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Abstract: Death investigations often include an effort to establish the postmortem interval (PMI) in
cases in which the time of death is uncertain. The postmortem interval can lead to the identification
of the deceased and the validation of witness statements and suspect alibis. Recent research has
demonstrated that microbes provide an accurate clock that starts at death and relies on ecological
change in the microbial communities that normally inhabit a body and its surrounding environment.
Here, we explore how to build the most robust Random Forest regression models for prediction of
PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head),
gene markers (16S ribosomal RNA (rRNA), 18S rRNA, internal transcribed spacer regions (ITS)),
and taxonomic levels (sequence variants, species, genus, etc.). We also tested whether particular
suites of indicator microbes were informative across different datasets. Generally, results indicate
that the most accurate models for predicting PMI were built using gravesoil and skin data using the
16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently
contributed highly to model accuracy and may be candidate indicators of PMI.

Keywords: postmortem interval; microbiome; decomposition; Random Forest regression

1. Introduction

Unattended death scenes pose challenges for crime scene investigators because the time of
death, also known as the postmortem interval (PMI), is often unknown. However, no death scene
is really unattended—microorganisms are ubiquitous, and these tiny witnesses can provide clues
about the events surrounding death. For example, communities of microorganisms often have
predictable ecologies, which can be leveraged for temporal [1,2] and geographic information [3].
Due to the rapidly decreasing costs of next-generation sequencing, it is feasible and cost-effective
to track microbial community change during decomposition via standard microbiome sequencing
protocols [4]. Three taxonomically-informative genomic markers—16S ribosomal RNA (rRNA)
(archaea and bacteria), 18S rRNA (microbial eukaryotes), and internal transcribed spacer regions
(ITS; fungi specifically)—have been widely utilized to characterize microbial community composition

Genes 2018, 9, 104; doi:10.3390/genes9020104 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-4028-7224
http://dx.doi.org/10.3390/genes9020104
http://www.mdpi.com/journal/genes


Genes 2018, 9, 104 2 of 13

and diversity [5–7]. Using these markers, recent research has revealed that tracking microbial
community succession associated with mammalian cadaver decomposition can be a useful tool for
estimating PMI [8]. This idea is very similar to tools developed in the field of forensic entomology,
in which the succession of insects can be informative about the time frame and season of death [9].
Several studies have demonstrated consistent changes in microbial community composition during
mammalian decomposition associated with skin [10–12], gastrointestinal/rectal locations [10,11,13,14],
oral sites [12], nasal and ear cavities [15], and cadaver-associated soils [10,11,16–18]. These
studies have used a variety of model-based statistical approaches for estimating PMI. For example,
Pechal et al. [12], utilized an indicator species analysis at the bacterial family taxonomic level over 5
days of decomposition. Furthermore, Hauther et al. [13] utilized an exponential decay model based on
declines in relative abundance of particular bacteria such as Bacteroides, Lactobacillus, and Bifidobacterium.
However, the most accurate estimates of PMI have employed machine learning approaches [10,11,15],
which are ideal for constructing models that utilize changes in relative abundance of all microorganisms
in the entire community, as opposed to focusing on a subset of taxa that may not be the most
temporally informative.

The reproducibility of microbial community succession during mammalian decomposition
indicates that it can be used to predict PMI. However, there is no single microbial species informative
enough for accurate prediction. Machine learning is a powerful tool to discover the patterns in complex
data and thus can be applied in this case to predict PMI utilizing a diverse microbial community [19].
Using the quantification of each microbial taxa by a marker gene (16S rRNA, 18S rRNA, or ITS) as
a predictive feature, supervised regression models can be trained to learn the implicit relationship
between microbiome composition and decomposition time point. The Random Forest regression model
is widely used because of its robustness to overfitting, excellent performance, and easy parallelization
of computing [20]. Random Forest is an ensemble machine learning method that fits a set of decision
trees on subsamples of the data set, and then combines the results to improve regression accuracy. Like all
tree-based regression methods, Random Forest tends to overestimate the PMI of samples at the low
end of PMI and underestimate at the high end of PMI. However, this systematic bias in Random
Forest models is well known and can be calibrated with additional data sets [21]. In previous reports,
Random Forest regression has been shown to achieve accurate PMI prediction in multiple skin and
cadaver-associated soil gene marker data sets across decomposition of different host species [10,11].

We identified several knowledge gaps for developing robust machine learning Random Forest
regression models for estimating PMI and addressed them using a meta-analysis of four previously
published mammalian decomposition time-series data sets [10,11]. We aim to address which sample
type(s), gene marker(s), and taxonomic level(s) provide the most accurate microbial model for
estimating PMI. Additionally, we investigated whether particular microbes are informative across
different sample types and data sets, which provide insights into whether suites of microbes or
microbial groups can be used as indicators, or whether the full community provides the most accurate
information. We chose four data sets that represented a range of environments and were generated
using a standardized set of microbiome protocols [4]. which makes them directly comparable. We focus
our investigations on swabs of skin and gravesoils because these sampling locations would minimally
impact the cadaver compared to other, more invasive, locations such as the gastrointestinal (GI) tract.
Thus, skin and soils are realistic sample types for development into a viable forensic tool. Each data set
included 16S rRNA and 18S rRNA data, and three of the data sets also included ITS data. We looked
for consistent trends across the datasets to help point researchers in the most fruitful future directions.

2. Materials and Methods

2.1. Amplicon Sequencing Data Processing

Previously, published 16S rRNA, 18S rRNA, and ITS data were obtained from the QIITA
open-source microbiome study management platform, under studies 714, 1889, 10,141, 10,142, and
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10,143 [10,11,22]. Briefly, these studies included two laboratory decomposition experiments [10,11],
in which mice were decomposed on soils with the exclusion of insects and destructively sampled in
replicates of 5 for 8-time points over 2–3 months. We also included two experiments in which two
human donors were allowed to decompose outdoors in the winter season and in the spring season
(a total of four donors) at the Southeast Texas Applied Forensic Science (STAFS) laboratory [11]. For
further details on the data used for this study, see Table 1. Briefly, for each gene marker in these data
sets, the Earth Microbiome Project primer pair and standard protocols were utilized [4]. Amplicons
for each gene marker were then sequenced using the Illumina Hiseq 2000 (Illumina, San Diego, CA,
USA) platform (2 × 100 bp reads), and forward reads for each gene marker were used to create a
feature table of sequences. Sequence data, metadata, and feature tables are available and curated on
QIITA where they are periodically re-annotated to be consistent with current best practices utilizing
the QIIME pipeline [22,23]. Therefore, we utilized data processed using the deblur method, which
utilizes sequence error profiles to derive putatively true biological sequences, resulting in high quality
sequence variant data as opposed to operational taxonomic units (OTUs) in which sequence variation
is lost because sequences are collapsed, usually at a sequence identity of 97% [24]. In the original
publication of these datasets [10,11], a closed reference OTU-picking method was used to generate
OTU tables, which likely resulted in the loss of potentially useful sequence data that did not match
a reference database [25] within 97% similarity. Therefore, the current meta-analysis provides an
opportunity to re-analyze these valuable datasets with more current methods. The 16S rRNA and
18S rRNA amplicon sequence files were trimmed for quality to 90 bp reads. For ITS data, 100bp
reads were utilized. For 16S rRNA, the resulting feature table was further processed by removing
sequences that did not match a positive reference database with 80% similarity (reference-hit.biom
table downloaded). For 18S rRNA and ITS, a positive reference database was not used (all.biom table
downloaded). Internal transcribed spacer regions data were only available for studies 10,141, 10,142,
and 10,143. For each data set, we retained common sample types, including those taken from gravesoil
near the torso, and from the skin of the left hip, right hip, torso, and head. These were categorized into
three sample groups for analysis: cadaver-associated gravesoil, skin of the torso, and skin of the head.

2.2. Assigning Taxonomy

Each table was individually processed to assign taxonomy and filter out taxa that were not
considered part of the microbiome. Taxa were assigned using classifiers specific to each marker:
Greengenes 13.8 for 16S rRNA [25], SILVA 128 for 18S rRNA [26], and UNITE 7 developer classifier for
ITS [27], all at the 99% sequence identity threshold level. Sequences filtered out of the 16S rRNA data
set included those assigned to chloroplasts and mitochondria. Sequences filtered out of the 18S rRNA
data included those assigned to Archaeplastida, Arthropoda, Chordata, Mollusca, as well as sequences
that were not assigned to Eukarya. For ITS, sequences that did not assign to Fungi were filtered out.
Following this, filtered tables were combined into a single sequence variant table per marker type to be
used in modeling. These tables were then used to generate additional tables summarized at different
taxonomic levels (L), including species (16S rRNA L6; 18S rRNA L12; ITS L6), genus (16S rRNA L5;
18S rRNA L10; ITS L5), family (16S rRNA L4; 18S rRNA L8; ITS L4), order (16S rRNA L3; 18S rRNA L6;
ITS L3), class (16S rRNA L3; 18S rRNA L4; ITS L3), and phylum (16S rRNA L2; 18S rRNA L3; ITS L2).
SILVA taxonomy levels were very uneven across different groups of eukaryotes (e.g., Amoebozoa,
Opisthokonta, and Alveolata), so that each SILVA level contained multiple taxonomic levels. Therefore,
the levels chosen (L12, 10, 8, 6, 4, and 3) generally represent summaries at progressively higher
levels of taxonomy, but are not strictly adhering to species, genus and family level across each major
eukaryotic group.
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Table 1. A summary of all studies included in the meta-analysis. Studies were obtained from the QIITA open source microbiome study management platform [22].

QIITA Study
Number QIITA Study Name Our Study Name Shorthand

Name Prep Number Marker Trim Length OTU Table
Type

Number
of Days

Sampled

714 A microbial clock provides an accurate estimate of the
postmortem interval in a mouse model system

Mouse
Decomposition 1 mdc1 769 16S 90 bp reference-hit.biom 48

1889 A microbial clock provides an accurate estimate of the
postmortem interval in a mouse model system—18S

Mouse
Decomposition 1 mdc1 1204 18S 90 bp all.biom 48

10141 Metcalf microbial community assembly and metabolic
function during mammalian corpse decomposition

Mouse
Decomposition 2 mdc2

1265 16S 90 bp reference-hit.biom 70
1038 18S 90 bp all.biom 70
345 ITS 100 bp all.biom 70

10142
Metcalf microbial community assembly and metabolic
function during mammalian corpse decomposition Sam
Houston State University (SHSU) winter

SHSU Winter shsu_winter
333 16S 90 bp reference-hit.biom 132

1166 18S 90 bp all.biom 132
335 ITS 100 bp all.biom 132

10143
Metcalf microbial community assembly and metabolic
function during mammalian corpse decomposition Sam
Houston State University (SHSU) April 2012 exp.

SHSU Spring shsu_spring
1107 16S 90 bp reference-hit.biom 82
1109 18S 90 bp all.biom 82
1110 ITS 100 bp all.biom 82

All studies were downloaded as deblur processed tables along with the corresponding metadata information. Different table types and trim lengths were selected based on the availability
and the marker type. 16S: 16S ribosomal RNA; 18S: 18S ribosomal RNA; ITS: internal transcribed spacer regions; OTU: operational taxonomic units.
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2.3. Model Testing

Postmortem interval prediction models were generated using Random Forest regressors based
on sequence variant and taxa abundance data. Data were divided into subsets by sample type and
normalized using the Calour library [28]. Using the Calour library, we chose to utilize total-sum scaling
normalization, as opposed to rarefaction, to avoid the loss of statistical power by discarding reads
and/or samples. Random Forest is insensitive to the methods of normalization used. For human
body decomposition, each subset was partitioned based on individual for cross-validation so that the
samples from the same individuals are either in the training set or testing set, but not both. Training
refers to fitting or building the model while testing is equivalent to predicting. The accuracy of
the models was measured using the mean absolute error (MAE), calculated as the deviation of the
predicted from observed values and representing the average prediction error in the same unit of
the original data. Within each dataset of each study, the best Random Forest regression model after
hyperparameter tuning through cross-validation was selected to represent the final model. We also
applied the model trained from one study to predict PMI of another study (i.e., cross-study prediction)
to test the generalizability of the model. Each experiment was conducted over a different number
of sampling days ranging from a total of 48 to 142 days (Table 1), so for consistency one model time
frame was selected for inclusion in the model. Preliminary model tests were conducted to determine
the time frame for use in this experiment, results of this analysis are presented in Figure S1. Overall,
the inclusion of all experimental sampling days resulted in the highest MAE, while using only the first
25 days resulted in invariably lower MAEs (Figure S2). Therefore, data subset to the first 25 days of
decomposition were selected for the modeling in this study. The modeling was done with Python
machine learning package scikit-learn v19.0 [29]. Data were analyzed and graphics were generated
using R software, version 3.4.1, the ggplot2 package, and matplotlib 2.0.0 [30–32]. We provide jupyter
notebooks to enable reproduction of all modeling results as supplemental material.

3. Results

3.1. Cross-validation Error Rates

3.1.1. Comparison of Sample Types

The datasets used for this study contained a variety of sampling sites, and those used most
consistently were selected for this study to determine the best sampling location for microbiome
prediction. Sample types investigated included cadaver-associated gravesoil, skin of the torso, and skin
of the head. Results are summarized in Table 2. Both mouse model laboratory studies resulted in lower
within study errors than the human studies. This is likely because these mouse studies were conducted
under controlled laboratory conditions, as opposed to the human studies, which were conducted in the
field with no control over environmental factors such as rainfall, temperature, and insect colonization.
Overall, there is not a clear trend across the studies or gene markers of which sample type performed
best. The lowest mean absolute error was from 16S rRNA data in gravesoil samples in a mouse
decomposition study (mdc2), in which mice used were of the same breed, age, and were co-housed
before being sacrificed for the study [11]. Within the two human studies, skin locations provided
the lowest error for 16S rRNA marker, while soils provided the lowest errors for both microbial
eukaryotic markers.

3.1.2. Comparison of Genetic Markers across Sequence Variant and Taxonomic Levels

Three taxonomically-informative microbial gene markers (16S rRNA, 18S rRNA, and ITS) were
compared at different sequence variant and taxonomic levels across sample types for each experiment
(Figure 1, Table 2). Overall, the lowest within-study MAE for each experiment was generated using
the bacterial and archaeal data (16S rRNA marker). However, all markers performed reasonably
well with ITS producing the highest errors, which were as low as ±2.6 days over 25 days for mouse
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decomposition experiment 2 (mdc2). Within experiment, MAEs for each marker type were similar.
Furthermore, models consistently performed best at the class and phylum taxonomic levels for 16S
rRNA and 18S rRNA, and at the class level for ITS. The sequence variant level (highest resolution
possible) had the highest MAEs compared to sequences summarized into lower levels of taxonomy.
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Figure 1. The mean absolute error (MAE) rates for Random Forest models trained to predict
the postmortem interval (PMI). For each marker type (16S bacterial and archaeal ribosomal RNA
(rRNA), 18S microbial eukaryote rRNA, internal transcribed spacer regions (ITS) fungal gene marker),
models were generated for three sample types (skin_head, skin_torso, soil) from four studies
(mouse decomposition 1 (mdc1), mouse decomposition 2 (mdc2), Sam Houston State University
(SHSU) human April (shsu_spring), SHSU human February (shsu_winter)). Skin_head samples
were not collected for shsu_winter. Datasets were subset to include only the first 25 sampling days.
Though all marker types performed well, the 16S rRNA marker generally resulted in the most accurate
PMI prediction models.

3.2. Cross-study Error Rates

Cross-study error rates were generated between the two studies using human cadavers
(Sam Houston State University (SHSU) spring and SHSU winter). Models were constructed for
two sample types, cadaver-associated gravesoil and skin of the torso (skin), for each experiment,
then tested on the same sample type for the other season. The skin of the head samples was excluded
from this analysis as only one of the human datasets included this sample location. The postmortem
interval was represented as 0 ◦C base accumulated degree day (ADD) to account for the differences in
temperature between the two seasons. Resulting cross-study MAE are presented in Table 3, and plots
of observed versus predicted PMI are presented in supplementary Figures S3–S9. For each marker
type, the lowest error was generated using a gravesoil data set. The overall lowest cross-experiment
error was generated from the model trained on the spring soil data set using bacterial and archaeal
data at the phylum level.
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Table 2. A comparison of the mean absolute error (MAE) of models built using data from each gene
marker (16S rRNA, 18S rRNA, ITS) for each sample type (soil, skin_torso, skin_head).

Genomic
Marker

Study
Name

Sample
Type

Sequence
Variants

Species
Level

Genus
Level

Family
Level

Order
Level

Class
Level

Phylum
Level

16S

mdc1 soil 5.068 4.528 4.439 4.574 4.596 4.308 4.565
skin_torso 4.602 3.744 3.577 3.353 3.889 4.377 4.070
skin_head 4.272 3.816 3.816 3.747 3.442 3.315 4.672

mdc2 soil 2.571 1.943 1.955 1.911 2.062 1.971 1.737
skin_torso 3.357 2.926 2.898 2.783 2.826 2.942 2.856
skin_head 3.001 2.383 2.379 2.340 2.467 2.369 2.405

shsu_spring soil 5.225 3.594 3.632 3.660 3.966 3.868 3.877
skin_torso 4.303 3.830 3.807 4.106 4.343 4.311 4.022
skin_head 3.890 3.506 3.385 3.577 3.342 2.940 3.006

shsu_winter soil 4.985 3.922 3.980 3.947 3.848 4.026 3.783
skin_torso 5.237 4.543 4.483 4.385 3.970 3.704 3.265

18S

mdc1 soil 4.370 3.125 3.072 3.135 2.813 2.942 2.733
skin_torso 4.333 3.821 3.447 3.030 3.549 2.702 4.521
skin_head 4.744 4.583 4.138 4.616 4.251 3.775 4.657

mdc2 soil 3.505 3.237 3.208 3.107 3.221 3.043 3.330
skin_torso 3.907 3.870 3.856 3.676 3.910 3.867 3.704
skin_head 3.772 3.761 3.575 3.725 3.665 3.819 3.912

shsu_spring soil 5.486 4.654 4.459 4.283 3.837 3.400 3.264
skin_torso 5.457 4.654 5.196 5.404 5.264 5.754 5.974
skin_head 4.645 4.571 4.370 5.148 5.028 4.763 5.218

shsu_winter soil 5.239 4.429 4.442 4.239 4.042 3.449 3.504
skin_torso 5.141 4.880 4.721 4.962 5.028 4.660 4.604

ITS

mdc2 soil 3.497 3.169 3.157 2.957 2.941 2.820 2.797
skin_torso 3.505 3.237 3.211 3.083 3.023 2.597 3.036
skin_head 3.648 3.561 3.523 3.483 3.509 3.413 3.305

shsu_spring soil 5.586 4.735 4.836 4.629 4.980 4.461 4.713
skin_torso 4.837 4.671 4.563 4.688 4.786 4.860 5.500
skin_head 6.080 5.996 6.083 5.803 6.090 5.965 5.416

shsu_winter soil 4.675 4.114 3.965 3.954 3.933 3.671 4.077
skin_torso 5.726 5.702 5.662 5.608 5.565 5.575 5.610

Data were collected from four studies (mouse decomposition 1 (mdc1), mouse decomposition 2 (mdc2), Sam Houston
State University (SHSU) human April (shsu_spring), SHSU human February (shsu_winter)). The ITS marker was
not sequenced for mdc1. Models were generated based on data from the first 25 days of decomposition and the
model with the best MAE (days if decomposition) after parameter tuning was selected. The lowest error within
each marker for each experiment is highlighted in bold, black text.

Similar to the within-study errors, lower-level taxonomies generally resulted in more accurate
models compared to sequence variant-level resolution. In particular, phylum level taxonomy appeared
to provide the most accurate models overall in cross-experiment model testing. Mean absolute
error was lowest at the phylum level for all three markers—48.686, 50.082, and 58.359 for 16S rRNA,
18S rRNA, and ITS, respectively, or approximately 5–6 chronological days. For models trained
on the winter data set, the soil microbial eukaryotic 18S rRNA marker returned the lowest error.
Internal transcribed spacer regions data resulted in the highest error in spring-trained data, while 16S
rRNA data resulted in the highest error in winter-trained data.

Overall, the models built on the spring data were more accurate in predicting the PMI of the
winter data. This is likely because the spring data set spans a broader range of ADDs, which results in
a more accurate model compared to the winter data set. Models trained on the winter skin samples
resulted in the highest error when tested on the spring skin samples.
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Table 3. The MAE of models used in cross-experiment testing using accumulated degree days (ADD)
with a minimum developmental threshold of 0 ◦C.

Genomic
Marker

Training
Dataset

Sample
Type

Sequence
Variants

MAE

Species
Level
MAE

Genus
Level
MAE

Family
Level
MAE

Order
Level
MAE

Class
Level
MAE

Phylum
Level
MAE

16S
Spring soil 88.693 57.929 59.251 57.045 56.936 55.367 48.686

skin 92.598 90.197 90.584 104.770 109.412 117.672 135.749

Winter
soil 109.482 91.406 91.295 91.857 91.025 88.849 83.312
skin 120.764 129.695 130.763 122.418 124.701 123.043 108.737

18S
Spring soil 81.013 62.572 62.850 55.648 51.316 51.481 50.082

skin 88.155 93.173 85.754 89.676 91.793 72.846 67.242

Winter
soil 96.145 82.780 75.628 72.228 67.725 71.757 63.465
skin 111.004 110.772 101.268 101.222 101.524 107.409 105.248

ITS
Spring soil 111.806 94.797 94.742 93.504 85.282 80.856 58.359

skin 101.852 96.815 99.272 101.086 104.162 106.043 94.468

Winter
soil 104.775 99.360 96.392 96.604 93.564 87.709 81.623
skin 114.027 110.865 107.026 113.294 117.302 115.937 87.274

Models were built using 16S rRNA marker human cadaver decomposition data from two seasons: spring and
winter. Models were built on sequence variants data and family level, genus level, and species level taxonomy.
Following model construction, the model was tested on the other dataset to evaluate the ability of the model to
predict postmortem interval (PMI) beyond the original dataset. The lowest error for each marker within each
cross-experiment test is in bold and black font.

3.3. Important Feature Taxa

Not all taxa or taxa groups contribute temporal information equally. We assessed how informative
each taxon was in the regression model by computing the average decrease of impurity during the tree
splitting process in model training as one taxa or taxa group was removed iteratively for 16S rRNA
data [20]. We reported the feature importance of phyla for all three sample types (soil, skin of the torso,
skin of the head) in the human decomposition data sets (Figure 2). The importance of each phylum is
highly correlated between sample types within study for both the spring and winter season (Figure 2A,
Figure S10-winter). The soil and skin of the head samples appear to share the most bacterial phyla
compared to the skin of the torso, and are the most highly correlated, with a Spearman correlation
coefficient of 0.90 within spring samples. Samples from the skin of the head were not taken during the
winter months for comparison, but the correlation between the spring skin of the head and winter soil
was lower (0.77), though it is not clear whether the lower correlation was due to the sample type or the
difference in season. Furthermore, only a few phyla contribute substantially to the models (Figure 2A).
The most informative phyla for the spring season include Fusobacteria, Actinobacteria, Firmicutes,
Verrucomicrobia, Proteobacteria, Acidobacteria, and Planctomycetes (Figure 2B). Furthermore, phyla
important in the model were highly correlated between the spring and winter seasons (Figure 2C) of
human decomposition (p-value < 0.01).

4. Discussion

Machine learning methods are powerful tools for utilizing high dimensional datasets for
prediction. Machine learning is ideal for finding patterns in complex and diverse microbiome
data sets, and utilizing these patterns to predict outcomes [19], such as disease states [19,33].
Leveraging biological information associated with crime scenes is another excellent opportunity for the
development of machine learning tools that utilize microbiome datasets. With the goal of developing
the most robust model, we assessed how several variables affect within-study and cross-experiment
errors for estimating PMI. Results of this meta-analysis indicate that the most robust models predicting
PMI utilized cadaver-associated soil or skin data and the 16S rRNA gene marker summarized at
class—or phylum—level taxonomies.
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Figure 2. The feature importance measures the contribution of each phylum to the PMI regression
model (results from SHSU spring study) using the 16S rRNA genetic marker. (A) The feature importance
is correlated across three sample types. Each scatter plot shows the correlation between feature
importances of every pair of models built from each sample type. Each dot represents a phylum
and its value on the x- or y-axis represents its feature importance in the two models of sample
types. The Spearman correlation coefficients are 0.90 (head vs. torso), 0.84 (head vs. soil), and
0.93 (torso vs. soil), with p-values < 0.01. The diagonal histogram plots show that most of phyla do
not contribute much to regression models of each sample type. (B) The top ten phyla that are most
informative for PMI prediction within each sample type. (C) The importance of the phyla to the
regression models are highly correlated across spring and winter seasons. Each dot represents the
importance of a phylum in winter season (y-axis) and in spring (x-axis). The correlation coefficients
between winter and spring feature importances are 0.78 (soil) and 0.93 (torso), with p-values < 0.01.
(D) same plot as (C), except axes are feature importance ranks instead of scores.

In this study, models for estimating PMI were developed using data from the first 25 sample
days of each study, as preliminary data indicated the earlier sampling days resulted in more accurate
models. Early decomposition may be the most accurate time frame because microbial succession is
rapid and diversity is high compared to later stages of decomposition [10,11,16]. However, in the
studies incorporated into this analysis the sampling was more frequent during early decomposition,
and more frequent sampling has been demonstrated previously to improve model accuracy [11].
Therefore, the lower errors are likely, at least to some extent, an artifact of the change in sampling rate.
Further investigation into the accuracy of models across different time frames is warranted.

Cadaver-associated soils as well as cadaver skin sites both appear to be promising sampling
locations for developing microbiome-based PMI estimation tools. A wide diversity of sample sites
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has been investigated for microbial succession during decomposition, though few employed machine
learning to estimate PMI, possibly due to small sample sizes. Soils and skin are both attractive sampling
locations because they are easy to access without disturbing the remains. The soil microbiome has
been shown to change predictably during mammalian decomposition, a change which is little affected
by body mass [16,18] and soil type [11]. The skin, at various sample sites, has been demonstrated to
accurately predict PMI using machine learning techniques [12,15,16]. Johnson et al. [15] demonstrated
low errors for skin samples collected from the inner ear of human cadavers. Therefore, a comparison
of different skin locations within a study would be useful to help identify locations in which microbial
succession is the most clock-like. In our meta-analysis, we discovered fairly similar prediction
accuracies using soils and skin, which may be because the two sample types are not independent.
For example, Cobaugh et al. [16] demonstrated that the microbiomes associated with the skin of the
body may transfer to the soil and persist in the soil microbiome.

Most microbiome studies, including those investigating the PMI, utilized the 16S rRNA gene
marker. We have investigated the use of two additional microbial markers: 18S rRNA which amplifies
microbial eukaryotes, and ITS, which amplifies fungi specifically. Although 16S rRNA provided the
most accurate within-study models, the 18S rRNA marker had similar accuracies, and was more
accurate in several cases during the cross-experiment validation. However, larger sample sizes would
make these analyses considerably more robust. 18S rRNA has been previously shown to be more
stable across seasons than bacteria [17], which may explain why it is robust in our cross-experiment
model testing in which models were tested across the winter and spring seasons. Furthermore,
for each marker gene, we tested multiple taxa levels and discovered that in all cases lower levels
of taxonomy, particularly class and phylum levels, produced more accurate models, which agrees
with results reported by Johnson et al. [15] on an independent data set of human cadaver skin
samples. Furthermore, these models generally improve on error rates published in the original articles.
For example, the mdc2 study originally reported error rates for 16S rRNA of 2.5 days (at the OTU level),
and here we report 1.7 days at the Phylum level. However, we note that results reported here are not
directly comparable to published results because we used a different processing method (e.g., deblur
instead of 97% OTU clustering methods). Finally, we discovered that only a subset of phyla was highly
informative to models and these important groups of microbes were similar across seasons, at least in
one study. Those highly informative phyla are consistent with those reported in other studies [12,15].
This suggests that accurate models of the PMI may be constructed based on a subset of the microbial
community, which may open the door for cheaper, targeted assays.

In this study, we focused on utilizing a very powerful tool, Random Forests regression models.
Every regression method has caveats. For example, Random Forest does not perform as well at the
extreme ends of PMI. Another popular regressor, K-nearest neighbor (KNN) e.g., Johnson et al. [15], is a
simple and intuitive model that works well on pattern recognition problems, but has a disadvantage
in that distances between a given sample and all training data for each prediction must be computed,
and thus it is less scalable to large data sets [34]. Linear regression (and its variants, lasso, ridge, elastic
net) is also popular in regression analysis because it is possible to interpret how much every feature
contributes to the model; however, the strong assumption of linearity between outcome and features
are often violated. Support vector machine (SVM) is also a proved accurate method in many scenarios
and handles high dimensional data very well, but it can perform poorly if there are many irrelevant
features [34]. Although beyond the scope of this current article, a systematic comparison of regression
methods will be informative and is planned as part of future research on a forthcoming large data set.

Determining timelines has been described as the Achilles heel of forensic pathology [35]. There are
very few tools, and most are only applicable within the initial hours and days following death, and each
method is vulnerable to biases [36]. Therefore, developing new tools that leverage independent
information for estimating the time since death is critical. There is evidence that gene-meter expression
data may be used to predict PMI. In a proof of principle study authors demonstrated that gene
transcripts could be used to produce linear models of PMI with correlation coefficients of 1 [37].
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This method may be an interesting alternative to microbial and entomological prediction methods
as analyses are expanded. However, this has yet to be applied to human decomposition for further
viability testing, and machine learning techniques were not applied.

The results of the current meta-analysis provide directions for future research on developing
microbial-based models for estimating PMI. Currently, the greatest barrier to creating generalizable
microbial models for estimating PMI is a lack of human cadaver-associated data sets from different
environments and seasons. However, coordinated research is underway to overcome this limitation
and generate a comprehensive data set to train, test, and generate robust models with larger sample
sizes. Once available, existing and new datasets can be combined to determine the best generalizable
model for estimating PMI based on microbes.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/2/104/s1,
Figure S1: Plots of the Mean Absolute Error (MAE) for models generated from three marker types of four
datasets subset by sample type, further subset to 25, 50, and all sampling days; Figure S2: Plots of the Mean
Absolute Error (MAE) for models generated on subsets of the data containing only the first 25 sampling days
or sampling days 26–50; Figure S3: Random Forest models built from 16S, 18S, and ITS phylum data; Figure S4:
Random Forest models built from 16S, 18S, and ITS class data; Figure S5: Random Forest models built from 16S,
18S, and ITS order data; Figure S6: Random Forest models built from 16S, 18S, and ITS family data; Figure S7:
Random Forest models built from 16S, 18S, and ITS genus data; Figure S8: Random Forest models built from
16S, 18S, and ITS species data; Figure S9: Random Forest models built from 16S, 18S, and ITS sequence variant
data; Figure S10: The feature importance of the phyla that measures the contribution of each phylum to the PMI
regression model (results from SHSU winter study). QIIME further processing notes and jupyter notebooks
describing the models are also included.
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