virasoro VOA.

2.3.2 Affine VOAs

Let g be a d-dimensional Lie algebra equipped with a symmetric invariant bilinear

form 〈·, ·〉 and consider its associated affine Lie algebra ĝ:

ĝ := g⊗ C[t, t−1]⊕ Ck

whose Lie bracket is defined by:

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +m 〈a, b〉 δm+n,0k

[a⊗ tm,k] = 0

for any a, b ∈ g and any m,n ∈ Z. Then ĝ has the following subalgebras:

ĝ(≤0) =

(∐
n>0

g⊗ tn
)
⊕ g⊕ Ck

15



Denote by Cl = C the ĝ(≤0)-module on which
∐
n>0 g ⊗ tn and g act trivially while k

acts as multiplication by a scalar l ∈ C. We then form the induced module:

Vĝ(l, 0) := Indĝĝ(≤0)
Cl = U(ĝ)⊗U(ĝ(≤0)) Cl

Suppose that {u1, u2, · · · , ud} is an orthonormal basis of ĝ with respect to the form 〈·, ·〉.

For u ∈ g, we define the generating function:

u(z) :=
∑
n∈Z

(u⊗ tn)z−n−1 =
∑
n∈Z

u(n)z−n−1

Setting 1 = 1 ∈ C and Y (1, z) = IdVĝ(l,0), we inductively define:

Y (u(n)v, z) = Resz0{(z0 − z)nu(z0)Y (v, z)− (−z + z0)nY (v, z)u(z0)}

Lastly, take

ω =
1

2(l + h∨)

d∑
i=1

ui(−1)ui(−1)1

where h
∨
is the dual Coxeter number of g. Then, if l 6= −h∨ , (Vĝ(l, 0), Y,1, ω) is a vertex

operator algebra (see [LL]).

2.3.3 Lattice VOAs

Associated with a positive-definite even lattice L is the vertex operator algebra

VL. The detailed construction of this VOA is carried out in Section 3.2.
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Chapter 3

Intertwining Operators, Fusion

Rules, and VL

3.1 Intertwining Operators and Fusion Rules

Definition 3.1.1 Let (M i, YM i), i ∈ {1, 2, 3}, be weak V -modules. An intertwining

operator of type
(

M3

M1 M2

)
is a linear map:

Y = Y(·, z) : M1 → (Hom(M2,M3)){z}

u 7→ Y(u, z) =
∑
n∈C

unz
−n−1 (un ∈ Hom(M2,M3))

satisfying the following properties:

1. For any u ∈M1, v ∈M2, and λ ∈ C, um+λv = 0 if m� 0,m ∈ Z,
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2. For any a ∈ V, u ∈M1, the Jacobi identity is satisfied:

z−1
0 δ

(
z1 − z2

z0

)
YM3(a, z1)Y(u, z2)− z−1

0 δ

(
z2 − z1

−z0

)
Y(u, z2)YM2(a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y(YM1(a, z0)u, z2)

3. For u ∈M1, the L(−1)-derivative property is satisfied:

Y(L(−1)u, z) =
d

dz
Y(u, z)

In the language of conformal field theory, an intertwining operator of type
(

M3

M1 M2

)
is called a chiral vertex operator of this type. We actually have seen an example of an

intertwining operator of type
(
M

V M

)
, where (M,YM ) is an irreducible V -module, and

it is precisely the map YM . In fact, this map spans the 1-dimensional vector space of all

intertwining operators of type
(
M

V M

)
. If (V, Y,1, ω) is a simple VOA, then Y spans

the the 1-dimensional vector space of all intertwining operators of type
(
V

V V

)
(see

[L]).

Denoting by IV
(

M3

M1 M2

)
the vector space formed by all intertwining operators

of type
(

M3

M1 M2

)
, we have the following definition:

Definition 3.1.2 The fusion rule of type
(

M3

M1 M2

)
for V is:

NV

(
M3

M1 M2

)
:= dimIV

(
M3

M1 M2

)

Fusion rules have the following well-known symmetries (see [FHL], Props. 5.4.7

and 5.5.2):
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Proposition 3.1.3 Let Mi(i = 1, 2, 3) be V -modules and M ′i the corresponding contra-

gredient modules, then:

NV

(
M3

M1 M2

)
= NV

(
M3

M2 M1

)
= NV

(
M ′2

M1 M ′3

)
We also quote here a very useful result from [ADL] (Prop. 2.9), which shall be invoked

repeatedly in the derivation of our main results:

Proposition 3.1.4 Let V be a vertex operator algebra and letM1,M2,M3 be V -modules

among which M1 and M2 are irreducible. Suppose that U is a vertex operator subal-

gebra of V (with the same Virasoro element) and that N1 and N2 are irreducible U -

submodules of M1 and M2, respectively. Then the restriction map from IV
(

M3

M1 M2

)
to IU

(
M3

N1 N2

)
is injective. In particular,

dim IV
(

M3

M1 M2

)
≤ dim IU

(
M3

N1 N2

)
Definition 3.1.5 Let V be a vertex operator algebra and M1,M2 its modules. The

fusion product ofM1 andM2 is a V -moduleM1�V M
2 together with an intertwining

operator Y ∈ IV
(
M1 �V M

2

M1 M2

)
that satisfies the following universal property : for any

V -module W and YW ∈ IV
(

W

M1 M2

)
, there exists a unique V -module homomorphism

f : M1 �V M
2 →W such that YW = f ◦ Y.

Remark : a fusion product may not exist; but when it does, it is unique up to isomor-

phism as a consequence of the universal property.

If V is a rational vertex operator algebra, then the fusion product of any two

irreducible V -modules exists (Proposition 4.13 in [HL]). Motivated by the concept of a

fusion algebra in conformal field theory (Equation (2.130) in [BP]), we shall define the
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fusion product, if it exists, as follows:

M1 �V M
2 :=

∑
M i

NV

(
M i

M1M2

)
M i

where M i runs over the set of equivalence classes of irreducible V -modules. When the

context is clear, we may drop the subscript V inM1�V M
2 and simply writeM1�M2.

3.2 The VOA VL and its Modules

Let L denote a positive-definite even lattice of rank d; that is, L is a rank-d free

abelian group equipped with a Z-valued non-degenerate, positive-definite symmetric

Z-bilinear form 〈·, ·〉:

〈·, ·〉 : L× L→ Z

〈α, α〉 ∈ 2Z, ∀α ∈ L (even)

〈α,L〉 = {0} =⇒ α = 0 (non-degenerate)

〈α, α〉 > 0, ∀α ∈ L (positive-definite)

Our main interest is VL, whatever this symbol means at this point, and its irreducible

modules. As a preview, VL = M(1)⊗ C[L], so we first recall the construction of M(1).

3.2.1 M(1) and Its Modules

Let h = L ⊗Z C be the complexification of L, then h is a d-dimensional vector

space which naturally inherits the bilinear form 〈·, ·〉 as the extension of the form on L.

L is identified with L⊗Z 1 as a subspace of h. Viewing h as an abelian Lie algebra, we

form the following affine Lie algebra:
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ĥ = h⊗ C[t, t−1]⊕ CC (C 6= 0)

with the commutation relations:

[α1 ⊗ tm, α2 ⊗ tn] = m 〈α1, α2〉 δm+n,0C, ∀α1, α2 ∈ h, ∀m,n ∈ Z

[C, ĥ] = 0

ĥ has an abelian Lie subalgebra:

ĥ+ = h⊗ C[t]⊕ CC

For any λ ∈ h, let Ceλ denote the 1-dimensional ĥ+-module with module actions:

ĥ+ × Ceλ → Ceλ

h⊗ tC[t] · eλ = 0

h⊗ t0 · eλ = 〈λ, h〉 eλ, ∀h ∈ h

C · eλ = eλ

Now we consider the induced ĥ-module:

M(1, λ) := Indĥ
ĥ+
Ceλ = U(ĥ)⊗U(ĥ+) Ce

λ ∼= S(t−1C[t−1])⊗ h

where U(·) denotes the universal enveloping algebra and S(·) the symmetric alge-

bra. We follow the convention for ĥ-module actions: on any ĥ-module, the action of

h ⊗ tn ∈ ĥ is denoted by h(n),∀h ∈ h and ∀n ∈ Z. Any v ∈ M(1, 0) has the form

v = h1(−n1) · · ·hk(−nk) ⊗ e0 where hi ∈ h and ni ≥ 1. To give M(1, 0) the structure

of a vertex operator algebra, we define a linear map:
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Y = Y (·, z) : M(1, 0)→ (EndM(1, λ))[[z, z−1]]

Y (v, z) := ◦
◦

(
1

(n1 − 1)!

(
d

dz

)n1−1

h1(z)

)
· · ·

(
1

(nk − 1)!

(
d

dz

)nk−1

hk(z)

)
◦
◦

where hi(z) =
∑

n∈Z hi(n)z−n−1.

The symbol ◦◦ · ◦◦ denotes a normal-ordered product (also called normal ordering)

which reorders the items enclosed between the colons so that the operators hi(n), for n <

0, are to be placed to the left of the operators hi(n), for n > 0, before the multiplication

is performed. The motivation behind normal ordering is this: the formal expression

enclosed between the colons may be a product of infinite expressions and may not

converge, and thus may not be an operator on M(1, λ). Normal ordering ensures that

it is a well-defined operator.

When λ = 0, we simply write:

M(1) := M(1, 0)

Suppose that {β1, · · ·βd} is an orthonormal basis of h (= L ⊗Z C) with respect

to the form 〈·, ·〉 associated with it. We use 1 and ω to denote the following two

distinguished elements of M(1):

1 := 1⊗ e0 ∈M(1)

ω :=
1

2

d∑
i=1

βi(−1)βi(−1)⊗ e0 ∈M(1)

Then, as shown in [FLM], (M(1), Y (·, z),1, ω) is a simple vertex operator algebra and

{M(1, λ) |λ ∈ h} are the irreducible M(1)-modules.
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3.2.2 VL and Its Modules

Let (L̂,−) be the central extension of L by the cyclic group 〈κ〉 =
〈
κ | κ2 = 1

〉
.

This means that we have the following exact sequence:

1 〈κ〉 = 〈−1〉 L̂ L 0
−

Associated with this extension is a commutator map:

c : L× L→ C×

c(α, β) = κ〈α,β〉 = (−1)〈α,β〉, ∀α, β ∈ L

Let e : L→ L̂, α 7→ eα be a section such that 0 7→ e0 = 1. Then

L̂ = {κieα | α ∈ L, i = 0, 1 }

This section has a corresponding 2-cocycle given by:

ε : L× L→ C×

eαeβ = ε(α, β)eα+β

By [FLM], the following properties of ε are known for any α, β, γ ∈ L:

ε(α, β)ε(α+ β, γ) = ε(β, γ)ε(α, β + γ)

ε(α, β)(ε(β, α))−1 = c(α, β)

ε(α, 0) = ε(0, α) = 1
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We next consider the group algebra C[L] =
⊕

λ∈LCeλ, which is an L̂-module under the

actions:

L̂ × C[L]→ C[L]

eα · eλ = ε(α, λ)eα+λ, ∀α, λ ∈ L

κ · eλ = −eλ, ∀λ ∈ L

We are now ready to define VL:

VL := M(1)⊗ C[L]

The ĥ-module structure of M(1) extends naturally to the ĥ-module structure of VL:

ĥ (= h⊗ C[t, t−1]⊕ CC) × VL → VL

h(n) · (u⊗ eλ) = (h(n) · u)⊗ eλ, ∀n 6= 0

h(0) · (u⊗ eλ) = 〈h, λ〉 (u⊗ eλ)

C · (u⊗ eλ) = u⊗ eλ

for all h ∈ h, u ∈M(1), and λ ∈ L.

Next, we explain that VL has the structure of a vertex operator algebra. For each

v ∈ VL, v = h1(−n1) · · ·hk(−nk) ⊗ eλ, for some λ ∈ L and hi ∈ h, ni ≥ 1. We start by

defining the vertex operator associated to eλ:

Y (eλ, z) := exp

( ∞∑
n=1

λ(−n)

n
zn

)
exp

(
−
∞∑
n=1

λ(n)

n
z−n

)
eλz

λ

Note that C[L] is an L̂-module as described above, so eλ is the left action of eλ ∈ L̂ on

C[L]; and zλ is the operator on C[L] defined by:
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zλ · eµ = z〈λ,µ〉eµ

Using this, we then define the vertex operator associated to v ∈ VL:

Y = Y (·, z) : VL → (EndVL){z}

v 7→ Y (v, z)

Y (v, z) := ◦
◦

(
1

(n1 − 1)!

(
d

dz

)n1−1

h1(z)

)
· · ·

(
1

(nk − 1)!

(
d

dz

)nk−1

hk(z)

)
Y (eλ, z) ◦◦

With 1 = 1 ⊗ e0 ∈ M(1) ⊆ VL and ω =
1

2

∑d
i=1 βi(−1)βi(−1) ⊗ e0 ∈ M(1) ⊆ VL, the

structure (VL, Y,1, ω) has been shown (in [FLM], [LL]) to be a simple vertex operator

algebra.

To classify VL-modules, we first introduce the dual lattice of L:

L◦ = {β ∈ h| 〈α, β〉 ∈ Z,∀α ∈ L}

Since L is an even lattice, it follows that L ⊆ L◦. Let S := {λ1, · · · , λk} be the complete

set of representatives of equivalence classes of L in its dual lattice L◦. Then

C[L◦] = C[L+ λ1]⊕ · · · ⊕ C[L+ λk]

VL◦ = VL+λ1 ⊕ · · · ⊕ VL+λk

By the work of [FLM2] and [D1], {VL+λ |λ ∈ S } is the complete list of (in-

equivalent) irreducible untwisted VL-modules. The classification of irreducible twisted

modules for VL was done in [D2] and is recalled below.

Let θ ∈ Aut(L̂) be an automorphism of L̂ such that θ2 = IdL̂ and θ(κ) = κ (in

other words, θ preserves −1). Recall that L̂ = {κieα |α ∈ L, i = 0, 1 }, so the action of
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θ on L̂ can be viewed as:

θ(κieα) = κie−α

It can be easily observed that θ induces an automorphism θ̄ on L such that θ̄2 = IdL

and θ̄(α) = −α, ∀α ∈ L.

Now we define the action of θ on VL (= M(1)⊗ C[L]) by:

θ : VL → VL

(h1(−n1) · · ·hk(−nk))⊗ eα 7→ (−1)k(h1(−n1) · · ·hk(−nk))⊗ e−α

for hi ∈ h, ni ≥ 1, and α ∈ L. In fact, θ turns out to be an automorphism of VL which

has two important eigensubspaces of eigenvalues 1 and −1, respectively:

V ±L = {v ∈ VL | θ(v) = ±v}

A thorough treatment of the fusion rules for V +
L has been done by Abe, Dong, and Li

[ADL], which lays the foundation for our results here.

We now consider a θ-twisted affine Lie algebra:

ĥ[θ] := h⊗ t1/2C[t, t−1]⊕ CC

with the following Lie brackets for all α1, α2 ∈ h and m,n ∈ Z + 1
2 :

[α1 ⊗ tm, α2 ⊗ tn] = m 〈α1, α2〉 δm+n,0C

[C, ĥ[θ]] = 0
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ĥ[θ] has the following subspaces:

ĥ[θ]+ = h⊗ t1/2C[t] and ĥ[θ]− = h⊗ t−1/2C[t−1]

Viewing C as a module for ĥ[θ]+ ⊕ CC on which ĥ[θ]+ acts trivially and C acts

as a multiplication by 1, we consider the induced module:

M(1)(θ) := Indĥ[θ]

ĥ[θ]+⊕CC
C

= U(ĥ[θ])⊗U(ĥ[θ]+⊕CC) C

∼= S(t−1/2C[t−1])⊗ h

Finally, we define:

K := {a−1θ(a) | a ∈ L̂ }

And let Tχ be the irreducible L̂/K-module associated to a central character χ:

χ : Z(L̂/K)→ C×

(−1)K 7→ −1

(that is, Tχ is an irreducible L̂/K-module on which (−1)K acts as −1). For each such

Tχ, define a twisted space:

V
Tχ
L := M(1)(θ)⊗ Tχ

Then {V Tχ
L | Tχ = irreducible L̂/K-module as described above} exhausts all the irre-

ducible θ-twisted VL modules. These are also called VL-modules of twisted type, to

distinguish from the VL+λ mentioned earlier, which are of untwisted type. The action
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of θ on M(1)(θ) extends to an action on V Tχ
L :

θ : V
Tχ
L → V

Tχ
L

(h1(−n1) · · ·hk(−nk))⊗ t 7→ (−1)k(h1(−n1) · · ·hk(−nk))⊗ t (3.2.2.1)

for hi ∈ h, ni ∈ Z + 1
2 , and t ∈ Tχ. As before, we denote by V

Tχ,+
L and V

Tχ,−
L the

eigensubspaces of V Tχ
L of eigenvalues 1 and −1, respectively.

We mention now two results from [ADL] and [A2] concerning V +
L :

Proposition 3.2.1 ([ADL], Theorem 3.4) Let L be a positive-definite even lattice and let

{λi} be a set of representatives of L◦/L. Then any irreducible V +
L -module is isomorphic

to one of the irreducible modules V ±L , Vλi+L with 2λi /∈ L, V ±λi+L with 2λi ∈ L or V Tχ,±
L

for a central character χ of L̂/K with χ(κ) = −1.

Proposition 3.2.2 ([A2], Proposition 3.3) Let W 1,W 2, and W 3 be irreducible V +
L -

modules. Then the following hold:

(1) The fusion rules N
(

W 3

W 1 W 2

)
is zero or one.

(2) If all W i(i = 1, 2, 3) are twisted type modules, then the fusion rule N
(

W 3

W 1 W 2

)
is

zero.

(3) If one of W i(i = 1, 2, 3) is a twisted type module and the others are of untwisted

type, then the fusion rule N
(

W 3

W 1 W 2

)
is zero.

The next three sections discuss the three different fusion products of VL-modules.

The first one, Section 3.3, is a result directly obtained from [DL] concerning modules

of untwisted type, while the other two delve into the cases when at least one module of

twisted type is involved in the fusion product.
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3.3 The Fusion Product VL+λ � VL+µ

For the remaining three sections, we shall drop the subscript VL in the fusion rule

NVL and fusion product �VL notations and simply write N and �, respectively. Recall

that S = {λ1, · · · , λk} is the complete set of representatives of equivalence classes of L

in its dual lattice L◦. As mentioned above, the following proposition is an immediate

consequence of Proposition 12.9 in [DL].

Proposition 3.3.1 For any λ, µ ∈ S:

VL+λ � VL+µ = VL+λ+µ

Proof. LetM i run over the equivalence classes of irreducible VL-modules. By definition,

we have:

VL+λ � VL+µ =
∑
i

N

(
M i

VL+λ VL+µ

)
M i

=
∑
ν∈S

N

(
VL+ν

VL+λ VL+µ

)
VL+ν +

∑
V
Tχ
L

N

(
V
Tχ
L

VL+λ VL+µ

)
V
Tχ
L

where V Tχ
L runs over the equivalence classes of irreducible θ-twisted VL-modules. Now

by [DL],

N

(
VL+ν

VL+λ VL+µ

)
= 1 iff ν = λ+ µ

Recall that V +
L is a vertex operator subalgebra of VL and that {VL+λ | λ ∈ S } are the

θ-untwisted modules and {V Tχ
L } are the θ-twisted V +

L -modules. Applying Prop. 3.1.4

of Section 3.1, we have:

NVL

(
V
Tχ
L

VL+λ VL+µ

)
≤ NV +

L

(
V
Tχ
L

VL+λ VL+µ

)
= 0
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The last equality follows immediately from Prop. 3.2.2 (3) mentioned above. Thus,

VL+λ � VL+µ = N

(
VL+λ+µ

VL+λ VL+µ

)
VL+λ+µ = VL+λ+µ

3.4 The Fusion Product VL+λ � V
Tχ
L

Let Mk denote the irreducible VL-modules, then:

VL+λ � V
Tχ
L =

∑
k

N

(
Mk

VL+λ V
Tχ
L

)
Mk

=
∑
µ∈S

N

(
VL+µ

VL+λ V
Tχ
L

)
VL+µ +

∑
V
Tχ2
L

N

(
V
Tχ2
L

VL+λ V
Tχ
L

)
V
Tχ2
L

where V Tχ2
L runs over the equivalence classes of irreducible θ-twisted VL-modules.

Lemma 3.4.1 For any λ, µ ∈ L◦ and central character χ of L̂/K such that χ(κ) = −1:

N

(
VL+µ

VL+λ V
Tχ
L

)
= 0

Proof. This is an immediate consequence of Prop. 3.1.4. For any µ ∈ L◦, VL+µ is a VL-

module and thus is also a V +
L -module. (Note that the fact that it is also irreducible is not

needed here.) Recall that V Tχ
L is a twisted irreducible VL-module while its submodule

V
Tχ,+
L is an irreducible V +

L -module of twisted type by Prop. 3.2.1 above.

Case 1 : If 2λ /∈ L, then VL+λ is an untwisted irreducible V +
L -module by Prop. 3.2.1.

So, by Prop. 3.1.4 and Prop. 3.2.2(3), we have:

NVL

(
VL+µ

VL+λ V
Tχ
L

)
≤ NV +

L

(
VL+µ

VL+λ V
Tχ,+
L

)
= 0
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Case 2 : If 2λ ∈ L, then V ±L+λ are untwisted irreducible V +
L -modules, also by Prop.

3.2.1. Then:

NVL

(
VL+µ

VL+λ V
Tχ
L

)
≤ NV +

L

(
VL+µ

V +
L+λ V

Tχ,+
L

)
= 0

We now show that there exists an intertwining operator of type
(

V
Tχ1
L

VL+λ V
Tχ
L

)
for

VL by explicitly constructing it. We should point out that χ1 is actually determined by

both χ and λ by a formula to be given in the discussion below.

Let χ be any central character of L̂/K such that χ(κ) = −1. That is,

χ : Z(L̂/K)→ C×

κ 7→ −1

and Tχ the corresponding irreducible L̂/K-module under the action:

L̂/K × Tχ → Tχ

κ · v = −v

As done in Subsection 3.3.2, V Tχ
L = M(1)(θ)⊗ Tχ, which is a θ-twisted VL-module.

Let λ ∈ L◦ and define an automorphism σλ of L̂:

σλ : L̂→ L̂

a 7→ σλ(a) := κ〈λ,ā〉a = (−1)〈λ,ā〉a
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Let a ∈ L̂, then σλ(θ(a)) = κ〈λ,θ(a)〉θ(a), while θ(σλ(a)) = θ(κ〈λ,ā〉a) = κ〈λ,ā〉θ(a).

So, σλ(θ(a)) = θ(σλ(a)). For a−1θ(a) ∈ K, σλ sends it back to K because:

σλ(a−1θ(a)) = σλ(a−1)σλ(θ(a)) = (σλ(a))−1θ(σλ(a)) ∈ K

And thus, σλ stabilizes K and consequently induces an automorphism on L̂/K:

σλ : L̂/K → L̂/K

aK 7→ σλ(aK) = σλ(a)K = κ〈λ,ā〉aK = (−1)〈λ,ā〉aK

For any L̂/K-module T , we denote by T ◦ σλ the L̂/K-module twisted by σλ.

This means that T ◦ σλ ∼= T as vector spaces but there is an additional action of L̂/K

on T ◦ σλ which is determined by σλ:

L̂/K × T ◦ σλ (= T )→ T ◦ σλ (= T )

a · t = σλ(a)t

When T = Tχ, we have:

L̂/K × Tχ ◦ σλ (= Tχ)→ Tχ ◦ σλ (= Tχ)

κ · t = −t, ∀t ∈ Tχ

a · t = σλ(a)t, ∀a ∈ L̂/K, t ∈ Tχ

Since Tχ is irreducible, so is Tχ◦σλ. With the number of central characters of L̂/K which

send κ to −1 being finite ([FLM], Prop. 7.4.8), there must exist a unique central char-

acter χ1 of L̂/K such that the corresponding L̂/K-module Tχ1 satisfies Tχ1
∼= Tχ ◦ σλ.
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To emphasize the fact that χ1 is dependent upon χ and λ, we use χ(λ) instead of χ1,

and so Tχ(λ)
∼= Tχ ◦ σλ. Let f denote this isomorphism:

f : Tχ ◦ σλ → Tχ(λ) (L̂/K-module isomorphism)

Tχ → Tχ(λ) (linear isomorphism)

f(σλ(a)t) = af(t), ∀a ∈ L̂/K, t ∈ Tχ

Following [ADL], we consider λ ∈ L◦ and α ∈ L and define another linear isomorphism:

ηλ+α : Tχ ◦ σλ → Tχ(λ)

ηλ+α = ε(−α, λ)eα ◦ f = (−1)〈−α,λ〉eα ◦ f

Recall that eα is the left action of eα ∈ L̂ on C[L] with the following properties:

Lemma 3.4.2 For any α, β ∈ L, eαeβ = (−1)〈α,β〉eβeα as operators on C[L].

Proof. Consider eµ ∈ C[L] for µ ∈ L:

eαeβ · eµ = eα(eβ · eµ) = eα(ε(β, µ)eβ+µ)

= ε(β, µ)eα · eβ+µ = ε(β, µ)ε(α, β + µ)eα+(β+µ)

= ε(β, µ)ε(α, β)ε(α, µ)eα+β+µ

On the other hand:

eβeα · eµ = eβ(ε(α, µ)eα+µ)

= ε(α, µ)eβ,α+µe
β+(α+µ)

= ε(α, µ)ε(β, α)ε(β, µ)eβ+α+µ
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Multiplying both sides by (−1)〈α,β〉 yields:

(−1)〈α,β〉eβeα · eµ = (−1)〈α,β〉ε(β, α)ε(α, µ)ε(β, µ)eβ+α+µ

= ε(α, β)ε(α, µ)ε(β, µ)eβ+α+µ

= eαeβ · eµ

The second-to-last equality follows from the fact that ε(α, β)ε(β, α) = (−1)〈α,β〉.

Lemma 3.4.3 For the L̂/K-module isomorphism f : Tχ ◦ σλ → Tχ(λ) defined earlier

and any α ∈ L, eα satisfies eα ◦ f = (−1)〈α,λ〉f ◦ eα as operators on C[L].

Proof. Consider eµ ∈ C[L] for µ ∈ L:

(−1)〈α,λ〉f ◦ eα · eµ = (−1)〈α,λ〉f(ε(α, µ)eα+µ

= (−1)〈α,λ〉ε(α, µ)f(eα+µ)

On the other hand, recall that for a ∈ L̂, f(σλ(a)t) = af(t). Thus:

eα ◦ f · eµ = f(σλ(eα)eµ)

= f(κ〈λ,eα〉eαe
µ)

= κ〈λ,eα〉f(eαe
µ)

= κ〈λ,ᾱ〉f(ε(α, µ)eα+µ)

= (−1)〈α,λ〉ε(α, µ)f(eα+µ)

= (−1)〈α,λ〉f ◦ eα · eµ
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We have the following facts about ηγ ([ADL]):

Lemma 3.4.4 ([ADL] Lemma 5.8) For any γ ∈ L+ λ and α ∈ L:

eα ◦ ηγ = (−1)〈α,γ〉ηγ ◦ eα

eα ◦ ηγ = ε(α, γ)ηγ+α = ε(−α, γ)ηγ−α

Proof. Let γ ∈ L+λ, then γ = β+λ for some β ∈ L. For any eµ ∈ C[L] (where µ ∈ L):

(eα ◦ ηγ) · eµ = eα ◦ ηβ+λ · eµ

= eα(ε(−β, λ)eβ ◦ f)(eµ) (by definition of ηλ+α)

= ε(−β, λ)eαeβ ◦ f(eµ)

= ε(−β, λ)(−1)〈α,β〉eβeα ◦ f(eµ) (by Prop. 3.4.2)

= ε(−β, λ)(−1)〈α,β〉eβ(−1)〈α,λ〉f ◦ eα(eµ) (by Prop. 3.4.3)

= ε(−β, λ)(−1)〈α,β〉(−1)〈α,λ〉eβf(ε(α, µ)eα+µ)

= ε(−β, λ)ε(α, µ)(−1)〈α,β〉+〈α,λ〉eβf(eα+µ)

= ε(−β, λ)ε(α, µ)(−1)〈α,β+λ〉eβf(eα+µ)

= ε(−β, λ)ε(α, µ)(−1)〈α,γ〉eβf(eα+µ)

= (−1)〈α,γ〉ε(α, µ)ε(−β, λ)eβf(eα+µ) (rearranging terms)

= (−1)〈α,γ〉ε(α, µ)ηβ+λ(eα+µ) (by definition of η)

= (−1)〈α,γ〉ηβ+λ(ε(α, µ)eα+µ)

= (−1)〈α,γ〉(ηβ+λ ◦ eα) · eµ (action of eα on C[L])

= ((−1)〈α,γ〉ηγ ◦ eα) · eµ
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Thus we have shown the first equality. To show eα ◦ηγ = ε(α, γ)ηα+γ in the second one:

eα ◦ ηγ = eα ◦ ηβ+λ = eα ◦ ε(−β, λ)eβ ◦ f

= ε(−β, λ)eα ◦ eβ ◦ f

= ε(−β, λ)ε(α, β)eα+β ◦ f

= ε(−β, λ)ε(α, β)ε(0, λ)eα+β ◦ f

= ε(−β, λ)ε(α, β)ε(α+ β − α− β, λ)eα+β ◦ f

= ε(−β, λ)ε(α, β)ε(α+ β, λ)ε(−α− β, λ)eα+β ◦ f

= ε(−β, λ)ε(α, β)ε(α+ β, λ)ηλ+α+β

= ε(−β, λ)ε(α, β)ε(α+ β, λ)ηγ+α

= ε(α, λ)ε(α, β)ηγ+α

= ε(α, λ+ β)ηγ+α

= ε(α, γ)ηγ+α

It follows immediately that e−α ◦ηγ = ε(−α, γ)η−α+γ . Now recall from Subsection 3.2.2

that the action of θ on M(1)(θ) extends to an action on V Tχ
L (= M(1)(θ)⊗ Tχ):

θ : V
Tχ
L → V

Tχ
L

(h1(−n1) · · ·hk(−nk))⊗ t 7→ (−1)k(h1(−n1) · · ·hk(−nk))⊗ t (3.2.2.1)

for hi ∈ h, ni ∈ Z + 1
2 , and t ∈ Tχ. In other words, Tχ is compatible with θ in the sense

that θ(a) = a,∀a ∈ L̂, as operators on Tχ (see [FLM] (7.4.14)). Hence, θ(eα) = eα as

operators on Tχ since eα ∈ L̂. On the other hand, recall that θ(κieα) = κie−α, which
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implies θ(eα) = e−α. And therefore, e−α = eα as operators on Tχ. With this, we have

ε(α, γ)ηα+γ = ε(−α, γ)η−α+γ as desired.

We are now ready to define an non-trivial intertwining operator of type
(

V
T
χ(λ)

L

VL+λ V
Tχ
L

)
for VL where λ ∈ L◦. Following [FLM], we define:

Ytwλ (·, z) : M(1, λ)→ (End (M(1)(θ))){z}

v 7→ Ytwλ (v, z)

for v = h1(−n1)h2(−n2) · · ·hk(−nk) ⊗ eλ, where hi ∈ h and ni ≥ 1, by first specifying

how it acts on eλ:

Ytwλ (eλ, z) := 2−〈λ,λ〉z−
〈λ,λ〉

2 exp

 ∑
n∈N+ 1

2

λ(−n)

n
zn

 exp

− ∑
n∈N+ 1

2

λ(n)

n
z−n


And then defining:

W (v, z) := ◦
◦

(
1

(n1 − 1)!

(
d

dz

)n1−1

β1(z)

)
· · ·

(
1

(nk − 1)!

(
d

dz

)nk−1

βk(z)

)
Ytwλ (eλ, z) ◦◦

where, as before, the normal ordering places hi(n) for n < 0 to the left of hi(n) for

n > 0. Finally, for v ∈M(1, λ) we define:

Ytwλ (v, z) := W (e∆zv, z)

where

∆z =
d∑
i=1

∞∑
m,n=0

cmnβi(m)βi(n)z−m−n
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where {β1, β2, · · · , βd} is an orthonormal basis of h and cmn are the coefficients deter-

mined by the following expansion:

− log

(
(1 + x)1/2 + (1 + y)1/2

2

)
=

∞∑
m,n=0

cmnx
myn

Now let u ∈ VL+λ. We know that the VL-module VL+λ has the following decom-

position:

VL+λ
∼=
⊕
β∈L

M(1, β + λ)

where M(1, β+λ) are irreducible M(1)-modules. So, there exists some β ∈ L such that

u ∈M(1, β + λ). Using Ytwλ , we define yet another map:

Ỹtwλ (u, z) := Ytwλ+β(u, z)⊗ ηλ+β

Recall that ηλ+β is a linear isomorphism between Tχ and Tχ(λ) , while the components

of Ỹtwλ (u, z) are elements of End(M(1)(θ)){z}, and M(1)(θ) can be identified with

M(1)(θ)⊗ 1 as a subspace of M(1)(θ)⊗ Tχ = V
Tχ
L . Thus, we have the following linear

map:

Ỹtwλ : VL+λ → (Hom(V
Tχ
L , V

T
χ(λ)

L )){z}

u 7→ Ỹtwλ (u, z) = Ytwλ+β(u, z)⊗ ηλ+β

The next three lemmas show that Ỹtwλ satisfies the three conditions stated in

Definition 3.1.1 and thus is an intertwining operator of type
(

V
T
χ(λ)

L

VL+λ V
Tχ
L

)
for VL. From

there, we shall argue that the fusion rule NVL

(
V
T
χ(λ)

L

VL+λ V
Tχ
L

)
= 1.
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Lemma 3.4.5 For any u ∈ VL+λ, v ∈ V
Tχ
L , and any fixed α ∈ C, un+αv = 0 if n� 0.

Proof. Since v ∈ V Tχ
L = M(1)(θ) ⊗ Tχ, v = w ⊗ t for some w ∈ M(1)(θ) and t ∈ Tχ.

Then:

Ỹtwλ (u, z)v = Ỹtwλ (u, z)(w ⊗ t)

= Ytwλ+β(u, z)(w)⊗ ηλ+β(t)

But Ytwλ+β is a nonzero intertwining operator of type
(

M(1)(θ)

M(1, λ+ β) M(1)(θ)

)
for M(1)

(see [ADL], p. 191). So, for any u ∈M(1, λ+ β) ⊂ VL+λ, un+αw = 0 if n� 0.

Lemma 3.4.6 Let α, β ∈ L. For any a ∈M(1, α), u ∈M(1, β + λ):

z−1
0 δ

(
z1 − z2

z0

)
Y
V
T
χ(λ)

L

(a, z1)Ỹtwλ (u, z2)− z−1
0 δ

(
z2 − z1

−z0

)
Ỹtwλ (u, z2)Y

V
Tχ
L

(a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Ỹtwλ (YVL+λ

(a, z0)u, z2)

where Y
V
T
χ(λ)

L

(a, z1) is the vertex operator associated with a ∈M(1, α) ⊆ VL:

Y
V
T
χ(λ)

L

(·, z1) : M(1, α) ⊆ VL → (End(V
T
χ(λ)

L )){z1}

a 7→ Y
V
T
χ(λ)

L

(a, z1)

Proof. Recall the map Ỹtwλ : M(1, λ+ β) ⊆ VL+λ → (Hom(V
Tχ
L , V

T
χ(λ)

L )){z}. When we

take λ = 0 and β = α, then:

Ỹtw0 : M(1, 0 + α) ⊆ VL → (Hom(V
Tχ
L , V

T
χ(0)

L )){z}
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That is: Ỹtw0 : M(1, α) ⊆ VL → (End(V
Tχ
L )){z} (∗)

For any w ⊗ t ∈M(1)(θ)⊗ Tχ(= V
Tχ
L ):

Ỹtw0 (a, z1)(w ⊗ t) = (Ytw0+α(a, z1)⊗ η0+α)(w ⊗ t)

= Ytwα (a, z1)(w)⊗ ηα(t)

= Ytwα (a, z1)(w)⊗ eα(t)

= (Ytwα (a, z1)⊗ eα)(w ⊗ t)

The third equality above follows from the fact that:

ηα = η0+α = ε(−α, 0)eα ◦ f = 1eα ◦ f = eα ◦ f = eα

since f is an isomorphism of Tχ.

But by (*) above, the map Ỹtw0 (a, z1) is the twisted vertex operator associated

with a ∈M(1, α) ⊆ VL. That is to say,

Y
V
T
χ(λ)

L

(a, z1) = Ỹtw0 (a, z1) = Ytwα (a, z1)⊗ eα

By the same argument, we have:

Y
V
Tχ
L

(a, z1) = Ỹtwα (a, z1)⊗ eα

Note 1 : Recall the map:

Yα,λ+β(·, z0) : M(1, α)→ (Hom(M(1, λ+ β),M(1, α+ λ+ β))) {z0}

where M(1, α) ⊆ VL,M(1, λ + β) ⊆ VL+λ, and M(1, α + λ + β) ⊆ VL+λ. This map

satisfies the Jacobi identity and the L(−1)-derivative property. So, it is the map giving
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the VL-module structure for VL+λ. As a result, Yα,λ+β(a, z0) = YVL+λ
(a, z0).

Note 2 :

Ỹtwλ
(
YVL+λ

(θ(a), z0)u, z2

)
= Ỹtwλ

(
θYVL+λ

(a, z0)θ−1u, z2

)
= Ỹtwλ

(
YVL+λ

(a, z0)θθ−1u, z2

)
= Ỹtwλ

(
YVL+λ

(a, z0)u, z2

)
Let us now start with the left-hand side of the Jacobi identity:

z−1
0 δ

(
z1 − z2

z0

)
Y
V
T
χ(λ)

L

(a, z1)Ỹtwλ (u, z2)− z−1
0 δ

(
z2 − z1

−z0

)
Ỹtwλ (u, z2)Y

V
Tχ
L

(a, z1)

= z−1
0 δ

(
z1 − z2

z0

)(
Ytwα (a, z1)⊗ eα

)
Ỹtwλ (u, z2)

− z−1
0 δ

(
z2 − z1

−z0

)
Ỹtwλ (u, z2)

(
Ytwα (a, z1)⊗ eα

)
= z−1

0 δ

(
z1 − z2

z0

)(
Ytwα (a, z1)⊗ eα

) (
Ytwλ+β(u, z2)⊗ ηλ+β

)
− z−1

0 δ

(
z2 − z1

−z0

)(
Ytwλ+β(u, z2)⊗ ηλ+β

) (
Ytwα (a, z1)⊗ eα

)
= z−1

0 δ

(
z1 − z2

z0

)(
Ytwα (a, z1)Ytwλ+β(u, z2)

)
⊗ (eα ◦ ηλ+β)

− z−1
0 δ

(
z2 − z1

−z0

)(
Ytwλ+β(u, z2)Ytwα (a, z1)

)
⊗ (ηλ+β ◦ eα)

= z−1
0 δ

(
z1 − z2

z0

)(
Ytwα (a, z1)Ytwλ+β(u, z2)

)
⊗ (eα ◦ ηλ+β)

− z−1
0 δ

(
z2 − z1

−z0

)(
Ytwλ+β(u, z2)Ytwα (a, z1)

)
⊗
(

(−1)(α,λ+β)eα ◦ ηλ+β

)
=

[
z−1

0 δ

(
z1 − z2

z0

)
Ytwα (a, z1)Ytwλ+β(u, z2)

− (−1)(α,λ+β)z−1
0 δ

(
z2 − z1

−z0

)
Ytwλ+β(u, z2)Ytwα (a, z1)

]
⊗ (eα ◦ ηλ+β)
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=

1

2

∑
p=0,1

z−1
2 δ

(
(−1)p

(z1 − z0)1/2

z
1/2
2

)
Ytwλ+β+(−1)pα

(
Y(−1)pα,λ+β(θp(a), z0)u, z2

)
⊗ (eα ◦ ηλ+β)

=
1

2
z−1

2 δ

(
(z1 − z0)1/2

z
1/2
2

)
Ytwλ+β+α (Yα,λ+β(a, z0)u, z2)⊗ (eα ◦ ηλ+β)

+
1

2
z−1

2 δ

(
−(z1 − z0)1/2

z
1/2
2

)
Ytwλ+β−α (Y−α,λ+β(θ(a), z0)u, z2)⊗ (eα ◦ ηλ+β)

=
1

2
z−1

2 δ

(
(z1 − z0)1/2

z
1/2
2

)
Ytwλ+β+α

(
YVL+λ

(a, z0)u, z2

)
⊗ (ε(α, λ+ β)ηλ+β+α)

+
1

2
z−1

2 δ

(
−(z1 − z0)1/2

z
1/2
2

)
Ytwλ+β−α

(
YVL+λ

(θ(a), z0)u, z2

)
⊗ (ε(−α, λ+ β)ηλ+β−α) (**)

=
1

2
z−1

2 δ

(
(z1 − z0)1/2

z
1/2
2

)
Ytwλ+(β+α)

(
YVL+λ

(a, z0)u, z2

)
⊗ ηλ+(β+α)

+
1

2
z−1

2 δ

(
−(z1 − z0)1/2

z
1/2
2

)
Ytwλ+(β−α)

(
YVL+λ

(θ(a), z0)u, z2

)
⊗ ηλ+(β−α)

=
1

2
z−1

2 δ

(
(z1 − z0)1/2

z
1/2
2

)
Ỹtwλ

(
YVL+λ

(a, z0)u, z2

)
+

1

2
z−1

2 δ

(
−(z1 − z0)1/2

z
1/2
2

)
Ỹtwλ

(
YVL+λ

(θ(a), z0)u, z2

)
= z−1

2

1

2

[
δ

(
(z1 − z0)1/2

z
1/2
2

)
+ δ

(
−(z1 − z0)1/2

z
1/2
2

)]
Ỹtwλ

(
YVL+λ

(a, z0)u, z2

)
(***)

= z−1
2 δ

(
z1 − z0

z2

)
Ỹtwλ

(
YVL+λ

(a, z0)u, z2

)
Lines (**) and (***) follow from Note 1 and Note 2, respectively, while the last equality

follows from the fact that δ(z) =
1

2

[
δ(z1/2) + δ(−z1/2)

]
. This completes the proof of

the Jacobi identity.
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Lemma 3.4.7 The map Ỹtwλ satisfies the L(−1)-derivative property; that is:

Ỹtwλ (L(−1)u, z) =
d

dz
Ỹtwλ (u, z)

Proof. Let u ∈M(1, λ+ β) ⊆ VL+λ:

Ỹtwλ (L(−1)u, z) = Ytwλ+β(L(−1)u, z)⊗ ηλ+β

=

(
d

dz
Ytwλ+β(u, z)

)
⊗ ηλ+β

=
d

dz

(
Ytwλ+β(u, z)⊗ ηλ+β

)
=

d

dz
Ỹtwλ (u, z)

The second equation follows from Proposition 9.4.3 of [FLM].

Since Ỹtwλ is a non-trivial intertwining operator of type
(

V
T
χ(λ)

L

VL+λ V
Tχ
L

)
for VL, we

now have:

N

(
V
T
χ(λ)

L

VL+λ V
Tχ
L

)
≥ 1

However, Prop. 3.2.2 (1) and Prop. 3.1.4 together imply that

N

(
V
T
χ(λ)

L

VL+λ V
Tχ
L

)
= 1

Thus, together with Lemma 3.4.1, we have shown the following:

Proposition 3.4.8 For any λ ∈ S and any irreducible L̂/K-module Tχ,

VL+λ � V
Tχ
L = V

T
χ(λ)

L

where Tχ(λ) is an irreducible L̂/K-module such that χ(λ)(a) = (−1)〈λ,ā〉χ(a), ∀a ∈ L̂/K.
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3.5 The Fusion Product V
Tχ1
L � V

Tχ2
L

We now compute the fusion product of two VL-modules of twisted type. Again, let

M i run over the set of equivalence classes of irreducible VL-modules, then by definition:

V
Tχ1
L � V

Tχ2
L =

∑
M i

NVL

(
M i

V
Tχ1
L V

Tχ2
L

)
M i

=
∑
λ∈S

NVL

(
VL+λ

V
Tχ1
L V

Tχ2
L

)
VL+λ +

∑
V
Tχj
L

NVL

(
V
Tχj
L

V
Tχ1
L V

Tχ2
L

)
V
Tχj
L

where S = {λ1, · · · , λk} is the set of representatives of equivalence classes of L in its

dual lattice L◦ and V
Tχj
L runs over the equivalence classes of irreducible θ-twisted VL-

modules.

We begin by quoting here only a part of an important theorem from [ADL]:

Theorem 3.5.1 ([ADL], Theorem 5.1 ) Let L be a positive-definite even lattice. For

any irreducible V +
L -modules M i(i = 1, 2, 3), the fusion rule of type

(
M3

M1M2

)
is either

0 or 1. The fusion rule of type
(

M3

M1M2

)
is 1 if and only if M i(i = 1, 2, 3) satisfy one

of the following conditions:

1. M1 = V
Tχ,+
L for an irreducible L̂/K-module Tχ and (M2,M3) is one of the fol-

lowing pairs:

(a) (VL+λ, V
T
χ(λ)

,±
L ), ((V

T
χ(λ)

,±
L )′, (VL+λ)′) for λ ∈ Lo such that 2λ /∈ L

2. M1 = V
Tχ,−
L for an irreducible L̂/K-module Tχ and (M2,M3) is one of the fol-

lowing pairs:

(a) (VL+λ, V
T
χ(λ)

,±
L ), ((V

T
χ(λ)

,±
L )′, (VL+λ)′) for λ ∈ Lo such that 2λ /∈ L

44



We now show the first lemma of this section:

Lemma 3.5.2 Let λ ∈ S. If χ1 and χ2 are central characters of L̂/K such that

χ2(a) = (−1)〈ā,λ〉χ1(a), ∀a ∈ L̂, then:

NVL

(
VL+λ

V
Tχ1
L V

Tχ2
L

)
= 1

Proof. By Theorem 5.1.4(a) of [ADL]:

NV +
L

(
(VL+λ)′

V
Tχ1 ,+

L (V
Tχ2,+
L )′

)
= 1

for λ ∈ L such that 2λ /∈ L and χ2(a) = (−1)〈ā,λ〉χ1(a), ∀a ∈ L̂. We also refer to

Proposition 3.7 of [ADL] for the following contragredient modules:

(VL+λ)′ ∼= VL−λ and (V
Tχ2,+
L )′ ∼= V

Tχ′2,+
L

where χ′2(a) = (−1)〈ā,ā〉/2χ2(a) for any a ∈ L̂. So:

NV +
L

( VL−λ

V
Tχ1 ,+

L V
Tχ′2,+
L

)
= 1

By Proposition 3.1.4,

NVL

( VL−λ

V
Tχ1
L V

Tχ′2
L

)
≤ NV +

L

( VL−λ

V
Tχ1 ,+

L V
Tχ′2,+
L

)
= 1
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Now by the well-known symmetries of fusion rules (Prop. 3.1.3):

NVL

( VL−λ

V
Tχ1
L V

Tχ′2
L

)
= NVL

(
(V

Tχ′2
L )′

V
Tχ1
L (VL−λ)′

)

= NVL

(
V
Tχ′′2
L

V
Tχ1
L VL+λ

)

= NVL

(
V
Tχ2
L

V
Tχ1
L VL+λ

)

= NVL

(
V
Tχ2
L

VL+λ V
Tχ1
L

)

= 1

In the above computation, the third equation follows from:

χ′′2(a) = (−1)(ā,ā)/2χ′2(a)

= (−1)(ā,ā)/2(−1)(ā,ā)/2χ2(a)

= χ2(a)

while the last equation (which is NVL

(
V
Tχ2
L

VL+λ V
Tχ1
L

)
= 1) follows from Section 3.4.

Lemma 3.5.3 Let χ1 and χ2 be central characters of L̂/K and χi any central character

of L̂/K such that χi(κ) = −1. Then:

NVL

(
V
Tχi
L

V
Tχ1
L V

Tχ2
L

)
= 0

46



Proof. Let εi ∈ {±}, i = 1, 2, then:

NVL

(
V
Tχi
L

V
Tχ1
L V

Tχ2
L

)
≤ NV +

L

(
V
Tχi
L

V
Tχ1 ,ε1
L V

Tχ2 ,ε2
L

)
(by Prop. 3.1.4)

= NV +
L

(
(V

Tχ2 ,ε2
L )′

V
Tχ1 ,ε1
L (V

Tχi
L )′

)
(by symmetries of fusion rules)

= NV +
L

( V
Tχ′2

,ε2

L

V
Tχ1 ,ε1
L V

Tχ′
i

L

)

≤ NV +
L

( V
Tχ′2

,ε2

L

V
Tχ1 ,ε1
L V

Tχ′
i
,εi

L

)
(by Prop. 3.1.4)

= 0

since all three are of twisted type (by Prop. 3.3.2(2)).

Thus, we have shown the following:

Proposition 3.5.4 Let λ ∈ L◦/L. If χ1 and χ2 are central characters of L̂/K such

that χ2(a) = (−1)〈ā,λ〉χ1(a),∀a ∈ L̂, then:

V
Tχ1
L � V

Tχ2
L =

∑
λ∗

VL+λ∗

where λ∗ runs over the set {λ ∈ L◦/L |χ2(a) = (−1)〈ā,λ〉χ1(a), ∀a ∈ L̂}.
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