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Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection
and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-
mediated lysis. The lysogen–lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts. It
has been argued that lysogeny is favoured in phages at low host densities. This paradigm is based on the fraction of
chemically inducible cells (FCIC) lysogeny proxy determined using DNA-damaging mitomycin C inductions. Contrary to the
established paradigm, a survey of 39 inductions publications found FCIC to be highly variable and pervasively insensitive
to bacterial host density at global, within-environment and within-study levels. Attempts to determine the source(s) of
variability highlighted the inherent complications in using the FCIC proxy in mixed communities, including dissociation
between rates of lysogeny and FCIC values. Ultimately, FCIC studies do not provide robust measures of lysogeny or
consistent evidence of either positive or negative host density dependence to the lytic–lysogenic switch. Other metrics are
therefore needed to understand the drivers of the lytic–lysogenic decision in viral communities and to test models of the
host density-dependent viral lytic–lysogenic switch.

Lysogenic dynamics can disassociate viral infection and
production, leading to virus–host predator–prey feedbacks, den-
sities and ecosystem impacts divergent from those predicted

under lytic dynamics1–3. Although the majority of cultured laboratory
and environmental bacterial strains are known lysogens4,5, quantify-
ing the fraction of lysogens in natural mixed communities remains
challenging. The prevalence of lysogeny is most commonly estimated
by using the DNA-damaging agent mitomycin C to induce
prophages (viruses that have established sustained intra- or extra-
chromosomal residence in their hosts) to enter the lytic cycle and
produce quantifiable viral progeny6,7. Lysogeny has been diagnosed
using this technique in laboratory strains for half a century6,8.
However, treatment of lysogens can yield induction, unsuccessful
induction, or inhibition of host and viral production under different
mitomycin C concentrations (Table 1)6 that vary on a strain-specific
basis9. Inductions are difficult to interpret, even under single-strain
laboratory conditions. Despite these challenges, in the 1990s Jiang
and Paul4,10 extended this induction method from laboratory strains
to bacterial isolates from mixed natural communities, showing that
lysogeny is a common viral strategy in the environment (25–62.5%
of strains were lysogens). Higher percentages were commonly
observed under oligotrophic conditions than in eutrophic systems,

suggesting links between the rate of lysogeny, nutrient regime and
host density4,10.

Concurrent studies directly probed natural communities by
adding mitomycin C into samples of sea water11,12. In those
studies, the fraction of lysogenic cells (FLC, hereafter referred to
as the fraction of chemically inducible cells, FCIC, due to disassocia-
tion of lysogeny and the induced fraction, as a percent of total
cellular density) was estimated as

% FCIC = (Vi −Vc)/B
C

× 100 (1)

using viral densities in the induced (Vi) and control (Vc) treatments,
burst size B and host density C (cells per ml or g of sample) before
incubation11–13. In contrast to earlier isolate-based studies, this mixed-
community approach showed that either FCIC was insensitive to
ecosystem nutrient status12 or was higher under eutrophic conditions11.

Subsequent research led to the consensus view that the frequency
of lysogeny was inversely related to host density and nutrient avail-
ability14–17. This suggested that lysogeny provides a temporary
refuge for viruses when hosts are starving and scarce14, seemingly
providing a low-density lysogenic dynamic complementary to the
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modelled high-density lytic ‘kill-the-winner’ dynamic18. By contrast,
recent work using extensive field direct counts, experiments and
viromes (c.f. chemical induction) suggests that lysogeny is favoured
when hosts are highly abundant and rapidly growing1. We call this
model ‘piggyback-the-winner’. The association of high host densities
with high rates of lysogeny reflects the benefits of lysogeny to hosts,
including prophage-mediated immunity against further infec-
tion19,20, protection from protist predation via virulence factors,
and gain of metabolic functions21–23.

Approximately 40 studies measuring rates of lysogeny in mixed
natural communities using mitomycin C induction have been pub-
lished in the twenty years since the pioneering work of Jiang and
Paul4,10 (Supplementary Table 1). We have compiled data from pub-
lished environmental induction studies and found that FCIC is highly
variable and seldom correlated with host density. Attempts to identify
the source(s) of FCIC variability revealed issues with estimating the
rates of lysogeny using mitomycin C induction.We propose that lyso-
geny and FCIC are not equivalent and that FCIC measurements
obscure relationships between host density and lysogeny.

Results
Global distribution of FCIC studies. Clusters of saltwater studies
in the Gulf of Mexico (18% of all studies) and predominantly
freshwater studies in France (26%) account for 44% of all FCIC
studies (Fig. 1a). Of the 39 studies, most (90%, n = 35) were from
aquatic environments. Of the 352 published data points compiled,
91% (320 points) came from aquatic environments (compared to
32 points from sediment and soil combined).

Global host density versus published FCIC values. The full 352-
point global data set was analysed for a correlation between host
density and FCIC (Fig. 1b). This analysis showed high variability
and no significant support for the established paradigm that
FCIC is inversely related to host density (P = 0.07, n = 352,
m (slope) = −0.08, R2 = 0.01, 39 studies; linear regression with
FCIC and host density log-transformed). Type II regression
yielded similar results (95% confidence interval (CI) [–0.17, 0.01]
for the slope, m = −0.08, n = 352, R2 = 0.01).

Owing to the high variability between FCIC and host density,
468 further data points (that is, site averages) would be required
to find any (positive or negative) significant global-level relation-
ship between host density and FCIC (two-tailed power analysis,
power = 0.8, P < 0.05; Fig. 1b). This represents a 2.3-fold increase
in data over that generated in the two-decade history of the field.

Host density versus published FCIC values by environment. A
high degree of variability and lack of significant relationships was
also observed when FCIC was plotted against host density for
specific environments (Fig. 2 and Supplementary Fig. 1).
Regressions in freshwater, saltwater and sediment data sets
showed no significant effect of host density on FCIC (Fig. 2;
freshwater: P = 0.16, n = 131, m = −0.18, R2 = 0.02, 15 studies;
saltwater: P = 0.76, n = 189, m = −0.02, R2 < 0.01, 22 studies;
sediment: P = 0.32, n = 19, m = −0.10, R2 = 0.06, 3 studies; linear
regressions with FCIC and host density log-transformed). The

only environment with a slope significantly different from zero
was soil, where a positive relationship was observed (P < 0.01,
n = 13, m = 0.20, R2 = 0.58, 2 studies; linear regressions with FCIC
and host density log-transformed). Global regression lines
explained 58, 6, 2 and <1% of the variability between FCIC and
host density in soil (2 studies), sediment (3 studies), freshwater
(15 studies) and saltwater (22 studies), respectively (Fig. 2). Type
II regressions confirm these results (freshwater: 95% CI [−0.42,
0.07] for the slope, m = −0.17, n = 131, R2 = 0.02, 15 studies;
saltwater: 95% CI [−0.14, 0.11] for the slope, m = −0.02, n = 189,
R2 < 0.01, 22 studies; sediment: 95% CI [−0.29, 0.10] for the slope,
m = −0.10, n = 19, R2 = 0.06, 3 studies; soil: 95% CI [0.09, 0.32]
for the slope, m = 0.20, n = 13, R2 = 0.58, 2 studies). Evaluation of
within-study variability expressed as median within-study ranges
in FCIC from each environment ranked sediment as least variable
(3.9% median range), followed by freshwater (12.60% median
range), seawater (26.62% median range) and soil (most variable,
36.55% median range) (Fig. 2).

Due to the high variability between FCIC and host density, 386,
15,450 and 110 further values (that is, site averages) are required to
find any (positive or negative) significant relationships between
FCIC and host density in freshwater, saltwater and sediment
environments, respectively (two-tailed power analysis, power = 0.8,
P < 0.05; no further values are required in soil) (Fig. 2). This rep-
resents approximately 4-fold, 83-fold and 7-fold increases in FCIC
sampling over extant data accumulated in the past two decades in
these environments.

Host density versus FCIC values within studies. Non-significant
relationships (P > 0.05) were also the norm within studies (Fig. 3a,
Supplementary Table 1 and Supplementary Fig. 1). Of the
42 analyses (39 studies, three of which include samples from two
environments; Supplementary Table 1 and Fig. 3a), only five
studies showed significant relationships (11.90% of studies,
reported in refs 16, 17, 24 and 25 and the sediment subset of
ref. 26). While negative relationships (slopes) between FCIC and
host density are most common, 40% of freshwater, 32% of
saltwater, 33% of sediment and both soil studies showed positive
trends (linear regressions with FCIC and host density log-
transformed; Figs 2 and 3a and Supplementary Fig. 1). Aquatic
environments with more intensive sampling, either as individual
data points or as number of studies, have lower R2 values than the
less-sampled sediment and soil environments (Supplementary
Table 1 and Fig. 2).

Distribution of published FCIC values. The most common
published FCIC values for global and freshwater, saltwater and
sediment environments are 0–5% FCIC. Pooled published FCIC
data show a truncated normal distribution centred approximately
around 0% FCIC. Commonly excluded FCIC values ≤0, possibly
generated by host inhibition via mitomycin C treatment (Table 1),
probably fill out the lower range (Fig. 3b).

Frequency of FCIC values ≤0. To assess the frequency and
distribution of FCIC values ≤0, FCIC was estimated in technical

Table 1 | Phenotypes observed when mitomycin C is added to a lysogen lineage in correct, under- and over-dose concentrations.

Dose
Change in host densities (relative to
control)

Change in viral densities (relative to
control)

FCIC
range Conclusion

Error
type

Correct
dose

Decline (induction) Increase (induction) >0% Lysogeny found at correct
rate

None

Under-dose No change (unsuccessful induction) No change (unsuccessful induction) 0% Lysogeny underestimated Type II
Over-dose Decline (inhibition) Decline (inhibition) <0% Lysogeny underestimated Type II

Under- and over-dosing leads to unsuccessful and inhibited induction, respectively. Although these different dosage categories yield distinctive FCIC ranges when lysogens are probed, incorrect dosage of either
form consistently yields Type II error.
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replicates from three saltwater and three freshwater sites. Highly
variable FCIC values were observed within and between sites
(Fig. 4a). The within-site average FCIC values varied from −2.17
to 9.61% and the within-site ranges were up to 14.51%
(Supplementary Table 2 and Fig. 4a). The site with the highest
variability, Spanish Landing, showed both negative and positive
values (−4.17 to 10.34%; coefficient of variation of 1.44), despite a
markedly consistent host density across replicates (5.09 × 106 to
6.55 × 106 cells per ml, coefficient of variation of 0.11; Fig. 4a).
Four sites showed higher variability between technical replicates
than was observed in the 25th percentile of published freshwater
and saltwater environmental studies (Fig. 5c; comparison of
ranges in each study or site). FCIC values ≤0 were observed in
four of six sites and spanned the full range of host densities,
indicating that ‘unsuccessful’ induction events or host inhibition
are independent of host density and site (Fig. 4a).

Effects of excluding FCIC values ≤0. When all data points were
considered, half of all sites showed no significant evidence of
lysogeny (that is, FCIC values with bootstrapped 95% CIs that
included zero: Famosa Slough, Lake Murray and Spanish Landing;
Fig. 4b). When values ≤0 were excluded, site means increased and
CIs constricted so as to give the appearance of significant levels of
lysogeny at all sites (Fig. 4b). Similar to the published FCIC data
sets, most FCIC values from our survey fell between 0 and 5% in
a normal distribution centred around zero (Fig. 4c), indicating the
true distribution and extent of the excluded data in Fig. 3b.

Experimental manipulation and FCIC. To probe the potential
effects of host density and host growth rate on FCIC, we
estimated FCIC in communities in technical replicates diluted
either with nutrient-free buffers (low growth) or filtered site water
(high growth). It was expected that higher dilutions would lead to
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Figure 1 | Locations and global linear regression of data from meta-analysis of 39 published studies based on chemical induction of lysogens.
a, Schematic map showing the global distribution of studies included in the meta-analysis, numbered by reference and coloured by environment
(Supplementary Table 1). Note that samples for study 1 were from both freshwater and sediment, for studies 17 and 21 were from freshwater and saltwater
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artificially increased FCIC estimates due to a greater sensitivity to
mitomycin C (ref. 16) and increased growth rates27, especially in the
higher-nutrient-site water dilutions compared to buffer dilutions.

Neither dilution series yielded monotonic changes in FCIC;
instead, there was a dramatic and inconsistent increase in FCIC
variability (Fig. 5a,b) compared to the undiluted technical replicates
(Fig. 5c). Buffer dilutions of samples from Chollas Reservoir,
Famosa Slough, Lake Murray, Old Mission Dam, Spanish Landing
and Vacation Road sites showed ranges of 39.19, 16.17, 22.70,
19.58, 38.39 and 15.39% FCIC, respectively, and the corresponding
site water dilutions were 32.73, 24.03, 13.19, 16.88, 17.86 and 56.36%
FCIC (Fig. 5c). Variability was not consistent with either dilution or
diluent at most sites (Fig. 5a,b). Furthermore, variation (range)
within the diluted technical replicates from four of six sites
(buffer dilutions: Chollas Reservoir and Spanish Landing; site
water dilutions: Chollas Reservoir and Vacation Road) exceeded
that observed across sites in half of the published freshwater and
saltwater studies (Fig. 5c), suggesting that variability in local
dynamics equals the impact of broader ecological drivers on
FCIC. Compared to the ‘correct’ undiluted sample, dilution can
drive up to 39.19% overestimates or 38.39% underestimates of lyso-
geny, with bias measured as deviation from the undiluted samples
(Fig. 5a,b; median change from undiluted samples ± 12.85% FCIC

with dilution). As above, FCIC values showed a normal distribution
during dilutions (Fig. 5d). A third of the FCIC values measured with
(Fig. 5a,b) and without (Fig. 4a) experimental manipulation were
≤0 (25 of 74 values, 33.78%) and thus would normally have been
excluded (Fig. 3b).

Discussion
Host density as a driver of lysogeny in published data sets. The
relationship between FCIC and host density at the global
(Fig. 1b), within-environment (Fig. 2) and within-study (Fig. 3a)
levels was almost universally highly variable and non-significant.
Only a few studies show increasing FCIC at low host
densities16,17,24–26. In soils, the relationship between FCIC and host
density was constrained (R2 = 0.58), significant (P < 0.01) and
positive (m = 0.20), contrary to the current paradigm. Because
analysis of aggregated data sets is predisposed towards finding
significant relationships28 and because we conducted regressions
without alpha values corrected for our legion analyses (for
example, ∼50 linear regressions), the lack of significance here is
robust evidence against a global, environmental or within-study
level dependence of FCIC on host density. Increased sampling
was associated with increased variability at both the within-study
and across-study levels, even though the vast majority of studies
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focused on two geographic areas (Supplementary Table 1 and
Fig. 1). Ultimately, multiple decades to centuries of further
research would be required to obtain a reliable host density
dependence in FCIC (positive or negative), based on current rates
of data accumulation in the twenty-year history of the field (as
shown by power analysis). This lack of support for the current
density-dependence paradigm invites the search for unidentified
drivers of environmental lysogeny.

The ‘silent third’ of FCIC values ≤0. FCIC values ≤0 made up
one-third of the FCIC values (the ‘silent third’) we observed and
were (1) remarkably inconsistently distributed, with some
technical replicates showing inhibition while others did not, and
(2) ubiquitous across a range of host densities and sites (Figs 4a
and 5a). Because FCIC cannot logically be less than zero, these
frequent negative FCIC values at the community level show an
abiding disassociation of lysogeny and FCIC. Combined with the
capacity for excluding these values to skew estimates of lysogeny
(Fig. 4b), the distribution of FCIC values ≤0 suggests that there
may be pervasive bias in the characterization of lysogeny and its
drivers so far.

Origins of the ‘silent third’ of FCIC values ≤0. Mitomycin C
induction is a highly dose-dependent approach. FCIC values ≤0
arise when induction treatment yields unchanged or lowered viral
densities (Vi≤ Vc in equation (1), Table 1). While an unchanged
viral density (FCIC = 0) may accurately reflect the absence of
lysogens if mitomycin C is correctly dosed, it may also indicate
unsuccessful induction (that is, an absence of induction whether
lysogeny is present or not) if mitomycin C is underdosed, yielding
a false negative (Type II error, Table 1). FCIC values <0 (Vi <Vc)
are more consistent with mitomycin overdose causing inhibition
than unsuccessful induction6 (Table 1), although these ‘silent
third’ of values are commonly treated similarly to FCIC = 0 values
and excluded as unsuccessful induction13. Although mitomycin C
dosage may be tailored in single-strain systems, when dosing
mixed communities an unknown proportion of organisms or
lineages may be underdosed, overdosed or correctly dosed at any
given dose11. Although it is unclear what any FCIC value really

means, the observed variability in FCIC may be indicative of the
taxonomic or physiological state of organisms in a given sample29,30.

Induction in mixed communities versus isolates. Although
lysogeny appears to be a variable phenomenon, the majority of
sequenced bacterial genomes contain prophages5, and previous
investigations reported 43% (ref. 10), 25–62.5% (ref. 4) and 71%
(ref. 27) of bacterial isolates to be inducible with mitomycin C.
Two-thirds of bacterial viruses with known lifestyles and
sequenced genomes are temperate31. In comparison with these
figures, the 0–5% mode of FCIC values (Fig. 3b) suggests that
mitomycin C induction underestimates community-level lysogeny
relative to strain-level analyses, an effect probably masked by
exclusion of the ‘silent third’ (Fig. 4b). Inclusion of the ‘silent
third’, combined with the use of more diverse inducers10,32,33 and
further investigation of the linkages between lysogeny and
mitomycin C induction, as well as host density13, identity30 and
growth rate27, may reconcile FCIC and lysogeny.

Stochastic effects of dilution on FCIC. We induced lysogens in
diluted samples to probe the potential systematic impacts of host
density on FCIC estimation in slow- (buffer diluent) and
fast- (site water diluent) growing communities. Mitomycin C was
added simultaneously with diluent, precluding changes in
lysogeny during induction. Regardless of diluent, the most
marked effect of dilution was a large and inconsistent increase in
the variability in FCIC between replicates compared to undiluted
replicates or published studies (Fig. 5a,b versus Fig. 4a). Dilution
can result in lowered taxonomic diversity, but with variable
changes in functional capability34–37, making stochastic functional
changes in microbial communities with dilution a candidate for
further investigation.

Dilution stochasticity and viral production assays.When dilution
is used to derive estimates of lytic and lysogenic viral production,
rates of lysogeny are assumed to remain unchanged (for example,
ref. 38). However, if the variation in FCIC with dilution observed
here (Fig. 5) is real, changing rates of lysogeny during dilution
will methodologically bias dilution-based estimates of viral
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production. By contrast, if rates of lysogeny remain constant during
dilution, then the observed variability reveals a divergence of actual
and estimated lysogeny (FCIC). Pairing FCIC and dilution-based
viral production estimates in future studies may characterize the
conditions that drive disassociation of FCIC from lysogeny.

The ‘lurking variable’ that drives FCIC. Although FCIC was not
driven by host density, the FCIC distribution was constrained and
consistent across published studies (Fig. 3b), undiluted samples
(Fig. 4c) and diluted samples (Fig. 5c). FCIC thus appears to be a
non-random parameter possibly driven by environmental
condition(s). Observations in this study suggest that the ‘lurking
variable’ (or variables) (1) varies significantly between sites,
unrelated to abiotic conditions such as temperature and salinity;
(2) does not vary in soil but is variable in particulate sediment
and aquatic environments; (3) varies inconsistently with dilution;
(4) is conserved across a range of microbial densities; and
(5) does not correlate with host density or growth rate. Many
variables fit this description, including community taxonomic,
metabolic and functional composition (for example, refs 29, 30),
possibly varying by environment. While techniques such as
metagenomics provide both community profiling and the
identification of prophage elements39,40, observational approaches
alone cannot identify which variables determine the prevalence of

lysogeny. Here, we have combined observational and experimental
approaches to capture the variability of FCIC and profile its driver(s),
while eliminating canonical determinants such as host density, to
inform future studies using mitomycin C inductions.

Conclusions
We have examined the evidence of host density dependence in
inductions-based studies to determine whether the paradigm that
lysogeny is promoted at low host density is generally supported,
or whether the recently proposed ‘piggyback-the-winner’ model of
high-density lysogeny1 is actually consistent with inductions data
sets. Rather than supporting either model, the analysis showed
high variability and a lack of density dependence (with the excep-
tion of soils, where ‘piggyback-the-winner’ was supported) in
FCIC estimates.

No transition—as suggested by earlier FCIC studies and lytic
modelling efforts—from low-density lysogenic to high-density
lytic dominance is supported. The observed issues hinder the use
of FCIC in describing the lytic–lysogenic switch and may have
impeded earlier attempts to understand patterns of environmental
lysogeny (for example, ref. 43) while aiming to resolve the broadly
observed sublinear power-law relationship between viral and host
densities1,41–43. Despite high variability, FCIC values showed mark-
edly constrained distributions when plotted against host density,
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indicative of a Simpson paradox in which unexamined variables are
driving FCIC (ref. 44). Probing of this variability revealed profound
artefacts resulting from exclusion of FCIC values ≤0 in published
studies and also allowed profiling, but not identification, of the

possible driver. Although it is currently unclear what FCIC values
mean, the variability in FCIC reported here may guide future
studies elucidating what now appears to be a nascent driver of
viral dynamics.
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Methods
Mining published values. Published values of the fraction of chemically inducible
cells (FCIC, %) were taken from 39 studies mined from Google Scholar that reported
host densities and corresponding FCIC values estimated using induction by the
addition of mitomycin C (Supplementary Table 2, Supplementary Fig. 1 and
Supplementary Source Data)11,12,14–17,24–26,29,30,32,45–70. Google Scholar hits to the
search ‘mitomycin C induction lysogeny’ were mined to the tenth page of the search
engine results. Supplementary probing of papers citing Jiang and Paul10 showed a
high degree of redundancy to the Google Scholar approach and was considered
evidence that the majority of papers satisfying the SYBR and mitomycin C
methodological criteria had been retrieved. Where necessary, values were extracted
from figures using the webplotdigitizer Chrome extension tool (http://arohatgi.info/
WebPlotDigitizer/app/). Most papers did not report FCIC if induced viral densities
did not exceed untreated viral densities, as this would yield FCIC estimates ≤0,
which are interpreted as unsuccessful induction13. Published FCIC data sets were
therefore analysed with values ≤0 excluded to ensure consistent analysis. All
within-study and global across-study linear regressions were conducted using data
at the greatest resolution possible. Individual measures were used whenever
accessible, and mean values otherwise (Supplementary Table 1). Where FCIC
estimates were provided using minimum and maximum burst sizes (for example,
refs 12,30), minimum values were used.

FCIC estimation. Mitomycin C from a stock less than 1 month old, suspended in
Sigma water (Sigma-Aldrich) was added to environmental samples to a final
concentration of 1 µg ml−1, consistent with most environmental induction studies
(Supplementary Source Data) and as prescribed for high-density near-shore
samples13. Sigma water was substituted for control samples to ensure a similar
dilution to induced samples. Samples, with corresponding mitomycin-C-negative
controls, were then incubated for 18–24 h at room temperature in the dark, and viral
densities were then compared between mitomycin-C-positive treatments and
mitomycin-C-negative controls. FCIC values were then calculated from equation
(1)11–13 using a burst size of 25 to approximate the median value of burst sizes used
in published studies that did (median burst size 22.5) and did not (median burst size
30) vary burst sizes for each sample, respectively (Supplementary Source Data).

In situ studies. The following freshwater and saltwater sites around San Diego,
California, USA (Supplementary Table 2) were sampled with sterile 50 ml
polypropylene tubes: Famosa Slough, Spanish Landing, Vacation Road, Chollas
Reservoir, Old Mission Dam and Lake Murray. Samples were stored in the dark at
room temperature and processed within 2 h of collection. Subsamples were
aliquoted into 2 ml technical replicates in 24-well plates (technical replicates are
ecological pseudoreplicates as they are intentionally not independent samples;
Corning). The three technical replicate fractions required to estimate FCIC (initial
cell counts, final mitomycin-C-positive viral counts and final mitomycin-C-negative
control viral counts) for each technical replicate were transferred within one syringe-
draw to keep technical replicate fractions as coupled as possible. Initial counts were
then conducted, and mitomycin-C-positive and mitomycin-C-negative samples
treated. Mitomycin-C-positive and mitomycin-C-negative samples were segregated
in different plates to preclude airborne antibiotic impacts on controls. After
incubation for 18–20 h (ref. 13), 1 ml samples were drawn from each 2 ml well, fixed
with paraformaldehyde (2% final concentration) for 30 min, and then flash-frozen
in liquid nitrogen1,71. Samples were thawed at room temperature immediately before
staining with 2× SYBR Gold nucleic acid stain (Life Technologies) for 30 min and
filtered onto 0.02 µm Anodisc filters (Whatman)1,71. Filters were mounted on slides
and imaged on an Olympus ×100 object magnification oil-immersion microscope,
and counts were conducted using Image Pro software (Media Cybernetics), with
observers blind to the sample identity until statistical analysis.

Dilution experiments. Sites sampled in the observational study were resampled for
manipulative dilution experiments. All sampling and aliquoting procedures were the
same as above. However, rather than aliquoting 2 ml of subsampled site water into
each well of the 24-well plates, technical replicates were diluted to produce
undiluted, 25, 50 and 75% dilutions of unfiltered water samples (undiluted, 75, 50
and 25% unfiltered site water, respectively). This was done by adding either
0.02-µm-filtered buffer (buffer dilutions, Fig. 5a; artificial seawater buffer (Tropic
Marin, Germany) at saltwater sites or Hydra Media buffer72 at freshwater sites) or
0.02-µm-filtered site water (site water dilutions, Fig. 5b). Host densities in each
dilution were estimated as host density in undiluted samples when mitomycin C was
added multiplied by the dilution factor. Both artificial seawater and freshwater
diluents maintain chemical buffering of site water, but do not contain nutrients to
sustain or enhance host growth. As a result of this, host density was diluted, with
probable concomitant simplification of community composition and elevation of the
mass action dose of inducing agent per cell present, while the rates of lysogeny and
host growth rate were presumably unchanged. Dilution with site water dilutes host
densities but does not change nutrient availability, allowing host growth to increase in
proportion to dilution. Undiluted samples (0% dilutions) were considered ‘correct’
estimates of FCIC for comparison, because they are equivalent to samples typically
processed for published FCIC studies. Mitomycin C addition, incubation, sample
fixation, storage and processing were the same as above, but slides were imaged using
an Olympus ×60 objective magnification oil-immersion microscope.

Statistical analysis. All statistical analyses were conducted with a conventional
a priori alpha of 0.05 (95% confidence). Despite the large number of analyses
conducted herein (for example, ∼50 linear regressions), no correction was applied to
the alpha to facilitate identifying significant relationships between FCIC and host
density, even at risk of incurring Type I error. Linear regressions were conducted
using the lm() function in R (reported in the plots in Figs 1–3). These were
complemented by ordinary least squares (OLS) Type II linear regressions using the
lmodel2() function of the lmodel2 R package across all data and across freshwater,
saltwater, sediment and soil environments, to ensure variability in host density
measurements was not skewing our analyses. Published data sets showed a negative
relationship between n and R2, suggesting that the analysis of means, as the majority
of data available for this study, facilitated finding relationships between FCIC and
host density (Supplementary Table 1). Power analysis using a test for correlation
were conducted using published data sets (Supplementary Source Data) with the
pwr.r.test() function in R to estimate the sample sizes needed to obtain a power of
0.8 with a significance level of 0.05 in a two-tailed test. As the FCIC values generated
here were intentionally not independent (that is, they were technical, not biological,
replicates), a conservative non-parametric bootstrapping approach was used to
generate means and 95% CIs (Fig. 4). These parameters were estimated using the
boot_out() function in R with 10,000 iterations on data with all FCIC values
included as well as with FCIC values ≤0 excluded, consistent with the literature.

Data availability. Published data subjected to meta-analysis are provided in the
Supplementary Source Data. These data and experimental data sets are also available
from the corresponding author upon request.
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