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Records showed western overwintering grounds and western breeding grounds had negative trends over
time, with declines concentrated early in the breeding season, which were potentially more severe than in
the eastern population. Temporal variation in the western monarch also appears to be largely independent
of (uncorrelated with) the dynamics in the east. For our focal sites, warmer temperatures had positive
effects during winter and spring, and precipitation had a positive effect during spring. These climatic
associations add to our understanding of biotic-abiotic interactions in a migratory butterfly, but shifting
climatic conditions do not explain the overall, long-term, negative population trajectory observed in our
data.
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overwintering data from the eastern migration. Records 

showed western overwintering grounds and western breed-

ing grounds had negative trends over time, with declines 

concentrated early in the breeding season, which were 

potentially more severe than in the eastern population. 

Temporal variation in the western monarch also appears to 

be largely independent of (uncorrelated with) the dynam-

ics in the east. For our focal sites, warmer temperatures had 

positive effects during winter and spring, and precipitation 

had a positive effect during spring. These climatic associa-

tions add to our understanding of biotic-abiotic interactions 

in a migratory butterfly, but shifting climatic conditions do 

not explain the overall, long-term, negative population tra-

jectory observed in our data.

Keywords Climate change · Danaus plexippus · 

Hierarchical model · Monarch butterfly · Western 

population

Introduction

Issues of spatial and temporal scale have always been 

among the greatest challenges that face ecologists wishing 

to extrapolate beyond single species and local conditions 

(McGill 2010; Chave 2013). These concerns have been 

brought to the fore by recent decades of anthropogenic 

influence on the environment, as the public looks to ecolo-

gists for predictions regarding changes in regional or con-

tinental floras and faunas (Morisette et al. 2008; Tyliana-

kis et al. 2008). An important advance in the process has 

involved meta-analyses that allow global phenomena to be 

perceived through the accumulation of smaller-scale case 

studies (Parmesan 2006; Wu et al. 2011; Mantyka-Pringle 

et al. 2012). A further key contribution has come from the 

Abstract Migratory animals pose unique challenges 

for conservation biologists, and we have much to learn 

about how migratory species respond to drivers of global 

change. Research has cast doubt on the stability of the east-

ern monarch butterfly (Danaus plexippus) population in 

North America, but the western monarchs have not been 

as intensively examined. Using a Bayesian hierarchical 

model, sightings of western monarchs over approximately 

40 years were investigated using summer flight records 

from ten sites along an elevational transect in Northern 

California. Multiple weather variables were examined, 

including local and regional temperature and precipitation. 

Population trends from the ten focal sites and a subset of 

western overwintering sites were compared to summer and 
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development of hierarchical models that can effectively 

estimate parameters (such as the influence of weather) 

across large numbers of species and locations (Royle and 

Dorazio 2008; Ponciano et al. 2009; Congdon 2014; Nice 

et al. 2014). A logical implementation of such models 

involves species that utilize large regions, and migratory 

species are of particular interest because of complex life 

cycles that integrate climatic variation across heterogene-

ous local climates (Zipkin et al. 2012).

A prominent migratory animal in North America is the 

monarch butterfly (Danaus plexippus). This species has 

two independent migratory populations or subpopulations 

that together traverse much of the continent (Brower 1995; 

Brower and Malcolm 1991). In general, monarchs east of 

the Rocky Mountains migrate to Mexico while monarchs 

west of the Rocky Mountains migrate to locations along the 

Pacific coast of California (Urquhart and Urquhart 1977), 

aggregating in groves of Monterey pine (Pinus radiata), 

Monterey cypress (Cupressus macrocarpa), and blue gum 

(Eucalyptus globulus) (Weiss et al. 1991). Genetic stud-

ies have suggested that these populations are not distinct 

(Brower and Malcolm 1991; Lyons et al. 2012; Zhan et al. 

2014), and some western monarchs potentially overwinter 

in Mexico (Dingle et al. 2005; Morris et al. 2015). Both 

populations depend on host plants in the genus Asclepias, 

the milkweeds. These plants are ruderal in nature, and have 

experienced declines in recent years in some areas, poten-

tially in association with increased herbicide use on agri-

cultural lands (Hartzler 2010; Pleasants and Oberhauser 

2012; Zalucki and Lammers 2010). For the overwintering 

monarchs in Mexico, severe weather and forest degradation 

are further stressors that compound habitat and host loss on 

breeding grounds in the USA (Brower et al. 2012; Flock-

hart et al. 2015). Despite apparent stressors and declines in 

monarchs at their overwintering grounds (Vidal and Ren-

don-Salinas 2014; Saenz-Romero et al. 2012; Brower et al. 

2002), numbers have not declined at some of the fall stopo-

ver sites in the Eastern USA (e.g., Davis 2012) or summer 

breeding grounds (Ries et al. 2015). Also, weather has not 

been considered to have a significant effect on the eastern 

Monarch population during spring and summer (Zalucki 

et al. 2015). In contrast to the many detailed studies pub-

lished on the eastern monarchs (e.g., Oberhauser and Peter-

son 2003; Batalden et al. 2007; Brindza et al. 2008; Davis 

and Dyer 2015; Oberhauser et al. 2015), the western migra-

tion has received less attention (Koenig 2006).

Here we utilize a single-observer dataset on monarch 

populations at ten locations throughout the breeding range 

across northern California (Fig. 1). To our knowledge, 

this is the longest and most temporally intensive dataset 

on western monarchs, and consists of biweekly observa-

tions during monarch flights for between 27 and 42 years, 

depending on the site. In addition to these biweekly data, 

we use publically available numbers characterizing adult 

densities at coastal overwintering locations, as well as data 

describing abundances of eastern monarchs to compare 

western and eastern population dynamics [Shapiro 2014; 

The Xerces Society 2015; North American Butterfly Asso-

ciation (NABA) 2015; Monarch Net 2015]. Through exam-

ination of these data we address the following questions: 

have monarch observations per year changed over time 

(between years and within years) at our ten focal sites? 

And, to what extent can fluctuations in observed monarchs 

per year at focal sites be predicted by local and regional 

weather variables, both at the summer sites and at the over-

wintering grounds? With respect to these questions, we pre-

dict monarch numbers to be declining, as previous studies 

have shown negative trends over time for most butterflies 

in the region, especially at low-elevation sites (Forister 

et al. 2011; Harrison et al. 2015). We also hypothesize that 

warming conditions will have had a negative influence on 

the population, as has been observed for other butterflies in 

northern California (Casner et al. 2014). We also ask, as an 

issue of secondary interest, if dynamics at our transect sites 

(on the western summer grounds) are similar to patterns 

observed at the California overwintering sites. This ques-

tion is motivated in part by previous work by Stevens and 

Frey (2010) who suggested a positive association between 

breeding season precipitation in our study area and inter-

annual variation in monarch counts at the coastal overwin-

tering areas. Finally, in order to place the western popula-

tions in the larger, continental context for monitoring and 

management of this migratory species, we compare tem-

poral dynamics among the following datasets: the western 

summer grounds (our ten focal sites), the western overwin-

tering grounds, the eastern summer grounds, and the east-

ern (Mexican) overwintering grounds (Shapiro 2014; the 

Xerces Society 2015; NABA 2015; Monarch Net 2015).

Materials and methods

Data collection and sampling locations

Data were recorded from 1972 up to and including 2014 

at ten locations in Northern California by A. M. S. (Shap-

iro 2014). These locations describe an elevational transect 

starting at sea level and extending up over the crest of the 

Sierra Nevada mountains at 2775 m, and down the eastern 

slope to Sierra Valley. Sites encompass an array of habitat 

types, from saltwater marsh to sub-alpine barrens. Each site 

was visited every 2 weeks and the presence or absence of 

monarchs was noted (henceforth presences are referred to 

as “day positives”, as in other publications from these data, 

e.g., Forister et al. 2010). Surveys were conducted via the 

Pollard walk method (Pollard 1977) on days suitable for 
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butterfly flight (sunny days with little wind). Abundance 

data (counts of adult monarchs) are also available from five 

of our ten sites, and from a subset of years (1999–2012). 

The abundance data have been used previously to show that 

day positives are suitable proxies for monarch abundance 

(Casner et al. 2014), and we present limited analyses of the 

abundance data here [Electronic Supplementary Material 

(ESM) 1].

Count data from California overwintering locations were 

obtained from the Xerces Society Thanksgiving Count 

Database (The Xerces Society 2015). Data were collected 

from 1997 to 2014 by volunteers. Data from six overwin-

tering counties were gathered for use in the present analy-

ses: Marin, Monterey, San Luis Obispo, San Diego, Santa 

Barbara, and Santa Cruz. The overwintering data contains 

gaps (years without observations), but counties were cho-

sen that had enough individual sites within them to provide 

coverage of the greatest number of years (1997–2014). All 

sightings within a county were averaged per year, giving 

a mean count/site per year. Data for the eastern monarch 

population were obtained from Monarch Net (Monarch 

Net 2015). These data consist of NABA Fourth of July 

counts from 1990 to 2009 (NABA 2015). Counts span five 

large geographical regions (north east, north central, mid 

east, mid central, and south; Fig. 1) and were collected 

by volunteers. Hectare overwintering data from Mexico 

were obtained from Monarch Butterfly Biosphere Reserve 

from 1994 to 2003 and World Wildlife Fund-Telcel Alli-

ance from 2004 to 2015; the compiled data were accessed 

through The Xerces Society (2015).

Weather data

Weather specific to our ten transect sites was obtained from 

the PRISM working group (PRISM Climate Group 2015). 

These data are interpolated from neighboring weather sta-

tions incorporating local differences in topography, thus 

they potentially provide a more robust estimate of site-

specific weather than raw data from the closest weather 

stations (Daly et al. 2008), which are subject to error and 

missing values. Data were grouped seasonally and reflect 

the water year, such that the 1980 water year, for exam-

ple, starts with the fall of 1979. Specifically, “fall” is the 

previous year’s September, October, and November; “win-

ter” consists of the previous year’s December and the focal 

year’s January and February; “spring” is March up to and 

including May; and “summer” is June up to and including 

August. For each season, average daily temperature and 

Fig. 1c  a Map of California in the Western USA, including focal 

sites where observations of adults during the summer flight season 

were recorded [Suisun Marsh (A), Gates Canyon  (B), West Sacra-

mento  (C), North Sacramento  (D), Rancho Cordova  (E), Washing-

ton (F), Lang Crossing  (G), Castle Peak  (H), Donner Pass (I), and 

Sierra Valley  (J)]. Large, open circles along the coast are overwinter-

ing locations (see main text for details) from which abundance data 

were collated for use in analyses; solid dots are overwintering loca-

tions from which weather data were gathered for use in a subset of 

climatic analyses. b Map of North America showing eastern regions 

represented by count data from the summer flight season, as follows: 

North Central (1), (2) North East (2), Mid Central  (3), Mid East 

(4), and South (5). c Diagram of datasets analyzed, as follows: “day 

positives” (I; counts of days on which adult monarchs were observed 

per year) at ten sites across the western breeding grounds; counts of 

adults at five of the low-elevation western breeding sites (II); counts 

of overwintering adults from a subset of western overwintering sites 

(III; circled on map; summary data from the eastern migration includ-

ing summer population indices and hectares occupied by overwinter-

ing adults in Mexico (IV); climatic data from each of the ten focal 

western breeding sites (V); regional climatic conditions (VI; MEI 1 

and MEI 2);  climatic conditions at the Pacific overwintering sites 

(VII, VIII; treated separately, as explained in main text). Our focal 

dataset (day positives) is highlighted with a gray background and 

connected to climatic datasets (V–VIII) by single-headed arrows 

to represent multiple regressions. Relationships among monarch 

datasets (I–IV) were explored with correlations, indicated by dou-

ble-headed arrows (for simplicity, not all connections are drawn). 

Illustration of adult monarch butterfly, Danaus plexippus, by Anne 

Espeset
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total precipitation were calculated (precipitation included 

snow for the high-elevation sites). Winter average tempera-

ture and precipitation data from PRISM were also obtained 

for each California overwintering location within the fol-

lowing eight counties: Alameda, Marin, Mendocino, Mon-

terey, San Diego, San Luis Obispo, Sonoma, and Ventura. 

These counties were chosen to ensure that sampling encap-

sulated a wide range of overwintering conditions along 

the coast. In all cases (for focal and overwintering sites), 

PRISM data were taken from the latitude and longitude 

centroid of each site (using the default setting of 4-km2 

cells).

Because of the migratory nature of the monarch, we 

were interested in the possibility that regional weather vari-

ables could provide an informative contrast to the local data 

generated by PRISM. The multivariate El Niño Southern 

Oscillation index (MEI) was used to explore the impact of 

regional weather drivers (Wolter and Timlin 1993). The El 

Niño Southern Oscillation index (ENSO) is associated with 

unusual precipitation patterns throughout northern Califor-

nia (Schonher and Nicholson 1989), and MEI is the first 

principal component extracted from the analysis of six vari-

ables that together provide an index of the intensity of the 

ENSO for a given month. In order to reduce the complex-

ity of the data to a manageable form, an additional prin-

ciple components analysis on the MEI values across all 

12 months was performed, and the first two components 

(MEI 1 and MEI 2) were extracted for analyses of monarch 

dynamics.

Overview of statistical methods

Analyses consisted of multiple, distinct models and com-

binations of data sources (Fig. 1c). The focus of analyses 

is data from our ten sites across the breeding grounds, 

because it is from those sites that we have the most reliable, 

temporally consistent data. 

1. First, a hierarchical Bayesian model was used to study 

the effects of local and regional weather variables on 

monarch observations at focal sites across the sum-

mer breeding grounds (“local” weather for these mod-

els refers to PRISM data from the focal sites, while 

“regional” refers to MEI, as described above). This 

model included year as a predictor variable, and thus 

produced estimates of change in monarch observations 

across the breeding sites through time. As a comple-

mentary analysis, individual count data (available for 

a subset of years and sites) were used to ask if any 

changes across years have been localized to particular 

times of the year (more details below).

2. Next, a path analysis was used to place effects of 

weather and year effects (change over time in monarch 

observations) into a context that allows for the direct 

quantification of shifting climatic conditions on butter-

fly observations.

3. The approach in the first step (a hierarchical Bayes-

ian model) was repeated, but investigated the effects 

of climate at the Pacific overwintering sites on mon-

arch observations across the summer breeding grounds 

(in other words, investigating potential connections 

between conditions experienced during overwintering 

and observations made the following flight season).

4. Finally, simple correlations were used to investigate 

associations between all monarch datasets: our focal 

sites (observations during the breeding season), west-

ern overwintering sites, eastern regions, and Mexican 

overwintering sites. Because this step involved a large 

number of comparisons, we focus primarily on overall 

patterns rather than significance testing of individual 

correlations.

Hierarchical models

The impact of weather variables on monarch day posi-

tives was explored using a hierarchical Bayesian modeling 

approach. This analytical method is described in detail 

elsewhere (see Nice et al. 2014; Harrison et al. 2015). 

Briefly, the model estimates posterior probability distribu-

tions (PPDs) for partial regression coefficients associated 

with model terms at multiple hierarchical levels, in this 

case site and transect wide. Information from each site is 

used to inform transect-wide estimates and vice versa. A 

binomial response consisting of day positives and num-

ber of visits for a given year (i.e., the proportion of posi-

tive visits in a year) and site was modeled, thus accounting 

for variation in sampling effort among years. Model terms 

included site-specific seasonal average temperatures and 

total precipitation (summed over season) and our indices of 

MEI (as described above). Year was included in the model 

to quantify inter-annual population trends not directly 

associated with fluctuating climatic conditions. All predic-

tor variables were converted to standardized z-scores prior 

to modeling. PPDs for each model term were estimated 

using the JAGS sampler [version 3.4.0 (Plummer 2013)], 

a Markov chain Monte Carlo (MCMC) algorithm, imple-

mented in R (R Core Team 2014) using the rjags package 

[version 3-15 (Plummer 2015)]. The model was run using 

two search chains and uninformative priors and hyperpriors 

for 500,000 iterations of the sampling algorithm. To gauge 

model performance, effective sample sizes (ESS) were cal-

culated for each parameter estimate, and trace plots of esti-

mates against iterations were examined to evaluate mixing.

As described above, this modeling approach was used 

for different sets of weather variables (Fig. 1c). First, 

regional and local (associated with each focal site) weather 
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variables (MEI 1, MEI 2, temperature, and precipitation) 

were used to predict monarch observations at the focal sites 

across the breeding grounds. Second, the impact of over-

wintering weather conditions on subsequent-year observa-

tions was examined across the breeding grounds. Because 

of the large number of overwintering weather variables and 

the large number of relationships (associated with eight 

overwintering counties potentially affecting observations 

at ten breeding sites), two analyses were run with overwin-

tering weather variables: first with all of the overwintering 

temperature data, and second with all of the overwintering 

precipitation data (analyses were also run with all weather 

data combined, which did not qualitatively alter results 

but did broaden credible intervals and lower precision as a 

result of reduced power). Year was included as a covariate 

in all models.

Climatic trends and path analyses

The analyses described in the previous section addressed 

the impact of climatic variables (local, regional and at the 

overwintering sites) on monarch observations at the focal 

breeding ground sites. To explicitly examine the impact of 

climate change on monarch day positives, a path analysis 

was used to compare the direct effect of year on monarchs 

with the indirect effect of year as mediated by weather. The 

path analysis was built using a suite of hierarchical Bayes-

ian regression models that together characterized the path 

models. Specifically, we separately modeled the effect of 

year on each endogenous climate variable (assuming a 

normally distributed response variable, as opposed to the 

binomially distributed response variable described above). 

Path coefficient estimates describing the effect of climate 

variables on day positives were taken from the hierarchical 

multiple regression model described above which included 

all climate variables as predictors. PPDs of all models 

were characterized using two search chains each of 25,000 

MCMC iterations. The mean and 95 % credible intervals 

from these distributions were used to characterize associ-

ated path coefficients. Indirect effects of year as mediated 

by a given climate variable were calculated by taking the 

product of the appropriate path coefficients. In order to 

incorporate uncertainty from parameter estimates, those 

products were generated from 50,000 samples from each 

of the PPDs for the two path coefficients involved in each 

comparison (means and 95 % credible intervals were then 

retained from the distribution of products).

Localization of temporal trends within years

The analyses described above included year as a predictor 

variable and thus estimated changes in monarch observa-

tions across the decades encompassed by our study. It is 

also of interest to ask if any demographic trends over the 

years were focused on any particular time during the breed-

ing season, which could be informative with respect to 

causes of population trends (e.g., associated with the over-

wintering generation or with late-season immigrants from 

more distant breeding areas). To address this, counts of 

individuals were utilized from five of our focal sites (where 

such data are available), for 1999 to 2013, in a sliding win-

dow regression analysis. Specifically, counts of monarchs 

were calculated from 50-day windows organized by ordinal 

dates, counting from the first of the year. For each of those 

windows, the total count was regressed against years and 

the beta coefficient (slope of count vs. years) was saved and 

examined for intra-annual patterns in inter-annual trends.

Comparisons between western and eastern populations

To examine the relationship between eastern and western 

monarch populations, Spearman’s rank correlation coef-

ficients were calculated using data from 1997 to 2014 for 

eastern monarchs obtained from NABA through Monarch 

Net, overwintering data for eastern (at Mexican sites) and 

western monarchs (at California sites) obtained through the 

Xerces society, and day positives per year for each of our 

transect locations. Eastern regional count data were only 

available from 1997 onwards, therefore only those Cali-

fornia overwintering locations with high abundances and 

complete records since 1997 were used for this analysis. 

California overwintering data were obtained from counts 

conducted in six counties spanning the mid to southern 

coast of California (Fig. 1). As with hierarchical Bayesian 

models, these analyses were performed using R (version 

3.1.2, R Core Team 2014).

Results

Annual trends, climatic impacts, and the effect of a 

changing climate

The hierarchical Bayesian approach successfully character-

ized PPDs for partial regression coefficients for all models 

in which weather variables and year predicted monarch 

observations (day positives). Visual inspection of trace 

plots confirmed adequate mixing of model chains. ESS 

necessarily varied between parameter estimates, but were 

always greater than 1000. A decline in monarch observa-

tions is evident in both raw day positives (Fig. 2a), and in 

the year coefficient estimated across sites from the hier-

archical model (Fig. 2b). The point estimate for the year 

coefficient as a log odds ratio across all sites was −0.6 

(Fig. 2a). The exponential transformation of that coefficient 

(from log odds ratio to odds ratio) is 0.55, which means 
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that the odds ratio of observing a monarch has decreased by 

that factor (0.55) for every year. A decline can also be seen 

in plots of adult counts from our focal sites for the subset 

of recent years in which counts are available (ESM 1). The 

declining observations of monarchs are not spread equally 

across the breeding season, but appear to be localized ear-

lier in the season (Fig. 2c). It is important to note that local 

breeding at the low-elevation sites (Fig. 1c, sites A–E) has 

not been observed before May (A. M. S., personal observa-

tion), and in some years local breeding never happens. Thus 

the reduced early spring numbers (Fig. 2c) likely involve a 

reduction in immigration from coastal overwintering sites. 

Reduced numbers of individuals observed at a particu-

lar time of the year could also be a result of phenological 

shifts, but monarchs at the five low-elevation sites have not 

been appearing earlier or later in the spring (F1,13 = 0.06; 

P = 0.81) nor has phenology shifted at the end of the sea-

son (F1,13 = 0.41; P = 0.53).

Warmer temperatures in winter and spring (Fig. 3; for 

results from all weather variables, see Table 1 and ESM 

2–4) were positively and consistently associated with mon-

arch sightings at our ten focal sites. The standardized beta 

coefficients for winter and spring temperatures estimated 

across all breeding sites were 0.23 and 0.26, respectively. 

Spring precipitation had a positive effect across sites, while 

summer precipitation had a more heterogeneous effect 

across sites (Fig. 3). The impact of overwintering condi-

tions on monarch observations at our focal sites the follow-

ing summer was also examined; complex and site-specific 

relationships were revealed (ESM 5). In particular, both 

temperature and precipitation have strong and significant 

effects at a subset of the overwintering sites, but the direc-

tion of the effect (from positive to negative) varies (ESM 

5). A path analysis allowed us to address the potential influ-

ence of climate change on monarch populations through 

the examination of the indirect effect of year as mediated 

by a given weather variable. The direct effect of year was 

much greater than the indirect effect of year as mediated by 

any one weather variable (Fig. 4).

Relationship between eastern and western monarch 

populations

In the west, overwintering population size and day positives 

at the transect sites (in the subsequent year) were positively 

correlated (Fig. 5). Monarch overwintering counts and day 

positives along the transect were all negatively correlated 

with year, consistent with the declining annual trend reported 

from analyses above. Inspection of abundance data from the 

western overwintering sites (ESM 6) confirms the downward 

trajectories during the years studied. In contrast, observa-

tions of eastern breeding locations tended to be weakly or 

positively related to year, although a decline is evident at the 

Mexican overwintering grounds (negatively associated with 

year). Eastern and western populations show no significant 

correlations (neither positive or negative; all P-values were 

> 0.05), with one anomalous exception (Gates Canyon and 

Fig. 2  a Temporal trends of monarch fractional day positives (FDPs) 

from 1972 to 2014. These values (y-axis) correspond to the fraction 

of days during the year in which a monarch adult was seen (out of 

the total number of visits in that year) at the focal sites. Letters (labe-

ling the observations for each year) correspond to the site labels, as 

in Fig. 1. Fitted lines from simple linear regressions are shown for 

visualization (for each site separately as gray lines, and for all of the 

sites as the darker line). b Posterior probability distributions (PPDs) 

for the coefficient associated with year from a hierarchical Bayes-

ian model predicting monarch observations across the ten focal sites. 

PPDs are shown in light gray for each site, and across sites in black; 

similarly, tick marks at the bottom of the graph show the mean esti-

mate for each curve. Dashed lines indicate 95 % credible intervals 

for the PPD across sites. c Beta coefficients from moving window 

analysis of monarch abundance at five summer breeding sites where 

data on counts of individuals were available: each point indicates 

the relationship between abundance and year for monarch counts in 

50-day windows (the x-axis is the midpoint of those windows in days 

from the start of the year). Increasingly negative values indicate more 

severe declines, with regressions significant at P < 0.05 shown in 

black. Dotted horizontal line at zero shown for reference
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the mid-central eastern region), suggesting in general that 

an abundant year for one region is not necessarily an abun-

dant year for the other (Fig. 5); for further details, see ESM 

7 for a comparison of distributions of correlation coefficients 

within and among geographic regions.

Discussion

Monarch butterflies have received a great deal of attention 

as one of the most conspicuous migratory species in North 

America, but most research has focused on the larger, 

eastern migration. In this study, we found that the western 

migration of Danaus plexippus shows evidence of decline 

which is apparent in raw day positive data (Fig. 2a), abun-

dance data from our focal sites (ESM 1), and abundance 

data from the Pacific coast overwintering sites (ESM 6). 

Moreover, the declines at the western breeding sites are 

concentrated early in the season, while abundances of 

adults have not been as reduced closer to the end of the 

breeding season (Fig. 2c). When considering this pattern in 

light of the associated decline in overwintering population 

size, it suggests that mortality could be increasing either 

during or immediately after overwintering. Alternatively, 

Fig. 3  PPDs for a subset of 

weather variables predicting 

monarch observations from 

hierarchical Bayesian models 

[for results from all weather 

variables, see Table 1 and Elec-

tronic Supplementary Material 

(ESM) 2–4]. PPDs are shown 

in light gray for each site, and 

across sites in black; similarly, 

tick marks at the bottom of the 

graph show the mean estimate 

for each curve. Insets  The 

probability that each site has 

a non-zero (either positive or 

negative) coefficient is shown 

(calculated as the proportion of 

the corresponding PPD greater 

than or less than zero). The 

bars indicating probability are 

labeled by site (A–J; see Fig. 1), 

and for the whole model. Bars 

above the horizontal line (at 

zero) are for coefficients with 

mean positive values, while 

bars below the horizontal line 

are for negative coefficients (the 

top three panels are dominated 

by positive coefficients, while 

the bottom panel includes a mix 

of positive and negative coef-

ficients)
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perhaps fewer butterflies are able to successfully migrate 

in the fall from their summer breeding grounds back to 

their overwintering colonies. Regardless, subsequent gen-

erations during the summer are able to at least partially 

rebound.

The climatic models we developed successfully pre-

dicted monarch observations. Warmer springs and win-

ters, for example, have pronounced and positive effects on 

the frequency of monarch observations during the sum-

mer flight (Fig. 3). These effects of weather could be the 

result of positive associations with overwinter survival 

and reproduction of the first summer generation, although 

it is important to remember that these effects are of much 

smaller magnitude compared to the direct, negative asso-

ciation with years (Fig. 4). The positive effects of tempera-

ture could also be mediated through increased nectar and 

host plant growth, although we can only pose these pos-

sibilities as hypotheses at this time. The positive effect of 

precipitation is consistent with previous climatic modeling 

for the western monarch that suggested water as a limiting 

factor (Stevens and Frey 2010).

Although our analyses revealed effects of weather on 

monarch observations, it is clear that shifting climatic con-

ditions are not the major factor in the observed linear popu-

lation declines. This result can be seen both in the lack of 

directional change in most weather variables studied, and in 

the very small indirect effects of year as mediated through 

weather (Fig. 4). Summer temperatures are an exception as 

they are rising across our focal sites, but they do not appear 

to have an effect on monarch observations (Fig. 4; ESM 3).

The large, negative, direct effect of year suggests other 

(non-climatic) drivers of decline. In studies on eastern 

monarchs, it has been posited that dwindling host plant 

populations (Flockhart et al. 2015; Pleasants and Ober-

hauser 2012; Zalucki and Lammers 2010; Brower et al. 

2006), the use of insecticides (Krischik et al. 2015; Pecenka 

and Lundgren 2015), and overwintering habitat destruc-

tion (Vidal and Rendon-Salinas 2014; Saenz-Romero et al. 

2012; Brower et al. 2002) are primary drivers of decline. 

To our knowledge, a decline in milkweed abundance has 

not been reported within the range of the western monarch. 

The intra-annual pattern of declines (Fig. 2c) is relevant to 

this issue, as it suggests a reduced number of early spring 

immigrants over the years. If host plants throughout the 

breeding season were limiting, we might expect declines 

to be spread more evenly throughout the year or even con-

centrated towards the end of the season. Given the likely 

link between overwintering declines (ESM 6) and reduced 

immigration to the breeding grounds, habitat loss along the 

California coast is potentially important (Jepsen and Black 

2015), and we can suggest that overwintering sites would 

be the logical next step for focused investigation. The need 

to better understand overwintering sites is also highlighted 

by the heterogeneous weather effects that we observed 

along the California coast, potentially mediated by varia-

tion in habitat and micro-climate. In general, a large num-

ber of butterflies are known to be declining in Northern 

California (Forister et al. 2010, 2011), for which causes are 

likely multifarious, though a combined effect of land use 

change and warming conditions has been implicated for 

many species (Casner et al. 2014). Finally, we compared 

population dynamics among western summer grounds, 

western overwintering sites, and the eastern migration, 

both breeding and overwintering sites (Fig. 5). The lack 

of correlation between western and eastern observations is 

consistent with previous studies (Frey and Schaffer 2004; 

Table 1  Standardized 

regression coefficients 

from hierarchical Bayesian 

models relating temperature, 

precipitation, and multivariate 

El Niño Southern Oscillation 

index (MEI) values (El 

Niño Southern Oscillation 

index indices) to monarch 

observations at the ten focal 

sites (coefficients are in log-

linear units from binomial 

regressions)

Numbers correspond to posterior probability distributions visualized in Fig. 3, and Electronic Supplemen-

tary Material (ESM) 2–4
a Coefficients with 95 % credible intervals that do not overlap zero
b Coefficients estimated across all sites

Temperature Precipitation MEI

Winter Spring Summer Fall Winter Spring Summer Fall 1 2

Suisun Marsh 0.26a 0.21a
−0.08 0.04 −0.14 0.26a 0.17 0.05 0.32 0.0029

Gates Canyon 0.30a 0.30a
−0.01 0.09 −0.05 0.17 −0.23 0.03 0.36 −0.052

West Sacramento 0.25a 0.32a
−0.01 0.09 −0.06 0.14 −0.02 0.12 0.37 −0.017

North Sacramento 0.24a 0.27a
−0.08 0.11 −0.05 0.16 −0.16 0.14 0.28 0.11

Rancho Cordova 0.27a 0.27a
−0.01 0.12 −0.03 0.23a 0.09 0.06 0.35 −0.034

Washington 0.25a 0.25a
−0.09 0.11 −0.07 0.15 0.06 0.06 0.33 0.0041

Lang Crossing 0.14 0.28a
−0.05 0.13† −0.08 0.14 −0.11 0.07 0.37 0.023

Donner Pass 0.17 0.22 0.06 0.07 −0.09 0.1 −0.2 0.05 0.34 −0.17

Castle Peak 0.24 0.26a 0.05 0.12 −0.08 0.16 0.12 0.07 0.35 −0.027

Sierra Valley 0.23a 0.24a 0.05 0.06 −0.05 0.12 0.04 0.05 0.32 −0.13

Across sitesb 0.23a 0.26a
−0.02 0.09 −0.07 0.16a

−0.02 0.07 0.34 −0.028
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Stevens and Frey 2010) and suggests that the two popula-

tions are fluctuating independently.

In conclusion, we have successfully modeled effects 

of weather on monarch observations along an elevational 

transect encompassing a portion of the summer breeding 

ground of the western subpopulation of the monarch butter-

fly. Although we were able to detect climatic effects, there 

is clearly more to be learned with respect to biotic-abiotic 

interactions playing out across the geographic extent of the 

range of the western monarch. This is particularly appar-

ent in the variety of weather effects observed at the coastal 

overwintering grounds. In contrast to the complexity of 

weather, a negative, annual trend in monarch observa-

tions was readily detected across all of the focal sites. The 

annual trend is not explained by shifting climatic condi-

tions, which have been implicated in the declines of other 

butterflies in the region (Casner et al. 2014). Furthermore, 

the decline in observations is correlated with decreasing 

numbers at the overwintering sites that we studied along 

the Pacific coast.

An important caveat to these results is the fact that we 

have focused our analyses on observations of adults during 

the breeding season from ten sites that encompass a broad 

elevational transect, but a narrow portion of the breeding 

Fig. 4  Path diagram illustrating direct and indirect effects of year 

and weather variables on monarch sightings (day positives), as well 

as effects of year on weather variables. Values next to each path are 

means from Bayesian PPDs, and 95 % credible intervals (from the 

same analyses reported in Fig. 3: ESM 2–4). Indirect effects of year 

on day positives mediated through weather variables were all small 

in comparison to direct coefficients, and are shown as italicized gray 

font above the names of the weather coefficients. Asterisks indicate 

coefficients whose 95 % credible intervals do not overlap zero. Lines 

representing negative relationships end in circles. For abbreviations, 

see Figs.  2 and 3
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grounds. It is possible that the declines we have observed 

are the consequence of a shift in migration behavior rather 

than a demographic effect, although we have no particu-

lar reason (anecdotal or otherwise) to expect such a geo-

graphic shift, especially since our ten sites are not marginal 

to the breeding range. Indeed, analyses by Stevens and Frey 

(2010) place our transect within the geographical region 

best suited for monarch breeding, as determined by both 

thermal conditions, and host plant availability. The corre-

lations observed between our focal sites and the western 

overwintering sites (Fig. 5) also suggest general declines 

rather than any localized shift in migration patterns. 

Finally, it is interesting to note that dynamics of the sites 

that we have studied (both the summer sites and overwin-

tering sites) appear to be uncorrelated with dynamics in the 

eastern subpopulation. Thus, even though genetic differen-

tiation between the western and eastern subpopulations has 

not been detected, from a conservation and management 

perspective they should be considered different entities.
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