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Feedback Assisted Transmission Subspace Tracking
for MIMO Systems

Brian Clarke Banister, Member, IEEE,and James R. Zeidler, Fellow, IEEE

Abstract—This paper describes a feedback assisted stochastic
gradient algorithm for transmission tracking of the dominant
channel subspaces for multiple-input–multiple-output (MIMO)
communications systems. Subspace tracking is introduced
as a means of tracking multiple transmission weights, being
the MIMO generalization of beam steering in the familiar
multiple-input–single-output case. The subspace solution ap-
proximates that of water filling (WF) in some cases, without the
complete rate/power allocation required by WF. The gain of sub-
space tracking in low rank systems is demonstrated, particularly,
in the case where the number of transmit antennas exceeds the
number of receive antennas. Simulations of ergodic capacity show
the utility of both subspace tracking in general and of the specific
adaptation algorithm, and simulations of frame-error rates show
the utility in a specific coding example.

Index Terms—Adaptive arrays, gradient methods, multiple-
input–multiple-output (MIMO) systems, transmitting antennas.

I. INTRODUCTION

SPACE–TIME CODING (STC) for capacity enhancement
of multiple-input–multiple-output (MIMO) channels uses

the independent modes of the channel-state matrix to effectively
obtain multiple spatial transmission pipes, giving an increase
in the effective transmission bandwidth and allowing for
greater bit rates. Most of the research into STC with multiple
transmit antennas has focused on “blind” techniques, where
no knowledge of the forward channel state is available to the
transmitter. These attain diversity with a single receive antenna
[1] or multiplexing coding gain with multiple receive antennas
[2]–[4]. There is also a substantial body of literature on the
subject of signal processing approaches for transmit adapta-
tion in multiple-input–single-output (MISO) environments,
including closed loop techniques utilizing digital feedback
[5]–[8]. While it has been clear from the basic capacity formula
[9] that utilization by the transmitter of the channel state could
also be advantageous in MIMO space–time coded systems,
there is only a small body of literature on specific techniques
for attaining such knowledge in the MIMO case, particularly in
frequency-division duplex (FDD) systems. Those works have
focused on antenna selection algorithms [10]–[13].
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This paper focuses on a signal processing approach for sub-
space tracking, using a multimode extension of an algorithm
previously introduced for MISO systems [5]. The proposed
adaptive approach is similar to subspace tracking algorithms
which have been proposed for receive systems [14]–[16]. Given
that the principal spatial transmission modes are found and
tracked by the algorithm, coding techniques can use the spatial
modes in conjunction with the more traditional time/frequency
modes in a conventional manner (e.g., see [17]). A specific
coding technique is evaluated as an example. In general,
however, the algorithm is not specific to any coding technique.

The algorithm maintains a set of transmission weight vectors,
where there are fewer weight vectors than transmit antennas.
Each weight vector is applied to a corresponding space–time
code stream. Gaussian perturbation probing is transmitted to
the receiver, which generates feedback indicating a preferred di-
rection for this perturbation to be applied to the current weight
vector set. This provides the transmitting unit with a coarse esti-
mate of the gradient of the power delivered to the receiver and is
used to update the transmission weight vectors. Gram–Schmidt
orthonormalization is performed to maintain the orthonormality
of the set of weight vectors. The first-order behavior of this ap-
proach is very similar to that described in [14].

The situation which most explicitly benefits from tracking the
principal modes is one where some of the available transmission
channel subspaces have null or near null response and, hence,
deliver no power to the receiver. This condition may occur due
to an ill-conditioned channel response. Such a channel response
may be due to correlation from closely spaced antennas or may
arise from a poor scattering environment, as can occur even
with fading independent across all antennas [18]. The results
presented in this paper focus on the environment which pro-
vides the most explicit subspace tracking gains, one where the
channel components are independent and identically distributed
(i.i.d.) and there are fewer receive antennas than transmit an-
tennas (e.g., due to size or cost constraints). Simulations with
two receive and either four or eight transmit antennas in a fading
environment show the effectiveness of this tracking algorithm in
attaining the potential gain over blind MIMO transmission, and
results for optimal water filling and perfect subspace tracking
are generated for comparison.

The paper is organized as follows. Section II motivates the
algorithm with an analysis of channel capacity with subspace
tracking; Section III describes the operation of the proposed
feedback assisted adaptation algorithm; Section IV provides an
analysis of the algorithm convergence behavior; Section V pro-
vides numerical results for convergence behavior and the real-
ized ergodic capacity with the algorithm; Section VI provides
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simulation results for a specific coding example; Section VII
provides a discussion of implications for other environments.

II. CAPACITY MOTIVATION FOR MIMO CHANNELS

A. Capacity Formulae

The desirability of a subspace tracking technique is demon-
strated through simple capacity analysis. The MIMO system
will have transmission antennas and receive antennas.
The number of tracked transmission subspaces is. It is as-
sumed that , . The channel frequency re-
sponse is assumed to be flat, so there is no temporal intersymbol
interference (ISI). The transmission is represented by the
complex vector , which is zero mean with autocorrelation .
The transmission energy per Nyquist symbol is given by

(1)

tr (2)

With a complex channel transfer matrix and
zero-mean complex Gaussian noise vectorwith au-

tocorrelation , the received vector is

(3)

The Shannon capacity of the channel with this modulation is
then given by [9]

(4)

where denotes the matrix determinant.
The singular value decomposition (SVD) of is defined as

(5)

with unitary left-singular matrix , right-singular matrix and
magnitude sorted singular values , where

is the largest singular value.
With Gaussian signaling (maximizing entropy), we evaluate

three values for capacity: 1) water-filling (WF) capacity (the
optimal allocation); 2) perfect subspace tracked (PST) trans-
mission capacity; and 3) blind transmission (Bld) capacity (no
channel-state knowledge at transmitter). For these transmission
strategies, the transmission vector autocorrelations are

(6)

(7)

(8)

where denotes that the positive entries are retained and the
negative entries are zeroed (note: for , the entry is
and becomes zero), and for WF is determined such that

tr (9)

The associated capacities then become

(10)

(11)

(12)

One limiting condition of some interest for WF is large signal
to noise ratio . Assuming the channel is of maximal
rank (given by , as will be attained in most realistic channel
conditions with probability 1), we have

(13)

B. Discussion

It is immediately clear from (11) and (12) that if
and , then a power gain of precisely is
attained for perfect subspace tracking over blind transmission.
The gain is attained because transmission of power into null
channel modes, where such power cannot be received by the
receiver, is avoided. Hence, the received power is increased
without sacrificing the multiplexing gain available from the
independent spatial modes. This is a reasonable downlink an-
tenna topology since the number of antennas at a data terminal
may be restricted by cost and/or space constraints.

The performance of perfect subspace tracking relative to WF
is less clear for the general case. However, from (13), we see
that the WF and subspace tracking solutions will be approxi-
mately the same in the case of large signal to noise ratio. Hence,
it is expected that in many practical situations subspace tracking
will provide the majority of the achievable adaptation gains. Nu-
merical results comparing the WF, subspace tracked and blind
approaches are presented in Section V, after the description of
the specific adaptation algorithm.

III. A LGORITHM DESCRIPTION

A. Objective and Adaptation Cost Function

This section describes the feedback adaptive algorithm for
transmission subspace tracking in a FDD system. The objective
of the algorithm is to track a complex weight ma-
trix which maps a complex vector of coded data
to the applied signals at the antennas, . The tracking
is attempting to extract the principal right-singular subspaces,
giving

(14)

Define the cost function

tr (15)
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Fig. 1. Diagram of the system with the gradient algorithm.

TABLE I
ADAPTATION ALGORITHM SUMMARY

where is the Frobenius norm, and constrain the weight
matrix so that

(16)

It is shown in [14] that the maximization of subject to the
constraint (16) accomplishes the desired subspace tracking.

B. Algorithm Operation

The algorithm objective will be accomplished with a feed-
back stochastic gradient algorithm adapted from [5] for the
multimodal adaptation required for subspace tracking. A block
diagram of the system is shown in Fig. 1, and an algorithm
summary is provided in Table I. The system utilizes par-
allel space–time coded transmission streams, where any STC
technique can in principle be applied. Each of the transmission
streams is transmitted with a different antenna weighting
vector, according to the column-orthogonal weight
matrix , where this matrix is tracked by the feedback algo-
rithm such that its columns span the principal right-singular
subspaces of the channel gain matrix. The algorithm strategy
is to transmit a probing perturbation signal, with the receiver
generating feedback selecting the preferred sign to apply to the
perturbation in an update to . It will be shown that this results
in the desired subspace tracking. For ease of presentation, the

description uses discrete time sampling; Nyquist pulse shaping
and a temporal ISI free channel are assumed.

The transmission is comprised of three components, distin-
guishable at the receiver through utilization of any standard
multiplexing technique (e.g., code or time-division multiplex:
CDM or TDM): coded data modulation, a pilot transmission (for
channel estimation at the receiver), and a perturbation probing
transmission (for feedback generation). The adaptation occurs
through probing and feedback every Nyquist symbols; mea-
surement and feedback latency is ignored in this presentation.
The data modulation is given by the code stream vector
s , which has an autocorrelation of. The weighting matrix
translates this vector to the transmit antennas

(17)

The pilot modulation is all 1’s multiplied by a vector
spreading cover , which is transmitted with the same
weighting matrix as the data so that the channel experienced by
the data transmission can be estimated at the receiver

(18)

The perturbation modulation is similar to that of the pilot: all
1’s multiplied by a vector spreading cover ,

which is translated to the transmit antennas with a
test perturbation matrix . For each perturbation probing pe-
riod the perturbation matrix is randomly generated with i.i.d.
zero-mean complex Gaussian elements with variance of two.

(19)

The spreading cover vectors are generated as uncorrelated so
that the pilot and perturbation transmissions can be recovered at
the receiver

(20)
The data, pilot, and perturbation signals are all transmitted

from the same antennas. The multiplexing technique used to
distinguish these three signals at the receiver is important to the
final system design, but it is not relevant to this general intro-
duction to the algorithm and will not be considered here. In this
paper, it is assumed that pilot and perturbation signals can be
perfectly recovered by the receiver and their multiplexing re-
quires an insignificant bandwidth, so that the capacity loss in-
curred by the multiplexing is negligible. This requires that the
forward link bandwidth is much greater than the feedback rate.
Together, the pilot and perturbation transmissions consume
orthogonal time/frequency bases out ofavailable,1 where
is the ratio of frequency bandwidth to adaptation rate. Hence,
the assumption is .

1The pilot and perturbation bandwidth utilization can be incorporated into the
results as a bit rate loss factor(M � 2N )=M (e.g., for a 1-MHz bandwidth
and 10 kb/s feedback the bit rate loss is 0.98). This still excludes the power
utilization.
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The channel gain matrix is assumed constant
over the perturbation measurement and feedback interval, so
that the composite channels formed by the combination of the
physical channel and the transmission weight and perturbation,
as seen by the receiver, are as follows:

(21)

(22)

Then, the received data signal vectoris

(23)
With noise excluded, the pilot and perturbation are recovered

perfectly at the receiver as

(24)

(25)

Feedback is generated from the receiver using the pilot and
perturbation transmissions. The feedback selects which sign-
direction is preferable, in terms of maximizing receive power,
as an update of by . That is, the binary feedback decision

is determined as

sign

sign Re (26)

The decision defined by (26) is binary encoded and provided as
feedback from the receiver to the transmitter. Since the mag-
nitude (in expectation) of the elements of are constrained
(having variance two), the adaptation parameteris introduced
to capture the adaptation rate, with a largergiving faster but
noisier adaptation. Using the parameterto define the update
step size the weight matrix update at the transmitter is given by

(27)

G (28)

where denotes an intermediate computation prior to
orthonormalization, and the matrix function G returns the
Gram–Schmidt column orthonormalization of the input matrix;
e.g., G returns the unitary matrix from a Gram–Schmidt
QR factorization. Other QR factorizations could be used, but
the Gram–Schmidt is assumed throughout and will be seen
to have some desirable properties. This orthonormalization
ensures that the transmission streams are orthogonal at the
transmit antennas at all times, so that the weight vectors
(columns of cannot collapse into overlapping spaces and

transmission modes are indeed stimulated, satisfying (16).

IV. A DAPTATION ANALYSIS

A. Definitions

In this section, convergence will be considered with
static and nonrandom (or taken as given). A tilde will be used
throughout to indicate projection into the right-singular spaces
of . Hence, defining as in (5)

(29)

(30)

For brevity, it will be convenient to define as

tr

(31)

B. Cost Function and Gradient Extraction

This algorithm is operating to maximize the performance
metric defined above, and can be considered to be a steepest
ascent implementation. The gradient ofwith respect to is

(32)

Extending a result from [5], for comprised of i.i.d. random
complex Gaussians with variance twice unity, the expected
value of the weight change prior to orthonormalization is the
scaled Frobenius normalized gradient ofwith respect to
(see Appendix A).

E (33)

Then, with negligible estimation error in the receiver and re-
liable feedback, the weight matrix update prior to orthonormal-
ization is

(34)

where is a zero-mean error matrix. The elements ofmay
be correlated due to the normalized gradient which is extracted
from to leave . The right-singular projection representa-
tion in the update prior to orthonormalization is then a diagonal
modification plus noise from

(35)

It was observed in [14] that a gradient update with a form sim-
ilar2 to (34) and (35) with orthonormalization (28) and
has the same formulation as the orthogonal iteration method
of eigendecomposition [19]. Hence, a gradient update with the
form of (35) will cause the weight matrix to converge to the prin-
cipal right-singular subspaces of.

C. Adaptation Update Moments

The first and second moments of the updated right-sin-
gular projected weight matrix prior to orthonormalization are

2The difference is that here the gradient update is Frobenius normalized. In
contrast, in [14] there is no normalization, so that the update matrix multiplying
W is invariant.
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straightforward to compute, applying (59), (61), and (62) from
Appendix A

(36)

E

(37)

E

(38)

D. Convergence in Static Channel With Noiseless Update

In considering the convergence properties, we approximate
perfect gradient estimation by setting , which provides
some insight to the adaptation process. With the removal of the
error term, the update prior to orthonormalization (34) becomes
a premultiplication of the weight matrix

G (39)

Because the Frobenius normalizing denominator in is
dependent on the state of the weights (35), this formula must
be iteratively computed in order to completely characterize the
convergence. The convergence path of the weight matrix with
the assumption of zero adaptation error is derived in
Appendix B3

G

(40)

Noting that tr then directly from (40)
the convergence of to the singular space over lesser spaces
goes as follows. This result is similar to the conclusion of [14]
except that the variable gradient scaling (Frobenius normaliza-
tion) requires the use of a lower bound

tr

tr
(41)

This shows that the first weight column vector converges to
the first singular space, and the second weight vector converges
to the second singular space (since the Gram–Schmidt projects
it away from the first principal space), etc. Thus, upon conver-
gence this algorithm not only tracks the desired subspace, but
extracts the sorted right-singular spaces. This has two major
implications when the algorithm has converged or nearly con-
verged: 1) there is a reduced need for a spatial equalizer at the

3Matrix factorization is herein defined from the left side: A(i) �
A(k) A(i)

receiver to compensate for code stream crosstalk, and 2) the el-
ements of the space–time code stream vector, , attain re-
ducing degrees strength and reliability for increasing.

V. SIMULATION STUDY OF CAPACITY

A. Simulation Environment

In order to demonstrate the general (coding independent)
properties of the applied algorithm, Monte Carlo simulation is
performed and several metrics are extracted. The algorithm is
simulated as described above with and both

and . Channel estimation at the receiver is
considered to be perfect for purposes of generating the feedback
and computing capacity, and pilot/perturbation multiplexing
bandwidth utilization is not considered. The feedback is
implemented without decision errors, andwas varied to find
its best value. The channel model is independent Raleigh-flat
fading with time correlation given by Jakes model, and the
Doppler frequency is configured relative to the feedback
rate , so that both are captured in the ratio . The
mean channel gain is captured in

(42)

The mean gradient cost metric is evaluated as

(43)

where is the time varying value of (15) and is the
time varying value of (15) for perfect subspace tracking. In addi-
tion, ergodic capacity values in units of bits/second/Hertz were
evaluated as the mean mutual information (for Gaussian sig-
naling at the transmitter) between the transmitted waveform and
the received waveform for a transmission energy per Nyquist
symbol of (energy summed over all code streams), ac-
cording to (44). Appropriate reformulations were applied for
each system example (e.g., perfect weights, blind)

(44)
These ergodic capacities were evaluated for single-input–
single-output (SISO) and single-input–multiple-output (SIMO)
benchmark conditions and for several configurations with
MIMO channels with and with either or

. The test case labels and descriptions are given in
Table II.

B. Discussion

The results of the sweep of for different frequency ratios
are shown in Fig. 2 and Fig. 3. As expected, higher

relative feedback rates allow the use of a smaller adaptation pa-
rameter . The optimal values of , those which maximize
from these simulations are used for all subsequent simulations.

The average convergence transient behavior is shown in Fig. 4
and Fig. 5, where the mean absolute values of the entries of
the matrix are shown for PST (weights are exactly the
principal right-singular vectors) and for the gradient feedback
(GFB) algorithm with and . With
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TABLE II
SIMULATION LABELING AND DESCRIPTIONS

Fig. 2. Cost function, mean(J), for the gradient update, sweeping�, and the
feedback frequency to Doppler frequency ratio,N = 2, N = 4.

Fig. 3. Cost function, mean(J), for the gradient update, sweeping�, and the
feedback frequency to Doppler frequency ratio,N = 2, N = 8.

PST, the mean result is constant, while GFB shows a conver-
gence time on the order of 100 feedback intervals. It is clear that
with GFB the first weight tracks toward the dominant right-sin-
gular space, while the second weight tracks toward the second
right-singular space. The cross term gives the cross-
interference between the two received code streams; e.g., the
signal to cross-interference power ratio experienced by received

Fig. 4. Convergence transient of power and cross talk.y axis is
10 � log (Ej[A A] j=E(tr(H H))). For perfect subspace weights or
gradient feedback tracked weights (F =F = 1000, � = 0:02). N = 2,
N = 4.

Fig. 5. Convergence transient of power and cross talk.y axis is
10 � log (Ej[A A] j=E(tr(H H))). For perfect subspace weights or
gradient feedback tracked weights (F =F = 1000, � = 0:02).N = 2,
N = 8.

code #1 with a matched filter (no equalization) scheme at the re-
ceiver is

SIR (45)

Example, applying (45) to Fig. 5 provides a steady
state SIR dB and SIR dB for GFB
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Fig. 6. Ergodic capacity (b/s/Hz) versus energy per Nyquist symbol,N = 4.
See Table II.

Fig. 7. Ergodic capacity (b/s/Hz) versus energy per bit,N = 4. See Table II.

(the cross interference is zero for PST). Hence, the cross inter-
ference is relatively small, and good performance could be ex-
pected with either no spatial equalizer [i.e., a simple matched-
filter (MF) receiver] or with a relatively simple linear [e.g., min-
imum mean-square error (MMSE)] spatial equalizer. More com-
plicated equalization approaches such as successive cancella-
tion (e.g., “BLAST” [2]), or iterative turbo equalization (e.g.,
[20] and [21]) might not be expected to provide significant fur-
ther gains in this case. MF and MMSE results are presented in
Section VI.

The key capacity results are given in Fig. 6, Fig. 7
and Fig. 8, Fig. 9 . These show the gains available
from the use of STC with and without subspace tracking. The
axis transmitted energy per bit or energy per Nyquist symbol are
shown for mean single channel gain , so that the gain from
directing more of the transmitted energy toward the receiver is
visible. The capacity curves can be divided into two general
regions: the “bandwidth limited” region highlighted by plot-
ting capacity versus energy per Nyquist symbol (Fig. 6, Fig. 8),
and the “power limited” region highlighted by showing capacity
versus energy per bit (Fig. 7, Fig. 9). In the bandwidth limited
region of the curve, the primary limitation to channel capacity is

Fig. 8. Ergodic capacity (b/s/Hz) versus energy per Nyquist symbol,N = 8.
See Table II.

Fig. 9. Ergodic capacity (b/s/Hz) versus energy per bit,N = 8. See Table II.

the number of available orthogonal bases for transmission, and
the STC (whether subspace tracked or blind) doubles
the bits per power octave slope versus non space–time coded
transmission. In the power limited region, the primary limita-
tion is the received power and extra orthogonal transmission
bases provide only small gain. The limiting values are summa-
rized in Table III. With infinitesimal data rate one attains infinite
time diversity for each code symbol and the fading SISO limit
approaches the well known dB E N additive white
Gaussian noise (AWGN) limit.

In Fig. 6–Fig. 9 the PST case performs 3.01 dB or
6.02 dB better than the blind transmission approach.
In all cases, the gradient feedback algorithm provides an ergodic
capacity with significant gain over the blind transmission ap-
proach. With the GFB subspace tracking
almost performs, as well as PST. Even with feedback rates as
low as the GFB outperforms blind transmis-
sion, except at very high signal to noise ratios. It is worth noting
in comparing these figures to Fig. 2 and Fig. 3 that the mean
metric is a very good predictor of the performance of GFB
relative to PST in the power limited region, where the power
transfer (captured in ) becomes the most critical aspect.
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TABLE III
COMPARISONS IN THELIMITS

Together, the capacity plots show the gains available by sub-
space tracking. Many systems will be interference limited, and
additional energy per bit is extra interference to other users. This
motivates operation in or near the “power limited” region of
the curve. In practice, this is a motivation to avoid higher order
modulations [i.e., quadrature amplitude modulation (QAM)],
since the large required for reliable performance in-
creases the system wide interference. Following this reasoning,
it could be desirable to use rate 1/2 or 1/4 codes with quaternary
phase-shift keying (QPSK) or 8-PSK modulation. A QPSK rate
1/2 code in a SISO AWGN channel gives 1 b/s/Hz and requires

dB for reliable reception, which is an excess bit
energy of 1.59 dB. Applying a rate 1/2 code with
spatial channels gives 2 b/s/Hz, and the figures show clear gains
for GFB in this region versus blind transmission. It is also in-
teresting to note that in this region the gains for blind STC are
only 2.0 dB or 2.3 dB over standard coding
with a single transmit antenna and two receive antennas (SIMO),
and in the limit for low rate the extra transmit antennas provide
no gain over the SIMO case. Hence, we see the motivation for
adopting some form of transmission adaptation scheme, with
subspace tracking forming perhaps the simplest general class of
appropriate adaptation.

VI. SIMULATION STUDY WITH CONVOLUTIONAL CODING

A. Environment

In order to better illustrate the utility of the algorithm with
a realistic coding scheme, simulations have been performed
utilizing a simple example of convolutional coding and QPSK
modulation. For comparison, a blind STC scheme is im-

plemented with diversity coding providing the uncorrelated
transmit vector assumed in (8). The code is rate 1/2, constraint
length 9 with octal generator polynomials (753, 561) and free
distance 12. The coding was implemented as a block convolu-
tional code with 24 information bits and 8 tail bits (zeros), so
that the true code rate is 3/8. With SISO QPSK modulation, this
gives a data rate of 0.75 b/s/Hz. With in the MIMO
case two QPSK symbols are transmitted at a time and the
rate is 1.5 b/s/Hz. The simulations were run with uncorrelated
Gaussian entries of with Jakes temporal correlation, with
block static frequency flat fading constant over each frame (i.e.,
frame duration F ).

The coding for the adaptive scheme performs a serial to par-
allel operation on pairs of QPSK symbols to provide two sym-
bols at a time as the code stream. No additional special struc-
ture on the STC is applied. This simple approach is similar to
that of [17], except for the adaptive weighting of the transmitted
code streams.

For comparison, blind transmission is generated using diver-
sity STC. In the case, the scheme of [1] is used on
a first pair of QPSK symbols to generate the transmission for
two antennas and two time intervals, and the scheme is applied
again for the second pair of symbols to generate transmission
for the remaining two antennas. Similarly, in the case,
the scheme of [22] is used on a first quartet of QPSK symbols
to generate the transmission for four antennas and four time in-
tervals, and the scheme is applied again for the second quartet
of symbols to generate transmission for the remaining four an-
tennas. This is illustrated in (46) and (47), shown at the bottom
of the page, where are the serial QPSK symbols directly from
the encoder and QPSK modulator.

blind (46)

blind

(47)
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Fig. 10. Frame-error rateN = 4. See key Table II.

In both blind transmission schemes the QPSK symbol rate is
again two independent symbols per Nyquist interval. The use of
four or eight transmit antennas with the diversity STC provides a
diversity enhancement over simply using two transmit antennas,
so that reliability is improved but the capacity enhancement is
small.

The performance was evaluated with either a MF or a MMSE
linear symbol estimator providing the symbols to the decoder.
For the blind cases, the MF and MMSE approaches are straight-
forward extensions of those described in [1] and [22]; MMSE
requires combining over the two or four
received time samples of the STC. For the adaptive transmission
systems (PST and GFB), the symbol estimates which are QPSK
demodulated and Viterbi decoded are generated as (time index
omitted for )

PST,GFB:MF (48)

PST, GFB: MMSE (49)

B. Discussion

The FER simulation results are seen in Fig. 10
and Fig. 11 . We see that the MMSE receiver pro-
vides much better performance than the MF receiver in the blind
transmission cases: this transmission scheme suffers from code
stream spatial crosstalk. The use of extra antennas (more than
the two required to support the coding and data rate) has attained
a diversity gain, but the lack of power gain (available through
subspace tracking) and the code-stream cross talk degradation
with suboptimal linear equalization have hindered the perfor-
mance. However, this is not true for the GFB cases; with the
GFB approach the transmission adaptation tends to extract not
just the dominant subspace but to separate the individual right-
singular spaces, which minimizes code stream crosstalk at the
receiver. Hence, in the slower GFB tracking cases

, where the right singular spaces are not entirely separated,
the MMSE performance is only slightly better than with the MF.
However, with the MF receiver actually
outperforms the MMSE receiver. Here, the symbol weighting

Fig. 11. Frame-error rate,N = 8. See key Table II.

distortion from MMSE degrades the performance relative to MF
more than the minimization of crosstalk from MMSE improves
the performance.

The simulation results show the gains of the tracking algo-
rithm and illustrate that the application of this algorithm may in
fact simplify the implementation of the receiver, since the need
for equalization is minimized.

VII. CLOSING DISCUSSION

The numerical results presented have focused on a channel
condition with explicitly limited rank. In systems with equal
numbers of antennas at the receiver and the transmitter the
channel rank is not explicitly limited and will generally be full
rank. In such situations the gain from a transmitter subspace
tracking algorithm is less clear. The tradeoff of blind trans-
mission versus subspace tracked transmission with
becomes a matter of optimizing the tradeoff of “bandwidth”
(orthogonal bases per second) versus the delivered power. That
is, by concentrating the transmitted power into the right-sin-
gular spaces with the largest gain, the subspace tracking
algorithm can increase the received SNR while losing effective
coding bandwidth. This provides gains for systems operating
in the power-limited region or with large spatial correlation.

With the Gram–Schmidt orthonormalization step the distinct
right-singular vectors of the channel are extracted. This was
shown in Section VI to provide “preequalization” and reduce
the need for equalization at the receiver. In an unusual case of

this vector extraction is achieved without extracting
a subspace. With equal power allocation inthe result would be
no increase in ergodic capacity over blind STC, but a practical
performance increase due to the preequalization.

VIII. C ONCLUSION

The benefits of transmission tracking of dominant channel
subspaces for communications in low rank MIMO channel con-
ditions have been described, particularly for the specific case
where the number of receive antennas is less than the number
of transmit antennas. A specific feedback stochastic gradient
algorithm for transmission adaptation has been introduced.
Numerical results showed that the adaptive algorithm performs
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well, with results approaching perfect subspace tracking for
feedback rates on the order of 1000 to 10 000 times the channel
Doppler frequency. In systems with fewer receive than transmit
antennas, the subspace tracking approach was shown to provide
significant capacity and performance power gains of
over blind space–time coded transmission. The performance
approaches that of water filling in many cases.

APPENDIX A
UPDATE STOCHASTIC GRADIENT ESTIMATE

A. Vector Gradient Extraction

Define as a non-random complex vector, andas a
zero-mean complex Gaussian vector with autocorrelation.
Define the decision vectorand error vector as follows:

sign Re (50)

E (51)

Then, from [5] the decision is characterized by the following
first and second moments:

E (52)

E (53)

This result is mapped to the current system as follows, with
and from (21) and (22)

sign Re (54)

The decision summation is given by

(55)

If we let the vector be the result of stacking the columns
of the matrix and the vector be the result of stacking the
columns of the matrix , then (55) translates to

(56)

Noting that for with i.i.d. entries of variance two and arbi-
trary non-random matrix

E tr (57)

E tr (58)

then, (52) and (53) give

E (59)

E (60)

E (61)

E (62)

APPENDIX B
CONVERGENCE INSTATIC CHANNEL WITH NOISELESSUPDATE

The iterative update of the algorithm utilizes the Gram–
Schmidt procedure to maintain the orthogonality of the column
vectors of . The expectation of the gradient based update
yields a matrix premultiplication of prior to the Gram–
Schmidt orthogonalization, so that if this premultiplying matrix
is invariant the update takes the form of the Gram–Schmidt QR
iteration, which can be used perform an eigendecomposition of
the premultiplying matrix [19]. With the assumption that the
gradient estimation error matrix is zero, this appendix derives
the convergence path of this QR adaptation, a result found in
neither [19] nor [14].

Define the orthogonal projector matrix as and the vector
normalization function as N

(63)

N (64)

Then, the Gram–Schmidt column orthonormalization
G of a matrix comprised of column vectors is defined
by

G (65)

N (66)

With projection into the right-singular spaces, from (35) and
(31) the premultiplying matrix of the noiseless update is defined
by the diagonal matrix as follows:

(67)

The right-singular space projected matrix (29) is com-
posed of column vectors . We base the proof
upon the induction of Lemma 1a, noting that for the
relationship (71) holds trivially so that the induction has a valid
foundation. Note that the intermediate vector normalization is
omitted, as the scaling can be applied at any time without mod-
ifying the result.

Theorem 1: If the matrix is constructed by iterating
a matrix premultiplication by Hermitian symmetric
followed by Gram–Schmidt column orthonormalization G,
where G returns the Q-matrix of a Gram–Schmidt QR
decomposition, as follows:

G (68)

Then

G (69)
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I

(75)

Lemma 1a: If the recursion (70) defines a new column vector
set from the prior set through premultiplica-
tion by a Hermitian symmetric matrix , and the prop-
erty (71) holds, relating the first projectors of the old and
new sets, as follows:

(70)

(71)

where indicates that the index is decremented in order
to be consistent with the leftward matrix factorization, then the
property (70) extends to the vector of the new set as given
in (72)

(72)

Proof of Lemma 1a:The projectors are generated from or-
thogonal vectors from (70), so that the order of the projec-
tors can be interchanged. Therefore

(73)

Inserting (71) and (73) into the left side of (72) yields

(74)

This leaves the th projection to be proved. Replacing
with the right-hand side of (70), utilizing the idempotency of
the projectors, and performing algebraic simplification, this is
shown in (75), at the top of the page. Q.E.D.

Proof of Theorem 1:Equation (68), in terms of the indi-
vidual column vectors of , is

N

(76)
From (68) and the definition of the Gram–Schmidt orthonor-

malization the vector can be replaced, giving

N

N (77)

From Lemma 1a, this is

N

(78)

Applying this inductively for yields

N

G (79)

Q.E.D.
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