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Abstract

Detection and Segmentation Using Less Supervision

by

R. Austin McEver

Today’s computer vision methods attempt to solve problems ranging from image

classification to semantic segmentation. While some of these models are quite effective

at their tasks, the most effective ones require a training set complete with a large set of

heavily annotated data, but these large datasets and their annotations do not come with-

out a cost. Dataset curators spend countless hours collecting data and even more data

annotating it with semantic labels suitable for training today’s methods. The expenses

associated with data collection and annotation grow exponentially as the data becomes

increasingly more scientific and difficult to annotate. While any lay person can take a

photo of a dog and label it, collecting videos of the ocean floor and labelling the species

in those videos can only be done with a budget sufficient to compensate a team of expert

marine scientists. These costs motivate computer vision methods that can learn from less

data, cheaper annotations, and less supervision. This thesis aims to provide some of these

methods. We first introduce Point-supervised Class Activation Maps (PCAMs) to aid in

semantic segmentation of images given only point level labels. Then, we introduce the

Dataset for Underwater Invertebrate and Substrate Analysis (DUSIA), which comes with

a limited set of partial labels. To address the challenges associated with learning from

those labels, we train the Context Driven Detector with a Negative Region Dropping

method, which enables better performance given partial labels. Finally, we introduce

Context-Matched Collages as a means for generating additional training samples at a

relatively low cost, leading to state of the art object detection performance on DUSIA.
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Chapter 1

Introduction

The proliferation of imaging and video technology opens up many possibilities for sci-

entific research. Scientists from all domains collect images and videos to aid in their

research, but, to use these images and videos to their fullest extent, scientists must in-

vest heavily in annotating the image and video data to distill the relevant information

from the present pixel values. In many cases, this means hiring annotators to label images

or videos, which can be time consuming, tedious, and expensive in many cases especially

when the data requires a specially trained, domain-expert annotator.

This thesis first addresses semantic segmentation of natural images. That is, we aim

to present a method that can label every pixel in an image as either a class of interest

or background. In short, natural images are images where the objects of interest are

common objects like cats, dogs, bicycles, bottles, or people. Labelling every single pixel

by hand can be quite costly, but today’s best semantic segmentation models require that

human annotators label a large training set with pixel-level labels. These models then use

that training set to learn how to label unseen images, often referred to as the validation

and testing sets.

The first method presented in this thesis, Point-supervised Class Activation Maps
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Introduction Chapter 1

(PCAMs) aim to provide a means for training on images labelled with just a few points

per image (i.e. using less supervision) to accomplish the semantic segmentation task. If

segmentation can be accomplished with a training set containing just a few points per

training image (rather than every single pixel in an image), then we may be able to au-

tomate segmentation using significantly less human annotation and resources associated

with collecting those annotations.

This thesis then presents a more challenging, scientific dataset in the Dataset for

Underwater Substrate and Invertebrate Analysis (DUSIA). Because these underwater

videos are much more difficult to annotate than natural images, we tackle the problem

of partially annotated object detection via the novel Context-Driven Detector (CDD).

DUSIA’s videos generally have less supervision than natural image datasets in that many

individuals of species of interest in DUSIA may not have any label at all, and, along-

side CDD, we present Negative Region Dropping as a method to address this partial

supervision problem. Negative Region Dropping enables better object detection with

less supervision.

To solve the object detection problem, a model should simply draw a bounding box

around each object of interest rather than labelling every single pixel in an image. CDD

addresses this problem by incorporating explicit context labels into the object detection

process to enhance the model’s prediction power. Using CDD and out of the box tracking

algorithms, we are able to roughly count the invertebrates present in DUSIA, which is a

major goal of the marine science projects that collect these videos.

Because the amount of data in DUSIA is somewhat limited compared to simpler

datasets, we introduce Context Matched Collages that aim to generate new training

examples. By increasing the size of our training set in this way, we can further improve

object detection performance and better detect underwater invertebrates.

The remainder of this thesis aims to motivate and describe these major contributions

2



Introduction Chapter 1

in much more detail.

1.1 Motivation

While image and video technology enable new research and new forms of automation,

the abundance of data generated by this technology can be overwhelming to deal with.

Without metadata and annotation, images and videos are just more numbers to a com-

puter. As a result, scientists and researchers allocate many resources to the collection of

not only data but also to the annotation of that data so that the data itself can be of

more use and so that future annotations might be automated.

The methods and contributions that follow generally aim to alleviate some of the

burden associated with collecting annotations. We present methods that can learn to

create pixel wise annotations from annotation of just a few pixels, methods that aim

to detect every individual of a species in an image when only some are annotated, and

methods to help make the most of existing annotations. These sorts of methods aim to

reduce the expenses associated with the annotation process and aim to ultimately create

a future where humans can spend less time and effort on tedious annotations and begin

to rely more on computer automated annotation even for challenging, scientific data.

For example, semantic segmentation is one of the most challenging problems in com-

puter vision, and collecting annotations for every pixel in a given image can take a long

time for humans even when the image classes are relatively simple. Bearman et al [1]

showed that collecting pixel level annotations on the VOC2012 natural image dataset [2]

took on average 239.7 seconds per image. Collecting image level labels for the same

images took on average 20.0 seconds per image, and point level labels where just a few

pixels per image were annotated took only 22.1 seconds per image. Clearly, some types

of annotation are much more difficult to collect than others, and annotation budgets are

3



Introduction Chapter 1

important to consider and allocate when taking on a new project.

As mentioned before, scientific data can be much more expensive to annotate, but

much can be learned from scientific data. DUSIA’s underwater videos are collected by

the Marine Applied Research and Exploration (MARE) group who use them to advance

their own marine research. They aim to survey the ocean floor to learn where in the

ocean different species lives so that they can better influence policies to protect these

underwater organisms. Beyond protection, MARE also simply wants to explore and

learn more about life in the ocean, which can lead to new discoveries down the line.

However, many of their resources must be dedicated to annotation. Currently, all of the

video they collect must be reviewed by humans and annotated by hand, and it is done

in multiple passes such that a video takes many times its length in human annotator

time before it is fully annotated. Further, the humans who annotate this video must be

trained scientist as laypeople have trouble distinguishing between the different species

occurring in the video. For example, it can be difficult to distinguish between black coral

and gray gorgonians as the remote operated vehicle (ROV) drives over and records the

ocean floor.

This thesis aims to address some of those issues more via methods that can perform

computer vision tasks with less supervision.

1.2 Challenges and Contributions

Creating computer vision methods to help create detailed annotations of relatively simple

data, like images of dogs and cats, still presents a challenge for researchers. These days,

many datasets like VOC2012 [3] and MS-COCO [4] (discussed in more detail in Chapter

2) contain many annotated examples of many common object classes typically found

in so-called “natural images”, but methods for automating annotation of this data are
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not perfect and still require a lot of data that is finely annotated. Chapter 3 will visit

some of those applications in much more detail presenting a method that can enable the

pixel-wise annotation of natural images after training on images that are annotated with

just a few pixels each.

More specifically, Chapter 3 contributes a method for incorporating point supervision

into a pipeline for weakly supervised semantic segmentation. This contribution enables

the ability to train a semantic segmentation model with images labelled only with point

or image level labels.

While collecting pixel level labels for natural images may take many resources because

of the time required to make such detailed labels, almost anyone can annotate natural

images because the classes of interest are common objects like cats, dogs, and people.

However, many images and videos from scientific domains require specialized expertise

to annotate. Requiring specialized knowledge makes the annotation process much more

expensive because only trained scientists can annotate the data. As a result, creating

methods that can automate annotation of this type of data can save a lot of resources,

especially if these methods can learn to automate annotation with less training data.

As one might expect, though, creating models that can label scientific data is even

more challenging than creating models that can label relatively simple data. In many

cases, it is more challenging to distinguish among classes, the images and videos may be

of lesser quality, and there may be less scientific data than natural data. Further, there

may be less, noisy, or partial annotations when collecting annotations is more expensive.

Chapters 4, 5, and 6 address a specific instance of challenging scientific data, a solution

to address the partial nature of many of this data’s annotations, and a method for

making the most of existing data via a collage generation method. Chapter 4 outlines

the contribution of a new benchmark Dataset for Underwater Substrate and Invertebrate

Analysis (DUSIA).

5
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Chapter 5 contributes a method for counting invertebrate species in DUSIA’s videos

via a novel object detector, the Context-Driven Detector (CDD). CDD makes use of

both explicit context labels and implicit context cues to enhance object detection per-

formance on DUSIA. Chapter 5 also introduces Negative Region Dropping to enhance

object detection performance given partial labels, as is the case with DUSIA’s training

set.

In addition to being partially labelled, DUSIA’s training set also contains fewer an-

notated examples than many of today’s natural image datasets due to the expenses

associated with annotating DUSIA’s scientific data. In order to enhance performance

with less labels, Chapter 6 offers a method for generating additional samples from DU-

SIA’s training set. Training with these additional samples leads to better object detection

performance on DUSIA.

1.3 Organization

This dissertation is organized as follows

• Chapter 2 provides some background on the different tasks that will be discussed

in future chapters as well as the types of supervision for those tasks.

• Chapter 3 presents a method for generating pixel-level annotations for natural

images by training on a very limited number of annotated pixels per image in the

training set.

• Chapter 4 illustrates the collection, curation, and annotation of the Dataset for

Underwater Invertebrate and Substrate Analysis (DUSIA).

• Chapter 5 presents a method for demonstrating and leveraging the importance of

context when detecting the invertebrates of DUSIA.

6
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• Chapter 6 provides a method for generating synthetic, context-matched collages

for expanding DUSIA’s training set. By leveraging explicit context labels, more

training samples can be generated that, when trained on, lead to better detection

performance.

• Chapter 7 summarizes the main concepts of this dissertation and discusses potential

future work that may further advance the field.

7



Chapter 2

Background

This chapter introduces several tasks and types of supervision for those tasks to lay a

basis for the problems and methods that will be addressed in future chapters.

Common computer vision tasks and problems include different forms of image classifi-

cation, object detection, and semantic segmentation. These tasks are typically addressed

by training some type of machine learning model to perform the task using different

training sets that have varying levels and types of supervision. This chapter aims to give

a broad overview of those tasks and different types of supervision for those tasks.

2.1 Image Classification

Many computer vision tasks center around one of the field’s most basic tasks: image

classification. Image classification involves assigning one (single class) or more (multi-

class) semantic labels to an image. These semantic labels typically simply describe what

is in the image and are commonly referred to as image-level labels as they describe what

is present at the broad image level.

8



Background Chapter 2

Figure 2.1: Examples of CIFAR-10 image classes taken from the CIFAR-10 website [5]

2.1.1 Common Datasets for Image Classification

The CIFAR-10 Dataset presents a simple, common example of an image classification

task [5]. CIFAR-10 consists of 60,000 tiny images with ten, mutually exclusive, common

object classes including cat, dog, and truck. Researchers commonly implement and test

different image classification models that aim to classify each of CIFAR-10’s images as

containing an instance of one of the set’s ten classes. Figure 2.1 shows example images

for each of the ten classes.

Many well known image classifiers present results on the ImageNet dataset, associ-

ated with the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [6]. Im-

ageNet includes a growing collection of images with currently over 14 million images.

The primary benchmark has 1,000 image categories, and each category has at least 1,000

image examples. The dataset was originally introduced purely for the image classifica-

9
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tion (aka recognition) task, but they have since added annotations for object detection,

a task which will be discussed next. The ImageNet dataset has also become the stan-

dard dataset for pre-training models. That is, many models that are provided for public

use have weights from training on ImageNet, which allows faster convergence on other

datasets.

As another example of image classification, Chapter 5 addresses a form of image

classification where the image classes simply include the substrate present in underwater

video captured near the ocean floor. Because multiple substrates may be present in a

given video frame, this image classification tasks allows multiple labels.

2.1.2 Image Classification Evaluation

Image classification can be evaluated with several different metrics. Confusion matrices

make up the basis for many of these metrics. Confusion matrices have four categories:

true positive (TP), true negative (TN), false positive (FP), and false negative (FN). True

or false indicate whether a prediction is correct and positive or negative indicate whether

the prediction is positive or negative.

For example, if an image contains a dog and not a cat, it is positive for dog and

negative for cat. If the prediction is that both dog and cat are present, then we have

a true positive for dog (dog predicted, dog present) and false positive for cat. (cat

predicted, cat not present) If the prediction is that neither a dog nor cat is present, then

we have a false negative for dog (dog not predicted, dog present) and true negative for

cat (cat not predicted, cat not present).

Precision, recall, and accuracy derive from the confusion matrix.

precision =
TP

TP + FP
(2.1)

10



Background Chapter 2

recall =
TP

TP + FN
(2.2)

accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

These three metrics can be used to evaluate image classification, though for many

popular datasets, accuracy is the most common. Because models typically predict some

confidence score for each class of interest, researchers commonly present both top-1 and

top-5 accuracy, especially for single class classification problems. For example, consider

the top predictions for an image include cat with confidence 0.4; dog with 0.2; car, 0.1;

bus, 0.01; truck, 0.2. If the ground truth is cat, then this is TP example for cat and TN

for all other classes. In a top-5 scenario, this prediction would be a TP if the ground

truth is any of the top five predicted classes and incorrect otherwise. Most datasets do

not include images of objects that are not classes of interest (i.e. there are no TNs).

Precision and recall can be plotted on a curve together at a range of different thresh-

olds, giving more insight to the overall performance of a classifier. Confidence of predic-

tions are the typical thresholds used for image classification. Figure 2.2 shows an example

precision-recall curve. The area under the precision-recall curve, AUC, also effectively

demonstrates the performance of a classifier and gives insight to how well its confidence

values reflect the ground truth.

If a given image may contain multiple classes, mean Average Precision (mAP) reflects

performance of a classifier. mAP aims to reflect AUC for each given class by taking the

mean of average precision (AP) over each class. Average Precision is the mean of precision

values at many points along the ROC curve.

11
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Figure 2.2: Example Precision-Recall curve for a classifier

2.2 Object Detection

Object detection consists of classifying objects into categories and goes beyond image

classification by also localizing those objects in a given image. For the object detection

task, bounding boxes typically provide a means of localizing objects by indicating the

extremes of an object. The top of a bounding box should touch the topmost pixel of a

given object, the left of the bounding box should touch the leftmost pixel of the object,

etc.

Chapters 5 and 6 largely concern object detection and related tasks.

2.2.1 Common Datasets for Object Detection

The Visual Object Classes Challenge 2012 (VOC2012) [3] presents participants with

multiple tasks including object detection for 20 common object classes as well as semantic

12
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Figure 2.3: Image from the VOC12 dataset [3] with drawn on bounding box examples.

segmentation of images using those twenty classes, though semantic segmentation will

be discussed in the next section. VOC’s images also fall into the natural image category,

much like CIFAR-10 because the classes of interest include common objects and classes

like person, cat, dog, and car. Natural images, typically contrasted with more scientific

images, are images of common objects people might see or interact with in daily lives.

Natural images and their associated object categories can be labelled by any layperson.

Figure 2.3 shows an example of an image from VOC2012 with drawn on bounding boxes.

VOC2012 provides 11,530 images with 27,450 bounding box annotated objects and 6,929

segmentations.

As mentioned in the previous section, ImageNet also contains bounding box anno-

tations for the object detection task [6]. Currently, the dataset includes over 400,000

images with bounding box annotations for 200 fully labelled object categories. ImageNet

also provides annotations for 30 of those 200 categories for object detection from video.

Microsoft COCO (Common Objects in Context) contains 330,000 images with an-

notations for over 200,000 [7]. Like ImageNet, COCO has grown over the years and

now includes 80 object categories and over 1.5 million object instances. A few of the

13
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Figure 2.4: Examples from the COCO dataset taken directly from the original paper [7]

object categories are visualized in Figure 2.4. As the name suggests, COCO aims to

present a collection of natural images of common objects found in their natural contexts.

For example, there are images of trains on railways, sofas in living rooms, and cows in

pastures.

2.2.2 Object Detection Evaluation

Researchers typically use the mean Average Precision (mAP) metric to quantitatively

evaluate a model’s performance on the object detection task. The major difference be-

tween using mAP to evaluate object detection and to evaluate image classification is

that in image classification, each image has an entry in the confusion matrix, whereas,

in object detection, each object has an entry in the confusion matrix.

To determine whether a given box is correct or not, researchers determine whether

each box has a high enough intersection over union (IOU) with a ground truth box. Figure

2.5 illustrates an example of intersection over union for boxes. Dividing the intersecting

14
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Figure 2.5: Intersection over union illustration from Adrian Rosebrock’s PyImage-
Search. Accessed September 2022. [8]

area of two boxes with the union of their area gives IOU. Typically, a box is labelled as

correct if it has at least an IOU of 0.5 with a ground truth box. Additionally, each ground

truth box can correspond to only one prediction. Therefore, if multiple predictions have

high IOU with the same ground truth box, only the prediction with the highest IOU will

count as correct, while the remaining predictions will be considered negative.

2.3 Semantic Segmentation

Semantic segmentation increases the granularity of object detection from a bounding

box localization to a pixel-wise labelling. That is, semantic segmentation consists of

labelling every pixel in an image as a given class of interest or background. Typically,

the background class is used to cover any pixel that is not part of a class of interest.

Some datasets, like VOC2012, also include an “ignore” class which is used at uncertain

pixels at the edge of objects. “Ignore” class pixels are typically ignored during both

training and evaluation. Figure 2.9 shows an example image and its associated semantic

segmentation labels from the VOC 2012 dataset.

15
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Figure 2.6: Example of SBD’s semantic contour labels, taken directly from the original
work [9]

Given the fine granularity of a pixel level semantic segmentation of an image, se-

mantic segmentation is the most challenging of tasks presented here. Today’s semantic

segmentation models can generally segment large objects, but segmenting smaller ob-

jects, especially those with thin parts (e.g. chair legs, bicycle wheel spokes, etc) remains

a difficult challenge. Recovering the fine details of objects is especially difficult when

given limited training data or limited labels, but this challenge leaves room for further

research into more advanced methods.

Chapter 3 introduces a novel method for generating semantic segmentation and illus-

trates its effectiveness on underwater images.

2.3.1 Common Datasets for Semantic Segmentation

As mentioned in Section 2.2.1, VOC2012 provides 6,929 segmentations for its 20 classes

[2]; however, the Semantic Boundaries Dataset (SBD) [9] provides semantic contours

for more of the VOC images. SBD provides precise labels for object boundaries, which

they argue provides a more stringent metric for segmenting objects. Figure 2.6 shows an

example of SBD’s contour labels. These boundaries can trivially be converted to semantic
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Figure 2.7: Example images and their associated semantic segmentation labels from
the COCO Dataset. Each color corresponds to a given class [7].

segmentation labels. With the addition of SBD’s labels, there are 10,582 training images

and 1,449 validation images in VOC with semantic segmentation labels.

In addition to labels for object detection, COCO provides labels for 91 “stuff” classes

in addition to their 80 object categories [7]. Whereas object categories include things

like “person”, “car”, or “fork”, “stuff” categories may have less defined boundaries for

segmentation. Examples of the “stuff” classes include grass, wall, and sky. Figure 2.7

shows a few example images and their segmentation labels.

ImageNet also provides segmentation lables for 150 semantic categories across about

20,000 images [6]. The number of images and categories decrease significantly from the

14 million images available for image classification because of the expense associated with

collecting semantic segmentation labels.

The Cityscapes Dataset provides a large-scale dataset with video recorded in street

scenes. These videos include footagge from 50 different cities, and the dataset includes

pixel-level annotations of 5,000 frames as well as less precise labels for another 20,000

frames. Learning to segment and understand Cityscapes’ frames can help develop better

urban scene understanding with important applications in self driving cars and robotics.
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Figure 2.8: Example labelled image from the Cityscapes Dataset. Each color corre-
sponds to a given class [10].

Cityscapes labels 30 classes including road, person, bus, tunnel, traffic sign, and vegeta-

tion. Figure 2.8 shows an example of a labelled frame from Cityscapes.

2.3.2 Semantic Segmentation Evaluation

Researchers typically use the mean Intersection over Union (mIOU) metric to quantita-

tively evaluate a model’s performance on the semantic segmentation task. In this case,

IOU is computed in the same way as for object detection; however, the ground truth and

prediction shapes can be any shape rather than restricted to rectangles. This generaliza-

tion does not change the computation for IOU. Taking the mean of IOU for each class

gives the mIOU metric.

2.4 Types of Semantic Supervision

Each task presented thus far requires some sort of semantic labels. Semantic labels sim-

ply assign meaning, typically via a word or two, to some group of pixels. The group of

pixels may be an entire image (such as as in image classification), just the pixels within
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Figure 2.9: Example image and semantic segmentation label from the VOC2012
Dataset. Pink indicates the person class; white, ignore; blue, motorcycle; and black,
background.

a bounding box (object detection), or a carefully segmented group of pixels (seman-

tic segmentation). Image level semantic labels for Figure 2.3 might include “airport”,

“airplane”, and/or “person”. The bounding box labels shown are also semantic labels.

To train a model to complete each of these tasks requires a training set. A training set

consists of a collection of images and their semantic labels. During training, the model

has full access to these images and labels so that the model can learn to complete the

task on new images that are not in the training set. The model is supervised by the

training set, and the type of semantic labels in the training set determines the type of

supervision that the model receives.

In a fully supervised scenario, models that address a given task have access to a

training set that contains labelled examples that match the granularity of the assigned

task. For example, if tasked with semantic segmentation of a set of unseen images, a

fully supervised model will be provided with a set of images that also contain semantic

labels for every pixel of every image in the training set.

However, full semantic segmentation labels, like shown in Figure 2.9, can be expensive,

difficult, or sometimes impossible to collect. For example, Bearman et al estimate that

the semantic segmentation labels for VOC2012 took on average 239.7 seconds per image
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in contrast to the estimated 20.0 seconds per image required to collect image-level labels.

In images collected in more technical, scientific scenarios, such as the segmentation of

images of underwater, sessile organisms that will be described in the next chapter, pixel-

level labels may be prohibitively expensive to collect.

The expenses associated with collecting semantic labels necessitate exploration of

methods that can use fewer, weaker, partial, or less expensive labels. The work described

in this dissertation largely aims to explore two of those cheaper forms of labels: weak

and partial labels.

2.4.1 Weak Supervision

The amount of information present in a given type of label determines its strength. For

the tasks and labels described so far, pixel level labels would be strongest followed by

bounding box labels followed by image level labels. Somewhere in between lie squiggle

and point level labels. Point labels provide the class of a single given pixel, provide less

information than bounding box labels, and are easy and fast to collect. Squiggle level

labels extend point level labels to more pixels but take longer to collect. Figure 2.10

provides examples of these types of labels.

In the most common weakly supervised scenario, a weakly supervised semantic seg-

mentation model would be provided with a training set consisting of images with only

their image level labels. During training, the model would be given access to the training

images and their image level labels. During inference time, the model would be expected

to output pixel level labels for unseen images. Along those lines, a weakly supervised

model for semantic segmentation may be provided with bounding box or point level la-

bels during training. While less common, this scenario may fit a given application, and

will be described in more detail in Chapter 3.
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Figure 2.10: Point level (left) and squiggle level (right) labels. Pink indicates the
person class; green, bicycle. Yellow highlights the point labels, which are inflated
from a single pixel, for visibility.

2.4.2 Partial Supervision

A set’s labels’ completeness lie on a spectrum separate from the strength of a set’s labels.

The vast majority of datasets used to train and validate today’s computer vision models

aim to contain complete labels, meaning that each instance of a class of interest is labelled

as such. Any missing labels are typically accidental noise in the set of labels. However, it

can be prohibitively expensive to collect a collect labelling in some scenarios, especially

with more technical, scientific data where annotator time is more expensive and limited.

Figure 2.11 demonstrates a complete and partial labelling for an image in the VOC2012

dataset. Because the classes of interest for its task include person and motorcycle, a

complete labelling of this image must contain a bounding box for each instance of each

motorcycle, person, and every other class of interest. A partially supervised image may

contain bounding box labels for only some instances of each class of interest. Similarly,
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Figure 2.11: Partial (left) and complete (right) labels. Pink indicates the person class;
blue, motorcycle.

Figure 2.10 demonstrates more examples partially labelled images because every person

and every bicycle are not labelled.

Chapter 5 describes a scenario where collecting bounding box labels for every instance

of every class of interest in underwater video is prohibitively expensive, so we present a

method for object detection on partially supervised video frames.

2.4.3 Other Types of Supervision

While this dissertation primarily focuses on weak and partial supervision, researchers also

explore other types of supervision, and a quick explanation may preempt any confusion

about their relationship to weak and partial supervision. A brief description of a few

different forms of supervision are as follows:

• Mixed supervised methods may learn from many different types of labels simul-

taneously. For example, some images in the training set may have a some point

supervised images, some bounding box supervised images, and some images with

labels only at the image level.

• Semi supervised methods may learn from some labelled data and some unlabelled

data simultaneously. Typically, the labelled data will all have the same types of
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labels.

• Unsupervised methods may learn from data with no labels at all.
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Chapter 3

Point Supervised Semantic

Segmentation

3.1 Motivation

Semantic segmentation of an image typically involves labelling every pixel as a class

of interest. This fine-grained labelling enables a plethora of applications in robotics,

medicine, biology, and marine science. While the task may be easy for humans, it remains

a huge challenge for computer vision algorithms, especially when the images requiring

labelling contain difficult or scientific categories.

Our model to address this issue is trained and validated on the fully labelled VOC2012

dataset [3]. While training on the VOC2012 Dataset, the method only has access to point

level labels created as part of the work done by Bearman et al [1].

Bearman et al [1] collected point level labels for VOC2012’s images. They asked

annotators to simply click once on each instance of a class of interest and give the label

of that object. They showed that, using their method vs other state of the art methods,

that point supervision resulted in the best performance given an annotation budget.
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While only point level labels may be available to the model at training time, VOC2012

validation set’s publicly available pixel level ground truth labels enable quantitative and

qualitative evaluation.

Our method requires a few steps. First, we train a classification network to generate

PCAMs, which are Point-supervised Class Activation Maps. We train the Inter-pixel Re-

lation Network, IRNet [11], on our PCAMs to generate matrices of inter pixel realations.

Next, we use these matrices to refine the PCAMs to better adhere to object boundaries.

Finally, we train the fully supervised DeepLabv3+ [12] model on our refined PCAMs to

predict semantic segmentation labels.

The contents of this chapter have been presented in PCAMs: Weakly Supervised

Semantic Segmentation Using Point Supervision [13].

3.2 Related Work

3.2.1 Weakly Supervised Object Localization

Weakly supervised localization refers to the problem of finding areas of interest in an

image given weak labels. This problem has also been referred to as saliency detection.

These methods [14–16] attempt to find class generic regions that are likely to contain

some class of interest using varying levels of supervision. Similarly, methods such as the

one presented by Cholakka et al [17] work to localize areas that are likely to contain a

specific classes of interest.

Following the path of several methods which use CNNs for weakly supervised object

localization [18–21], CAMs as created by Zhou et al [22] have become the basis for many

weakly supervised class specific localization problems including some of the methods that

will be discussed in Section 3.2.2 [11,23,24].
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In short, Zhou et al [22] propose a method for interpreting the activation of a CNN

trained for classification that provides localization information for the classes of interest.

This localization is done by adding a global average pooling (GAP) layer to a classification

network and examining the activations of the final convolutional layer in the classifica-

tion CNN. The CNN has class dependent weight vectors that learn which activations

correspond with each class. By weighting the feature map of the last convolutional layer

in the CNN and upsampling the weighted map to the image size, the authors can begin

to localize which areas of an image correspond to different classes. Section 3.3.1 further

discusses this method.

Ultimately, this process allows for coarse localization of classes of interest that can be

derived from a network trained with only image level labels. Other methods have built

on CAMs for creating even better class specific localization extended beyond the image

domain [25,26]. Zhang et al [27] proposed a method for iteratively improving localization

performance by erasing areas of high activation from training images, forcing the CNN

to learn other features associated with classes of interest thereby expanding areas of

localization.

Still, this line of work is only able to achieve coarse localization, and the resultant

activation maps rarely cover the full extent of classes of interest. These activation maps

also correspond poorly with object boundaries.

3.2.2 Image-level Supervised Segmentation

Given the ease of collecting image level labels, many efforts have recently been made to

create effective segmentation algorithms that use only these labels [11,23,24,28–42].

Kolesnikov et al [40] propose a method for training a segmentation CNN with a loss

that guides the network via its loss function to follow localization cues, expand around
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those cues, and adhere to object boundaries. Several methods follow a similar path

including work done by Huang et al [34] which uses CAMs to generate its localization

cues. Similarly, their loss function has a term for adhering to these cues, growing their

regions according to some similarity criteria, and adhering to object boundaries.

The most relevant methods to this paper include recent works of Ahn et al [11, 23]

which also generally rely on the method of Zhou et al [22] to create CAMs. Ahn’s method

generates CAMs, mines affinity labels from the CAMs, and presents a neural network

that outputs information that can be used to generate a transition probability matrix.

In one of their works [23], Ahn et al describe a method for carefully exploiting CAMs

to generate positive and negative affinity labels for pixel pairs. Positive affinity labels

should indicate a pair of pixels is of the same class while negative labels indicates differing

classes. These labels can be generated automatically by giving thresholds for confidence

in CAMs such that two pixels that have high confidence in the same class are assigned a

positive affinity label.

Ahn et al [11, 23] present different networks and methods for learning from these

mined affinity labels, but they output information that is ultimately used to generate a

transition probability matrix. They then perform a random walk over CAMs using the

computed transition probabilities to propagate class labels and refine CAMs into pseudo

segmentation labels. Finally, these pseudo labels are used in place of ground truth to

train a CNN that is designed to perform segmentation given real ground truth labels.

The method presented in this chapter follows this type of method with the novel intro-

duction of point supervision during early stages that leads to a significant improvement

in performance.
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3.2.3 Point-level Supervised Segmentation

While image level supervision certainly has its place in domains where images can easily

be collected for classes of interest, point supervision can significantly improve perfor-

mance of segmentation algorithms and can easily be collected when annotating a new

dataset. To our knowledge, no publications have tackled the problem of point supervised

segmentation algorithms since Bearman et al [1] introduced the problem, collected and

provided point level annotations for the PASCAL VOC 2012 dataset [3], and proposed a

method for incorporating point supervision and localization cues into training a normally

fully supervised network directly. This method computes a loss over supervised points

that is based on a log softmax probability.

The work by Mainis et al [43] is sometimes mentioned in literature as using point

level annotations to achieve semantic segmentation; however, this paper uses extreme

points rather than more random points as collected in Bearman’s work where annotators

are simply asked to click on objects of interest [1].

Rather than point-level annotations, then, [43] more closely resembles bounding box

level supervision. Arguably, this method uses even more supervision than bounding boxes

in that extreme points give bounding box information in addition to four points that are

certainly on the boundary of a given object. When given only a bounding box, it is

uncertain which parts of the bounding box edges actually lie on an object boundary.

3.3 Method

This chapter introduces a method for training PCAMs: point supervised class activation

maps as shown in Figure 3.1. Including point supervision in the training process in this

way significantly improves the localization performance of CAMs. To achieve state of
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Figure 3.1: PCAM training overview: compute PCAM with a point supervised input
image using the ResNet50 [44] backbone, produce the class labels, and compare the
output with the supervised point and class labels to compute a loss used to update
the PCAM network. Note that the last convolutional layer’s feature maps are colored
to match with their class dependent weight vector to produce per feature heatmaps,
which are then combined and upsampled during training to generate the PCAM.

the art semantic segmentation results, we train IRNet [11] on our PCAMs and use its

output to refine PCAMs to create pseudo semantic segmentation labels. Finally, we train

the fully supervised segmentation network presented in [12], DeepLabv3+, on the pseudo

labels and use this network for final predictions.

3.3.1 PCAMs

To train PCAMs, we present an addition to the work by Zhou et al [22] that allows the

inclusion of point supervision during training as shown in Figure 3.1. The original method

for producing CAMs adds a global average pooling layer to an image classification CNN.

Following the work by Ahn et al [11], we use ResNet50 [44] as the backbone classification

network and drop the stride of its last downsampling layer to prevent too much reduction

in resolution. Training the image classification CNN is done with a simple multilabel soft

margin loss.
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Figure 3.2: From left to right: original images, CAM labels, PCAM labels, and ground
truth segmentation for each image

Limg(ŷ, y) = − 1

C
∗

C∑
i=1

(yi ∗ log((1 + exp(−ŷi))−1) (3.1)

+(1− yi) ∗ log(
exp(−ŷi)

1 + exp(−ŷi)
))

where y is the one hot encoded vector of classes in the images, ŷ is the predicted class

vector, yi is the label of the ith class, and C is the number of classes. Once trained,

CAMs of a given class c can be generated by

Mc(x) =
φ>c f(x)

maxxφ>c f(x)
(3.2)
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where φc represents the learned class-dependent weight vector for class c, f is the feature

map from the final convolutional layer of the classification network backbone, and x is a

2D coordinate in f . As mentioned before, we use ResNet50 [44] as our backbone network

with a reduced stride in the final downsampling layer. The dimensions of the CAMs are

then 1/16 of the input image.

Our method for training the classification network with point annotations, however,

requires that we generate the CAMs during training. To align the CAMs with the input

image, we use bilinear interpolation to upsample the CAMs to the size of the input

image to create Uc, the upsampled CAM for class c. This upsampling is only done during

inference in previous works, but our method introduces this upsampling during training

so that we can compare the upsampled CAM with any supervised points and guide the

network for better activation mapping. We then compute the mean squared error loss

over each of the supervised points as follows:

Lcpt =
1

|S|
∑
sεS

(Uc(s)−Gc(s))
2 (3.3)

where S is the set of supervised pixel locations, Uc(s) is the predicted probability that

location s is of class c, and Gc(s) is the binary ground truth label for class c for the pixel

at location s. For the point supervised term of the loss for training a network to generate

PCAMs, we average the classwise losses for each class present in the training image.

Lpt =
1

|C ′|
∗
∑
cεC′

Lcpt (3.4)

where C ′ is the set of classes in the training image. This allows us to precisely use any

point level annotations to guide the network to activate at specific locations. This loss

term also leads to more confident activation maps that cover a greater spatial extent of
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objects of interest. The total loss for training the PCAM network is then

L = Limg + αLpt (3.5)

where α is a weighting term. We tested several

3.3.2 Refining PCAMs via IRNet’s Semantic Affinity Predic-

tions

We train the Inter-pixel Relation Network, IRNet, [11] using our PCAMs and use the

refined maps to achieve more refined semantic segmentation. To train IRNet, we mine

semantic affinity labels from our improved PCAMs, which use point level supervision,

rather than mining labels from CAMs which use image level supervision, and use these

mined semantic affinity labels for training IRNet.

In order to mine semantic affinity labels, we threshold each PCAM such that low val-

ues are considered background and high values are considered as the corresponding class.

We ignore all pixels that have middling confidence values as their labels are uncertain

and affinity labels must be mined reliably to optimize the performance of IRNet.

We then examine all pixels within a small radius of confident pixels. If a pair of pixels

are both confident or background and have the same label, the pair is assigned a positive

affinity label, and if it has a different label it is assigned a negative affinity label.

IRNet uses training images and these mined affinity labels to learn to predict a dis-

placement vector field and class boundary map. The displacement field should indicate

centroids of class boundaries, which aims to segment class instance but also aids in sep-

arating instances of adjacent differing classes. The class boundary map aims to indicate

boundaries of classes.

The class boundary map can be synthesized to create an affinity matrix. If a pair
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of pixels have a positive class boundary pixel on the line between them, they have low

semantic affinity. Otherwise, they are likely to be of the same class and have high semantic

affinity. Next, the semantic affinities are used to compute a transition probability matrix

for a random walk which is performed over instance-wise PCAMs.

Guided by this transition probability matrix, a random walk over PCAMs expands

and refines activation areas. These refined PCAMs are then combined to create pseudo

semantic segmentation labels. More details on IRNet and semantic affinity labels are

provided in the source paper.

3.3.3 Training a Fully Supervised Segmentation Model on Re-

fined PCAMs

The final step in our method takes the pseudo semantic segmentation labels generated

via random walk propagation over PCAMs and uses them as ground truth for training

DeepLabv3+ [12], a state of the art semantic segmentation model. We find that, de-

spite training on imperfect labels, the network is still able to generate slightly better

segmentation results on unseen images when compared to refined PCAMs.

Further, using a trained fully supervised network makes inference simpler. To infer

a new image otherwise, we would need to first run inference using the trained PCAM

network and run inference using IRNet before we could compute the transition probability

network from IRNet’s output. Finally, we would need to run the random walk algorithm

on the PCAM using the generated transition probability matrix to refine the PCAM.

After we train DeepLabv3+ on our pseudo semantic segmentation labels, inference on

an unseen image can be done simply by running inference with the trained DeepLabv3+

model.
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3.4 VOC2012 Experiments and Results

The following section describes our experiments on the PASCAL VOC 2012 dataset [3]

on which we achieve state of the art performance for point-supervised semantic segmen-

tation.

After discussing the experiments on PASCAL VOC 2012, we explore the method’s

performance on the images collected by UCSB marine science researchers.

3.4.1 Dataset

All of our experimental results are reported on the PASCAL VOC 2012 dataset [3] and

trained using the PASCAL VOC 2012 training images supplemented with the images

from Semantic Boundaries Dataset, SBD [9], following common practice [1, 11, 23]. The

PASCAL VOC 2012 dataset includes 1,464 training images and 1,449 validatation images.

SBD contains annotations for 11,355 images from the PASCAL VOC 2012 dataset. In

total, we train with 10,582 training images and test with 1,449 validation images.

For training PCAMs, we use the point level labels provided by Bearman et al [1].

These labels include one ore more annotated points per class in each training image.

Overall, we use an average of approximately 2.4 points per image for training.

3.4.2 Hyperparameters

PCAM Network

The PCAM network uses ResNet50 [44] as its backbone network. The learning rate is

initially set to 0.001 for the backbone parameters and 0.01 for the classification layers.

The loss weighting term α is set to 0.1.
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Activation Map Sup. train val
CAM I 48.3 46.0
PCAM P 56.5 54.4
PCAM F 64.0 55.5

Table 3.1: mIOU comparison of CAM, PCAM, and PCAM trained with all points on
the PASCAL VOC 2012 train and val sets

Refined Activation Map train val
CAM 66.5 57.4
PCAM 70.8 68.5

Table 3.2: mIOU comparison of performance on PASCAL VOC 2012 train and val
sets of CAMs and PCAMs after being refined by random walk via IRNet’s transition
matrix

IRNet

We generally use IRNet as presented by Ahn et al [11]. We set the CAM evaluation

threshold for producing the labels for IRNet to 0.3. Similarly, we set the threshold

for semantic segmentation at 0.3. These adjustments compensate for PCAMs being

somewhat more confident than CAMs. For our setting, we had slightly better results

setting IRNet’s β parameter to 12. This parameter affects the generation of the transition

matrix that is used for the random walk propogation of attention scores and is detailed

in the paper by Ahn et al [11].

DeepLabv3+

We train DeepLabv3+ [12] using the labels generated from refining PCAMs with IRNet.

We use a ResNet backbone, a learning rate of 0.007, weight decay of 4e-5, and a Nesterov

momentum optimizer with a momentum of 0.9. We use an output stride of 16 during

training and evaluation, and we do not implement multi-scale or flipped inputs during

training. This is the same training setting as DeepLabv3+ shown in Table 3.3; however,
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Figure 3.3: From left to right: original images, PCAM labels, refined PCAM labels,
predictions from PCAM-supervised DeepLabv3+, ground truth segmentation, and
predictions from fully supervised DeepLabv3+ for each image
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Method Sup. mIOU
WhatsPoint [1] P 46.1
MIL-FCN [45] I 25.7
CCNN [41] I 35.3
EM-Adapt [46] I 38.2
MIL+seg [42] I 42.0
DCSM [47] I 44.1
BFBP [48] I 46.6
SEC [40] I 50.7
AF-SS [49] I 52.6
Combining Cues [36] I 52.8
AE-PSL [24] I 55.0
DSRG [34] I 61.4
AffinityNet [23] I 61.7
IRNet [11] I 63.5
FickleNet [33] I 64.9
ScribbleSup [50] S 63.1
NormCut [51] S 65.1
BBox-seg [46] B 60.6
SDI [52] B 65.7
BCM [53] B 66.8
Ours - refined PCAM P 68.5
Ours - final P 70.5
DeepLabv3+ F 78.9

Table 3.3: mIOU comparison of recent or related weakly supervised semantic segmen-
tation methods on the PASCAL VOC 2012 val set. Sup. shows the level of supervision
of each method where P is point level, I is image level, B is bounding box level, S
is scribble level, and F is fully supervised. Ours - final uses DeepLabv3+ trained on
refined PCAMs for inference.

Method Sup. bkg aero bike bird boat bottle bus car cat chair cow table dog horse mkb person plant sheep sofa train tv mean
EM-Adapt [46] I 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8
CCNN [41] I 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3
MIL+seg [42] I 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
SEC [40] I 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
AE-PSL [24] I 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0
What’s Point [1] P 80 49 23 39 41 46 60 61 56 18 38 41 54 42 55 57 32 51 26 55 45 46.0
AffinityNet [23] I 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
BCM [53] B 89.8 68.3 27.1 73.7 56.4 72.6 84.2 75.6 79.9 35.2 78.3 53.2 77.6 66.4 68.1 73.1 56.8 80.1 45.1 74.7 54.6 66.8
Ours - final P 89.9 66.1 30.1 85.2 62.5 75.8 87.1 80.4 87.1 34.0 85.1 60.0 84.4 82.4 77.4 68.4 56.1 84.0 46.1 72.6 64.2 70.5

Table 3.4: per class mIOU comparsion of recent or related methods on the PASCAL
VOC 2012 val set
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the performance shown there for ”DeepLabv3+” is for the fully supervised setting trained

on actual ground truth as opposed to ”Ours - final” which is DeepLabv3+ trained on

refined PCAMs.

3.4.3 PCAM Performance

Figure 3.2 shows some localization performance of PCAMs compared to CAMs generated

from the same network without point supervision. This figure shows that the point

supervision generally leads to better localization. Further, PCAMs do a much better job

of covering more of a given object’s extent.

Table 3.1 shows the quantitative performance difference of each activation map. In

addition to the image level CAM, we also experimented with training the network with

the PCAM loss given every ground truth point, i.e. full supervision, rather than the

much smaller one point per class per image. Point supervision strongly increases the

localization performance of activation maps, though using all points in an image with

our method seems to have relatively little influence on performance on unseen images.

3.4.4 IRNet Label Refinement

Figure 3.3 shows several examples of our method’s performance as well as the performance

of the fully supervised DeepLabv3+. We can see evidence that the label propagation via

IRNet’s transition matrix usually helps refine boundaries more precisely, though we tend

to see choppy edges as a result of the random walk propagation.

Table 3.2 shows the performance difference of each activation map after having been

refined by IRNet. Unsurprisingly, the already better PCAMs have significantly better

localization performance after being refined than do CAMs. The performance increase

between PCAMs and CAMs only becomes amplified after refinement. Before refinement,
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PCAMs outperform CAMs by 8.4%, and after refinement, PCAMs surpasses CAMs by

11.1%.

3.4.5 Semantic Segmentation Results

Figure 3.3 shows the performance of DeepLabv3+ after being trained with refined PCAMs

as well as its predictions after being trained with ground truth. The results are quite

similar, with the PCAM-trained network generally making fewer predictions, which is

helpful in the case of the image B where there is no false prediction in the bottom left

corner. However, fewer predictions are not helpful in cases such as in the image E where

the duck in the bottom right corner is not predicted at all.

While the PCAM-trained CNN makes fewer predictions and seems to sometimes miss

smaller objects, it adheres to boundaries better and performs slightly better quantita-

tively than the refined PCAMs themselves.

Table 3.3 shows the performance of several recent methods on semantic segmentation

of the VOC val set. Our method achieves state of the art performance in point supervi-

sion. Further, it surpasses the method from Tang et al [51], which uses stronger scribble

level supervision, and it even outperforms the very recent method by Song et al [53],

which uses stronger bounding box supervision for this task. Our method recovers an

impressive 89% of the performance of its fully supervised counterpart using only point

supervision.

Table 3.4 shows a number of recent methods, their levels of supervision, and their

class-wise IOU performance. Unsurprisingly, the better supervised method from Song

et al [53] performs better on the some of the challenging classes like chair; however, our

method performs better on nearly every class and overall.
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Chapter 4

DUSIA Dataset Collection,

Curation, and Annotation

4.1 Introduction

Marine scientists spend enormous amounts of resources on understanding and studying

life in our oceans. These studies hold numerous benefits for environmental protection

and scientific advancement, including the ability to identify areas of the ocean where

certain habitats and substrates exist and where certain species gather.

A common method for studying underwater habitats consists of planning underwater

routes, called transects, then following those paths and recording the environment either

by a diver with a camera or using an underwater ROV [54, 55]. Once the transects

have been recorded and videos matched with their GPS locations, common annotation

methods require researchers to review each video several times, annotating the substrates

that the camera passes over in the first few annotation passes, then counting invertebrates

in another pass, and then counting fish species in a final pass to give a better idea of where

in the ocean which substrates exist and where different species live. This information
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Figure 4.1: Cropped frame from DUSIA with examples of three classes of interest:
fragile pink urchin (blue), gray gorgonian (green), and squat lobster (red). Variations
in perspective, occlusion, and size can create large differences across appearances
of species individuals and make some individuals, like small squat lobsters, almost
invisible, especially in a single frame. Crop shown is 690x487 pixels from a 1920x1080
frame.

is vital to determining species hotspots and finding ways to protect the environment

while also meeting human needs for usage of our oceans. These studies ultimately lead

to new discoveries as they facilitate exploration of unknown oceanic regions. Currently,

however, the sheer amount of data researchers collect can be overwhelmingly expensive

and difficult to annotate and utilize as their annotation methods’ multiple passes can

push annotations times to many times the duration of the video.

Computer vision and machine learning models can significantly aid in managing, uti-

lizing, analyzing, and understanding these videos, ultimately reducing the overall costs of

these studies and freeing researchers from tedious annotation tasks. However, developing

and training these models require annotated data. Further, the types of annotations

generated and used by domain scientists do not directly correspond with the typical

types of annotations generated and used by computer vision researchers, requiring new

approaches to learning from video data and their annotations. Most computer vision fo-
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Figure 4.2: Full frame examples pulled from the DUSIA dataset

cused datasets collect the best types of annotations they can for the specific problem they

want to solve. For example, to count objects, computer vision scientists might collect

point or bounding box annotations. However, domain scientists, like marine researchers,

have different problems in mind, and they may find spending their annotations budget

on a different type of annotation may be more appropriate for addressing their problems

efficiently.

As a step toward advancement in efficiently computationally analyzing videos from a

marine science setting, we introduce a Dataset for Underwater Substrate and Invertebrate

Analysis, DUSIA, a real world scientific dataset including videos collected and annotated

by marine scientists who directly use a superset of these videos to advance their own

research and exploration. To our knowledge, DUSIA is the first public dataset to contain

videos recorded in this challenging moving-camera setting where an underwater ROV

drives and records over the ocean floor. This dataset allows us to create solutions to a host
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of difficult computer vision problems that have not yet been explored such as classifying

and temporally localizing underwater habitats and substrates, counting and tracking

invertebrate species as they appear in ROV video, and using these explicit substrate and

habitat classifications to help detect and classify invertebrate species. Further, the types

of annotations provided in DUSIA differ from those of typical computer vision datasets,

requiring new approaches to learning.

Some contents of this chapter have been submitted for publication in the International

Journal of Computer Vision in Context-Driven Detection of Invertebrate Species in Deep-

Sea Video.

4.2 Related Works

Current achievements by deep learning-based vision models do not necessarily translate

well when it comes to analyzing underwater animals and habitats as there exists a scarcity

of well-annotated underwater data. Although there are a few efforts from the computer

vision community to collect and annotate underwater data [56–60], it is hardly enough

to tackle this daunting problem, and few of these efforts collect data in the same way

or provide annotations for the same goals. In general, collecting underwater image or

video data is far more difficult than land data and day to day images of common objects.

For the object detection task, for example, anyone with a mobile device can capture

thousands of images and videos. For such a task, a layperson can then annotate different

classes of objects in this data. Data-driven machine learning algorithms can leverage these

annotations to achieve human-like performance. In contrast, collecting and annotating

underwater images and videos requires specialized underwater cameras, equipment for

navigating underwater, and experts with specific domain knowledge to then annotate

the collected data. As a result, the whole data collection process becomes complicated
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and expensive. DUSIA aims to be a collaborative, comprehensive effort to guide the

exploration and automated analysis of underwater ecosystems.

4.2.1 Underwater Marine Datasets

Many of the existing underwater marine datasets are developed in order to detect and

recognize the various behaviors, or simply presence of, fish [58,60–63]. Numerous current

works [61–64] have validated their fish detection and fish behavior recognition models

on these datasets. Interestingly, these methods mainly focus on developing novel data-

hungry algorithms, but the data on which the algorithms perform is limited by its static

perspective. For example, Maaloy et al [62] proposed a dual spatial-temporal recurrent

network, but the algorithm is trained and tested on a dataset that is constrained by

having no camera movement and working in a covered area. Similarly, Konovalov et

al [61] augments their dataset of underwater fish images with the underwater non-fish

images from VOC2012 [2] by restricting their model to generating only binary (fish vs.

no fish) predictions. In the same way, [63, 64] confined their models to do analysis only

on one single fish. In contrast, DUSIA provides dynamic, high definition ROV video

showcasing a rich and varied environment with many species occurring in intermingling

groups.

Additionally, unlike existing datasets, a novel feature of DUSIA is the utilization of

explicit, human-annotated, contextual information such as substrates or habitat in the

analysis workflow. Such contextual information can play a vital role in making accurate

predictions, especially in the case of identifying fish or other marine animals. Recently,

[65] has developed a large scale dataset for habitat mapping using both RGB images

and hyperspectral images. This dataset contains a large number of annotated images for

classifying different coral reef habitats, but marine animal information is not included
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Figure 4.3: Illustration of the ROV attached to the catamaran, substrate layers, and
habitat characterization. Substrates are divided into soft (mud, cobble and sand),
hard (rock and boulder), or mixed (a combination of any soft and hard substrates).
Illustration courtesy of Marine Applied Research and Exploration (MARE) Group.
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Figure 4.4: Example frames each containing just one substrate each, indicated by the
in frame text

in this dataset. DUSIA, in contrast, is unique in this aspect, as it has both explicit

substrate and invertebrate annotations.

4.2.2 Methodologies

As mentioned in the previous section, recently, different works have developed deep

learning-based algorithms to detect marine species (mostly fishes). Li et al [66] uses

a Fast-RCNN [67] based network to classify twelve different species of fish. Salman et al

[68] present a deep network to detect fish in 32x32 size video frames. Siddiqui et al [69]

use a pre-trained object detection CNN network as a generalized feature extractor. The

extracted features are then fed to an SVM (support vector machine) for classification of

fish. The method presented in the next chapter aims to alleviate some of these methods’

shortcomings by using explicit substrate predictions to enhance species detections.

4.3 Dataset

DUSIA consists of over 10 hours of footage captured from preplanned transects along the

ocean floor near the Channel Islands of California. This includes 25 HD videos recorded

using RGB video cameras attached to an observation class ROV equipped with multiple
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lighting fixtures recording at depths between 100 and 400 meters. DUSIA’s videos are

part of a large collection, and training on them may help annotation of similar videos

from different excursions in the future.

4.3.1 Data Collection

Surveys of wildlife on the ocean floor generally start with planning a group of paths,

called transects, across some region in order to efficiently cover and survey one section

of the ocean [54]; however, to protect these fragile ecosystems, DUSIA does not make

specific GPS coordinates publicly available.

Some surveys use scuba divers to collect video along transects, but DUSIA covers

larger, deeper areas using an ROV attached to a 77-foot catamaran. During the collection

process, the ROV is attached via cable to the catamaran. Once the boat arrives near the

beginning of the desired transects, the ROV is placed in the water and remains on a long

leash attached to the boat such that the catamaran can follow the transects roughly while

the ROV follows its path more precisely via inputs from a remote operator on the boat

who makes use of the ROV’s cameras, lights, GPS, and other instruments that indicate

the ROV’s location relative to the boat, which allows for computing its GPS location.

Figure 4.3 roughly illustrates the ROV rig used for data collection.

4.3.2 Substrate Classes and Annotations

After the collection stage, researchers return to a laboratory where they review, analyze,

and annotate each video. DUSIA includes four different substrates: boulder, cobble,

mud, and rock. An illustration of each one is shown in Figure 4.3 and frames from the

dataset are shown in Figure 4.4. The difference between each depends on the nature of

the material makeup of the ocean floor. A description of each substrate can be found in
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Substrate Description

Boulder rocky substrate larger than 25 cm in diameter that is detached and
clearly movable

Cobble rocky substrate that is 6 to 25 cm in diameter
Mud very fine sediments that stay suspended in the water when disturbed

(loss of visibility)
Rock consolidated rocky substrates that appear attached to the bottom and

not movable

Table 4.1: Description of the four substrates present in DUSIA

Table 4.1, and Table 4.2 shows a toy example of the annotation format.

Each of these substrates may overlap such that a given frame can have multiple

substrate labels if enough of multiple substrates are visible. The annotation process

includes multiple passes, one for each substrate, where the annotators indicate the start

and end times of each substrate occurrence. This arduous process can be alleviated by

computer vision methods including some described in the next chapter.

4.3.3 Invertebrate Classes and Annotations

Once the substrate annotations are completed, scientists make yet another pass over

each video, this time annotating invertebrate species, often referencing substrate labels

as certain species have a tendency to occur in certain substrates. When a group or

individual of a species touches the bottom of the video frame, they pause the video,

count the species touching the bottom of the frame, and make note of the time stamp at

which the count occurred, giving domain researchers insight into where in the video, in

the ocean, and in which substrate, each species tends to occur. We refer to these labels

as CABOF, Count At the Bottom of the Frame, labels.

Count labels provide guidance in learning to classify and detect invertebrate species,

they ensure that species individuals are not counted multiple times, and a human could
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Figure 4.5: Fully annotated frame example. Color to species map is as follows: yellow:
laced sponge, magenta: white spine sea cucumber, cyan: white slipper sea cucumber,
green: squat lobster.

use these labels to learn to label further videos. However, current computer vision meth-

ods struggle with weak supervision, and count labels of this nature are unusual for current

machine learning methods.

Annotation Begin End Count

Boulder 0:00:20 0:00:25
FPU 0:00:21 2
Cobble 0:00:23 0:01:30
Mud 0:00:40 0:01:20
SL 0:00:49 1
SL 0:00:51 3
Rock 0:01:00 0:03:50
Mud 0:02:10 0:02:15

Table 4.2: Example of combined substrate and CABOF, Count At the Bottom of
the Frame, annotations. Substrates are labeled with beginning and end times, and
invertebrate CABOF labels include a single timestamp shown in the Begin column
and count.

Bounding Box Labels

To address this difficulty, we further annotate a subset of the dataset with bounding box

tracks to help enable current computer vision methods, which often require bounding

boxes for training and testing, and to validate those methods on DUSIA, using the
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Figure 4.6: Cropped screenshots of each of the ten species of interest: basket star (BS),
fragile pink urchin (FPU), gray gorgonian (GG), long-legged sunflower star (LLS),
red swifita gorgonian (RSG), squat lobster (SL), laced sponge (LS), white slipper sea
cucumber (WSSC), white spine sea cucumber (WSpSC), and yellow gorgonian (YG).

marine scientists’ CABOF labels. First, we select a subset of species to annotate with

stronger annotations. We choose ten species, each visualized in Figure 4.6 because they

are some of the most abundant species in the dataset. Table 4.3 shows the counts of all

invertebrate species annotated with count labels across DUSIA.

To generate our training set, we randomly select a subset of frames containing count

labels for our species of interest. We seek to those frames and back up in the video until

the annotated species individual or group, i.e. our annotation target(s), are either in the

top half of the screen or first appearing. In the ROV viewpoint, objects typically appear

at the top of the frame as the ROV moves forward. Once we back up sufficiently far, we

then draw a bounding box or boxes on the annotated target(s), ignoring other instances
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Species Count Species Count

Fragile pink urchin 3,402 Spot prawn 18
Squat lobster 2,593 UI anemone 17
UI lobed sponge 1,753 Thorny sea star 16
White slipper sea cucumber 1,313 UI anemone 2 14
Laced sponge 632 California king crab 13
Gray gorgonian 556 UI trumpet sponge 12
UI hairy boot sponge 426 Pom-pom anemone 11
Basket star 361 UI prawn 9
White spine sea cucumber 318 Crested sea star 8
Long legged sunflower star 306 White sea pen 8
Red swiftia gorgonian 257 Red sea star 8
UI branched sponge 228 UI sea pen 7
UI vase sponge 210 Solaster sun star complex 6
Yellow gorgonian 150 UI octopus 5
UI boot sponge 128 UI nipple sponge 4
Cookie star 90 UI gorgonian 3
UI anemone 4 67 Spiny/thorny star complex 3
UI sea star 54 Gray moon sponge 2
UI tubeworm 50 Brown box crab 2
Henricia complex 47 Decorator crab 2
UI large yellow sponge 44 UI sand dwelling anemone 2
UI thin red star 39 UI nudibranch 1
UI orange gorgonian 38 Orange puffball sponge 1
Mushroom soft coral 36 Red octopus 1
Black coral 34 Red gorgonian 1
Benthic siphonophore 25 Rose star 1
Bubblegum coral 24 Cushion star 1
Deep sea cucumber 20 UI urchin 1
Fish eating star 19 UI anemone 1 1
Spiny red star 18

Table 4.3: All species and their counts in DUSIA. Bold shows the species that also
include bounding box annotations. UI stands for unidentified and is used when or-
ganism’s exact species cannot be determined.

of species of interest (thus creating partial annotations) due to annotation budget and

visibility constraints.

We then jump 10-30 frames at a time adjusting the box location for the annotation

target(s) in each frame we land on, referred to as keyframes. This process allows for

efficient annotation and allows us to interpolate box locations between keyframes for

additional annotation points.
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The result of this annotation process is a partially annotated training set for learning

to detect and later count species of interest. These annotations are partial because we

did not attempt to always label every individual of each species of interest in the training

set. Instead, we focused only on the annotation targets. Because some individuals of the

ten species of interest may be labelled while other individuals of the ten species may not

be, we consider these partial labels.

We chose to partially annotate the our training set so that we could collect boxes

tracking each species. In populated areas, there are many species hiding, coming, and go-

ing, making collecting full annotations extremely difficult, especially across many frames.

Additionally, we provide some fully annotated frames where we guarantee that all

individuals of the ten species of interest in the bottom half of each frame are labelled

with a bounding box. We were constrained to the bottom half of the frame due to dark-

ness, murky waters, low visibility, and text embedded in the videos during the collection

process. Therefore, we use only the fully annotated bottom half of the validation and

testing frames when presenting our detection results. Seeing as the marine scientists

count the creatures that touch the bottom of the frame, we expect the bottom half of

the frame to provide a good metric for count estimations. These frames are provided for

validation and testing.

In order to generate these fully annotated validation and testing frames, we randomly

selected a subset of count annotated frames in the validation and test sets. For each of

those selected frames, we labelled all instances of species of interest in the bottom half

of the frame including but not limited to the original targets. For rare species, we often

labelled frames a second or two before and/or after the count annotated frame in order

to provide more validation and testing frames. Still, the number of validation and testing

frames is limited by the difficulty in collecting these fully annotated frames as well as the

scarcity of some species.
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These fully annotated frames took on average 146.5 seconds per frame for trained

individuals to annotate. For reference, it took annotators approximately 22.1 seconds

per image to fully annotate with single point annotation and 34.9 seconds per image with

squiggle supervision in the VOC2012 natural image dataset of 20 classes including cats,

busses, and similar common object classes [1]. Collecting bounding boxes, consisting of

two precise points, with half the number of classes should take a similar amount of time,

but the difference in time spent per image illustrates the challenge of annotating DUSIA

as each annotator struggled to find every object of interest even after being trained to

specifically to localize the species of interest. An example of a fully labelled validation

frame is shown in Figure 4.5. Species shown in that frame without bounding box labels

are not species of interest.

4.3.4 Dataset Splits

We provide a split of the dataset into training, validation, and testing sets with 13, 3,

and 6 videos in each split respectively. The training set includes 8,682 keyframes used

for training the detector (described in detail in Section 4.3.3). The validation and test

sets respectively include 514 and 677 frames with fully annotated lower halves. Between

each split, we attempted to maintain a relatively even distribution across our species of

interest based on CABOF labels before labelling bounding boxes; however, preserving

this distribution leads to a slightly uneven distribution of substrate occurrences.

4.3.5 Statistical Analysis of Data

Table 4.4 shows the frequency of each of the substrate classes present in our dataset.

Table 4.5 shows the frequency of bounding box labels for invertebrate species of

interest represented in our dataset, and Table 4.6 illustrates the frequency of CABOF
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B C M R Total

Train 70,248 247,764 259,535 183,020 760,567
Val 14,899 28,694 23,656 63,322 130,571
Test 30,742 91,695 102,422 87,399 312,258
Total 115,889 368,153 385,613 333,741 1,203,396

Table 4.4: Distribution of number of frames containing each substrate across DUSIA
and its splits

labels for invertebrate species.

Table 4.7 illustrates the distributions of CABOF labels for each species across the

different substrates. While not weighted against the relative presence of each substrate,

this table still illustrates that certain species occur much more frequently in certain

substrates. For example, fragile pink urchins (FPU) rarely occur in the boulder substrate,

and frequently occur in mud while laced sponges (LS) almost always occur in a substrate

that includes rock. These correlations suggest that learning to predict substrate may aid

in learning the relationship between substrate and species and motivate a context driven

approach for species detection and counting.

BS FPU GG LLS RSG SL LS WSSC WSpSC YG Total
Train 1,247 3,675 3,294 735 775 3,264 1,071 1,397 819 1,024 17,301
Val 61 394 259 20 85 594 91 439 51 38 2,032
Test 124 653 277 61 79 1,181 98 506 28 180 3,187
Total 1,432 4,722 3,830 816 939 5,039 1,260 2,342 898 1,242 22,520

Table 4.5: Distribution of bounding box annotations of each species across splits.
Note that one species individual may be annotated with multiple bounding boxes as
it occurs across multiple frames.

4.4 Tasks

While our dataset has a plethora of uses, we present two specific tasks for which our

dataset is well suited.
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BS FPU GG LLS RSG SL LS WSSC WSpSC YG Total

Train 292 2,828 398 269 190 1,649 517 832 279 103 7,357
Val 17 154 80 8 19 208 40 164 22 9 721
Test 52 420 78 29 48 742 75 317 17 38 1,816
Total 361 3,402 556 306 257 2,599 632 1,313 318 150 9,894

Table 4.6: Distribution of CABOF labels across DUSIA and its splits. As described in
Section 4.3.3, each species individual is counted only once when it touches the bottom
of the frame.

BS FPU GG LLS RSG SL LS WSSC WSpSC YG
B 0.302 0.059 0.362 0.206 0.198 0.219 0.168 0.224 0.176 0.340
C 0.773 0.370 0.797 0.575 0.712 0.581 0.454 0.754 0.601 0.887
M 0.288 0.813 0.185 0.951 0.471 0.689 0.372 0.467 0.896 0.127
R 0.670 0.424 0.464 0.297 0.716 0.745 0.998 0.585 0.324 0.380

Table 4.7: Percentage of total species individuals occuring in each substrate according
to CABOF labels. Note that a given frame may have multiple substrate labels, so a
given individual may occur in multiple substrates at one time.

4.4.1 Substrate Temporal Localization

The first step marine researchers take to analyzing the videos that they collect is to

define the temporal spans of each substrate by indicating the start and end times of each

substrate as the substrate changes while the ROV drives over the ocean floor. Many

substrates may occur simultaneously, which slightly complicates the problem, making it

a multi-label classification problem. Our dataset makes it possible to develop and test

automated methods for this problem.

4.4.2 Counting Species Individuals

DUSIA also makes it possible to count the number of individuals of species occurring

in the videos. Counting can be achieved in three stages: detection, tracking, and then

counting. We present a simple baseline method for achieving this. While many computer

vision methods for counting may rely on localization information such as bounding boxes,
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marine researchers are interested in the number of individuals occurring in the video and

are less interested in where exactly in the frame an organism occurs. They can use video

timestamps of those individuals’ occurrence to map those timestamps back to their GPS

coordinate time log from the expedition in which the video was captured, generating

population density maps for different species.

Additionally, we provide bounding box labels for ten species of interest as described

in Section 4.3.3.

In the next chapter, we present a method for utilizing explicit context labels to detect,

track, and count the ten species of interested that are annotated with bounding boxes in

DUSIA’s videos.
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Figure 4.7: Histograms illustrating the distributions of box sizes (in pixels squared)
for each species of interest.
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Chapter 5

Context-Driven Detection, Tracking,

and Counting of Underwater

Invertebrate Species

5.1 Introduction

Counting underwater species individuals enables marine scientists and biologists to better

understand the health of oceanic regions and to enact practices or propose legislation to

ultimately protect life in the oceans, but, in practice, counting these organisms poses a

challenging, expensive task. As a means to alleviating the cost of these ocean surveys, we

present a method for detecting, i.e. classifying and spatially localizing, the underwater

invertebrate species of DUSIA.

We introduce the novel Context-Driven Detector (CDD), which uses implicit context

representations and explicit context labels to improve bounding box detections. In our

case, context refers to explicit class labels of the background. Specifically, our context

labels describe the substrate present on the ocean floor, which determine the environment
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and habitat in which the organisms live. In natural images, context might refer to indoor

vs outdoor images or subcategories within such as school, office, library, or supermarket.

The context labels present in DUSIA include boulder, cobble, mud, and rock.

Additionally, we propose Negative Region Dropping, an approach for improving per-

formance of an object detector trained on a dataset with partially annotated images.

Finally, we offer a baseline method for counting invertebrate species individuals in

challenging setting of DUSIA’s videos using a detection plus tracking pipeline.

5.2 Related Work

Object detection consists of classifying and localizing instances of classes of interest,

typically by drawing a tight bounding box around each instance. Detection positions

itself as one of the most popular problems in computer vision with much work being

done on this problem across numerous domains, but object detection of commmon object

classes (e.g. person, cat, dog) poses perhaps the most popular form of object detection.

The vast majority of object detectors optimize for this problem.

State of the art object detection models follow three general architectures: single

stage, two stage, and transformer-based models. Single stage models, like YOLO and its

derivatives [70–72] make detection predictions in just one pass. Transformer based models

like DETR and its derivatives [73, 74] pose object detection as a direcrt set prediction

problem and use transformer based encoder-decoders to match box predictions with

ground truths. Two stage models like the Faster RCNN [67,75–77] line of models operate

in two passes. A region proposal network does as the name suggests: proposes regions

of interest that may contain objects of interest. Then, each of those region proposals are

evaluated and refined to generate object detections.

Our novel Context Driven Detector (CDD) builds on Faster RCNN, introducing a
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Figure 5.1: Context-Driven Detector: the Context Description Branch (green) takes
features from the backbone, classifies context explicitly (blue), and feeds a global
representation of context (purple) to the box classification layer to enhance detections.
We show that using this branch enhances the detections overall indicating that learning
from explicit context labels can enhance detections.

mechanism for using explicit context labels and implicit context representations to en-

hance object detection performance in underwater video frames where objects of interests

are individuals of DUSIA’s invertebrate species of interest. Additionally, we introduce

Negative Region Dropping, a novel technique for training on DUSIA’s partially super-

vised frames.

5.3 Methods

We present methods for substrate temporal localization and invertebrate species detec-

tion using partially supervised frames with our primary focus on invertebrate species

detection. We feed our detection results to ByteTrack’s tracking algorithm [78] to track

invertebrate species and present a simple method for using these tracks to count inver-

tebrate individuals.
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5.3.1 Substrate Classification

Before diving into the Context Driven Detector, substrate classification experiments illus-

trate that deep learning models are capable of recognizing different substrates present in

the underwater video. These models and experiments lay a foundation for CDD, suggest-

ing that, if context can be classified with some degree of accuracy, context classifications

might also be helpful toward the object detection problem.

For a baseline, we train two basic classifiers for substrate classification. First, we

trained an out-of-the-box ResNet-50 based [44] classification CNN, pre-trained on Im-

ageNet [79], on frames pulled from training videos to predict four substrates at once.

Then, we trained four separate ResNet-50 classifiers, one per substrate, and combined

the prediction results from each of the classifiers by simply assigning each of their con-

fidence predictions to each class since substrate classification allows multiple substrates

to be present in a single frame.

5.3.2 Invertebrate Species Detection

We trained an out-of-the-box Faster RCNN model using our partially annotated keyframes

(see section 4.3.3 for partial annotation description). We chose Faster RCNN for its

adaptability and ability to classify smaller boxes, with which some object detectors strug-

gle. As shown in Figure 4.7, many classes in DUSIA are made up of small boxes.

Figure 5.1 shows vanilla Faster RCNN in black. An image is fed to a backbone

network, and image features are fed to a region proposal network. Then, region of

interest pooling selects proposed regions. Finally, fully connected layers classify each

region and regress the bounding box coordinates to refine their localization. We made

no modifications to Faster R-CNN for this baseline model and refer to this version as
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vanilla Faster RCNN with the loss function, Lv, described by Ren et al [75]:

Lv = Ld + Lp (5.1)

where Ld is the loss for the detector and Lp is the loss for the region proposal network.

Since we make no modifications to this part of the loss, we leave the details of the original

loss description to the source paper.

Negative Region Dropping

Because much of our partially annotated training set contains unlabelled individuals of

species of interest, we propose an approach for teaching the detection network to pay

more attention to the true positive labels, and to pay less attention to potential false

positives during training because a false positive may actually just be an unlabelled

positive. There is generally no way of being sure whether an individual of interest is not

present given a partially labelled training set, but all of the boxes provided for training

are correct, true positive examples. Since humans can make sense of such a scenario, we

aim to create a method for a detector to emulate that process.

Faster RCNN’s region proposal network (RPN) generates proposals and computes

a loss to learn which proposal contains an object of interest or not. Each proposal is

assigned a label, positive or negative, based on whether it has sufficient overlap with a

ground truth box (positive) or not (negative). Because DUSIA’s training set contains

unlabelled positives, we propose randomly dropping out a percentage of the negative

proposals, thereby giving negative examples a lower weight and positive examples a

higher weight. Dropping these negative proposals simply equates to not including them

in the RPN’s loss, Lp.

We explore different percentages, ρ, to drop in section 5.4, and show that dropping
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test wv per class APs
val mAP test mAP B C M R test wv mAP

Separate 0.588 0.646 0.274 0.802 0.750 0.826 0.663
Combined 0.551 0.572 0.259 0.777 0.951 0.781 0.692

CDD 0.517 0.596 - - - - -

Table 5.1: Substrate classifier performance. Per class APs are shown for the test wv
set. CDD shows the classification performance of the CDD with α = 0.0001 and ρ =
0.75, which was not run on test wv.

negative proposals in this way leads to significant improvement in detection performance

on DUSIA.

Context Driven Detection

To improve invertebrate detection using context annotations, we introduce the novel

Context Description Branch as shown in green in Figure 5.1. The first iteration of

the context description branch (blue in Figure 5.1) flattens the feature map from the

backbone network and feeds this flattened vector to a fully connected layer which is

trained in tandem with the detection branch to predict the multi-class substrate label.

Simply backpropagating a weighted binary cross entropy loss to the backbone network

to predict the substrate label increases the model’s performance and generalizability (as

measured by performance on the test set) by teaching the network about context via

explicit context classification. This joint optimization generates cues in the backbone

feature map that improve the invertebrate detection. For this iteration of the network,

the loss function looks the same as equation 5.1 with the additional loss for explicit

context classification.

L = Lv + α ∗ Lc (5.2)

where α is a hyperparameter weight and Lc is a binary cross entropy loss for context

labels.

63



Context-Driven Detection, Tracking, and Counting of Underwater Invertebrate Species Chapter 5

By feeding global features alongside local features to the box classification layer, we

can also enhance the model’s performance; however, for the network to learn from them

simultaneously, the global and local features must be on similar orders of magnitude. For

vanilla Faster RCNN, the local box features are vectors of size 1,024. Global features

from the ResNet-50 backbone, though, are much larger. To address this size mismatch,

we add a 1D convolution layer to the context description branch, which reduces the

dimension of the backbone’s feature map. This reduced map represents the global context

information, which is largely the visible substrate, to a dimensionality on the same order

of magnitude as each of the box features that are fed to the box classification head’s

fully-connected layer. Along those lines, we also scale the global features to match the

local box feature vector by simply multiplying the global features element-wise with a

scalar hyperparameter, β.

Because Faster RCNN predicts the class of each box based on a set of box features,

which is a local representation of the object that is being classified, we enhance these

box classifications by concatenating each image’s global context information to each of

its box features. This concatenation fuses together local and global features and allows

the network to draw more immediate conclusions about the global information, object

features, and their relationship, which is especially relevant when classifying invertebrate

species in this setting. Here, we make no changes to the loss function from equation 5.2,

and the 1D convolution kernel is learned.

5.3.3 Invertebrate Tracking and Counting

To illustrate an example pipeline for invertebrate counting, we use a detection plus track-

ing approach. First, we train our detector on keyframes from our training set, and then

we run inference on the full validation and testing videos at 30 fps saving all detections
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including their spatial and temporal locations, class labels, and confidence scores.

As an intermediate step, we filter out all low confidence detections under different

thresholds so that the tracker does not see low confidence detections.

ByteTrack [78] takes as input the detections (box coordinates and confidence scores)

of a single class at a time and metadata from the images (e.g. image size). In short,

ByteTrack performs a modified Kalman filter based algorithm to the detections in order

to link them in adjacent frames and assign each detection a track ID, or filter it out.

We apply a second filter to the output of ByteTrack such that track IDs that occur

in too few frames are filtered out.

Finally, we count species individuals. To emulate the process used by marine sci-

entists, we only count species individuals that touch the bottom of the frame. So, if a

tracked species’ box touches the bottom of the frame, we mark its track ID as counted

and simply increment its class’s count. This way, for each video, we can compute a total

number of species per video that we can then compute relative error using our predicted

counts and the sum of each video’s CABOF labels.

5.4 Experiments

We test a few models and methods for the substrate temporal localization task in an

effort to provide a baseline for other works to improve upon.

5.4.1 Substrate Temporal Localization

Single Classifier

We test a simple ResNet-50 based image classifier trained with a batch size of 32, learning

rate of 0.1, and up to 50 epochs, selecting the epoch weights that perform best on the
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validation set. We also tested learning rates of 0.01 and 0.001 for our classifiers, and

these models performed similarly but slightly worse. Table 5.1 shows the results of these

experiments as predictions were made on the fully annotated frames of our validation and

testing sets. These two sets are included for comparison with the context classification

performance of CDD with explicit context classification, though CDD is optimized to

perform detection simply using substrate prediction as a guiding sub-task. For substrate

localization, though, we have annotations for almost every frame. So, we also present

our classification performance on the test wv set which includes many more frames from

the test videos. To generate test wv we simply sample the test videos uniformly at one

frame per second. We then classify each frame, and present the AP scores.

Combination of Multiple Classifiers

As mentioned in previous sections, substrate annotations are currently completed by

trained marine scientists in multiple passes through each video, one pass per substrate.

Inspired by this approach, we use one binary classifier network per substrate class. Each

ResNet-50 image classification network is trained independently on the training set; how-

ever, each network is trained to simply indicate whether one substrate is present or not.

We use each classifier’s prediction together to predict the multi-class label and refer to

this method as our combined approach. Table 5.1 shows that this method improves per-

formance over a single multi-classifier for most substrates, indicating that each approach

may have different use cases.

All classifiers seem to struggle with correctly identifying the boulder substrate, and,

given the nuance in differences between hard substrates, this is not surprising considering

the classifiers have little scale information to use to determine and differentiate exact

sizes of different pieces of cobble, boulders, or larger rock formations. Additionally, the

changing perspective of the ROV makes it difficult to understand scale in the videos. That
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lr val mAP test mAP
0.1 0.454 0.361

0.01 0.490 0.391
0.001 0.482 0.367

Table 5.2: Performance of vanilla Faster RCNN with varying learning rates

said, a dedicated boulder detector out-performed the single classifier method overall due

to its impressive performance classifying the mud class.

5.4.2 Invertebrate Species Detection

In order to detect species individuals, we present mean average precision (mAP) results

for object detection with an intersection over union (IOU) threshold of 0.5. For each

detection experiment, we initalize our models with weights pretrained on ImageNet and

then train the network for up to 15 epochs. We select the model from the epoch with

the best performance on the fully annotated frames of the validation set. Then, we run

inference on the fully annotated frames of the test set using those selected model weights.

We repeat the training and testing procedure four times for each experiment and report

the average results over the four runs because PyTorch does not support deterministic

training for our model at the time of writing.

We first train vanilla Faster RCNN [75] with a batch size of 8 and try several learning

rates after initializing with weights pre-trained on COCO [7] provided by PyTorch [80].

The results are shown in Table 5.2.

We then perform hyperparameter searches for each of our method contributions de-

scribed in section 5.3: α for explicit context learning and backbone refinement, β for

global context feature fusion, and ρ for Negative Region Dropping. After testing each

hyperparameter independently, we try combinations of each and discuss the results. We

prioritize test mAP over val mAP as test mAP is more indicative of the generalizability
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lr ρ val mAP test mAP
0.01 0 0.490 0.391
0.01 0.5 0.492 0.413
0.01 0.75 0.509 0.439
0.01 0.9 0.492 0.403
0.01 1 0.297 0.264

0.001 0.75 0.479 0.380
0.001 0.9 0.481 0.380

Table 5.3: Performance of Faster-RCNN with varying Negative Region Dropping percentages

of our model since the best model weights are selected on best val mAP.

Negative Region Dropping Percent ρ

Table 5.3 shows that Negative Region Dropping consistently improves the training on

DUSIA by teaching the network to focus more on learning from true examples than nega-

tive examples. Interestingly, setting ρ to 1.0 detrimentally harms performance indicating

that having some negative regions contribute to the region proposal loss is still important.

Global Feature Fusion Scalar β

By creating a global feature representation and feeding it later in the network, the network

is better able to classify boxes correctly, but concatenating a global feature representation

with the local box features requires that the features come in at similar scales. Table 5.4

shows the effect of different scalar values for this fusion.

Context Loss Weight α

By modifying the detector to simultaneously classify the context of an image in paral-

lel with detection, we demonstrate that simply backpropagating information useful for

classifying substrate to the backbone also serves to help improve detection performance.

Training a joint task in this way leads to less powerful context classifications than a
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lr β val mAP test mAP
0.01 0 0.490 0.391
0.01 0.1 0.471 0.371
0.01 0.01 0.491 0.397
0.01 0.001 0.499 0.396
0.01 0.0001 0.494 0.410
0.01 1.0E-05 0.496 0.406
0.01 1.0E-06 0.482 0.394

0.001 0.01 0.475 0.374
0.001 0.001 0.477 0.371

Table 5.4: Performance of the Context Driven Detector given different β scalar values

lr α val mAP test mAP
0.01 0 0.490 0.391
0.01 0.1 0.470 0.389
0.01 0.01 0.494 0.419
0.01 0.001 0.487 0.401
0.01 0.0001 0.502 0.420
0.01 1.0E-05 0.507 0.410
0.01 1.0E-06 0.501 0.408

0.001 0.01 0.456 0.358
0.001 0.001 0.453 0.361

Table 5.5: Performance of the Context Driven Detector given different context loss
scaling α values

dedicated context classifier, but it leads to a more powerful object detector. Table 5.5

shows the effects of α on the detection performance.

Hyperparameter Combinations

We illustrate that each hyperparameter alone can improve the detector performance over

the baseline out-of-the-box models. We further illustrate that Negative Region Dropping

and context driven detection can work in tandem to further improve performance. We

also find that a context driven detector with both implicit attention to context (global

feature fusion) and explicit context classification does not necessarily outperform implicit

context usage or explicit classification only. Training on both implicit and explicit context
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simultaneously may interfere with each other. Still, we emphasize that learning from

context can significantly improve object detection performance in this setting, and we

aim to find even better ways to utilize contextual information to better classify objects

in future work.

Table 5.6 highlights the best hyperparameter settings revealed during our search, and

Section 5.6 goes into more detail on the settings tested for this study. Note that the β

column set to zero indicates that global features are not being scaled by 0, rather they

are not being concatenated with the local box features at all.

We find that Negative Region Dropping increases the overall performance of both

vanilla Faster RCNN and context driven detectors. While explicit and implicit context

usage may conflict with one another in training, independently they can achieve perfor-

mance increases. The best model overall is achieved with global context feature fusion

and Negative Region Dropping, and a model with explicit context classification and Neg-

ative Region Dropping follows close behind. We find that using context to influence

detections leads to a 7.4% increase, using negative region dropping leads to a 12.3%, and

together they can achieve a 14.3% increase in mAP on the fully annotated frames in

DUSIA’s test set.

Figure 5.2 illustrates the per class AP detection performance of our best model com-

pared with vanilla Faster RCNN showing that our model significantly increases perfor-

mance on all classes. Figure 5.3 shows qualitative examples of success and failure cases

of the best version of CDD.

5.4.3 Invertebrate Species Counting

There are some noteworthy differences between the detection and counting problems.

As mentioned in Section 4.3.4, we partition DUSIA’s videos into three sets: training,
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α β ρ val mAP test mAP
0 0 0 0.490 0.391
0 0.0001 0 0.494 0.410

0.01 0.1 0 0.480 0.420
0.0001 0 0 0.502 0.420

1.0E-06 0.01 0.75 0.517 0.430
0 0 0.75 0.509 0.439

0.0001 0 0.75 0.514 0.439
0 0.01 0.75 0.524 0.447

Table 5.6: Performance of best models from each hyperparameter combination

val set per species relative errors

γ τ BS FPU GG LLS RSG SL LS WSSC WSpSC YG mean
0 0 11.2 4.04 5.75 25.6 60.9 3.18 0.35 2.98 2.32 18.7 13.5

20 0.5 -0.18 -0.091 -0.34 1.13 -0.11 -0.50 -0.90 -0.88 -0.27 0.00 0.439

test set per species relative errors

γ τ BS FPU GG LLS RSG SL LS WSSC WSpSC YG mean
0 0 6.00 4.73 15.38 46.66 70.23 3.29 2.57 2.84 3.71 12.21 16.8

20 0.5 -0.56 0.14 -0.03 1.28 -0.25 -0.51 -0.84 -0.91 -0.24 -0.39 0.515

Table 5.7: Relative errors of our counting method with no thresholding and the best
threshold settings. Darker color indicates better performance. See Table 4.6 for
ground truth counts for each species.

validation, and testing sets. However, the detector sees only a small fraction of each

video as only a small subset of each video has bounding box annotations. Further, while

we refer to three of our videos as validation videos, our detection models do not train on

those videos at all, and only 514 frames from those 124,000 validation video frames are

used in the detection validation process to select our best model weights.

In contrast, our counting method runs our detector on the entire lengths of the videos

in the validation and testing sets, posing a great challenge to the generalizability and ro-

bustness of an object detection model. That is, the sets of frames used for the counting

task are much larger than those used for detection. Also, the frames annotated with in-

vertebrate species (i.e. all the frames in the detector’s training set) all include instances of

those species of interest. In contrast, each video contains long time spans of both densely
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Figure 5.2: Per class test AP comparison of vanilla Faster RCNN and the best Context
Driven Detector

and sparsely annotated areas including some long regions with no species of interest. As

a result, counting species individuals poses a very challenging problem, and much work

remains to be done in the power of a detector and its ability to differentiate between

background and species of interest in both sparsely and densely populated environments.

Still, we aim to demonstrate the challenge of this problem with a simple baseline

method, though much work remains to be done to achieve a result that would be able to

replace the annotation abilities of trained marine scientists. We hope that DUSIA can

aid in pushing the limits of computer vision models and extend computer vision methods’
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Figure 5.3: Detection examples from our dataset. Blue indicates fragile pink urchin;
green, gray gorgonian; and red, squat lobster. We show the success of our detector
with the exception of the bottom right image. A crab (not a species of interest) is
mislabeled as a fragile pink urchin toward the top center of the image. In the left
side of the image, two pieces of floating debris are labelled as urchins, and close to
the center two urchins are counted thrice. Right of center, a rock is labelled as an
urchin. These failure cases demonstrate some of the challenges of DUSIA. In the top
right corner of the bottom right image, a very difficult to see pink urchin is correctly
detected.

usefulness into more challenging, scientific data.

In order to count invertebrate individuals, we first run the best performing version

of CDD on each of our val and test videos at the full frame rate of 30 fps and save all

detections. Then, we filter out all detections with confidence scores under a threshold,

τ , before feeding all detections to ByteTracker. We then filter the output of ByteTrack

by discarding any track IDs with less than γ detections in the track. That is, if a track

ID is assigned to boxes in only a few frames, we discard that track ID. We experimented

with ByteTracker’s hyperparameters and found that their effect was significantly smaller

than the effects of τ and γ, so we opt to use the default hyperparameter settings for

ByteTracker. We leave the details of ByteTracker to the original work [78]. Finally, for

each species, we count the number of that species’ track IDs that touch the bottom of

any frame.

We applied the two aforementioned filters because, without any filters, our method

vastly over counts all species through all videos. Figure 5.3 shows examples of a few false

positive detections, and these types of errors likely contribute heavily to our method’s
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over counting as the detector is run over hours of videos, accumulating false positive

results.

To address the over counting issue, we opted to feed the tracker only our most confi-

dent detections and to only count tracks that occur across multiple frames. This filtering

significantly improved the performance, but the error remains unacceptably high.

Table 5.7 shows the relative error for each class on the val and test videos as well as

the mean relative error, averaged over all classes, as we vary the τ and γ parameters. We

leave the error sign to indicate over (positive error) or under (negative error) counting,

but we compute the mean errors using the absolute value of the error values for each

class. Clearly, the detector hardly learns some of the rarer classes (e.g. long-legged

sunflower star and red swiftia gorgonian) and regularly misclassifies background, which

may include species outside of our ten species of interest, as our species of interest.

Section 5.6 contains more experiment error results for varying these filter thresholds.

Ultimately, these baseline results indicate that this simple method is not powerful

enough to put into practice given the effectiveness of our current detection model. Much

work on methods for this problem is left to be done. We could look deeper into per class

thresholds, but we expect improving object detections, false positive filtering, and the

tracking algorithm would be more robust. We leave these improvements to future work.

5.5 Discussion and Future Work

Our baseline methods’ detection and counting performance leaves plenty of room for

improvement. Our detection methods do not enforce any sort of temporal continuity

present in the ROV videos, which could likely improve performance, and the methods do

not yet take advantage of the abundant, weak CABOF labels during training.

It is interesting to find the difference in performance of the different types of sub-
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strate classifiers. Overall, the substrate classification results are good enough for some

substrates, and in future work we hope to see results good enough to fully automate this

process. Additionally, marine scientists are interested in real time substrate classifiers

that can indicate which substrates the ROV is passing in real time. Any indication of

species hotspots in real time during expeditions can improve each excursion’s produc-

tivity by reducing more manual means of searching for given substrates, habitats, and

species hotspots.

The detection results of the Context Driven Detector provide a baseline, but in order

to fully translate these detections to tracks with individual re-identification and counting,

there is much work to be done. We hope to next take full advantage of the CABOF

labels and to use context in more powerful ways to improve detection performance in

future work. Further, we plan to enforce temporal continuity to improve our counting

predictions. These improvements can lead us to eventually begin automating some of

the invertebrate counting that is currently done manually.

By making DUSIA public, we also invite other collaborators to work independently

or in cooperation with us to help improve our methods.
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5.6 Hyperparameter Search Summary

lr α β ρ val mAP test mAP lr α β ρ val mAP test mAP

0.1 0 0 0 0.454 0.361 0.01 1.00E-04 0.01 0 0.487 0.405
0.01 0 0 0 0.490 0.391 0.01 1.00E-05 0.01 0 0.489 0.404

0.001 0 0 0 0.482 0.367 0.01 1.00E-06 1.00E-02 0 0.486 0.404
0.01 0.1 0 0 0.470 0.389 0.01 1.00E-04 1.00E-04 0 0.471 0.395
0.01 0.01 0 0 0.494 0.419 0.01 1.00E-05 1.00E-04 0 0.487 0.383
0.01 1.00E-03 0 0 0.487 0.401 0.01 1.00E-04 0.001 0 0.491 0.388
0.01 1.00E-04 0 0 0.502 0.420 0.001 0.01 0.001 0 0.469 0.373
0.01 1.00E-05 0 0 0.507 0.410 0.001 0.001 0.001 0 0.477 0.377
0.01 1.00E-06 0 0 0.501 0.408 0.01 0.01 0 0.75 0.491 0.405

0.001 0.01 0 0 0.456 0.358 0.01 0.001 0 0.75 0.487 0.406
0.001 0.001 0 0 0.453 0.361 0.01 1.00E-04 0 0.75 0.514 0.433
0.01 0 0.1 0 0.471 0.371 0.01 1.00E-05 0 0.75 0.503 0.417
0.01 0 0.01 0 0.491 0.397 0.01 1.00E-06 0 0.75 0.503 0.433
0.01 0 1.00E-03 0 0.499 0.396 0.01 0.1 0 0.9 0.500 0.431
0.01 0 1.00E-04 0 0.494 0.410 0.01 0.01 0 0.9 0.504 0.421
0.01 0 1.00E-05 0 0.482 0.395 0.01 0 0.1 0.75 0.512 0.435
0.01 0 1.00E-06 0 0.482 0.394 0.01 0 0.01 0.75 0.524 0.447

0.001 0 0.01 0 0.475 0.374 0.01 0 1.00E-03 0.75 0.513 0.426
0.001 0 0.001 0 0.477 0.371 0.01 0 1.00E-04 0.75 0.506 0.420

0.1 0 0 0.75 0.456 0.354 0.01 0 1.00E-05 0.75 0.506 0.436
0.01 0 0 0.25 0.485 0.392 0.01 0 0.01 0.9 0.497 0.402
0.01 0 0 0.5 0.492 0.413 0.01 0 0.001 0.9 0.512 0.430
0.01 0 0 0.75 0.509 0.439 0.01 0.01 1.00E-02 0.75 0.503 0.412
0.01 0 0 1 0.297 0.264 0.01 0.01 1.00E-01 0.75 0.502 0.414
0.01 0 0 0.9 0.492 0.403 0.01 0.1 0.01 0.75 0.515 0.427

0.001 0 0 0.75 0.479 0.380 0.01 0.1 0.1 0.75 0.513 0.437
0.001 0 0 0.9 0.481 0.380 0.01 0.01 0.001 0.75 0.516 0.428

0.1 0.1 0.1 0 0.451 0.372 0.01 0.1 0.001 0.75 0.510 0.419
0.1 0.01 0.1 0 0.462 0.371 0.01 0.01 0.01 0.9 0.508 0.420
0.1 0.01 0.01 0 0.454 0.375 0.01 0.01 0.001 0.9 0.497 0.418

0.01 0.1 0.1 0 0.450 0.370 0.01 0.1 0.001 0.9 0.503 0.417
0.01 0.01 0.1 0 0.480 0.420 0.01 0.001 0.01 0.75 0.509 0.427
0.01 0.1 0.01 0 0.497 0.399 0.01 1.00E-04 0.01 0.75 0.510 0.425
0.01 0.01 0.01 0 0.489 0.403 0.01 1.00E-04 1.00E-04 0.75 0.515 0.433
0.01 0.01 0.001 0 0.488 0.408 0.01 1.00E-05 0.01 0.75 0.509 0.428
0.01 0.001 0.01 0 0.486 0.396 0.01 1.00E-06 0.01 0.75 0.517 0.430
0.01 0.001 0.001 0 0.492 0.396

Table 5.8: Results of hyperparameter search experiments on learning rate, α, β, and ρ
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val set per species errors

γ τ BS FPU GG LLS RSG SL LS WSSC WSpSC YG mean
0 0 11.24 4.04 5.75 25.63 60.89 3.18 0.35 2.98 2.32 18.7 13.5

10 0 1.65 0.05 0.01 2.50 3.00 -0.26 -0.70 -0.74 -0.14 1.89 1.09
15 0 0.76 -0.06 -0.14 1.25 0.68 -0.41 -0.80 -0.80 -0.27 1.22 0.641
18 0 0.53 -0.09 -0.17 1.00 0.37 -0.45 -0.82 -0.84 -0.32 1.00 0.560
20 0 0.53 -0.09 -0.20 1.00 0.11 -0.47 -0.85 -0.86 -0.32 0.89 0.531
22 0 0.41 -0.10 -0.25 1.00 -0.05 -0.51 -0.85 -0.87 -0.36 0.78 0.519
25 0 0.24 -0.12 -0.26 1.00 -0.16 -0.54 -0.85 -0.91 -0.41 0.33 0.482
27 0 0.00 -0.13 -0.29 1.00 -0.26 -0.55 -0.85 -0.92 -0.41 0.00 0.441
30 0 -0.12 -0.14 -0.36 0.88 -0.42 -0.55 -0.85 -0.93 -0.41 -0.22 0.488
0 0.5 7.24 3.95 4.59 25.75 58.42 2.74 -0.35 2.80 2.14 15.2 12.3

10 0.5 0.12 -0.03 -0.24 2.13 0.63 -0.40 -0.85 -0.83 -0.14 0.78 0.613
15 0.5 -0.12 -0.06 -0.30 1.25 0.16 -0.49 -0.87 -0.87 -0.23 0.22 0.457
18 0.5 -0.18 -0.08 -0.32 1.13 -0.05 -0.50 -0.87 -0.88 -0.27 0.11 0.440
20 0.5 -0.18 -0.09 -0.34 1.13 -0.11 -0.50 -0.90 -0.88 -0.27 0.00 0.439
22 0.5 -0.24 -0.10 -0.35 1.13 -0.11 -0.52 -0.90 -0.89 -0.32 -0.11 0.466
25 0.5 -0.29 -0.11 -0.37 1.13 -0.26 -0.54 -0.90 -0.90 -0.36 -0.22 0.510
27 0.5 -0.41 -0.12 -0.37 1.13 -0.32 -0.55 -0.90 -0.91 -0.36 -0.33 0.540
30 0.5 -0.47 -0.13 -0.42 0.88 -0.47 -0.55 -0.90 -0.91 -0.36 -0.33 0.544
0 0.9 0.18 1.23 0.23 8.00 9.26 0.42 -0.90 -0.37 0.45 1.67 2.27

10 0.9 -0.41 -0.05 -0.32 1.63 0.21 -0.49 -0.90 -0.87 -0.32 -0.44 0.564
15 0.9 -0.47 -0.08 -0.35 1.38 -0.11 -0.52 -0.90 -0.91 -0.36 -0.56 0.563
18 0.9 -0.53 -0.10 -0.39 1.25 -0.26 -0.53 -0.90 -0.91 -0.36 -0.56 0.579
20 0.9 -0.59 -0.10 -0.39 1.25 -0.37 -0.54 -0.90 -0.91 -0.36 -0.56 0.597
22 0.9 -0.59 -0.10 -0.42 1.13 -0.42 -0.55 -0.92 -0.91 -0.36 -0.56 0.596
25 0.9 -0.59 -0.11 -0.45 1.13 -0.58 -0.56 -0.92 -0.92 -0.41 -0.56 0.623
27 0.9 -0.59 -0.12 -0.47 1.13 -0.58 -0.56 -0.92 -0.93 -0.41 -0.56 0.627
30 0.9 -0.65 -0.13 -0.49 0.88 -0.68 -0.58 -0.92 -0.93 -0.45 -0.56 0.627

Table 5.9: Relative errors of our counting method with different settings across the
validation set’s videos. γ represents the threshold for number of frames per track ID to
count track. τ represents detection confidence score threshold. Darker color indicates
better performance. Note that we include the sign for per species errors to indicate
over (postive) or under (negative) counting, but the absolute values of relative error
are used in the mean computation.
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test set per species errors test val

γ τ BS FPU GG LLS RSG SL LS WSSC WSpSC YG mean mean
0 0 6.00 4.73 15.38 46.66 70.23 3.29 2.57 2.84 3.71 12.21 16.8 13.5
10 0 0.19 0.33 1.22 3.62 2.02 -0.32 -0.45 -0.77 0.00 1.08 1.00 1.09
15 0 -0.15 0.20 0.44 2.03 0.17 -0.44 -0.64 -0.85 -0.06 0.37 0.535 0.641
18 0 -0.25 0.17 0.31 1.52 -0.21 -0.48 -0.71 -0.89 -0.18 0.03 0.473 0.560
20 0 -0.35 0.16 0.23 1.34 -0.35 -0.51 -0.77 -0.91 -0.24 -0.13 0.499 0.531
22 0 -0.38 0.14 0.13 1.07 -0.44 -0.53 -0.80 -0.91 -0.24 -0.18 0.482 0.519
25 0 -0.44 0.10 -0.01 0.93 -0.56 -0.54 -0.80 -0.92 -0.24 -0.26 0.481 0.482
27 0 -0.46 0.09 -0.06 0.79 -0.56 -0.55 -0.83 -0.93 -0.24 -0.29 0.480 0.441
30 0 -0.60 0.07 -0.10 0.62 -0.67 -0.57 -0.84 -0.93 -0.35 -0.34 0.509 0.488
0 0.5 4.90 4.24 11.88 44.66 66.31 2.82 1.15 2.59 3.82 9.26 15.2 12.3
10 0.5 -0.44 0.24 0.36 2.79 0.65 -0.42 -0.71 -0.82 -0.18 0.03 0.663 0.613
15 0.5 -0.52 0.17 0.06 1.79 0.00 -0.47 -0.80 -0.85 -0.18 -0.29 0.514 0.457
18 0.5 -0.54 0.15 -0.01 1.34 -0.12 -0.50 -0.84 -0.89 -0.24 -0.37 0.500 0.440
20 0.5 -0.56 0.14 -0.03 1.28 -0.25 -0.51 -0.84 -0.91 -0.24 -0.39 0.515 0.439
22 0.5 -0.56 0.13 -0.08 1.03 -0.29 -0.53 -0.84 -0.91 -0.24 -0.39 0.501 0.466
25 0.5 -0.58 0.11 -0.13 0.93 -0.42 -0.54 -0.84 -0.92 -0.24 -0.42 0.512 0.510
27 0.5 -0.60 0.10 -0.15 0.86 -0.46 -0.56 -0.84 -0.93 -0.24 -0.45 0.518 0.540
30 0.5 -0.62 0.08 -0.18 0.66 -0.52 -0.57 -0.85 -0.94 -0.35 -0.45 0.521 0.544
0 0.9 -0.44 1.51 0.79 13.34 11.00 0.48 -0.79 -0.36 0.82 0.71 3.03 2.27
10 0.9 -0.71 0.17 -0.17 1.90 -0.02 -0.49 -0.88 -0.89 -0.41 -0.53 0.616 0.564
15 0.9 -0.73 0.12 -0.24 1.07 -0.42 -0.55 -0.88 -0.91 -0.41 -0.63 0.596 0.563
18 0.9 -0.75 0.10 -0.28 0.76 -0.54 -0.57 -0.88 -0.93 -0.47 -0.71 0.599 0.579
20 0.9 -0.75 0.09 -0.31 0.66 -0.56 -0.58 -0.88 -0.94 -0.47 -0.71 0.595 0.597
22 0.9 -0.75 0.08 -0.31 0.55 -0.58 -0.59 -0.89 -0.95 -0.47 -0.74 0.591 0.596
25 0.9 -0.75 0.06 -0.35 0.41 -0.67 -0.60 -0.92 -0.95 -0.47 -0.76 0.594 0.623
27 0.9 -0.75 0.05 -0.35 0.41 -0.71 -0.60 -0.93 -0.96 -0.47 -0.79 0.602 0.627
30 0.9 -0.75 0.03 -0.36 0.21 -0.75 -0.61 -0.93 -0.96 -0.53 -0.82 0.595 0.627

Table 5.10: Relative errors of our counting method with different settings across the
test set’s videos
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Chapter 6

Generating Context Matched

Collages for Object Detection on

Underwater Video

While we have achieved significant improvements in object detection performance on

DUSIA’s video frames via Context Driven Detection, the overall performance is far from

perfect. Compared to many of today’s benchmark datasets for object detection on natural

images, DUSIA has a relatively small number of training frames, so we aim to show that

increasing the size of the training set can further enhance object detection performance.

In order to do so, we introduce a method for generating more training samples for DUSIA:

Context-Matched Collages.

6.1 Introduction

Today’s computer vision methods largely depend on enormous datasets with many an-

notated examples for each class. These sorts of datasets can be extremely expensive to
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collect, especially when the data is more scientific in nature. While any layperson can

label a cat, dog, or human, the cost of labelling and differentiating between more specific,

scientific classes grow exponentially. The cost of collecting, annotating, and analyzing

scientific data is high, but that also means that any automation or streamlining of those

processes can greatly benefit domain scientists who currently rely almost entirely on

expensive human experts.

The Dataset for Underwater Substrate and Invertebrate Analysis (DUSIA) [81] pro-

vides an example of a challenging, scientific dataset. DUSIA contains 10 hours of video

collected in 1080p using a remotely operated vehicle (ROV) that drives over and records

the ocean floor at depths between 100 m and 400 m, and the data within DUSIA is

part of a much greater, growing collection of hundreds of hours of unlabelled or weakly

labelled videos. Marine scientists collect these videos as part of surveys that improve

their understanding of habitats and organisms of the ocean floor. DUSIA’s videos come

directly from marine scientists working to study, understand, and survey the ocean floor.

Despite the rich content of the videos, DUSIA’s annotations are limited due to the

expense of hiring trained marine science experts to annotate video with the level of

granularity of typical computer vision datasets. The dataset provides numerous, weak

labels, which indicate timestamps at which 57 invertebrate species of interest are Counted

At the Bottom Of the video Frame (CABOF), as well as a training set with frames

partially annotated with bounding boxes for the the ten species shown in Figure 6.1.

CABOF labels are described in detail in the original work [81] and illustrated via

a frame by frame representation of DUSIA’s videos in Figure 6.2. In summary, as the

ROV traverses the ocean floor, species come into view at the top of the frame and make

their way to the bottom of the frame as the ROV and video moves forward. Cropped

example frames are shown in Figure 6.2 with frames going forward in time from bottom

to top. When a species individual first touches the bottom of the frame (like the yellow
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Figure 6.1: Examples of the ten species that are labelled with bounding boxes in
DUSIA. YG stands for yellow gorgonian; BS, basket star; GG, gray gorgonian; LS,
laced sponge; WSpSC, white spine sea cucumber; LLS, long-legged sunflower star; SL,
squat lobster; FPU, fragile pink urchin; WSSC, white sea slipper cucumber; RSG, red
swifita gorgonian.
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gorgonian in Frame F of Figure 6.2), annotators create a CABOF label with that species

name and the timestamp, which corresponds to collected GPS coordinates. This labelling

gives marine science researchers a metric for counting the number of species individuals

occurring along a narrow transect path. In Section 6.3, we present a new use for these

CABOF labels and leverage them to try to find frames in DUSIA’s videos where there

are no species.

DUSIA presents partial bounding box labels for training because collecting full labels

is preventatively expensive. These labels are partial in that every instance of a species of

interest in the training set’s frames may not be annotated. That is, there may be some

unlabelled individuals of species of interest in the training frames.

DUSIA’s partial annotations provide an interesting challenge for today’s computer

vision methods and require new methods to solve the object detection problems presented

by the dataset. While unconventional, using computer vision on challenging, scientific

datasets opens up new possibilities for computer vision applications. One new possibility

may include generating synthetic data to supplement and enhance small, noisy training

sets.

Our contributions are as follows:

• We present a novel variation on conventional “cut & paste” methods. Our method

leverages explicit context labels available in DUSIA to generate new training sam-

ples that combine existing training samples with relatively empty background

frames available in sparsely populated video areas, illustrating that cutting bound-

ing boxes from the training set (as opposed to cutting more precise, segmented

class instances) can serve as an effective basis for data augmentation.

• We introduce a computationally inexpensive method for leveraging DUSIA’s CABOF

labels, and by extension, empty, context-only, background images for generating ef-
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Figure 6.2: Diagram illustrating the method for generating Context Matched Collages.
Mine bounding boxes from training set T, background frames from B, match the
context, and paste boxes on to a context matched frame from B. See Figure 6.1
caption for species name abbreviations.

fective training samples.

• Using our method, we achieve state of the art detection results on DUSIA’s vali-

dation and test sets using multiple different popular object detection models.

6.2 Related Work

Computer vision researchers have long been aware of the power of data augmentation

methods for improving training object detectors and image classifiers, and recently,

much work has gone into generating plausible training samples via cut/paste methods.

Cut/paste methods take objects of interest, cut them from their original image, and paste

them into another training image or other type of canvas (e.g. a blank background). De-

Vrires et al. [82] introduce Cutout as a method of cutting portions from images during

training to help improve performance in the image classification task, and CutMix [83]
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builds upon Cutout by combining two training samples at a time by cropping a random

part of one image and pasting it on to another image.

Cut, Paste, and Learn [84] leverages separate collections of common images of objects

and typical indoor scene examples to cut object instances from the images available for

training and paste them to random background scene images. Cutting object instances

from images relies on an image segmentation model to separate objects from their back-

grounds, and then those instances are randomly pasted on random indoor images.

Ghiasi et al. [85] perform an augmentation similar to Cut/Paste, and Learn where

they cut object instances from one image to paste on to a different, randomly selected

image. Interestingly, they argue that the context, on to which their cut instances are

pasted, does not matter. However, they work with the COCO dataset which contains

simple objects and does not have explicit context labels. Ghiasi et al. [85] consider indoor

vs outdoor images, which they label based on COCO’s panoptic labels. They then use

these augmented images to train an image segmentation model. In the medical domain,

TumorCP [86] leverages image segmentation labels to create additional training samples

for a segmentation network, leading to better segmentation performance.

ObjectMix leverages instance segmentation labels to augment data for action recog-

nition in videos by extracting object segments from two videos and combining them to

create new video samples [87]. Similarly, Continuous Copy-Paste works to leverage in-

stance segmentation labels to generate training samples for training models to solve the

Multi-object Tracking problem [88].

Dvornik et al. show the importance of context in cut paste methods [89]. Their

method involves training a network using both bounding box and instance segmentation

labels to generate a notion of context where the bounding box includes pixels that are

not included by the segmentation label. They train a network to then predict possible

paste locations for cut out object instances so that objects are pasted on to images that
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their model predicts to be sensible.

Our method also employs a cut-paste based method and illustrates the importance

of context in our scenario but in a few key different ways. For one, our method does

not rely on any expensive segmentation labels, which label every pixel in an image, or

segmentation models, which may segment objects unreliably. Section 6.4 shows that

directly cutting a whole bounding box labelled as an object of interest from one frame

and pasting it to another frame with matching context enables an improvement in object

detection performance. This is important because segmentation labels are difficult and

expensive to collect in many scenarios with challenging, scientific data like DUSIA [81],

on which we present our results.

Additionally, we leverage explicit context labels for our background images. By fol-

lowing the method described in Section 6.3 and pasting boxes on to context-matched

background frames, we maintain context clues that are relevant to detecting and deter-

mining the species of an underwater invertebrate.

Finally, we filter background frames from DUSIA’s underwater video. We use the

provided CABOF labels for the underwater invertebrates to find background images in

underwater video. We leverage the vast number of video frames in DUSIA that are not

labelled as containing invertebrate species and use those as empty background frames for

our newly generated training samples.

6.3 Generating Context Matched Collages

Our method for generating synthetic frames from existing ones is a simple but powerful

extension of typical cut-paste methods. We introduce novel changes to this method

that allow us to generate better training samples for our specific DUSIA dataset. DUSIA

contains 10 hours of video captured in 1080p at 30 fps, but across all of that video footage
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Figure 6.3: Examples of generated collage images. Top: bounding boxes from images
labelled Cobble/Mud pasted on to an empty, background image with the matched
Cobble/Mud label. Bottom: images and background labelled Mud. See caption of
figure 6.1 for species abbreviations.

only 8,682 partially annotated frames contain bounding box labels suitable for supervising

most of today’s object detectors. These frames are considered partially annotated because

they may contain individuals of species of interest that are not labelled with bounding

boxes.

Still, DUSIA provides CABOF labels for the entirety of its videos. These CABOF

labels indicate the first time at which a group or individual of a species of interest

intersects with the bottom of a video frame (like the yellow gorgonian shown in Frame

F of Figure 6.2) such that there is a single CABOF label for every single individual of

a species of interest that touches the bottom of a video frame in DUSIA’s videos. Our

method aims to leverage these CABOF labels in a unique way.

Unfortunately, a training set of 8,682 frames limits the performance of the object
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detectors, but collecting additional bounding box annotations is expensive, especially

given the challenging nature of DUSIA and its object classes. DUSIA’s partial annotation

scheme alleviates the annotation burden on expensive expert annotators, but the scheme

makes it very difficult to train an effective object detection network. McEver et al. [81]

demonstrate that Negative Region Dropping (NRD) can help train Faster RCNN based

models on the partially annotated dataset, but the detector that they present is far from

perfect. We propose combining DUSIA’s original training set with Context Matched

Collages as a complementary method that enables even better detection performance.

The first step in generating these collages is to find a set of frames from the videos

that can serve as background for the synthetic collage training samples. Ideally, these

background frames contain a minimal number of species individuals so that the resulting

collages can have few unlabelled species individuals in them. Pasting on to these sort

of background frames allows the object detector to see more of the video, helping it

generalize on the test set. Further, by pasting known objects on to empty frames, we can

generate frames that are better supervised than some of the partially annotated training

set, as they contain fewer unlabelled species of interest.

To this end, we generate a set of frames, B, that are unlikely to contain species of

interest. In order to do so, we leverage the Count at Bottom of Frame (CABOF) labels,

which indicate timestamps containing species individuals, provided for DUSIA’s videos.

We can therefore use frames that are far from all CABOF labels to find all the time spans

that are unlikely to contain a species of interest.

We first initialize B to contain all frames in the training set. Then, we iterate through

all CABOF labels removing frames within a certain range (e.g. a few seconds) of any

CABOF label time stamp. For example, if a CABOF label indicates that there are three

fragile pink urchins at time 00:10:30, we can remove all frames ranging from 00:10:20 to

00:10:40 from B. Because not all species individuals that appear in the video touch the
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bottom of the video frame, they do not all get a CABOF label, but many individuals

do. Additionally, since many species typically occur together, this step helps filter out

very busy parts of the video with lots of species of interest in them, regardless of whether

they touch the bottom of the frame because it is likely that their neighboring species

individuals touch the bottom of the frame if they do not. The remaining frames in B

may contain a few unlabelled species of interest, but there should be far fewer unlabelled

species than in the original training frames, which are known to be partially supervised

and typically come from busy parts of the videos that contain many intermingling groups

of species of interest.

Given that nearly all frames in DUSIA have substrate labels that indicate the sub-

strate present on the ocean floor, we also create a map S that maps each substrate

combination, s to the frames from B that contain that substrate combination. Having

this mapping allows us to match the context (i.e. substrate label) of potential background

frames and the context of any bounding boxes we wish to paste into a new collage frame.

In order to generate the final collages, we cut bounding boxes from the original

training set and paste them on to images from B that have matching substrate labels.

To do so, we map all substrate combinations to a list of bounding boxes that exist

on frames with that substrate combination label. For each substrate combination, we

randomly sample boxes, and paste them to random locations in a randomly selected

image from B that has matching context labels. In our case we randomly select between

1 and 15 boxes to paste on each image. We also ensure that boxes do not fully occlude

one another, though we do allow partial overlap because species individuals often cluster

closely together in the original videos.

While the generated collage images may be obviously manipulated to a human eye,

they help train a stronger object detection model by providing better supervision, unique

co-occurrences of species individuals, and more samples. We explore these improvements
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in Section 6.4

Algorithm 1 Pseudo code for generating Context Matched Collages

b← 10 seconds . buffer
B ← all training frames
C ← all CABOF labels
for c ∈ C do . Create set of potential background frames

T ← c.timestamp
B.remove([T − b, T + b])

end for
L← map of each substrate label to empty list
for f ∈ B do . map substrate combos to bg frames

L[f.substrate].append(f.timestamp)
end for
K ← map of each substrate label to bounding box labels
M ← ∅ . list of generated frames
while not done do

. k is substrate label, O is list of boxes on substrate k
for k,O ∈ K.items() do

l← L[k] . list of bg w/ label k
m← random.choice(l) . m can serve as bg
r ← random.randint([1,MAX BOXES])
for i ∈ [0, r) do

o← random.choice(O)
O.remove(o)
m.paste(o) . paste box o randomly on bg

end for
M.append(m) . add Context Matched Collage
if len(M) ¿ MIN then

done← True
break

end if
end for

end while

Figure 6.3 shows example Context Matched Collages generated by our method.
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6.4 Experiments

We train multiple model architectures by combining DUSIA’s 8,682 training frames with

collages generated via our method. We refer to those 8,682 training frames as T. We

paste a maximum of 15 boxes onto each background image. We use a buffer of 10 seconds

around each CABOF label to ensure that our background images are sufficiently empty.

In order to illustrate the importance of context matching, we generate two collage

sets. M contains approximately 2,000 frames generated as described in Section 6.3 with

contexts matched properly. In practice, there are a small number of bounding box labels

with substrate combinations not present in B. For those frames, we simply map to the

nearest substrate combination. For example, if a box’s substrate label is both mud and

cobble, we paste it to a background frame that is either mud or cobble if there are no

frames in B with the exact same substrate label of mud and cobble.

The second collage set, R, contains approximately 2,000 frames generated in exactly

the same way as M except the context of the background frame and the pasted object

frame are not necessarily matched. That is, the background frame is randomly selected

from all of B rather than randomly selected from a subset of B with the matched substrate

combination.

When training Faster R-CNN with negative region dropping, we saw success in first

training on T + M then lowering the learning rate to finetune on T. We also present

results on that setting indicated by T + M,T.

First, we tested the Context-Driven Detector (CDD) as proposed by McEver et

al. [81]; however, we found that the detector performed better without the context de-

scription branch when trained with our collage augmented training sets. We theorize

this may be due to the imperfect matching of context in some frames. Still, we found

negative region dropping to help overall performance, and we set the negative region
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dropping percentage, ρ to 0.75 as in the original paper, and, also following [81], we used

a learning rate of 0.01 for Faster R-CNN with Negative Region Dropping.

We also trained YOLOv5 [72] on each of our training sets to demonstrate the impact

of including our Context Matched Collages. We trained the YOLOv5 large model from

the author’s provided weights, which were pre-trained on the COCO dataset [4]. After

testing a variety of different hyperparameter settings, we found the best performance

with most of the default settings; however, we changed the initial learning rate, lr0, from

0.001 to 0.0001; the final OneCycleLR [90] learning rate, lrf , from 0.1 to 0.01; the anchor-

multiple threshold [91], anchort, from 4.0 to 2.0; the image rotation, degrees, from 0.0

to 30.0; and the image perspective [91], perspective, from 0.0 to 0.001. After training

using the above settings, we finetuned on T lowering lr0 to 1e-6.

Finally, we tested the DEtection TRansformer (DETR) [73] to give an additional

example of a state of the art object detection framework. Starting from the author’s

provided pretrained weights, we trained DETR with minor changes to the default settings.

We used ResNet-50 as the backbone and changed learning rate to 1e-5 and the learning

rate drop to 40 epochs.

Table 6.1 shows the experimental results of all three detectors trained on the different

training sets without any collages, including the Context Matched Collages, and the

collages with random backgrounds. We evaluate our detection results using mean Average

Precision (mAP) with an intersection over union (IOU) threshold of 0.5 as presented

in [81]. We choose this metric, widely known as AP50, because the detection tasks in

DUSIA is not sensitive to exact localization as the detection tasks ultimately aim to

aid in counting of invertebrate species. For more in depth analysis, we also present the

popular full COCO suite [92] of evaluation metrics for our best detection model, Faster

R-CNN with Negative Region Dropping trained on T + M,T in Table 6.2.

For our best model we also present some qualitative detection results in Figure 6.4.
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Detector Train Set val mAP test mAP

Context Driven Detector [81] T 0.524 0.447

DETR [73] T 0.534 0.416
DETR T+R 0.541 0.426
DETR T+M 0.541 0.446

YOLOv5 [72] T 0.558 0.452
YOLOv5 T+R 0.518 0.437
YOLOv5 T+M 0.558 0.470

Faster RCNN [75] w/ NRD [81] T 0.509 0.439
Faster RCNN w/ NRD T+R 0.511 0.419
Faster RCNN w/ NRD T+M 0.542 0.453
Faster RCNN w/ NRD T+M, T 0.546 0.482

Table 6.1: Different object detectors, and their detection performance given different
training sets. CDD results from [81]

metric val test

AP50:95 0.264 0.221
AP50 0.553 0.482
AP75 0.224 0.174
APS 0.017 0.016
APM 0.168 0.165
APL 0.335 0.286

Table 6.2: Full COCO suite of metrics showing the performance of the best Faster
R-CNN with NRD model on both the val and test sets

The results for this busy frame show that the detector performs quite well at finding

objects at the edge of the frame, and it does a good job discriminating among species.

It even leaves out a few sponge species that are not species of interest. The detector still

struggles with the red swifitia gorgonian (RSG) class, which is one of the most challenging

in DUSIA, showing some area for improvement.

For all three detectors, we see better generalizability in the model, as evidenced by

test mAP, when the model is trained with Context Matched Collages. We also see that

training with Context Matched Collages (T+M) consistently achieves better performance
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Figure 6.4: Detections from best model (top) and ground truth (bottom) for an
example frame. See figure 6.1 caption for species name abbreviations.

than training with the the collages without context matching (T + R). YOLOv5 and

Faster RCNN even see decreased performance when trained with collages in R illustrating

the importance of context when detecting invertebrate species. Faster R-CNN achieves

state of the art performance on the test set when trained with Context Matched Collages

after finetuning on the original training set. Clearly, augmenting DUSIA’s training set

with Context Matched Collages leads to better overall performance.

6.5 Discussion

We introduced Context Matched Collages in this chapter. We mine frames containing

few species of interest, cut bounding boxes from our training set, and paste those bound-

ing boxes on to the mined images. This process leverages many unused video frames

and produces unique training samples that aid in training object detectors to increase

performance. We illustrate that cutting bounding boxes, as opposed to finely segmented

object instances, and pasting them to create new training samples provides an effective
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augmentation for object detectors. Further, we introduce matching the explicit context

labels of bounding boxes and the background to create collages. By augmenting the orig-

inal training set of DUSIA with these Context Matched Collages, we are able to achieve

state of the art object detection performance.

Even with these improvements, detection on DUSIA remains a challenging task, and

the detection performance still needs improvement to alleviate the manual detection and

counting of invertebrate species. The low performance on small objects, shown as APS

in Table 6.2 shows reveals an area for improvement, and the qualitative results in Figure

6.4 show that measures may be taken to improve the performance on the red swiftia

gorgonian class and perhaps other specific classes.
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Chapter 7

Discussion

This dissertation aims to explore and provide methods for using less supervision, via

weak and partial labels, to address common computer visions tasks in both natural

and scientific settings. As image and video data and associated research becomes more

abundant and more advanced, annotation of this data becomes more expensive. Creating

methods that can automate annotation of data with less supervision can reduce the costs

of all kinds of studies and accelerate research in computer vision and any field using

machine learning to advance their studies.

PCAMs, introduced in Chapter 3 can enable semantic segmentation with only point

level labels as supervision, and the method proposed in Chapter 3 can recover almost

90% of the performance of its fully supervised counterpart, showing that it may not be

entirely necessary to collect pixel level labels for every project.

Chapter 5 shows that it may also be possible to achieve acceptable object detection

performance given a partially labelled training set. Negative Region Dropping can help

two-stage detection models perform better given a partially annotated training set.

The Context-Driven Detector from Chapter 5 also demonstrates how other types of

labels, that is explicit context labels, may be important for object detection as well.
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There may be cases where collecting these labels has already been done or is relatively

cheap, and it may be worth incorporating them into training to enhance performance of

an object detection system.

Chapter 6 provides a method for cheaply generating additional training samples for

DUSIA. Training with those additional samples increases object detection performance on

DUSIA, and we hope that this method can inspire similar approaches for other datasets

as well.

7.1 Broader Impacts

The methods presented in this dissertation primarily focus on natural images and a

specific type of underwater video. While applications for natural videos range widely

among social media, self driving systems, in home robotics, and beyond, the broader

impacts of work for specific types of underwater video may not be so obvious; however,

when digging deeper, it is clear that the contributions to this domain can extend far

beyond.

DUSIA provides a set of videos from a specific expedition to a specific place in the

ocean, but these videos employ a generic method used by many marine science groups to

conduct their surveys. As such, the methods produced for DUSIA may prove effective for

expeditions using similar methods in other areas, and the models trained on DUSIA may

even prove effective on videos from other areas. The substrate classifiers in particular

may be effective in a wide range of underwater video because cobble, mud, rock, and

boulder cover vast areas of the ocean floors.

Further, many of the invertebrate species found in DUSIA’s videos are found in other

areas of the ocean. As mentioned in Chapter 4, fragile pink urchins, squat lobsters, and

other species annotated in DUSIA are spread widely across the ocean floor, so methods
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for detecting them may be applicable to future expeditions without retraining.

Along the lines of widely applicable methods, Negative Region Dropping may be an

effective method for training on any datasets with unintentional noise. Few datasets

may be intentionally partially annotated like DUSIA, but many datasets include noisy

annotations with lots of annotations missing. Still, present annotations are generally

quite reliable. For that reason, Negative Region Dropping may aid in object detection

across a wide variety of datasets.

Similarly, it may be uncommon for video datasets to include to explicit labels for

background; however, we have shown that collecting these labels may be worthwhile or

that simply using the implicit context representation of CDD’s context description branch

improve detection performance in DUSIA and may be impactful in other domains where

extra attention to context is important.

Extra attention to context may also aid in the generation of Context Matched Collages

for a wide variety of datasets. Chapter 6 illustrates a method for generating collages using

explicit context labels, but context may be matched in other ways as well. Extracting

a context feature and employing some distance measure may allow clustering of images

to generate context groups that may make collage generation possible without explicit

labels.

7.2 Future Directions

The work presented in this dissertation may be extended in many ways. DUSIA may

be expanded with videos from other expeditions, and more labels in DUSIA may lead to

large improvements toward automating the tasks that interest marine science researchers.

Negative Region Dropping and CDD’s context description branch may have wide uses

beyond just underwater video, and exploring those may be worthwhile. Negative region
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dropping may have profound impacts on improving detection performance of noisily

annotated data, and the context description branch may lead to improvements in object

detection performance where context is particularly important.

The out of the box tracking method used to count invertebrates in Chapter 5 also

leaves room for improvement. Extracting features from surrounding frames for each

frame of interest may help improve the model’s detection performance and may enable

tracking in fewer stages. Further, the BYTE tracking model used may also benefit from

training on image features rather than simply making predictions based on box locations

over a series of frames.

Context matched collages may also lead to improvements in other datasets. While

few datasets have explicit context labels and a plethora of background frames, generat-

ing pseudo context labels or creating background frames in other ways may be worth

exploring.
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