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ABSTRACT

Approximate solution methods for nonlinear random vibration problems are developed
using computational tools of the time-invariant structural reliability theory. The basic
framework of the approach is composed of: (1) representation of the input stochastic
excitation in terms of a finite number of random variables, (2) formulation of each
response statistic of interest in terms of one or more limit-state functions of the random
variables, and (3) estimation of the response statistic using computational reliability tools.

An important step in thé proposeé approach 1s the finding of the design poit,
which is the point on the limif-state surface that is nearest to the origin in a transformed
standard normal space. This point is usually found by solving a constrained optimization
problem, requiring repeated computations of the limit-state function and its gradient. In
this report, a new method for determining the excitation corresponding to the design point
is preseﬁted. The basic idea starts from the finding that, for a linear osc.illiator subjected to
a stationary Gaussian white-noise excitation, the “design-point excitation” is a linear
function of the unit-impulse response function of the oscillator. Inspired by this idea, we
investigate the dynamic characteristics of nonlinear oscillators by observing their free
vibration motion and its mirror image. It is shown that for a nonlinear elastic single-
degree-of-freedom (SDOF) oscillator subjected to a stationary Gaussian white noise, the
design-point excitation is identical to the excitation that generates the mirror image of the
free vibration response, When_the oscillator is released from the target threshold. This
idea is extended to general nonlinear systems, including systems having hysteretic
behavior and multi-degree-ot-freedom systems subjected to non-white and non-stationary
excitation, for an approximate solution of the design-point excitation. The design-point
excitation is the most likely realization of the stochastic excitation to produce a target
response threshold.

The accuracy and effectiveness of solution tools such as the first-order reliability
method (FORM), the second-order reliability method (SORM), and various sampling
techniques are investigated in the context of nonlinear random vibration analysis. FORM

is found to produce fairly accurate results for most moderately nonlinear random
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vibration problems, particularly for high thresholds. SORM is found to produce
unreliable results for certain nonlinear random vibration problems, because of rapid
changes in the curvatures of the limit-state surface near the design point. Importance
sampling using design points and sampling on the orthogonal plane are investigated as
simulation techniques. Both are found to be far more efficient than the crude Monte Carlo
simulation method. Sampling on the orthogonal plane is found to be at least as efficient
as the importance sampling method; additionally, this method is effective for computing
the mean out-crossing rate.

Simulation methods for computing the first-excursion probability of nonlinear
random vibration response are investigated. Through discretization of the time axis, the
first-excursion problem is represented as a series-system reliability problem and the
corresponding probability is approximately computed by importance sampling and by
sampling on the orthogonal plane. The method can account for broad classes of system
nonlinearity; as well as for uncertainty in system properties: It is found that the sampling
on the orthogonal plane is at least as efficient as the importance sampling method.

* Lastly, an approximate representation of a narrowband Gaussian process in terms
of discretized envelope and phase processes is explored. The Nataf distribution model is
used to approximately describe the second- and higher-order joint distributions of the
envelope and phase processes. With this formulation, the narrowband process can be
represented with a relaﬁvely small number of random variables, which is convenient for
simulation and FORM analysis. However, it is found that the adopted Nataf distribution
mtroduces too large an error for reliability analysis by FORM. -

The new methods developed in this report for FORM and sampling sclution of
random vibration probfems significantly improve our ability to solve nonlinear problems,

for which practical solution techniques are presently unavailable.
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1 Introduction

1.1 Motivation

The analysis of structural response under dynamic loading is a major topic in structural
engineering. The primary goal of the analysis lies in the prediction of failure conditions,
so that the structure can be designed to prevent failures, or to minimize the likelihood of
their occurrence. Since structures are designed to sustain much severe levels of load than
under nonnél operating conditions, it is crucial to account for structural behavior near the
failure states. Considering that structural failures usually oceur under grossly nonlinear
domains, it 15 essential to account for nonlinearity in the structural response to dynamic
loading. Another aspect that must be considered is randomness in loads and uncertainty
in structural properties. Examples of randomuness can be observed in loads arising from
natural phenomena, such as wind and earthquakes. Furthermore, uncertainty is present in
such structural characteristics as material properties and member sizes. To properly
account for the randommness in loads and uncertainty in structural characteristics, a
probabilistic approach to the analysis of structural response to dynamic loading is

necessary.

Nonlinear random vibration incorporates the above two aspects: nonlinearity and

randomness. In nonlinear random vibration problems, the responses of a nonlinear
vibrating system are determined probabilistically, when _thé system parameters and/or
input excitation are described as random quantities. Nonlinear random vibration is useful
in predicting the responses of structures such as buildings or bridges under earthquake or
wind loading. Several solution methods have been developed for nonlinear random
vibration problems. Most existing methods, unfortunately, are either computationally too
expensive or are highly restrictive in their domains of application. A brief review of the
most popular of these methods is presented in Section 1.2.

In this report, a recently developed solution method (Der Kiureghian and Li

1996a and 1996b) for nonlinear random vibration problems is investigated and further




developed. The basic idea is to convert the time-variant random vibration problem into 2
time-invariant structural reliability problem through a reformulation of the problem. To
do that, we first discretize the continuous-parameter input random process and describe it
by a finite number of random variables. One or more limit-state functions are then
introduced to describe the reliability statistic of interest in the random vibration problem.
With this reformulation, solution tools of classical structural reliability theory, such as the
first- and second-order reliability methods (FORM and SORM) and various simulation
techniques, can be used to solve the problem.

It turns out that, as in structural reliability, FORM provides a fairly good
approximation for the random vibration problem near the tail regions of the underlying
distributions. Furthermore, SORM and simulation techniques can be used o improve the
FORM solution. As already demonstrated by Der Kiureghian and Li (1996a, 1996b) and
Der Kiureghian (2000), the method can handle a wide variety of random vibration
problems, inchiding problems involving nonli_near systems, non-Gaussian excitation, and
uncertain systems. It allows consideration of a variety of reliability measures, including
statistics of crossing rates and the first-excursion probability. Furthermore, the method
provides additional information in the form of the most likely realization of the excitation
and the corresponding response with respect to any given event.

A crucial step of the proposed solution approach is to find the design point, which
is. the point on the limit-state surface that is nearest to the origin in the standard normal
si)ace. This is the point at which approximations to the limit-state surface are constructed,
or based on which sampling distl_ibu‘{ions are selected. This point is usually found by
solving a constrained optimization problem. Experience reveals that for a nonlinear
problem, the time taken to find this solution increases in proportion to the degree of
nonlinearity of the limit-state function and the number of random variables. Considering
that several hundred random variables are typically generatéd as a result of the
discretization of the input process, an efficient method for solving the nonlinear
optimization problem is essential if the proposed method is to be effective in practice.

The motivation behind the present study has come from the need for improving
the efficiency in solving the optimization problem to find the désign point of a nonlinear

" random vibration problem. Such improvement will contribute to this method becoming a




practical method for solving ponlinear random vibration problems. Along the way, a
number of other related problems have been identified and solved, as described in the

following section
1.2 Objective and Scope

The objective of this report is to 'imprbve and further develop the first-order reliability
method (FORM) as a solution technique for nonlinear random vibration problems, and to
develop tools for refinement of the FORM solution. In addition to FORM, important
sampling using design points and sampling in orthogonal plane are developed as solution
techniques for nonlinear random vibration. Applications of these methods to a number of
nonlinear random vibration problems are investigated, where important response statistics
such as drossing rates and the first-excursion probability are determined and compared
with either exact or Monte Carlo solutions. The problem of efficiently discretizing a
narrow-band process through discretizing its envelope and phase processes is also
explored. '

The main step in solving a random vibration problem by FORM is the finding of
the design point. As mentioned earlier, this requires solving a constrained optimization
problem, which .typicaﬁy requires iterative numerical solutions of the dynamic response
and its .gradient. It is shown in this report that, for special classes of problems, the design
point can be found by utiiiiing the dynamic characteristics of the system and without
engaging iterative calculations to solve tﬁe optimization problem. This class includes
linear or nonlinear elastic oscillators subjected to (Gaussian white noise excitation.

In an early study having a different objective, Drenick (1970) found that the so
called ‘critical excitation’ of a linear single-degree-of-freedom (SDOF) oscillator can be
obtained directly from the mirror image of the unit impulse response function of the
oscillator. The critical excitation is the excitation that causes a vibrating system to
achieve maximum response for a given input energy norm. This result is based on the fact
that the response of a linear system can be represented by a convolution integral of the

excitation and the unit impulse response function * of the gystem, 1i.e.




x(t) = _Ef('t)h(f —1)dt, where x(r) is the response of the systerh, f(2) is the excitation,

and A(z) is the impulse response function. If the time axis is discretized, x(¢) can be seen
as the inner product of two vectors resulting from the discretization of f(t) and A(t—7).

Since the inmer product of two vectors is maximized when they lie in the same direction,

the maximum response is achieved when f(t) is proportional to k(¢ —1), which is the

mirror image of the umit impulse response function. This idea has been used by
Shinozuka (1970) in finding the critical excitation for a frequency band-limited
excitation, and also extended to stochastic problems by Iyengar and Manochar (1987),
Srinivasan et ¢f. (1991), and Manohar and Sarkar (1995).

Quite independently, Der Kiureghian (2000) and Au and Beck (2001) found that
the mirror-image of the unit-impulse response function also coincides with the design
point of a linear system subjected to a Gaussian white noise, when it is treated in the
context of FORM analysis. Unfortunately, this idea holds only fér linear systems, since
the convolution integral used above is the result of the superposition principle, which is
one of the important characteristics of linear systems. For nonlinear problems,
superposition does not work and the unit-impulse response function does not completely
characterize the system. Therefore, the design point must be found through an iterative
numerical algorithm. Considering that most problems related to structural safety are
nonlinear, improvement in the efficiency of finding the design point is important for the
convenient use of the first-order reliability method. '

In this report a method is developed to directly find the design point or a point in
its close neighborhood, without directly solving the required optimization problem. The
idea behind the method comes from the solution of the design point for linear systems. As
mentioned above, for a linear system, the design point is closeiy related to the unit-
impulse response function, which repreéents the dynamic characteristic of the system.
The .design point of a nonlinear system is also related to its dynamic characteristics.
However, for a nonlinear system the response to a unit impulse does not completéiy
characterize the system. Instead, we find that the free vibration motion of a nonlinear
vibrating system with prescribed initial conditions contains the requisite information

about the system characteristics that is necessary for determining the design point. This 1s




reasonable, since a vibrating system behaves according to its own characteristic when
there is no external intervention.

Based on the above idea, it is shown that for an elastic nonlinear SDOF system
subjected to a Gaussian white noise excitation, the design point can be obtained directly
from a single analysis of the free vibration response of the system with prescribed initial
conditions. Tt is also shown that this idea can be extended to find a good approximation of
the design point in genefal nonlinear problems, including hysteretic oscillators and multi-
degree-of-freedom systems.

After finding the design point, we can readily calculate the FORM probability
approximation. SORM or simulation techniques, such as importance sampling or
sampling on the oﬁhogonal plane, can be used for refinement of the FORM solution.
However, experience shows that SORM is not a good refinement method for nonlinear
random vibration problems due to the complex behavior of the limit-state surface near the
design point. We also find that the directional simulation technique (Bjerager 1988} is not
an efficient method for solving random vibration problems that typically involve large
numbers of random variables. '

In this report, the importance sampling method (Meichers 1989, Engelund and
Rackwitz 1993) and the sampling on the orthogonal plane method (Hohenbichler and
Rackwitz 1988, Engelund and Rackwitz 1993) are used as refinement tools of the FORM
solution. These methods utilize the design point in different ways. While the design point
is used as the center of the sampling density-in the importance sampling method, the
sampling on the orthogonal plane method takes the direction of the design point to set up
the sampling plane. It is shown that the sampling on the orthogonal plane method is
superior or at least equivalent to the importance sampling method in efficiency. It is also
shown that the sampiiﬁg on the orthogonal plane method can be effectively used in
estimating the mean out-crossing rate.

'Recently, Au and Beck (2001) developed an efficient simulation method for
computing the first-excursion probability for linear systems. In this report, this method is
extended to nonlinear problems that are characterized either by nonlinear systems,
systems subjected to non-Gaussian excitation, or uncertain systems. After discretizing the

time axis, the first-excursion problem can be interpreted as a series system reliability




problem made of a large number of components, each representing the state of the system
at a discrete point in time. In the efficient simulation method developed by Au and Beck
(2001), the sampling density is constructed as the sum of conditional normal densities,
each defined over the failure domain of a component. For a linear problem, this can be
done easily, since the limit-state surface for each component is a hyperplane, which is
completely defined by the corresponding design point. This is not the case for nonlinear
problems. In this rebort, we extend the Au and Beck method to nonlinear problems by
implementing two simple modifications in their method aﬁd using the orthogonal plane
sampling technique. ‘

Lastly, an idea for efficient discretization of narrowband Gaussian processes is
explored in this report. The idea is to represent the process in terms of discretized forms
of its envelope and phase processes. Since the envelope and phase processes are much
more slowly varying than the narrowband process itself, a relatively crude grid of time
points is sufficient to accurately represent these processes than it would if the process
itself were to be discretized. However, in order to discretize the envelope and phases
processes, one needs higher-order probability distributions of these non-Gaussian
processes. Although it is theoretically possible to derive these higher-order distributions,
use of joint distributions beyond the second order is impractical. In this study we explore
the possibility of using the Nataf distribution to describe the envelope and phase
processes, in which.case all the higher-order distributions are .easily defined. With this
aiaproach, it turns out that the number of points necessary to discretize the narrowband
process can be reduced by a factor of 10 or 20. However, the approximation mtroduced
by the assumption of the Nataf distribution turns out to be too crude. The conclusion from
this study is that, while the method can be used to efficiently simulate narrowband
processes, it cannot be “ used Wi?:h confidence to solve random vibration problems

involving narrowband input processes.




1.3 Review of the State of the Arts

- In this section, existing methods for the analysis of nonlinear random vibration are briefly
reviewed. Also reviewed are recent developments related to FORM as a solution method
of random vibration problems.

‘The existing solution methods for nonlinear random vibration problems include
the F okker-Planck-Kolmogorov (FPK) equation, stochastic averaging, equivalent
linearization, equivalent nonlinearization, moment closure, the perturbation method and
Monte Carlo simulation. Since Caughey (1971), a number of publications that cover
comprehensive reviews of the methods of nonlinear random vibration have appeared
(Roberts 1981, 1984, Roberts and Dunne 1988, Nigam 1983, Spanos and Lutes 1986,
Roberts and Spanos 1990, Soong and Grigorina 1993, Lin and Cai 1995, Lutes and
Sarkani .1997, To 2000). Here, this literature is brieﬂy reviewed in the context of
application to structural engineering problems.

The method of the FPK equation is based on the theory of continuous Markov
processes. It can be shown that the response of a system subjected to Gaussian white
noise excitation can be represented as a Markov vector. Based on this finding, the PFK
equation describes the probability density function of the response as a function of time.
Solution methods of the FPK equation are described in several texts on random vibration
(Nigam 1983, Soong and Grigoriu 1993, Soize 1994, Lin and Cai 1995, Lutes.and
Sarkani '1997, To 2000). Caughey and Ma (1982) have discussed the class of problems
that can be solved by the FPK equation. Unfortun'&teiy, the class of problems ekﬁctly
solvable by an appropriate FPK equation is quite limited. Due to the limitation in its
application and the mathematical complexity of the formulation, the PFK equatioﬁ
method is not popular in structural engineering applications.

‘The stochastic averaging method (Stratonovitch 1964, Roberts 1986, 1989,
Roberts and Spanos 1986, To 2000) has been widely used for problems involving lightly
darﬁped SDOF oscillators under wide-band random excitations. In this approach, the
response process is decoupled into amplitude and phase processes, and a one-dimensional
FPK equation is derived for each process. Reduction of the dimension in the FPK.

equation from two to one greatly simplifies the computation. The method is especially
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useful in estimating reliability statistics of the first-excursion type (Roberts 1989).
However, there are considerable difficulties in applying this method to systems with
more than one degree of freedom. '

The equivalent linearization method (Caughey 1963, Atalik and Utku 1976, Wen
1980, Baber and Wen 1981, Roberts and Spanos 1990) is widely used for the

approximate solution of nonlinear random vibration problems due to its simplicity and

adaptability to multi-degree-of-freedom systems. The main idea is to replace the :

nonlinear dynamical system by a linear system such that the mean square error in the
response is minimized. The response statistics within the medium threshold region (say
within one or two standard deviations of the mean) tend to match with exact results fairly
well. However, the method fails to provide the effect of nonlinearity in the tail region. It
has been shown that the error in the probability disiribution increases exponentially after
a threshold two or three times the standard deviation (Schueller and Bucher 1986). The
method is useful in estimating the overall behavior of the response of a nonlinear system,
but it is not appropriate for estimating the statistics of extreme response thresholds that
are of interest in reliability studies. Nevertheless, this method remains one of the few
methods that are applicable to structural engineering problems. Later in this report, we
make comparisons of solutions obtained by this method with those obtained by the
proposed FORM and sampling methods.
The equivalent nonlinearization method (Lutes 1970, Caughey 1986, Lin 1988,
Zhu and Yu 1989) is a generalization of the equivalent linearization method. The basic
idea is to replace the nonlinear system with another nonlinear system, for which an exact
solution is available. The method partly makes up for the deficiency of the equivalent
linearization method, providing improved solutions. However, the range of application of
the method is quite restricted due to the limited number of nonlinear problems for which
exact solutions are available.
| In the moment closure technique (Kraichan 1962, Crandall 1973, 1980, 1985
Iyengar and Dash 1978), equations for the statistical moments of the response are derived
either from the equation of motion or from the FPK equation. Since the moments
generally have an infinite hierarchy of coupled equations, a closure technique has to be

applied to obtain an approximate solution under an appropriate assumption on the




distribution. Though the accuracy can be improved_by increasing the order of the closure,
the complexity of the moment equations dramatically increases as the order of the closure
or the number of degrees of freedom of the systein increases. o

The perturbation method (Crandall 1963) is used for the solution of weakly
nonlinear systems. In this method, the solution of the nonlinear problem is represented by
a series of solutions of linear random vibration problems. A small parameter is used to
characterize the order of nonlinearity. In general, the calculations are lengthy and rapidly
become prohibitive as the order of nonlinearity increases.

The Monte Carlo simulation method (Shinozuka 1972) can be applied to
nonlinear random vibration problems without theoretical limitations. When applied to
random vibration problems, this method requires that the confinuous input excitation
process be represented in a discrete form, a requirement that is shared by the proposed
FORM approach investigated in this report. In general, higher accuracy is achieved by
increasing the number of simulations. However, 1f a direct sampling approach is used, an
enormous number of sample functions must be generated in order to accurately estimate
statistics associated with high response thresholds. Though this method lacks
computational efficiency, with increasing computer power and speed, it is becoming
more popular. Furthermore, this method often provides the only available benchmark for
checking the accuracy of approximate methods. Finally, the efficiency of the Monte
Carlo simulation method can be drastically improved by using special sampling
techniques. In this report, such improved sampling techniques, including importance
sampling and sampling on the orthogonal plane, are investigated in connection with
nonlinear random vibration problems.

The first-order reliability ‘method (FORM) is a widely used .approximate
technique for solution of structural reliability problems that are defined in terms of
random variables. Li and Der Kiureghian (1995) and Der Kiureghian and Li (1996a,
1996b) were the first to use this method to solve random vibration problems. As
mentioned earlier, this method requires a discrete representation of the input excitation
process, such that the random vibration problem can be defined in terms of random
variables. More recently, Der Kiureghian (2000) used this formulation to make geomeiric

interpretations of linear random vibration problems in the space of the discretized random




variables and to investigate the accuracy of FORM and SORM solutions for response to
non-Gaussian excitation. Au and Beck (2000) used a similar approach to compute the
first-excursion probability of a linear system subjected to a Gaussian excitation. Bucher
(2000) and Macke (2000} used the design point obtained from the FORM solution of the
random vibration problem to construct an importance sampling technique. A detailed
description of this method is presented in Chapter 2. Further investigation, development
and improvement of these methods are the main objectives of this report.

In the author’s experience, finding the design point is the most critical step in the
FORM solution of random vibration probiems. Though independently developed, the
procedure to find the design p.oint has an analogy with that of the critical excitation
originally introduced by Drenick (1970). Several rescarches, including Shinozuka (1970),
Drenick (1973), Abdelrahman et al. (1978), Wang and Yun (1979), Iyengar and Manohar
(1987), Srinivasan ef al. (1991), and Takewaki (2002) have also contributed to this topic.
Among these researchers, only Drenick (1977) and Takewaki (2002) addressed nonlinear
problems. In these works, nonlinear systems are linearized in an appropriate sense and
~ approximate solutions of the critical excitation are obtained. Considering that high
accuracy is required in finding the design point, the approximate approaches that are used
to obtain the critical excitations of nonlinear systems are found not to be useful in the
FORM solution of nonlinear random vibration problems. Instead, new approaches for

various classes of nonlinear problems are developed in this repoi"t. _

1.4 Organization of the Report

Following this introductory chapter, the general methodology of the reliability
formulation of random vibration problems is presented in Chapter 2. Topics presented
include a brief review of FORM and SORM, reliability formulation of random vibration
problems, discretization of a continuous-parameter random process, and specific
formuiations for several reliability statistics of interest.

The critical step in FORM is to find the design point. In Chapter 3, the design
point excitation and the mirror image excitation of various dynamic systems are

investigated as part of a strategy for finding the design point. A simple idea for
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determining two design points needed for estimating the mean out-crossing rate is also
presented.

Chapter 4 is devoted to the development and assessment of various methods for
approximate solution of nonlinear random vibration problems by time-invariant
reliability methods. As refinement to FORM estimates, importance sampling using design
points and sampling on the orthogonal plane are considered. Several numerical examples
are used to investigate the adequacy of FORM as a solution tool for nonlinear random
vibration problems. The FORM solutions are compared with exact solutions, where such
solutions are available, the solution obtfained by the equivalent linearization method, and
solutions obtained by simulation. '

In Chapter 5, we consider the first-excursion probability problem for nonlinear
systems. The efficient sampling method developed for a linear system by Au and Beck
(2000} is extended to nonlinear problems. The method of sampling on the orthogonal
plane is used for this purpose. An example is presented to demonstrate the efficiency and
accuracy of the proposed method.

In chapter 6, we explore the possibility of representing a narrowband process in
terms of discretized envelope and phase processes. Various properties of a narrowband
process and its envelope and phase ?rocesses are investigated, The Nataf distribution is
used to construct approximate joint distributions for the envelope and. phase processes.
The accuracy of this representation in the context of FORM analysis is investigated.

Chapter 7 presents a summary of the major findings of this study and describes

areas where further study is needed.
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2 Structural Reliability Formulation of Random

Vibration Problems

2.1 Introductidn_

In this chapter, we describe how random vibration problems can be formulated and
solved by the methods of structural reliability. First, a brief review is made of the
methods of structural reliability, such as the first- and second-order reliability methods,
FORM and SORM, algorithms for finding the desigﬁ point, and reliability sensitivity
measures. We then consider several important random vibration problems and formulate
them as structural reliability problems foﬂmﬁng the earlier formulations of Der
Kiureghiéh and Li (1996a and 1996b). A necessary step in this formulation is a discrete
representation of the continuous stochastic input process, Whi.ch we describe in some
detail. ’fhe chapter ends with a brief _discussion' of available numerical methods for

computing the response and its gradient for nonlinear dynamic systems.

2.2 Review of Structural Reliability Methods.

The methods of structural reliability aim at computing the probability of failure of a

structural system. The structural reliability problem is defined in terms of a set of basic

random variables X =(x,,--+,x,) that describe the uncertain quantities affecting the state
of -the structure, and a sef of m limit-state functions g, (x,0), £=12,...,m , that
describe the failure event of intersst, where 6 =(8,,---,0,) denotes a set of p

deterministic parameters. The structural system is seen as composed of components, and

the k-th Hmit-state function is defined such that {g, (x,8) <0} denotes the event of failure

of the k-th component in the outcome space of the random variables x. The probability of

failure of the system, denoted p,, is given by
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s = [f(xdx | @.1)

where f(x) denotes the joint probability density function of x, and @ is the failure

domain defined in terms of the [imit-state functions g,(x,6), £ =1,2,..., m. Depending

on how the failure domain is detined, the structural reliability problem falls into one of

the following four categories:

A structural “component” reliability problem is one in which the failure domain is
defined by a single limit-state function, i.e.,

D ={g(x,0) <0} (2.2)
A structural “series system” reliability problem is one in which the failure domain is

defined as the union of component failure events, i.e.,
fDE{U gk(x,e)SO} (2.3)
k=i

where m is the number of components in the series system. Thué., a series system fails
if any of its components fail.
A structural “parallel system” reliability problem is one in which the failure domain is

defined as the intersection of component failure events, i.e.,

where m 1s the number of components in the parallel system. Thus, a parallel system
fails if every one of its components fails.

A structural “general system” reliability problem is one in which the failure domain is
defined in terms of both unions and intersections of component failure events. In
general, such systems can be formulated either in terms of a series system of paraliel
subsystems (cut-set formulation), or in terms of a parallel system of series subsystems

(link-set formulation). The former formulation leads to the definition

- @E{u n gk(x,aasO} 2.5)

K kel

where C is the K-th cut set, which is the index set of any subset of components

whose joint failure constitutes failure of the system
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For most structural reliability problems, an analytical evaluation of the integral in
(2.1) is impossible and, therefore, numerical methods have been developed for
approximate analysis. The first- and second-order reliébﬂity inethdds, commonly known
as FORM and SORM, are widely used as approximate solution tools for such analysis. In
the following section, these methods and their related topics are briefly described. More

detailed development of these methods can be found in Ditlevsen and Madsen (1996).

2.2.1 FORM and SORM

FORM and SORM are approximate methods for computing the probability integral (2.1).

In these methods, the limit-state surface g,(x,6) =0 for each component is replaced by a

first- or second-order approximating surface, respectively. The approximation is carried
out at a point, known as the design point, which is the point on the surface

2, (x,8) = 0 that is nearest to the origin in a transformed standard normal space. |

FORM approximates the limit-state surface of each component as a tangential
hf,fperplane at the design point. For a component reliability problém, the accuracy of
FORM is primarily dictated by the nonlinearity of the limit-state surfacc around the
design point. This is because the dominant contribution to the probability integral in (2.1)
comes from the neighborhood of this point, where the probability density (in the standard
normal ‘space‘) achieves its maximum value. On the other hand, SORM approximates the
limit-state surface as a hyperboloid, which can reflect the nonlinearity around the design
point up to the second order. For nonlinear problems, SORM usually gives a better
approximation than FORM.

For FORM or SORM analysis, we transform the random variables x into standard

normal random variables u through a suitable one-to-one mapping 7 X — u. The limit-

state functions g,(x.8), k=1,2,...,m, are accordingly transformed such that G, (u,6) =
2. [77(u),0] . The design points u,, k=1,2,...,m, are obtained by solving the

constrained optimization problems

u;; argmin {ﬁuu:ue ONG.(n,6) =O}? k=12,...,m (2.6)
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After finding the design points, we replace the limit-state surfaces G,(u,8)=0,
k=1,2,...,m, by the first order (tn FORM) or second order (in SORM) approximating

surfaces at the design points.

In FORM, the k-th approximating surface is a hyperplane defined by
G, (u,0)=V,G/(u-wu,) =|V.G|B, —~u) 2.7)

where V G, denotes the gradient vector of G, (u,0) =0 with respect to u evaluated at thé
design point u,, o, =-V G, /|EV“Gk Ei is the normalized negative gradient vector, and B,
is the distance of the hyper-plane from the origin. For the component reiiébility probiem
n (2.2), the first order approximation of p, is given by
Py = @(-B) | 2.8)
where P is the reliability index obtaiﬁed ébova and @(-) is the standard normal
distribution function. For the series and parallel system problems, the first order solutions
are given by
P =1-@ (B.R) (2.9)
Py 2@, (-B,R) - (219
where subscripts s and p respectively refer to the “series” and *‘parallel” system, and
@ (6,R) denotes the m-variate standard normal distribution with zero means, unit
variances and correlation matrix R at the point BT =[B,,---,B,.]. The element i,/ of the
correlation matrix is given by p; = cx;.raj.. For m = 2, 1.e., systems with two components,

one can show that

Piz

@, (BB p) = B(BHDB,) + j@z(gp B,.p)dp (2.11)

where @,(B;.0,.p) is the bi-variate standard normal probability density funétion with
zero means, unit variances and correlation p.

In SORM, the surfaces are replaced by approximating parabolic surfaces fitted at
the design points ufc Lk=12,...,m, (Breituﬁg 1984, Der Kiureghian ef al 1987, Der

Kiureghian and De Stefano 1991). Due to the difficulty in incorporating the multiple
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parabolic surfaces, however, SORM is usually used for component problems only. For a

component reliability problem, Breitung (1984) has suggested the following formula

#-l

=@ '
Py (- E’)H W (2.12)
where x, denote the principal curvatures of the limit-state surface at the design point,

taken positive when the surface curves away from the origin near the design point. More
accurate formulae for the SORM approximation have been suggested subsequently

(Hohenbichler and Rackwitz 1988, Tvedt 1990).

2.2.2 Algorithm for Finding the Design Point

In soivmg (2.6), we can first solve the optimization problem for each component
© =argmin ﬂ[aﬁ G, (u,0) = 0} (2.13)

and check if the solution of (2.13) belongs to the failure domain © of the system. If the
~ solution point of (2.13) 1s not in the failure domain @, some additional work has to be
done to find the correct design point for the component in a system. Here, we describe a
solution algorithm for (2.13). |

Among se\%efal optimization algorithms that can solve (2.13) (see Liu and Der
Kiureghian 1991 for a review), the improved HL-RF algoﬁthm developed by Zhang and
Der Kiureghian (1994) is known to be especially efficient. Here, we briefly describe this
algorithm. |

Let u; be the point at j-th iteration. Then, the updated point u,,, is obtained by

solving the following recursive equation.

u,,=u,+ad; (2.14)

whezfe d, is a search directiqn given by
: vV, G :
d,= [vu;GTuf—'G(uf’e)]—j;?"“j - @15
V., Gi '

and %, is a step size obtained from
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h, =arg ﬂ%ﬁl}{m(u S +Ad))—miu ) (2.16)
in which m(-) 1s the merit function
1 2
m(uj)=—2~uujié +cj|G(uj,8)§ (2.17)

where ¢; >0 is a penalty parameter. It bas been shown by Zhang and Der Kiureghian
{1994) that the search direction (2.15) is a descent direction of the merit function (2.17)

provided ¢, > %;u J,.H/ HVG‘(u -0 )H is selected at each iteration. .

- 2.2.3 Sensitivity Analysis

Sensitivity analysis aims to measure the partial derivative of the failure probability with
respect to parameters § , which appear in the limit-state function or the probability
distribution f(x) .. Sensitivity measures are useful for many purposes, including for
identification of important sources of uncertainty and for optimal design. General
description of sensitivity analysis can be found in Bjerager and Krenk (1989) and
Ditlevsen and Madsen (1996). Here, sensitivity analysis is discussed within the scope of
our study, where sensitivity measures are used to primarily to estimate the probability
density function of a response quantity. |

The sensitivity of the failure probability with respect to the parameter 6 of the
limit-state fanction is given by

OP[g(x,8)<0] _ 0D(-B) _
20 "

op
—oPr— - (2.18)

where

p_ 1 8G(u",8) )1
% V.G o 219)

If R(x} denotes a response quantity, the cumulative distribution function of R at a
threshold O can be obtained by solving the reliability problem

¢(x,0)=R(x) -6 (2.20)
The value of the probability density function of R at the threshold 0 can be ob_tained

from (2.18) as the sensitivity with respect to 8. The cumulative distribution function and
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probability density function of the response quantity for a range of the threshold values
can be approximately constructed by repeatedly solving the reliability and sensitivity
problems for selected values of the threshold © . This is rather cumbersome, because we
have to perform a new FORM analyéis for each value of the parameter r .

For a small change of the parameter, wWe caﬁ roughly estimate the probability
density of the response quantity by using the sensitivity measure for the original

parameter value. Suppose that the parameter 0 of the limit-state function is increased by
AQ, that is, 8 =0+ AB. The probability density of the response quantity for the new
threshold 8 can be represented by the sensitivity measure of the failure probability, 1.e.,

= Op 221)

oPlg(x,0)<0) _00(P) _ =3B
88 - 80 *P) 55
For the new reliability index E , we make the first order approximation
=~ ap _
=B+-—A0 : - (2.22)
p=p p
and for the new sensitivity measure 65/8@, we use the original value as
op _oB | (2.23)

o ]
We can justify (2.23) on two grounds. Fél"st, the rate of change of the sénsitivity measure
is relatively slow compared to that of the reliability index. Seéondiy, as evident in (2.21),
the influence of the sensitivity measure 8f3/86 on the probability density is linear while

that of the reliability index is exponential. Thus, the probability density function for the

new parameter value B can be obtained approximately as

Plg(x,B)<0]_ . B, 3B (24
26 - (P-(Bjraeﬁe) a0

When the probability density function is estimated over a wide range of thresholds, we
can greatly reduce the number of the sensitivity analysis using (2.24). However, since this
is a rough approximation, the acceptable range of the perturbation has to be determined

based on the degree of accuracy required.
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2.3 Reliability Formulation of Random Vibration Problems

Consider a general random vibration problem -defined by the stochastic differential
equation |
Lix(®),v]=Pf() (2.25)
where ¢ denotes the time, L is a differential operator, x{#) is the response vector such as
generalized displacements or internal forces, v is a vector of time-invariant system
parameters that characterize the mass, damping, restoring force, or member capacities of
the system, P is a load distribution matrix, and f(¢) is a vector of input processes, e.g.,
components of ground motion. In random vibration problems, oﬁr concern lies in
estimating the statistics of the response processes for prescribed probabilistic descriptions
of vand £(¢). '
Many response statistics of interest in random vibration are formulated in terms of
the excursions of the response vector x(¢) into a failure domain defined as
O = {x(),v: gix(#),v] <0} (2.26)
where g[x(r),v] is a limif-state function. For example, the probability that a response
x(r) will exceed a threshold x, at time ¢ is defined by the failure domain {x(¢) > x,} with

the corresponding hmit-state function g=x, —x(¢) . Other specific examples are

described in Section 2.5.

Figure 2.1 illustrates a realization of the response process x(f) in the outcome
space of (x,v). The same pro;:ess is represented in terms of the limii-state function in
Figure 2.2. We can see that out-crossings of the vector process x(#) in Figure 2.1
comcide with down-crossings of the limit-state function below zero in Figure 22. To
solve problems of this type by the methods of structural reliability, it is necessary to
represent the input random processes in a discrete form in terms of a finite number of
random variabies.

The proposed solution procedure for random vibration problems by use of the

structural reliability method can be summarized as follows:
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e Represent each input process f(f) in terms of a finite number of random variables,
say f =(f, -, f,), where n is the resolution of the discrete representation. Together

with random variables v describing the system properties, these define the basic

random variables of the problem, y =(f,v) . Detailed description of this discrete

representation is given in Section 2.4,
s TFormulate the random vibrations problem in terms of one or more limit-state
. functions suitable for structural reliability analysis. Specific examples are described
in Section 2.5. |
¢ Use an appropriate structural reliability method to solve the problem. In this study,
we investigate the use of FORM, SORM and various importance sampling techniques

for this purpose.

2.4 Discrete Representation of Stochastic Excitation

As mentioﬁed at the previous section, in order to solve random vibration problems by the
methods of structural reliability, the input processes must be represented in terms of a
finite number of random variables. There are several methods available for discrete
representation of random processes. In this section, several of these methods are
reviewed, including a method that is particularly appropriate for modeling earthquake
ground motions.

For a Gaussian process f(#) with a mean function u(r), virtually all existing

discrete representation methods lead to the form

F@) =u) -+ iufsf(r)\: w(@) +s@) (227 .

where u =[u,,--u,]" is a vector of standard normal variables, s(2) =[s, () -~ s, 7 is

a vector of deterministic basis functions dependent on the covariance structure of the
process, and 7 is a measure of the resolution of the representation (Der Kiureghian 2000).
The main difference between various representation methods lies in the selection of the
basis functions. The following are examples of the basis functions when the random

process is represented in the form of (2.27):
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e The Karhunen-Lo&ve expansion method (Loéve 1977) depends on the spectral

decomposition of the covariance function of the process. The basis functions in this
case are represented by s,(f) = \/Z‘Pt (t), where %, and W¥.(r) are the i-th eigenvalue

and eigenfunction associated with the covariance function of the process.
¢ The expansion optimal linear estimation (EOLE) method (Li and Der Kiureghian
1993) combines an optimal linear estimation representation with spectral

decomposition. The basis functions in this case are represented by

s()=¥'E rip! 4/ A;, where A, and ¥, are the i-th eigenvalue and eigenvector
associated with the covariance matrix of an n-vector F containing the values of f£(¢)

at selected time points 7, i=1,---,n, and I, denotes the vector of covariances of

f() with F.
¢ The orthogonal series expansion method (Zhang and Ellingwood 1994) is similar to

the Karhunen-Loeve expansion but employs a set of orthogonai functions that are not

necessarily eigenfunctions. The basis function is represented by s,() = /A, 9,(f),

where A, and ¢,(¢) are computed from the orthogonal functions and the covariance

fumetion of the process.

s Ina representation using trigonometric polynomials (Hasofer 1987, Grigoriu 1593),

the basis function has the form of s (1) =a,(/)'L, where @, () denotes a vector of

simple trigonometric functions and L is a lower-triangular matrix related to the
covariance function of the process. |
One can show that other discretization inethods such as linear regression (Ditlevsen
1996) can also be written in the form of (2.27). A recent in-depth review of the above

discretization methods can be found in Sudret and Der Kiureghian (2002).

Another method that is particularly well suited to modeling earthquake ground
motioné represents the process in terms of the response of a filter to a train of random
pulses (Der Kiureghian 2000). The pulses may represent intermittent ruptares at the fault,
whereas the filter may represent the medium through which the waves travel. If the

puises are Gaussian and the filter is linear, the process f(¢) is Gaussian. This

representation can also be written i the form of (2.27).
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Suppose that the process f(#) is the response of a linear filter to a white noise
excitation W (7). Rather than discretizing f{¢) directly, we can discretize W (¢). Let 7,
i=1,2,...n, denote a set of closely and equally spaced time points at intervals
At =t,,, ~1, and define a sequence of random pulses with magnitudes

Cw= [WOde =120 (2.28)

i
One can show that w; are statistically independent Gaussian random variables with zero

mean and constant variance

o* =278, At (2.29)

where S, is the intensity of the white noise. The sequence w;,, i =1, 2, ..., n, represents

W(¢) in the discrete form of a random pulse train. The response of the linear filter to this
pulse train is also of the form (2.27), with the basis functions
si(ty=oh(t-1) (2.30)

where /,(¢) 1s the impulse response function of the filter.

Consider, for example, a second-order filter subjected to a pulse train defined by
B0+ 26,0 %, () + 07x,(6) = - wdt -t,) (2.31)
i=1 '

where x,(¢) defines the displacement of the filter, », and , represent the natural

frequency and the damping ratio of the filter, respectively, and 8(") denotes the Dirac
delta function. The absolute acceleration response of the filter is given by ' '

FlEy==2,0,%(t) - 07x() (2.32)

Tt can be easily verified that the impulse response function for this response of the flter

(231} is

he()=- —J%sin(mfml —Qf, )+ 28,0, cos(mftqfi - E;f,, ) exp(— Qfeaft) (2.33)

The above characterization defines a stationary. process. Earthquake motions,
however, are typically non-stationary in both time and frequency domains. To account for
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temporal non-stationarity, we multiply the pulse train by a deterministic modulating

function ¢{f}. The discrete representation in {2.27) becomes

f)= q(i){u(t) + Zus (z‘)} (2.34)

For typical earthquakes, g{r) tends to gradually increase to a constant plateau and then

decrease to zero at termination of the motion.
To account for spectral non-stationarity, one can change the filter properties with
time. However, a simpler approach is to use multiple filters each with its own modulating

function. Hence, we write the most general discrete form of the input process as
fOH=>g, (t){u(r) + ¥ us, (f)} (2.35)
k i=1

where ¢,(#) denotes the modulating function for the 4-th filter and s, (z) denotes the

basis function obtained from (2.30) for the #-th filter. By proper selection of filter
properties and modulating functions, almost any kind of temporal and spectral non-
stationarity can be modeled. |

Figure 2.3 shows an example of the non-stationary excitation generated using
(2.35). Figure 2.3a shows the time modulation functions for two filters, whose system

properties are o, = Snrad/sec, and L, =0.4 for the first filter and o, = 27 rad/sec and

I

s, = 0.2 for the second filter. Figure 2.3b shows a sample of a train of pulses with

At =0.02 sec approximating the white noise with the intensity S, =1 (m/sec’y/(rad/scc).

We bave used (2.33) for the impulse response functions of the two filters to generate the
non-stationary excitation in Figure 2.3c. This resembles the actual pattern of earthquake
accelerograms, in which the primary wave with high frequency content appears first and
is followed by the secondary waves having low frequency content.

For non-Gaussian processes, representation by a linear relation shown in (2.27) is
not possible. The non-Gaussian process is defined as a nonlinear. function of the vector u.
Sevefal methods of representation in terms of standard normal variables are available,
depehding on the manner in which the process is defined. If the process is defined in
terms of a set of non-Gaussian random variables, then the Rosenblatt transformation

{Hohenbichler and Rackwitz 1981) can be used to transform these variables into standard
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normal variables. If the process is defined by a nonlinear translation of a Gaussian
process (Liu and Der Kiureghian 1986, Grigoriu 1995), then the underlying Gaussian
process can be represented in the form of (2.27). Examples of discretized non-Gaussian

processes can be found in Der Kiureghian (2000).

2.5 Reliability Statistics of Random Vibration Response

We can think of many reliability statistics in random vibration problems. Here, we
present several important reliability statistics associated with the excursions of x(¥) into
the failure domain @ discussed in Section 2.3. These are primarily based on Der

Kiureghian and Li (1996a).

2.5.1 Probability Distribution of a Response Function

Suppose that the probability distribution of a function A[x(#)] of the response vector X{(/)
at time ¢ is of interest. We define the limit-state function

o[x(r), v,8] = A[x(2)] - | - (236)

where 0 is a selected threshold. The reliability solution gives the cumulative distribution
function of A[x(#)] at the threshold 8, i.e., |

| F,(8) = Piglx(1),v,0] < 0} | 2.37)

Furthermore, the probability density function of A{x(f)] is obtained as the sensitivity of

the above solution with respectto 0, Le.,

oP{g[x(t),v,0] <0}
0 | (2.38)

As described in Section 2.2.3, this sensitivity is easily computed in FORM. The complete

5®)=

distribution of A[x(¢)] is obtained by solving the problem for the relevant range of 0
values. In particular, using % = x{(z) , we obtain the probability distribution of the scalar

response quantity x(¢) at time ¢,
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2.5.2 Mean Out-cressing Rate

As mentioned earlier, the rate of out-crossings of x{f) into a component failure domain
O = {g[x(¢), v] < 0} per unit time is identical to the rate of down-crossings of g{x(¢},v]

below the zero level (see Figure 2.1 and Figure 2.2). Based on a well known result by
Rice (1944,1945), the mean value of this rate can be written as

v{t) = - ng'fgg.(o, ¢.0)dg | (2.39)

where f,(g,£,?) is the joint pfobabili‘ty density function of g[x{#),v] and g[x(¢),v] at
time 7. Unfortunately, Rice’s formula (2.39) is difficult to compute when the system is
nonlinear or the response x(#) is non-Gaussian.

Alternatively, the mean out-crossing rate can be written in the form (Hagen and

Tvedt 1991)

vt = 51}_13% Pig[x(5),v]l>0 ﬂ;[x(ﬁ +81),v] < 0} (2.40)

In the above expression, the numerator denotes the probability that the response is inside
the safe domain at time ¢ and inside the failure domain @ at a shightly later time, ¢ + 87 .
Clearly, one or more out-crossing events must have occurred during the interval &f. Fora
sufficiently small &7, the probability of two or more out-crossings is negligible in relation

to the probability of a single out-crossing. Hence, the intersection probability in the

numerator is essentially equal to the probability of one out-crossing within 8. The mean

number of events within & can be written as
v(£)8t = 0 x P(Q crossing) -+ 1x P(i crossing) + O{81%) (2.41)
Neglecting the higher-order terms and dividing the both sides by 8¢, v&e obtain (2.40).
Frorh the standpoint of the structural reliability analysis, the formulation of (2.40)
is far simpier than that of (2.39). In (2.40), the mean out-crossing rate can be evaluated by
solving a parallel-system reliability problem with two components having the limit-state
functions
G, (0) = -g[x(¢), v] (2.42)
G,(8) = g[x(t +5¢), v] (2.43)
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The first order approximation of (2.43) is given by
gix(t +50), v]= g[x(t), v]+ V g[x(0), vIX(1)8t (2.44)

This is practically identical to (2.43) and mbre convenient since the limit-state function is
composed of the responses at the same time as n (2.42).

In Figure 2.4, the failure domain of the parallel system problem in the numerator
of (2.40) is shown together with its FORM approximation in the standard normal space.
If we know the design points of the individual components and their correlation, we can
analytically evaluate the FORM solution using (2.11). Since the time perturbation &¢ is
small, the correlation of the two events is very close to —1, and fherefore, computation
has to be performed with high precision for an accurate result. In Section 3.9, we
introduce a simple procédure that can easily solve this problem by shifting the design

point of the first component in time.

2.5.3 First-Excursion Probability

The probability of excursion during an interval (0,7, can be represented by

P = P{gnqi(x; glx(),v] <0} (2.45)

This is equal to the probability of failure, if a single excursion into © causes the failure of

the system. It is well known (Lin 1967) that the probability in (2.45) is bounded by

P{min glx(0),v]< 0} < [V()ar (2.46)

4]
This upper bound always provides a conservative estimate of the failure probability.
Furthermore, if the system variables v are deterministic and the out-crossing cvents can
be assumed to constitute Poisson events, an approximation to the probability of interest is
giveﬁ‘ by | | |

r
- P{ming[x(1),v]< 0} =1- expl:— Iv(r)dz:’ - (2.47)

. 0
The above is often used as an approximation of the true probability of failure. This

approximation works well if the out-crossing events are statistically independent, a
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condition that is approximafeiy satisfied when the events are rare and do not occur in
clusters.

~ Although it provides an insight into the problem, this approach is not efficient for
non-stationary problems, since for such problems the out-crossing rate must be evaluated
for many points in time. In Chapter 5, we describe an efficient simulation method for
computing the first-excursion probability that has recently been proposed by Au and
Beck (2001) for linear systems, and extend it to solve the first-excursion probability fbr

nonlinear random vibration problems.

2.5.4 Cumulative Excursion Time

The duration of time spent in domain @ during an interval (0,7) is called the cumulative

excursion time. This time period can be formulated as
. _
0() = [T{-glx(), v1}at (2.48)
; _

- where /{} is the indicator function with J {a}=0 for a<0 and {a} =1 for a2 0.
For a given T, n(7) is a random variable. Here, we are interested in its mean and

variance. Taking expectation, we have

()] = E{ [r{-glx(®),v] }dz}
= [Blr{-glx(), vI}}a

= [Plelx(),v]<O}dr - (249)

Tt is seen that the mean of the occupancy time is given in terms of the component
reliability problem defined in (2.2). All we have to do is to solve the reliability problem
for a sequence of time points and evaluate the integral (2.49) numerically.

The mean square of the occupancy time is obtained as follows:

T

z ]
E[n’()]= E{ [ [ri-elx(). v {-g[x(2,), v]drat, J¥

g

28




T

JEL elx(0), VI (glx(e), Vs,

0

e, ™

T

[[Pielx(), v1< 0N glx(z,), v] < Ot (2.50)

n

For each pair of #; and £, the integrand in (2.50) requires the solution of a parallel-system
reliability problem with the two limit-state functions
G.(w,1) = g[x(z,), V] o @.51)
G, (u,1,) = glx(?,), v} ; (2.52)
The mean square is computed by solving this probiem for all pairs of #; and #, within the

interval (0,7), followed by a numerical evaluation of the double integral in (2.50). The

variance is computed from the well known relation var[n(T)] = E[w*(T)] - E*[n(T)].

2.5.5 Duration of a Single Excursion

The duration of an excursion after the occurrence of an out-crossing at time ¢ is defined as

D{)y=inf{r —t>0: g[x(r),v]>0} - (2.53)
where inf{x: f(x) > 0} denotes the smallest value of x for which the function f(x) is
positive. For a given ¢, D(f} is clearly a randém variable. The exact statistics of this
random variable are difficult to obtain. However, a good approximatioﬁ of its mean is

derived below.

Let n{z,Ar) denote the occupancy time in © during the small interval (7,f + Azf)

and AN denote the number of out-crossing events during the same interval. The time-

averaged duration of the each excursion is D(f)=n(,Af)/AN . Noting that

E[AN]= v(t)At, we have

n(:,mr)} - En@,49)] (2.54)

Bb@]= E{ AN v(D)Ar

where we have taken the first order approximation for the mean of the ratio. From (2.41),

it should be clear that for small Az, E[n(t,At) = P{g[x(t), v] < 01Af. Thus,
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E[D(0)] = P{g[xg(}r’; 120 | | (2.55)

Both terms on the right-hand side have been discussed earlier in Section 2.5.1 and 2.5.2,
respectively. Specifically, the numerator requires a component reliability analysis and the

denominator requires a parallel system reliability analysis with two components.

2.5.6 Cumulative Area of Excursion

The cumulative area of excursion of the scalar process g[x(¢),v] during an interval (0,7),

is defined by
A(T) =~ [min{g[x(), v].0pdr - (2.56)

We are interested in the mean value of this area. Taking expectation, we have

T

E[A(T)] = - [E{min{g[x(?),v],0}}di

0

= Jor,@.0d0a 2.57)

i}

where f,(6,#) is the probability density function of g[x(7),v] and can be written as

£0.0)= ap{g[x(z)a,g] ~B<0) 058

Substituting the above relation in (2.57) and replacing 8 by — 0, we obtam

B[ A(T)] = — oj:je OP{glx(? )(;gj 9<% o (2.59)

The partial derivative in the integrand is the senmsitivity of a component reliability
* problem with the limit-state function |

G(u,2,0) = g[x(£),v]+8 (2.60)
To compute the mean of the cumulafive excursion area, we solve the component
reliability sensitivities for a grid of 6 and ¢ values followed by numerical evaluation of

the double integral (2.59).
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2.6 Evaluation of the Limit-state Function and its Gradient

As described in Section 2.2, several structural reliability methods require repeated
evaluations of the limit-state function and its gradient. In our application, the limit-state
function is expressed in terms of the responses of a nonlinear vibrating system.
Furthermore, the gradient of the limit-state function involves the Jacobian of the response
vector with respect to the random variables. Evaluation of the response can be done using
conventional numerical integration methods, such as the Newmark method (Newmark
1959, Chopra 1995) or the Runge—Kutta method (Lambert 1991). For evaluation of the
TJacobian, the direct differentiation method (DDM) (Tsay and Arora 1990, Zhang and Der
Kiureghian 1993 and 1997, Li and Der Kiureghian 1995, Butcher 2000) is an efficient
tool. Below, we briefly describe the DDM for nonlinear dynamic response.

Consider a second-order stochastic differential equation describing the motion of

a nonlinear oscillator

Qx(),%(1),x(1), v] = PF(f) ' (2.61)

where Q is a nonlinear function vector composed of the system parameters v and the
system respomses X(z), X(z), and x(r), P is an influence matrix, and F(1)=
{F,(t),F,(t),--} is the excitation vector. Suppose that the excitation processes F(/) are

represented in a discrete form in terms of a vector of random variables f. Then, the
gradient of the response with respect to the random variables y = (f,v) can be obtained
by directly differentiating the above equation of motion. Let v €y be a member of this
set of random variables. The governing equation for the derivative of the displacement
vector s(t)=&x(7)/ 0y is given by

39,00, 00 _3PF_3Qdv o6
ox  ox Ox gy  Ov oy

In the above equation, 6Q/ &%, 0Q/ 6k and 6Q/8x can be obtained by linearization of the

response at the time of interest. Therefore, the Jacobian of the responses can be calculated

by solving the time variant linear equations in (2.62). Specific implementations of this
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approach can be found in Zhang and Der Kiureghian (1993) and (1997) and L1 and Der
Kiureghian (1995).
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Figure 2.1. Excursions of the response vector into a failure domain.
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Figure 2.2. Down—cressings of g[x(#),v] and various response statistics.
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Figure 2.4. Failure domain of the parallel system for computing the mean out-crossing
rate.
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3 Design Point Excitation

3.1 Introduction

In the previous chapter, we presented the general form of the reliability formulation of |
random vibration problems. As described there, analytical solutions are not available for
most structural reliability problems, and the random vibration problems are no exception.
Therefore, we must pursue approximate solution techniques, such as FORM, SORM and
simulation, especially with importance sampling. A key step in these solution technigues
is the finding of the design poiht, which, as defined in the previous chapter, is the point
on the limit-state surface nearest to the origin in the standard normal space. In structural
reliability, the design point is usually found by solving a constrained optimization
problem (see Section 2.2). Several specially designed algorithms to solve the design-
point problem have been developed (Liu and Der Kiureghian 1991, Zhang and Der
Kiureghian 1994, Abdo and Rackwitz 1990). These algorithms typically are iterative and
involve repeated evaluations of the limit-state function and its gradient.

One characteristic of the random vibration problem formulated as a structural
reliability problem is the large number of random variables, which result from the
representation of the continuous stochastic input process in a discrete form. Typically,
one may have several hundred or thousand random variables. Considering that the time
required fo solve an optimization problem usually depends on the degree of nonlinearity
of the objective and constraint functions as well as the number of variables involved, one
can expect that finding the design point for a nonlinear random vibration problem by the
direct use of optimization methods can be prohibitively costly. Furthermore, if there is no
recourse but to use these methods, significant advantage can be gained by having a good
starting point for the terative scheme.

In this chapter, we discuss the design point for random vibration problems and the
corresponding realization of the excitation, i.e., the design point excitation. As described

in Chapter 2, the design point is the most likely realization (in the standard normal space)
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of the random variables for the failure event of interest. Lik.ewise, the design point
excitation represents the most likely realization (in the standard normal space) of the
stochastic excitation process for the failure event of interest. Rather than resorting to an
optimization algorithm to find the design point, we try to obtain the solution by
considering the dynamic characteristics of the vibrating system. We find that for linear
and certain elastic nonlinear systems, an exact solution of the design point can be found
without resorting to iterative calculations. For more general nonlinear systems, we are
éble to obtain good approximations of the design point, which subsequently can be used
- as 'a “warm” starting point in an iterative optimization algorithm to find the exact
solution.

The idea is based on the finding that, for a linear oscillator subjected to Gaussian
excitation, the design point can be directly obtained from the unit impulse response
function of the oscillator without resorting to iterative optimization calculations (Drenik
1970, Shinozuka 1970, Der Kiureghian 2000, Au and Beck 2001). The unit impulse
response function is a fundamental characteristic of a linear dynamic system. This
suggests that the dynamic characteristics of a system: play an important role in finding the
design point. As it 1s well known, impulse response functions do not exist for nonlinear
systems and, therefore, a direct generalization of the above idea to nonlinear systems is
not possible. However, it turns out that nonlinear systems have other characteristics,
which can be exploited to obtain the design point. n particular, the free vibration
response of a nonlinear system contains information about the system that can be used to
find an exact or approximate solution of the design point.

For given nonzero initial conditions, we can observe the free vibration of a sysfem
by numerically integrating the differential equations governing the motion of the system.
Considering that the free vibration response is a natural behavior of the system without
any external intefvention, we see that one aspect of the dynamic characteristic of the
system is realized in the free vibration motion. Purthermore, for many oscillators, the
vibration response under the design point excitation shows a trend similar to the mirror
image of the free vibration that is obtained by reversing the time order of the free

vibration motion.
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Based on this observation, we study the mirror image of the free vibration motion
of the system and the excitation that generates a response identical to such a motion. This
excitation is hereafter called the “mirror image excitation.” By comparing the design
point excitation with the mirror image excitation, we find that for nonlinear elastic
systems subjected to Gaussian white noise, the mirror image excitation is identical to the
design point excitation,

This idea is extended to the case of general nonlinear systems, including
hysteretic systems, multi-degree-of-freedom systems, and systems subjected to non-white
or non-stationary excitations. Though for these systems the mirror image excitation does
not give the exact design point, it leads us to a point in the neighborhood of the design
point, so that we have a “warm” starting point for a subsequent iterative solution by an
optimization algorithm. Other topics discussed in this chapter are the design point for
systems with uncertain properties, and a simple approach for determining the design
points of the two components of a parallel system that are used for computing the mean

out-crossing of random vibration response of nonlinear systems.

3.2 Design Point Excitation

Consider the stochastic differential equation of a vibrating system given as

M3x(f) + Cx(t) + R[x(®),x(t)] = Pf (©) (3.1)
where M and C are the mass and damping matrices, respectively, R{x(#),x(#)] 1s a
restoring force vector, P is a load distribution vector, and f{¢) is a stochastic excitation
process. As described in Chapter 2, in a random vibration problem we are usually
interested in the probability measure P{g[x(t),x(¢)] <0}, where g[x(¢),x(s)] is a ﬁmit—
state function. We assume g is continuously differentiable with respect to x(z) and x(¢).

Note that ¢ app.ears as a fixed parameter in this problen.
To solve this problem using the reliability formulation, the first step is to

discretize the continuous stochastic excitation process f(¢) so that it is represented n

terms of a finite number of basic random variables v (see Section 2.4). The response

vectors x(t) and x(z) and, therefore, the limit-state function g[x(f),x(¢)] are then
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implicit functions of v, i.e., g[x(£),X(£)]=2(v,#) . The next step is to find the design point
by solving the optimization problem

| min {uf: G(u,) = 0} (3.2)
where u = T(v) is the standard normal vector obtained bjf transforming v (see Section

2.4), and G(u,£)=g[T '(u),7] is the limit-state function in the standard normal space.
Let u (f) be the solution of the above problem. As described in Chapter 2, after we find
the design point, we can apply FORM, SORM, or importance sampling to approximately
compute the probability measure P{g[x(¢),x()] < 0}. We will do this in Chapter 4. Here

we want to focus on the properties of the design point and the corresponding excitation.

Having found the design point, we can generate the corresponding excitation
f({) in terms of the realization v'(¢) = T™'[u’(£)] of the basic random variables. This
realization o.f the excitation is known as “the design point excitation” (Der Kiureghian
2000). It has maximum likelihood among all possible realizations of the excitation

process that give rise to the event {g[x(¢),x(¢}] < 0}, provided variables v arc normal. If v

are non-normal, the design point excitation has nearly maxinium likelihood with respect
to the given event. In most cases, it is easy to convert the design point u’(#) to the design
point excitation or vice versa by simple transformations. .

It should be clear that finding the design point or the design point excitation is a
crucial step in solving the random vibration problem by reliability analysis. Due to the
complexity of the problem, the level of optimality pursued for (3.2) is confined to the
first order necessary conditions: |

Vo] + 2VGw) =0 (3.3a)

G(u) =0 : (3.3b)

where 7 is the Lagrange multiplier. We have dropped ¢ in the above, since it is a constant
in the limit-state function. As described in section 2.2.1, there are several algorithms
available for solving this problem. However, these algorithms tend to be time consuming
due to the non-linearity of the problem and the large number of random variables

involved.
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In many applications, the excitation can be assumed to be Gaussian. In addition, if
the excitation is white noise or broadband, the response pattern of a linear single-degree-
of-freedom (SDOF) oscillator under the design pbint excitation shows a harmonic
behavior with a frequency matching the natural frequency of the oscillator. Though the
response of a general nonlinear system is not as simpie as that of the linear SDOF
oscillator, it is still related-to the dynamic characteristics of the system. In the following
section, we turn our attention to the free vibration and its mirror image motion. This helps
us understand the dynamic characteristics of a vibrating system. We develop the mirror

image excitation that generates the mirror image of the free vibration motion.

3.3 Mirror Image Excitation

Consider the differential equation of a nonlinear elastic SDOF oscillator

mx(t) + cx(t)+ R[x(0)] = f(f) (3.4)
where m is the mass, ¢ is the damping coefficient, R[x(¢)] is the elastic restoring force
represented by an algebraic function of x(¢), and f(#) is the excitation functzon We are
interested detenmmng the excitation that produces a response resembling the mirror
image of the free vibration motion of the oscillator.

Suppose the system undergoes free vibration with initial conditions x.(0) = x,

and x,.(0) = X, . Its motion is governed by the differential equation

mip (1) + cip () + Rlxp ()] =0 ' (3.5)
w_heré the subscript F denotes the response in free vibration. In general, there is no
closed-form formula for the response of a nonlinear oscillator, and we have to use a
~ numerical integration algorithm to compute the response of the osciliator (see Section
2.6). Let x.(t,} and %(r,) denote the free vibration responses at time 7,.

Now, imagine that the mirror image motion of the free vibration, denoted x,(z),
occur.s as shown in Figure 3.1. The initial conditions are the same as the responses of the
system at time 7, , 1.e. x,(0)=x.(,) and %,(0) =—x.(z,), where the subscripf I denotes
the mirror image of the free vibration. The negative sign in the velocity indicates that the
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vibration occurs in the opposite direction of the free vibration. At time ¢, the system
reaches the same state as the initial condition of the free vibration, i.c. x,(t,)=x, and
x,(t,)=—x,. It is clear that we need to apply a special excitation to generate the mirror

image response of the free vibration. We call this excitation “the mirror image excitation
{of free vibration)”. ' )

The mirror image excitation can be found by considering how the energy is
dissipated during the free vibration and its mirror image motion. For the system in (3.5),
energy dissipation occurs only through the damping force. The following three cases are
instructivé in understanding the role of the damping force: free vibration without
damping, free vibration with damping, and free vibration with negative damping. These

cases are described by the equations

 mE) + Rx()] =0 (3.6)
mi(t) + cx(f) + R[x()] = 0 (3.7)
mi{t) — (L) + R[x()] = 0 (3.8)

When released from the same non-zero initial conditions, the vibration patterns of the
above three systems will be different. For the system (3.6) with no damping, no energy
will be dissipated and therefore the system will vibrate periodically with no decay in its
amplitude and it will periodically return to its initial state. If there is positive damping as
in (3.7), the amplitude of vibration will gradually decrease due to the effect of the
damping and will diminish to zero after a sufficiently long time. If there is negative |
damping as in (3.8), the amplitude of vibration will be amplified in a manner exactly
opposite to the case with positive damping. Although a system with negative damping is
not realistic, the concept is useful in deriving the mirror image excitation.

The reverse analogy between systems (3.7) and (3.8) can be seen more clearly if
one treats the damping force as an external load exerted on the undamped system.
Moving the damping force to the right side of (3.7), we have the external load
f{t) =—cx(t) that Works against the direction of motion, while in (3.8) the external load

f(£) = ci(t) amplifies the motion of the system by working in the same direction as the

motion.
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Because a real system does not have negative damping, we can make the system

in (3.8) realistic by adding twice the damping force to both sides of the equation, yielding

mi(t) + i(t) + RIx(0)] = 2¢5(0) 3.9)

Now, (3.9) is mathematically identical to (3.8) and also physically acceptable. The right

side of (3.9) is the excitation that generates the mirror image of the free vibration

response of the system in (3.7). Based on this idea, we can generate the mirror image
excitation of the free vibration in (3.5) as |

F (@) = 2ck,(6) = —2ck,. (1, — 1) (3.10)

If we apply the above excitation to the oscillator with the initial conditions x,(0) = x.(7,)

and x,(0)=—x.(¢,), the system vibrates along the mirror image of the free vibration and
reaches the state x,(¢,) =x.(0)=x, and %,(¢,) =—~%:(0) =%, at time 7.

It is insightful to examine the free vibration motion and its mirror image from an

energy viewpoint. Let Eq denote the total initial energy of the system at the start of the

free {ribration motion. After time ¢,, the amount of energy dissipated during the free

vibration is

tl! .
E,t)= |ctdr, = [cii()dr \ (3.11)
2

Cr
where Cr is the displacement path during the free vibration. The energy remaining in the

system at time 7,, say E.(t,), is the difference of the initial energy and the dissipated

H?

energy, i.e. E.(i,)=E, —Ed(tn)_-. Now, the mirror image excitation is applied to the

system and, after time 7, , the system recovers the initial state of the free vibration

Eel

motion. From (3.10), the work done by the mirror image excitation during this motion 1s
f" .
W= [2ctdx, = [2¢8} (r)d7 _ (3.12)
c, ¢ ) :

where Cy is the displacement path during the mirror image motion. The amount of energy
dissipated during this motion is the same as that during the free vibration motion.

Comparing (3.11) and (3.12), it is clear that half of the input energy has been dissipated

43




during the mirror image vibration and the remaining half has been stored in the system.
The amount of energy stored in the system under the mirror image excitation at time £, 1s

E@)=E.t)+W~E,(t)=E.(t)+E,(t,)=E, (3.13)
which is identical to the initial energy of the system in the free vibration motion.

So far, we have considered a system with nonlinearity in the elastic restoring
force. We can generalize the mirror image excitation to more general nonlinear elastic
systems. For example, consider a general elastic SDOF system defined by the differential
equation

mi(t) + @[ x(2), X@) x () + R[x(2)] = f(¥) (3.14)
where the damping coefficient ¢ has been replaced by an algebraic function ofx(#), ()]
of the displacement and Velocﬁty at the given time and other parameters are as before. If
p[x(8),x(f)] is symmetric with réspect to both x{¢) and x(¢), i.e., replacing x(¢) by
-x(t) or x(¢) by —x(#) does not affect the value of @[x(#), ()] , using the same
procedure as before, we obtain the mirror image excitation of the free vibration as

F© ==200x, @, 0,3, =D} 2, ~1) (3.15)

where x.(f) and %.(f) denote the displacement and velocity in the free vibration motion.

One can extend the above concept to a hysteretic system such as an elasto-plastic
oscillator. In this case, however, we must consider other types of energy dissipation as
well. In a hysteretic system, the energy-dissipation occurs in two ways: one with the
damping force, as before, and the other with the hysteretic resistance. Furthermore, the
energy dissipation due to the hysteretic resistance works différently under the mirror
image excitation from that under the free vibration motion.” Therefore, more caution is
required in finding the mirror image excitation of general nonlinear systems. This topic is
addressed in Section 3.6. '

Using a similar idea, we can also generate the mirror image excitation for multi-
degree-of-freedom (MDOF) systems. However, unlike an SDOF system, the energy
dissipétion in an MDOF system occurs at muliiple locations and, therefore, the mirror

image excitation generated according to this idea may not be useful. Later, we make an
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approximation for MDOF systems based on the assumption that a fixed shape, e.g., the
fundamental mode shape, dominates the response.
In the following sections, we examine the relation of the mirror image excitation

and the design point excitation for specific systems.

3.4 Linear Oscillator Subjected to Gaussian Excitation

For a linear oscillator, a closed-form solution of the design point excitation is readily
available (Der Kiureghian 2000, Au and Beck 2001). In this section, rather than deriving
the solution itself, we discuss how the design point excitation can be related to the mirror
image excitation of the linear oscillator. Though many of the properties that hold for
linear systems are not valid for nonlinear systems, the results in this section are useful in
gaining insight into the dynamic characteristics of general nonlinear systems.
Consider the stochastic differential equation of a linear SDOF oscillator

mi(t) + () +he() = £(1) | (3.16)

where m is the mass, c is the damping coefficient, k is the stiffness, and f(r) is a random

excitation. Suppose f(¢) is Gaussian with zero mean. Then, using a discretization

method, f(¢} can be represented in terms of a linear function of a vector of independent
standard normal random variables w ={u,, -,un]T , as described in Section 2.4, i,e_:,
F()=s"(Hu, where s(t) =[s,(2), -,5,(£)]" is a vector of shape functions.

To determine the probability distribution of the response at time ¢, , we consider

the limit-state function G(u) = x, — x(u,1,), where the dependence of the response on the
standard normal variables u is explicitly shown. The design point u is obtained as the
solution of Eh{; constraint optimization problem
u = argmin{[iu[l: G(u) = %, - x(u,z,) = o} (3.17)
Solving (3.17); one obtains
. a(t,)

u =x,
|acz,)

; " (3.18)
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where a() =[a,(9) -~ a, ()] -and

a,(t)= ]sl.(r)k(r - r_)d T (3.19)

where A(f) = ! exp[-Lo, f]sm(w ) 1s the unit impulse response function of the
m _ _

d

oscillator, @, =vk/m is the natural frequency of the oscillator, w, =, /1-&* , and {
is the damping ratio (Der Kiureghian 2000).
Now, suppose that the excitation is a Gaussian white noise with intensity S,.

Then, the basis functions s,(f) can be represented by s(f) =o8(r—¢) , where

oc=.2nS At, At=t,~t,_ ,i=L---,n, and 8(z) is the Dirac delta function (see Section
Y o i i-1

2.4). In this case, (3.18) reduces to

.|l VSR (3.20)

i a n ?
' 2
o ki, —1,)
=i

The corresponding design point excitation, f (¢) , is given by

f*(l‘) _ STII* _ ixo k(f; — fz-)é(t wfz:) (321)
R, 1)

where 8(f) is the Dirac delta function as defined earlier. Due to discretization of the

white noise, the design point excitation in (3.21) is represented in the form of a train of

pulses. For convenience, we will rewrite (3.21) in the discrete form

A (3.22)

L]

20
i=1

where £, = f(¢,) and 7’% =h(t,—t),i=1-n.In the following, it is shown how the

design point excitation in (3.22) can be related to the mirror image excitation of the free
vibration motion.
Supposé that the linear SDOF oscillator undergoes free vibration with the initial

conditions x(0) = x, and #(0) = 0. These initial conditions are identical to the conditions
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that the oscillator must achieve at f =¢, in response to the design point excitation. The
displacement condition, x(0) = x,, is the same as the constraint in (3.17). The velocity
condition, x(0) =0, corresponding to x(¢,)=0 for the response to the design point

excitation, is essential for the osciilator to have minimum energy at the prescribed
threshold. Under the Gaussian white noise excitation, the design point excitation can be
interpreted as a realization of the excitation that puts the system at the threshold xy at
t =¢, with the minimum energy required. A non-zero velocity at ¢ =¢, would imply that
the excitation is superfluous. Therefore, the solution of (3.17) satisfies the additional
constraint G, (u) = x(u,z,) = 0, though it is not explicitly stated.

Under free vibration with the above initial conditions, the displacement of the

oscillator at time 7 is

xomr:

xp{t)= exp[~Lw f]cos(m,f — &) ' (3.23)

o

-1 C(ﬁu
Wy

where ¢ =tan . The subscript F' is to indicate that the response is in free vibration.

The corresponding velocity is proportional to the impulse response function #(7), 1.e,,

Fp(t) = ~0’x, miexp{m(;mnr}sin(mdz) = —Joe, hi(t) (3.24)
d

Substituting A(f) = —%,()/kx, into (3.22), we have

oo Joaiee, =) | (329

'ixf(’fn _55)2

=1
The above relation shows that the deéign point excitation of a linear system under a
Gaussian white noise excitation is proportional to the mirror image of the velocity of the
system undergoing free vibration starting from the target threshold xy as the initial

condition. Multiplying the numerator and denominator of (3.25) by cAr and using the

identity ic;'cp(t” —t,)’ At = ZCXF(II)ZAI . we can rewrite (3.25) as
1

i=] i=]
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| f*zmbéécip(fn—é)&f T (3.26)
k()Y At
i=}

In the numerator, P(x,)=kx} is twice the initial potential energy stored in the system.

Assuming that the time interval Az is small, the term Zcx‘ -(t,)? At in the denominator is

f=1
rl!
approximately equal to the dissipated energy E,(r)= fckF(f)sz during the free
. : 0

vibration. Thus, we can rewrite (3.26) as

" it -ty L) 327
fi = =2ck,(1, ~1,)AL ) (3.27

We can see that the design point excitation is proportional to the mirror image of the
velocity, or the damping force of the free vibration. Furthermore, as t, increases, the
dissipated energy £,(z,) approaches the initial potential enmergy P(x,) and (3.27)
simplifies to

fi =—2ck.(t, —t)Ar for large i, (3.28)
The above expression is the discrete form of the mirror image excitation in (3.10) since
x,l(t)sz(tn —t} and x,(f)=—%.(t, —f) . Therefore, the design point excitation of a
linear oscillator subjected to a Gaussian white noise is identical to the mirror image

excitation of the free vibration motion when the oscillator is released from the target

threshold.

3.5 Nomnlinear Flastic SDOF Osciliator

It was shown in the preceding section that for a linear oscillator subjected to a Gaussian
white noise, the design point excitation is the same as the mirror image excitation of the
free vibration motion. In this section, it is shown that the same property applies to a

nonlinear elastic SDOF oscillator subjected to a stationary Gaussian white noise

48




excitation. This idea is extended to problems with filtered or/and non-stationary

excitations for an approximate solution of the design point excitation.
3.5.1 Stationary Gaussian White Noise

Consider the differential equation governing the response of a nonlinear elastic SDOF

oscillator

mi(t) + cx(t) + R{x(1)] = f{t) 7 (3.29)
where m is the mass, ¢ is the damping coefficient, R[x(¢)] is a nbniin’ear clastic réstbring
force, and f(¢) is a Gaussian white noise. In order to find the design point excitation, we

must solve the optimization problem of (3.2). The excitation f(¢) can be represented in a
discrete form as a pulse vector £ =(f,, ", f,,)T , where f,=ocu, or f ~N(0,6°T), in
which G=.m . In this case, the excitation vector f is a multiple of the standard
normal vector u and, therefore, solving (3.2) is equivalent to solving

min [f]° subjectto g(f) =2, —x(f,7,) =0 ©(3.30)

For convenience, we have used the norm square instead of the norm itself. This 1s fine
because minimizing the norm square is the same as mim'mizing the norm. The_ excitation
obtained for the above problem is the design point excitation and also the optimal
excitation in the square norm sense.

Instead of directly solving the optimization problem (3.30), we solve the modified

problem |
min [f]" subject to g(f) = P(x,) - P(x(f.£,)) = 0 (3.31)
where P(x) is the potential energy stored in the system. (For example, if the system is

linear, P(x)=kx"/2.) We have replaced the threshold constraint by the potential energy
constraint, which slightly relaxes the feasibility condition. To 1ﬁake sure that we have the
same solution as the original problem, we need to have the additional condition that
x(f,6 y=0 when x,20 and x(f,z)<0 when x,<0 . However, we suppress this
‘constraint because it can be implicitly satisfied. As mentioned earlier, for the design point

excitation, the velocity of the system at time ¢, must be zero. Hence, the kinetic energy
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of the system is zero at ¢, and this explains the reason why solving (3.31) leads to the
solution of (3.30). Similar to (3.3), the first order optimality conditions of (3.31) are
Vit +2ve@ =0 (3.32a)
g(f)y=0 _ {3.32b)
where A is a Lagrange multiplier _
, Now, we will show that the mirror image excitation of the free vibration motion
of the oscillator satisfies the optimality conditions in (3.32). First, consider the free
vibration of the system with the initial conditions x-(0) = x, and x.(0)=0. Let P(x,)
denote the corresponding potential energy. Note that the imitial conditions of the free
vibration motion are set to satisfy the constraints in (3.30) and (3.31) including the

implicit constraint that the velocity be zero at time ¢, . Suppose that the responses at time

¢, are x.(z,)=x and x.(t)=x%. Suppose time ¢ is sufficiently large for these

i

responses of the damped system to be negligible. Then, the amount of energy dissipated

during the free vibration motion is

ty , (3.33)
E, ()= jch(r)dr = P(x,)
. i) -
Second, consider the mirror image excitation as in Section 3.3, i.e,,
J(t) = 2ex, (1) (3.34)

where x,(¢) =—%.(f, —1) is the mirror image velocity of the free vibration motion. When
subjected to this excitation, after time ¢, the oscillator recovers the initial conditions of
the free vibration, ie., x(f,}=x, and %(z,) =0. The work done by the mirror image

excitation during this motion is

iy (3.35)
W= _"2(.')'6? (r)dr
4

Considering that the amount of energy dissipated during this motion is the same as that

during the free vibration motion, the energy stored in the system after time £, is

£

P(,) =17 - £,(1,) = [} (2)dr (3.36)
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Again, we represent the mirror image excitation in the discrete form f = (f,,-+- /)",
t . . .
where ;= [f(r)dr = 20%,(t)At = 2ck, AL, i=1s-n, and At=1,/n.
fim '
We now examine the optimality conditions in (3.32). For the gradient of Vi{f%lz,

we have

af{!fi! =2f, =4ck, A, i=lyen | (3.37)

Using (3.36) and the discrete time interval, we can write the constraint g{f) =0 as

g(f) = P(x,)~ > il At
i=1

_p (3.38)
(o) = Z Sdeht |
The corresponding gradient is
. . (3.39)
Tg( ) = _L/_\ ==X

Both gradients in (3.37) and (3.39) are proportional to the velocity term X, and, therefore,

the optimality condition in (3.32a) is satisfied. The optimality condition in (3.32b) 1s
t, iy
satisfied by virtue of (3.33) and (3.36) and the equality J’cxﬁ (r)dr = chf (tydz .
. g 1] o

Thus, for a nonlinear elastic SDOF system subjected to a stationary Gaussian
white noise, the design point excitation is identical to the mirror image excitation of the
free vibration motion with the target threshold as the initial condition. Furthermore, as
shown in Section 3.3, the mirror image excitation is proportional to the velocity response
in the free vibration motion. Therefore, we can find the design point excitation simply by
observing the free vibration motion from the target threshold and using the mirror image

of the velocity response in free vibration.
Exampie 3.1

Consider the equation of motion of a Duffing oscillator
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mi(2) + cx(E) + k[x(0) + (0’ 1= F{t) (3.40)
where m is the mass, ¢ is the damping coefficient, £ is the linear stiffness, y is the
nonlinearity parameter, and f(¢) is the excitation process. For this oscillator, when the

excitation is a Gaussian white noise, the design point excitation is identical to the mirror
image excitation. Here, we compute the mirror image excitation from the velocity of the
free vibration motion.

For the numerical evaluation, the parameter values m = 1 Kg, ¢ = 0.2n N-sec/m,
k= (2n)* N/m, and y = 1 are considered. For the excitation f(¢), the Gaussian white
noise with intensity S, = 1 N*/(rad/sec) is idealized as a train of Gaussian random pulses
as in Section 2.4 with Az =0.025sec, and the response is evaluated at time ¢, = 10 sec,
which is sufficient time to achieve statioﬁarity in the response of the system. We consider
the limit-state function g= 30, ~x{t,), Whe%e o> =nS /(ck) denotes the mean square
stationary response of the linear oscillator with y=0.

For the free vibration motion, the oscillator is released with the initial conditions
x(0) =30, and x(0)=0. Figure 3.2(a) shows the mirror image of the velocity in the free

vibration motion. Using (3.34), we compute the mirror image excitation as shown in

Figure 3.2(b), which is identical to the design point excitation.
Example 3.2 -

Consider a nonlinear elastic oscillator described by
mi(t) + c[% (2) + (b / m)x* (O]% (1) + box(t) = £(2) (3.41)
where m 1s the mass, ¢ is the damping coefficient, and & is the stiffness, and f(t) is thé
excitation function. This example is an elastic SDOF oscillator, whose damping value
changes depending on the magnitude of the total energy. Speciﬁcally, the damping
coefficient increases in proportion to the total of the kinetic and potential energy in the
oscillator. | |
We compute the mirror image ex01tat10n from the velocity of the free vibration
motion. Numerical Values of the system parameters considered are m = 1 Kg, ¢ = 1
N-sece/m, and & = 100 N/m. A white noise excitation with intensity S, =100 N? f’(rad/sec)
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is considered, which is idealized as a frain of Gaussian random pulses with A¢ =0.01sec.

The duration of the excitation is set as £, = 10 sec, and we use the limit-state function

=30 —x(t,), where 6 = (1/k)/mS,/c is the mean square response of the nonlinear
g i o q

oscillator (Lutes and Sarkani 1997).

The oscillator is released with the initial conditions x(0) =3¢ and x(0)=0.

Figure 3.3(a) shows the mirror image of the velocity in the free vibration motion. We
observe that in the early stage of the free vibration, the amplitude reduces rapidly and,
after a short while, the amplitude stabilizes as if the oscillator is undamped. This is
because tﬁe damping value changes in proportion to the energy level. When the total
energy stored in the oscillator is sufficiently small, the magnitude of damping is almost
negligible and the oscillator behaves like an undamped system. Using (3.15), we compute
the mirror image excitation, which is shown in Figure 3.3(b). This is identical to the

design point excitation for the limit-state function under consideration.
3.5.2 Stationary Filtered Gaussian Excitation

The results obtained in the previous section strnictly apply when the excitation is a
Gaussian white noise. For problems with more general exmtatlons such as non—whlte
non-stationary or non-Gaussian excitations, one must resort to the iterative optlmzzation
algorithm described in Section 2.2.2. However, in such an algorithm, starting from a
point near the solution often helps reduce the number of iterations. In this section, we
describe how the idea of the mirror image excitation can be used to find a good starting
point when the excitation is a stationary filtered Gaussian process. The following section
addresses the case of a non-stationary Gaussian excitation.

As described in Section 2.4, a non-white stationary excitation can be considered
as the response of a filter to a Gaussian white noise. Unlike a Gaussian white noise, the
filtered excitation is correlated and, therefore, the original optimality conditions in the
standard normal space given in (3.3) must be considered in finding the design poiﬁt.

It is instructive to review the structure of the optimality conditions in (3.3). These
optimality conditions consist of two parts: first, the direction of the design point should

be in line with the gradient of the limit-state function at the design point and, second, the
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design point should be on the limit-state surface. If we have an approximate direction of
the design point, we can easily find a point along that direction that is on the limit-state
surface and, thereby, satisfy the second condition. This point can be used as a starting
point for the iteration. We now consider the direction of the design point.

Let u, ~N(O,1), i=1,---,n, denote the standard normal random variables and

F(t) denote the filtered excitation as defined in (2.27). Recall that
i ' _ : _

Si)= szaihf(rj —1;), where A.(f) is the unit-impulse response function of the filter.
i=] . _ - .

For convenience, we represent the excitation f(¢) by a train of pulses f;, j=L--,n,

£

where [, = j‘ J{(r)dr . As mentioned above, the random variables f,, j=1,--,n, are

15
correlated.

Consider the gradient VG(u) of the limit-state fiunction at the design point in the
standard ﬁormal space. In reliability analysis, the normalized negative gradient vector
o= WVG/HVGE plays an important role, as it defines the direction vector of the design
point. Using the chain rule, we can write for the elements of the gradient vector

—gg = j=127f%; i=l-n (3.42)
The term .aG/ of; represents the derivative of the limit-state function with respect to the
excitation pulses f;, and the term &f ;/ Ou; represents the derivative of the excﬁatic;n
pulse f; with respect to the standard normal pulse ;.

For G(u) = x, —x(u,¢,}, the term 0G/f, represents the derivative of the negative

respons'e' —x(u,¢,) with respect to the magniiude of the pulse load at time ¢;. In general,

this derivative conveys information about the dynamic characteristics of the system. For a
linear oscillator, the derivative is indeed the mirror image of the negative unit impulse
response function, i.e.,

| oG
— =h{t ~—t. F==1 e .
o (t,~1;) j=L-n (3.43)
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where A(r) is the unit impulse response function of the oscillator. For a nonlinear

oscillator, the system properties continuously change depending oﬁ the response of the
oscillator at the given time and, therefore, a specific form of the response is required to .
compute the derivative. A response that is close to the response to the design point
excitation is desirable because finding the design point excitation is the purpose of the
analysis. Here, we use the mirror image of the free vibration motion of the oscillator

released with the initial conditions of x(0) = x, and x(0) =0 as the response to compute

the derivative. The mirror image of the free vibration motion is identical to the response
to the design point excitation for a stationary (Gaussian white noise. One can expect that
the response to the design poiht excitation lfor a filtered Gaussian excitation will not be
very different from the mirror image of the free vibration motion, though it will depend
on the filter properties. One advantage of using the mirror image of the free vibration
motion is fhat the derivative is proportional to the negative mirror image excitation. From
(3.37) and (3.39), we have

_Dc—f’ _j=1,-'-,n 344
@3 4 _ ( )

]
where f;, j=1,"--,n, are the mirror image excitation in pulse form, i.e., f; = J- F{)de.

{io

The partial derivatives &f,/0u, are easily computed for a linear filter.

Specifically,
of; h}(zj-—z,.) i<j
Bu, 0 otherwise (3.43)

where % ,(¢) is the unit impulse response function of the filter.

Having computed the partial derivatives, we estimate the direction of the gradient

vector at the design point by substituting the derivatives into (3.42}. Given the direction

vector o= V& /HVG]

, the next step is to find the point u =pa by solving for B in

G(Ba) = 0. For most problems, this can be easily done by the secant method. For a linear

system, this leads to an exact solution of the design point. For a noniinear system, it leads
to an approximate solution, which often is sufficiently accurate for practical purposes.
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Example 3.3

Consider the Duffing oscillator of Example 3.1. All parameters are as before, except that

the excitation is now a filtered Gaussian white noise specified by

JO=30+W ) =-25,0,%,0) -0lx,() (3.46)

where x,(#) is the response of the filter. Numerical values for filter parameters are set as
o, =5nrad/sec and £, =0.6. The impulse response function of this filter is given in

(2.33) of Chapter 2. The Gaussian white noise with the intensity S, =1 N?‘/(rad/sec) is
idealized with the time step Ar=0.025 sec as before. The limit-state function is
g =30, -x(t,), where o, =S, /(ck) is the mean square response of the linear osciliator
with y = 0 in (3.40).

Figure 3.4 compares the mﬁt direction vectors & of the exact design point and of
the approximate design point obtained by the method described above, The inner product
of these two vectors is computed as 0.989. We can see that the direction obtained by this
method is extremely close to the direction of the exact design point. This direction vector
can now be used to find a corresponding point on the limit-state surface as a close

approximation to the design point.
3.5.3 Non-stationary Filtered Gaussian Excitation

We now consider a non-stationary Gaussian excitation, which is obtained by time
modulating a stationary process (see Section 2.4 for details).
It 1s mstructive to examine the statistical properties of the random pulses S

i

obtained by the discretization of the excitation process in the form J= I f{r)dr . Fora
i

et
stationary Gaussian white noise, the excitation pulses are statistically independent and
identically distributed. In this case, the design point can be found directly from the mirror
image excitation, as described before. For a stationary Gaussian non-white excitation, the
excitation pulses are identically distributed but not statistically independent. In the

previous section, we showed that in this case, the design point or a close approximation
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to it can be obtained by incorporating the correlation between pulses into the mirror

image excitation. Recall that the correlation is icorporated in terms of the derivafive

of,/ Ou, as shown in (3.42) and (3.45). In the case of a non-stationary excitation, if the

time-modulation function is directly applied to a stationary Gaussian white noise, the
excitation pulses are statistically independent but not identically distributed. On the other
hand, if the time-modulation function is applied to a stationary Gaussian non-white
excitation, then we have correlated excitation pulses that are not identically distributed. In
both cases, the excitation pulses are not identically distributed, and we must properly
account for this to find a good approximation of the design point.

Here, we use a simple appfoach. First, we assume that the excitation is stationary
and find the design point excitation or its approximation by use of the mirror image
excitation, as described in Section 3.5.1 and 3.5.2. Second, we apply the time-modulation
function to the excitation obtained under the stationarity assumption. This gives us an
approximate direction vector &, which can be used to find the design point by solving
Ga)=0.

In this method, the non-stationarity is incorporated in a rather crude manner.
Numerical experiments show that this method may or may not work well depending on
the shape of the time modulation function. Furthermore, if the excifation has both
temporal and spectral non-statioparity (for example, by use of multiple filters with
different modulating functions), this appfoach may not work well. The following

gxample provides an indication of the effectiveness of this method.
Example 3.4

In this example, a non-stationary Gaussian excitation is applied to the Duffing oscillator
of Example 3.3. All conditions are as before, except that the following modulating

function is applied to the stationary excitation to achieve a non-stationarity input:

g(r) = t*/25 0<tr<5
= 1 5<r<i
= exp{—{r-10}/2] = 10<t¢
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We set the time parameter in the limit-state function as 7, =5, 10, and 12 sec and

examine the unit direction vectors of the design point and its approximation. Figure 3.5
compares the vectors aof the exact design point and its approximate point obtained by

the proposed method for the three cases. We see that for the case with ¢, = 5 sec, where
t, is within the upslope of the time-modulation function, the computed direction vector

« is not quite accurate (the inner product with the exact value of « is 0.798), but good

enough to be used as an “educated” starting point for an iterative solution. For z, = 10

sec, we obtain an excellent approximation of the direction vector (the inner product of the

two vectors is 0.983). When ¢, 1s in the down slope of the time-modulation function, as

in part (¢} of Figure 3.5, the approximate direction vector « tends to be far from the exact
direction of the design point {the inner product of two vectors 1s 0.130).

In most applications, particularly in earthquake engineering, our interest is in
reliability during the strong motion phase of the earthquake. This example shows that the

proposed method provides good results on this segment of the non-stationary excitation.

3.6 Hysteretic SDOF Oscillator

One characteristic of a hysterétic system is that there remains a permanent deformation
after a free vibration m.otion if the initial displacement is beyond the yield point. Due to
this effect, the mirror image excitation of the free vibration ﬁlotion of a hysteretic
oscillator is not necessarily the same as the design point excitation for the response to a
stationary Gaussian white noise. However, it has been observed in numerical examples
that the mirror image excitation shows a similar pattern to the design point excifation.
Furthermore, for mildly hysteretic systems, those two excitations are almost identical. In
this section, we develop the mirror image excitation for the case of an oscillator having

the Bouc-Wen hysteresis model.
* Consider the equation of motion of a hysteretic 6sciliator. represented by the
Bouc-Wen model (Bouc 1963, Wen 1976) .
mx(t) + cx(t) + klax(t) + C—o)z{(r)] = | [ (3.47)
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" 2t) — Ble(o)f 1) + 45() | (3.48)

(1) = i
where m is the mass, ¢ is the damping coefficient, £ is the stiffness, o is a parameter
controlling the degree of hysteresis, and z(f) is the hysteretic term governed by the
nonlinear differential equation in (3.48), where v, B, 4 and n are parameters that
control the shape and amplitude of the hysteresis loop. Suppose that we have the limit-
state function G(u) =x, —x(u,z,), such that at the design pomtx(z,) =x, and x(7,) =0.

Let z(t,) = z, be the value of the hysteretic response at the design point. We know. that,

similarly to the velocity response, we must have 2(#,) =0 . The hysteretic term zy is

usually unknown but we can determine it while seeking the response of the mirror tmage
excitation of the free vibration. The response of the mirror image motion can be
computed in the following manner. |

First, we compute the free vibration response with the initial conditions
x.(0) =%, z,(0)=z, and i.(0)=2,(0)=0 where z, is a small trial value. The
subscript F indicates the free vibration response. By reversin'g the time order of the

displacement x.(r) and velocity %.(f) of the free vibration response, we obtain the
response of the mirror image motion, i.e., Jéf (y=x.(t,—t) and %,(f) = ép'cg (t,—1), where .
the subscript / indicates the response of the mirror image motion. The mirror image
response of the hysteretic term,-_ denoted z,(z), cannot be obtained by reversing the free
vibration fesponse z-(t), since the hysteretic term under the mirror image motioﬁ works

differently from that under the free vibration. To obtain the hysteretic response for the

mirror image motion, we must solve the first order differential equation

-1

2(t) ==y Oz, O 2,0 = Blz, () 1) + 4%, (1) (3.49)

with the initial condition z,(0)=0. If z,(z,) is different from the assumed value
z.(0) = z,, set z, =z,{(t,) and repeat the above analysis. Depending on the degree of

nonlinearity, three to seven iterations usually produce convergence.
Having computed the mirror image response of the free v1bzfa’£10n we can now
compute the corresponding mirror image excitation. This excitation consists of damping

and hysteretic parts as follows:




F@O =2cx, () + fios[%,(0), %, (), 2, (1)) (3.50)
The damping part of the excitation, ZCJtI(f}, is the same as that for elastic problems
described in Section 3.3. The hysteretic part f, [x,(£),%,(),z,(t)] can be obtained from

the hysteretic loops of the free vibration and its mirror image. Figure 3.6 shows the half
cycles of the hystergtic io-ops of the free vibration and its mirror image. The velocities at
the maximum points a and b are zero. The hysteretic term z.[x(#)] is that of the free
vibration from é to b and the hysteretic term z,{x(¢})] ié that. of its mirror image from b to
a. The straight line z,[x(f)] represents the case of no hysteretic energy loss. When the

system undergoes free vibration from a to b, the energy loss due to hysteretic resistance is

kQ—o)[z-{t)—z,(t)idx . Tn the mirror image of the free vibration, the hysteretic 'energy

X,

loss is jk(l—oe)[z,(r)—zﬂ(r)}dx. The total input energy required to compensate the

h

hysteretic energy loss in the mirror image excitation is the sum of the two energy losses,

ie. j-k(l—a){zf(f)mz,,.(t)]dx. Therefore, the hysterctic part of the mirror image

excitation is

Joge[x(@), (), 2(1)} = k(1 — o) [2,(8) — 2 (8)] (3.51)
For convenience, one may use- Tl 2@, %), 2(H] = 2k (1 - )]z, (£) — 2z, ()] with a
negligible loss in accuracy |
Example 3.5
Consider the SDOF Bouc-Wen oscillator in (3.47) and (3.48). The oscillator is subjected
to a Gaussian white noise excitation with intensity S, =1N*/(rad/sec). The damping
coefﬁéient is set as ¢ = 0.3n N-sec/m and the linear stiffness is set as k = (37)* N/m. For
other parameters, numerical values are set és n=1,A=1and y=B=1/2c,, where
o2 =n8, /(ck)is the mean square response of the liner-,ﬁ {o = 1) oscillator. The white

noise excitation is idealized as a train of Gaussian random pulses with Af = 0.02 sec. The
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limit-state function G(u,z,)=x, —x(u,?,) 1s considered with ¢, =8sec. We consider two

cases for the hysteresis parameter o: o = 0.5 for a mildly hysteretic oscillater, and o =
0.1 for a strongly hysteretic oscillator.

Figure 3.7 shows the exact and approximate design point hysteretic loops for
mildly and strongly hysteretié parameters. For the mildly hysteretic oscillator with o =
0.5, the approximate response obtained from the mirror image of the free vibration
motion is very close to the exact deszgn point response, while for the strongly hysteretic
system with o = 0.1, the approximate design point response is not as accuraie. This
affects the approximate solution to the design point. As shown in Figure 3.8, for the
mildly hysteretic oscillator, the umt direction vector « for the approximate design point
practically coincides with the dlrectmn vector & for the exact design point (the inner
product of the two unit vectors is 0.986). For the strongly hysteretic system, the
approximate solution of the o vector is considerably different from the exact direction
(the inner product of the two vectors is 0.790). For strongly hysteretic systems, the results
obtained by this analysis can be used as a good starting point for the iterative algorithm to
find the exact design point.

3.7 MDOF System

As mentioned in the introduction, for an MDOF system we cannot directly find the
design point using the mirror_imége excitation, even for a linear system subjected to
stationary Gaussian white noise excitation. In many cases, however, the mirror image
excitation can still be used to find a rough approximation of the design point or a good
starting point for an iterative solution. 'I
Consider the differential equation of a nonlinear MDOF system

Mx(r) + Cx(1) + R[x(1)] =£(1) (3.52)
where M is the mxm positive definite mass matrix, C is the mxm positive definite
damping matrix, R{x(¢)] is an mx1 vector of nonlinear restoring forces, and f(z) is an

mx1 vector of excitations. We restrict our attention to an excitation in the form of a base
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motion, in which case f(f)=MPii, (), where the influence vector P represents the

displacements at the degrees of freedom of the structure resulting from static application

of a unit base motion, and ii_(¢) is the acceleration of the base.

In order to obtain an approximation of the design point for the MDOF system, we
assume a dominarit vibration shape for the system. For example, we can assume the
vibration shape as the first mode of the linear system obtained by the initial stiffness
properties of the system. We then set the initial conditions of the system consistent with
the assumed vibration shape such that the limit-state functidn is satisfied, i.e., such that
g[x,-(0)]=0 and %,.(0)=0. Then, we perform free vibration analysis and compute the
mirror image excitation. If the system is elastic, an approximation of the design point
excitation is

f{t)=-2Cx.(t, —1) = 2CX, (1) ' (3.53)
where X,(¢) i3 the mirror image of the velocity of the free vibration motion. The

corresponding base acceleration is

" PME() (3.54)
PP
- For a hysteretic system, similarly to (3.50), we can write the approximate solution as
f(e)= ZCXI(I)+fhys{XI(I)!k[(t)7ZI(F)] . (3.55)

Example 3.6

Consider a two-degree-of-freedom Bouc-Wen structure (see Figure 3.9) defined by

. . C’(15‘11 (t) (1 —&[)Zi (t) _ .
Mi(f) + Cx(t) + Kl:{azdz (r)} + {(1 I, @H = M, (1) (3.56)

"L Ad() i=12 (3.57)

) i . . .
20 == OO 20) - Bd,O)z0)
where M is the mass matrix, C is the damping coefficient matrix, K is the linear stiffness
matrix, d,(f)=x,(), d,(t) = x,(t}—x(f) are the inter-story drifis, z,(¢), i= 1, 2, are

hysteretic components of the response, and #,(r) is the ground acceleration. We sct the
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' 2 0 .6 -2 20

system parameters as M =m ,C=c , K=k , Where parameter
0 1 -2 2 ¢ 1

values are m = | Kg, ¢ = 1 N-sec/m, and & = 10 N/m, and the parameters of the

hysteretic model as 4 =4, =1, v,=B,=1/20,,, and v, =B, =1/20,,,, where o,

and o ,,, are the standard deviations of the interstory drifts of the linear system (o = @

= 1) numerically estimated as 0.562 and 0.481, respectively. In (3.56), 1 is a 2-vector of

ones. The ground acceleration ¢, (7} is given as a stationary Gaussian white noise with
.intensity S, =1 (m/sec)’/(rad/sec), which is idealized as a train of Gaussian random
pulses with Af=0.025 sec. The limit-state function is set as g=3g,,, —d,(t,) with
t, =12 sec. Two cases are examined: (a) o, = a,= 0.5 for a mildly hysteretic system, and

(b) a, =a,=0.1 for a strongly hysteretic system.

Figure 3.10 compares the exact and approximate estimates of the unit direction
vector @ for the design point. For the mildly nonlinear system with o, =«,= 0.5, the
approximation is excellent with the two vectors practically coinciding (the inner product
of the two vectors equals 0.998). For the strongly nonlinear system with o, =o,= 0.1,

the approximation is poor (the inner product of fwo vectors equals 0.674), buf a good

starting point for an iterative solution of the design point.

3.8 Uncertainties in System Parameters

One advantage of the reliability methods used in this study is that one can easily handle
system uncertainties. In the reliability formulation, we already deal with a farge number
of random variables to represent the continuous input process in a discrete form.
Incorporating the system uncertainties is accomplished by simply adding a few more
randoni variables. Although this process will increase the computational work, the
randomness in the system parameters does not affect the basic framework of the method.
When system parameters are modeled as random variables, nonlinearity is
introduced into the limit-state function. Even a linear system subjected to a Gaussian

excitation becomes a nonlinear problem, if there is randomness in system parameters.
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Therefore, we have to solve for the design point using the iterative algorithm described in
Section 2.2.2. However, we can reduce the needed computational effort by using the
mirror image excitation at the initial stage of the analysis. For this purpose, we nay use
the mean or other reasonable values of the system parameters to generate the mirror

image excitation. This approach is illustrated in the following example.
Example 3.7

Consider the Duffing oscillator of Example 3.1 with the same excitation. Here,

the system parameters o and € are considered as random variables having independent

lognormal distributions with rheans 2 rad/sec and 0.05, respectively equal coefficients
of variation &, for which we consider the three cases § = ¢ (deterministic system), § =
0.05 and & = 0.1. The results of the analysis are summarized in Table 3.1 and Figure
3.11. Table 3.1 lists the design point coordinates of the system parameters along with the
corresponding reliability indices for each case. Figure 3.10 shows the exact design point
excitations for the three systems. It can be seen that the deéi gn point excitations are rather
different, but the solution for the deterministic system can serve as a good starting point
for iterative solution of the design point for the random systems.

The randomness in system parameters increases the uricertainty in the response of
the system, flattening the probability density function of the response variables in the tail
region and significantly reducing the reliability index. When tail behavior of the
probability density function is of interest in the system response, the system uncertainties,

~ if present, must be considered.

3.9 Estimation of the Mean Out-crossing Rate

In Section 2.5.2, we showed that the mean out-crossimg rate can be obtained by solving

tim £ 8x(®),v]> 0 ﬂsg{X(f +80),vi< 0}
B30 i

v(t) =

2 PAelx(), v]> 0N glx(r + 81), v] < 0}

5 for small 8¢ (3.58)
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The numerator in (3.58) is a parallel system reliability problem with two components. In

FORM, this is approximated by

Plglx(e),v]> 0 g[x( +61), v] = 0} = DB, B,.p) ©(3.39)
where {3, and p, are the reliability mdices for the events g, = g[x{t),v]>0 and
g, = glx(t+81),v]=0, respectix?ely.

For an accurate result, we must make the perturbation &¢ as small as possible.
However, the two events are only &7 apart in time with opposite inequality signs.
Therefore, if we use too small a 8¢, the correlation coefficient between the two linearized
events becomes almost —1, and this causes singularity in the probability integration of
(2.11). In practice, & =Ar/10 or & =Ar/100, Wh§I6 At is the interval used in

discretizing the excitation, is sufficiently small for a reliable result. Still, the correlation
coefficient is very close to —1 and, therefore, high coinputational precision is required to
obtain a stable result. Since the correlation coefficient is equal to the inner product of the
unit o vectors of the two design points, this also means that accurate estimation of the
design points is necessary for this analysis

If we use the relation of the two limit-state functions, however, we can easily
solve the problem. Observe that the second limit-state function in (3.57) 15 almost
identical to the first one, except that it is slightly shifted in time and has the inequality
sign in the opposite direction. Suppose that we have found the design point excitation of

the first component, say f;(f). Let B, and a, denote the corresponding reliability index

and normalized negative gradient vector. For sufficiently small &/, we can approximate
the design point excitation of the second component by shifting the first design point in
time by 8¢, 1.e., f,(f) = f,{t + &f) as shown in Figure 3.12 for an example case.

For a stationary excitation, the above précedm‘e produces the exact result, since
the design point excitations at different target times have the same shape but are shifted
in time. For a non-stationary excitation, the procedure is not exact, since the probabilistic
structure of the process changes in time. However, the approximation produces
sufficiently accurate result if 8¢ is much smaller than the time scale of change of the

probabilistic structure of the non-stationary process. This condition is easily satisfied in
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practical problems. With rthis approximation, the reliability index of the second
component 1s §, ~ —f,, and the corresponding normalized negative gradient vector @, is
obtained by shifting &, in time by 7. This simple approach is advantageous in that we
can get stable and consistent results without having to compute the design points with
high precision. Furthermore, for the case with B=p, =—f, and p close to —1, the

probability integral in (2.11) simplifies to
@,(8,~,0)= -exg] 2 Jin” () ~sin" (-1
(B ,p)zéwgexp Y sim”(p)—sin~ (1) : (3.60)

where p =, &, . See Appendix A for the derivation of this result.

Example 3.8

We estimate the up-crossing rate for the displacement response of the Duffing oscillator

of Example 3.4 above the threshold of 3c,, where o ==rS_/(ck) is the mean-square

response of the linear oscillator with y = 0 in (3.40). All parameter values are the same as
described in"Exampie 3.4. The time increment for computing the up-crossing rate is
selected as &f = At /100 sec,

Figure 3.13 compares the mean up-crossing rate obtained by this simple method
with the exact result based on a complete FORM analysis of the parallel system. For the
exact analysis, the program CALREL (Liu, er al. 1989) was used. It is observed that the
proposed simple method for computing the mean up-crossing rate produces an excellent

result.

66




Table 3.1. Design point system coordinates for Duffing oscillator with deterministic and

random parameters.
Design Point Values
Case Reliability Index
_ . .
Deterministic system .
3.755 2r 0.05
& =10
Random System
3.601 0.958 x 2n 0.978 x 0.05
8 =0.05
Random System _
3326 0.907 x 2n 0.940 x 0.05
& =0.10 :
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Figure 3.2. Results for the Duffing oscillator: (a) mirror image of velocity response in
free vibration, (b) mirror image excitation.

69




[\

-3

velocity (mv/sec)

200 T T T 3 T T

wd

n

o
Y

—

fond

<
i

(1)
[w»]
T

excitation (N)

50 3 1 1 ; L :
0 1 2 3 4 5 6 7 8 g 10

time (sec)
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Figure 3.5. Exact and approximate « vectors at the design point for the response of a
Duffing osciliator to a non-stationary filtered excitation for selected time

points 7, .
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Figure 3.6. Energy dissipating mechanism of a hysteretic oscillator.
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Figure 3.9. A two-degree-of-freedom Bouc-Wen structure.
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| Figure 3.12. Design point excitation f(¢) and its time-shifted version f(z+dz).
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4 Computational Methods

4.1 Introduction

The ultimate goal of reliability analysis is to estimate the failure probability given by the
integral in (2.1). This is also the case in solving random vibration problems by means of
reliability analysis, as described in Section 2.3 of Chapter 2. For most structural
reliability problems, however, analytic solutions are not available and, accordingly,
computational methods must be used to find the solution.

In the previous chapter, we discussed efficient methods for finding the design
point for randonﬁ vibration problems. Based oﬁ the design point, we can estimate the
failure probability using several approximate methods, such as FORM, SORM and
various simulation techmiques. In this chapter, we discuss these approximate solution

methods in the context of random vibration problems.

4.2 FORM (First-Order Reliability Method)

FORM approximates the limit-state surface by a tangential hyper plane at the design
point. In the case of a component reliability problem, the first-order approximation of the
failure probability is | -

P, =P, =®(-B) (4.1)
where P is the reliability index, denoting the distance from the origin to the design point

in the standard normal space. For a linear system subjected to a Gaussian excitation, the
Jimit-state surface for a scalar response quantity exceeding a specified threshold is a
hyper ;ﬁane and, therefore, FORM provides an exact solution. Though FORM 1s the
simplest among the approximation methods described here, its accuracy is often good for
most mildly nonlinear systems. For such systems, FORM can be used for estimating the
probability of a scalar response quantily exceeding a high threshold, because FORM

provides an asymptotically exact resuli for small probabilities (Breitung 1984).
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It is useful to compare FORM with the equivalent linearization method (ELM),
which is popular as a solution method for nonlinear random vibration problems. Though
these methods both employ linearization, they are different in the object of linearization.
ELM (see Roberts and Spanos 1990) linearizes the system in such a manner that the error
in the response, i.e., the difference between the responses of the actual and .Iinearized
systems, is minimized in the mean square sense. On the other hand, FORM linearizes the
limit-state surface G(u) =0 at the design point, which has the highest probability density

in the failure region {G(u) <0} in the standard normal space. The linearized problem

here does not necessarily correspond to a physically realizable linear system. The
linearization 1s carried out for the purpose of computing the probability of imterest, e.g.,
the probability that the response at a given time will exceed a specified thresheld, or the
probability of the parallel system involved in computing the mean up-crossing rate.

The overall performance of the ELM is good for threshold values of the order of
one standard deviation from the mean. As the threshoid approaches the tail region,
however, the error in the ELM estimate increases rapidiy._ 1t has been reported that for a
Duffing oscillator subjected to a Gaussian white noise excitation, the probability density
estimated by the ELM is 250 times greater than the exact one for a threshold equal to
three times ﬂle standard deviation (Hampl 1986).

On the other hand, the FORM approximation is not strongly affected by the
threshold level. In FORM, we find the désign point for each individual threshold value
and estimate the corresponding probability by assﬁming the limit-state surface 1s a hyper
plane. The error in the FORM estimate is due to the approximaﬁdn of the limit-state
surface. For most problems, the limit-state surface changes in a smooth way as the
threshold increases. For this reason, the error in FORM is usually stable and consistent
over a wide range of threshold values. Our experience shows that generally FORM tends
to be less accurate than the ELM m the high probability density region, and more
accurate in the tail region. Thus, FORM is advantageous in estimating reliability statistics
that relate to the tail behavior of the probability distribution. In addition, FORM provides
insight into the problem by identifying the design point excitation, which is the most

likely excitation to produce the failure event of mterest,
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4.3 SORM (Second-Order Reliability Method)

In SORM, we make a second-order approximation of the limit-state surface by fitting a
paraboloid at the design point in the standard normal space. The paraboloid is constructed
gither by fitting to the principal curvatures of the limit-state surface at the design point
(Breitung 1984), or by fitting to a set of points selected on the limit-state surface in the
neighborhood of the design point (Der Kiureghian et al. 1987). A second-order
approximation of the failure probability is then given by (Breitung 1984)

72 = (- S)H m ' - (4.2)

where B is the reliability index and x, are the principal curvatures of the approximating

paraboloid.

~ For reliability problems With nonlinear limit-state surfaces, SORM usually
provides better accuracy than FORM. However, our experience shows that this is not
necessérﬂy the case for random vibration problems. SORM solutions obtained by
estimating the principal curvatures at the design point may not be necessarily better than
the FORM solutions, particularly if the SORM approximation is based on fitting to the
priﬁcipal curvatures at the design point. One reason for this can be observed in Figure

4.1, which shows the intersection of the limit-state surface with the plane (u,,%,) in the

standard normal space for the oscillator with nonlinear damping in Example 3.2 (Secﬁo_n
3.5.1). In this prob}em; the major principal curvature at the design point is estimated as
2.5, which is quite large. As one moves away from the design point, the curvature
decreases rapidly and even changes its sign a small distance away from the design point.
Obviously, a parabolic fitting to the curvatures of this surface would not lead to a good
approximation. This and many other examples that we have e.xplored_ have led us to
conclude that SORM is not an effective approximation method for random vibration

problems.
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4.4 Simulation Techniques

Random vibration problems formulated as structural reliability problems are high
dimensional integration problems, and simulation techniques can be effectively used as
solution tools. General description of simulation techniques can be found in the classical
text by Rubinstein (1981). Here, we describe three simulation methods that are used in
solving structural reliability problems. These are the design-point importance sampling
method, the directional simulation method, and the sampling on the orthogonal plane
method. Of these methods, we find that the first and the last are more effective in solving
random vibration problems. We then make comparisons of the efficiencies and accuracies
of the design-point importance sampling method and the sampling on the orthogonal

plane method for a series of example problems.

4.4.1 Importance sampling

The basic idea-of importance sampling is that we replace the original prébabﬂity density
function of the random variables by an appropriate sampling density function, which
makes the sampling more efficient. This method fits well into the structural rehability
problem, since the design point can serve as a control point for Seiecting the sampling
density. Importance sampling conducted in the standard normal space for a component

problem is based on the following derivation:

P[G(w)<0]=  [p(u)du

Glu}sh

= [11-G@)o(w)du

= (a2
= ujf[ GT 7 oy /()

o) |
=E , | I[-Gu)l——
f(u)I: [-G( )}f(u)} , _ (4.3)
In the above, f{(m) is an appropriate sampling density and I[-] is the indicator function

with J[a]=0 for a<0 and Ifa]=1 for a>0. To be unbiased, f(u) must be nonzero
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wherever I[-1=1. Furthermore, to be efficient, the variance of /[-G(u)lo(u)/ f(a) must
be minimized. This can be achieved by minimizing the number of samples with /{-]=0
and by making f(w) proportional to o(u).

‘We define the random quantity in (4.3) as

czﬁf[ﬂG(u)}?%A . | (4.4)

Then, the probability of failure can be estimated as the sample mean of ¢, i.e.,

R
P, =~§V—;qk_ (4.5)

A

where }5f is the estimate of the probability of failure. The uncertainty in the estimate P,

can be measured by its coefficient of variation, which is given By

1
8, =T % (4.6)
where 8, is the coefficient of variation of the samples of g. The above relation shows

that the variation of Pf is small when the variation of ¢ is small. The efficiency of the
importance sampling method is determined by the size of the coefficient of variation of

q.
In structural reliability analysis, the sampling density f(u)} is usually assumed o

be a normal distribution centered at the design point u". For this purpose, we do not need

to find the exact design point. An approximate estimate of u™ can be sﬁfﬁciently good.
‘When applied to random vibration problems, importance sampling can be effectively
used in estimating the probability distribution of the response described in Section 2.5.1.
However, it is not efficient in estimating the up-crossing rate, which involves a parailel
system reliability problem produced by perturbation of the limit-state function, as
described in Section 2.5.2. Since the domain of integration in this case is a narrow wedge
(see Figure 2.4 in Chapter 2), most samples produced with a normal sampling density fall

in the region with I[-]=0 and, hence, the coefficient of variation of the samples of g

remains large.
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4.4.2 Directional Simulation

The directional simulation belongs to the class of conditional simulation. In conditional
simulation (Ayyub and Chia 1992), the set of random variables x is divided into two
subsets, say x = (y,2), and the probability integration is represented by

py=[f(0dx

= [Pl(z.y) e Dlylf(y)dy .7
where f(x) is the probability density function of x and @ is the failure domain of
interest. In (4.4), P{(z.y) e @}y} is the conditional probability of failure for given y. This

conditional probability is solved analytically, and simulation is performed for the reduced
set of random variables y. For efficient simulation, we can use the importance sampling
in-this conditional simulation.

In directional simulation (Bjerager 1988), we represent the random. vector u in the
n dimensional standard normal space as u = Ra, where a = u/l?u“ and R= }fu" . Due to the
rotational symmetry of the standard normal space, the unit random vector a is uniformly
distributed on the unit spherc centered at the origin and the norm square R? has the chi-
square distribution with » degrees of freedom, i.e. R* =y_(r*) . Furthermore, a and R are
statistically independent. It follows that the probability integration can be represented as
- P[G(n)<0]= [P[G(Ra) < Ola]f (a)da | (4.8)
where
P[G(Ra) < Ola] =1-y[r(a)’] 5 - (4.9)
where r(a) is the distance from the origin to the limit-state surface in direction a, which is
obtained bj solving G(ra) =0. As in (4.4), we can define the random quantity
q=1-Z][r@’] @10
and compute the mean and coefficient of variation of the estimate of thé failure

probability using (4.5) and (4.6), respectively.

86

|




To improve the efficiency of the method, directional simulation can be conducted

with importance sampling, 1.e.,
PlG(u) < 0] = [P(G(Ra) < Oia}i—((g)zk(a)da @.11)

where the probability density function h(a) is chosen with a higher density in the
direction towards the design point in an appropriate way. In practicél application, the
directional importance sampling is combined with the original directional simulation
method to make sure that the simulation covers all directions and the estimate of the
failure probability is unbiased. _

The directional simulation method is particularly efficient for special classes of
probienﬁs. For example, it works well for problems with spherical or nearly spherical
limit-state surfaces. In general, however, the directional simulation method is not
efficient for high dimensional problems, since the number of directions to simulate grows
rapidly with the dimension. Random vibration problems are inevitably high dimensional
due to discretization of a random process, which produces a large number of random
variables. For this reason, the directional simulation method is no longer pursued in this

study.

4.4.3 Sampling on the Orthogonal Plane

In Section 4.4.1, we used the design point as the center of the sampling density of the
importance sampling method. In Section 4.4.2, we mentioned that the direction of the
design point can be used as a guide for selecting the sampling .density in directional
importance sampling. The sampling method on the orthogonal plane uses the design pomt
in a different way. |
Suppose that we have found the design point u” and the correspoﬁdi_ng negative

gradient normal vector a. Let u'=(u,,--,u,) be an orthonormal transformation of a
point u in the standard normal space, such that the axis #, coincides with &. We make
the assumption that, in the transformed space, the limit-state surface G(u')=0 can be

written in the form w, = h(u_) where w/_, = (u,--,u,_,) and h(u)_,) is a single-valued
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function for any selection of its argument. This assumption may not hold for some
problems. For example, spherically-shaped limit-state surface does not satisfy this
assumption. However, for practical purposes, it is sufficient that this assumption hold
over a reasonable neighborhood of the design point, say within a radius of 3 in the
standard normal space.

In this method, we first simulate the n—1 dimensional standard normal vector

w_ =(u,~-u. ) on the orthogonal plane 1, =a'u=0 and then evaluate the function
u! =h(w_), which is the distance from the orthogonal plane to the limit-state surface.

Figure 4.2 shows the overall picture of how the simulation is performed. The

mathematical derivation of the method is as follows:

PIG@)S0]=  [o(u,)du,

CGlul,)<0

= [o@)o( )dudu,_,

k(u’ﬂAi )S“::

Wy | L)

- j { mj cp(u,;}af;-,{,;}p(u;_i)afu;_i |

= [, )oq, ),

’
Wyt

= Erp(u;_l) [®[_h(u;i—1)}] . (4 1 2)
where Eu_,[] denotes the expectation of the argument with respect to the distribution
o(u_). As in (4.4), we define the random quantity

| g =O[-A(1,.)] (4.13)
and compute the mean and coefficient of variation of the estimate of the failure
probability from (4.5) and (4.6), respectively. |

“ The steps in this algorithm can be summarized as follows:

1. Simulate the # dimensional standard normal vector u,.
2. Compute u|_, by projecting u, onto the orthogonal plane a’u=0.
3. Compute u, = 4(n)_,) by solving G(u,_,,u,)=0.

4. Compute g asin (4.13).
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5. Repeat the above for a sample g, , k=1,..., N, where N denotes the sample

" size, and use (4.5) and (4.6) to compute the mean and coefficient of variation of

the failure probability estimate.

This method is comparable to the directional simulation in the sense thai the
failure probability is computed by taking the sample average of the conditional
probability for each sample. In this method, however, simulation is performed in the
orthogonal plane parallel to the tangential hyper plane of the design point. Therefore,
simulation occurs only in the direction parallel to the vector «, and firthermore, each
sample has the standard normal distribution. |

Compared to important sampling, the drawback of this method is that wé have to
evaluate the limit-state function repeatedly for each simulation to locate the point cn the
limit-state surface, while in importance samipling only one evaluation of the limut-state
function is performed for each simulation. According to our experience, using the secant
method four to five iterations are sufficient to find the point on the limit-state surface for
a given point on the orthogonal plane. For strongly nonlinear problems, the distance to
the limit-state surface for a simulated point on the orthogonal plane can be very different
from the distance to the tangent hyper plane at the design point, which is equal to‘ the

reliability index B. If the distance is much greater than [, we can approximate ¢ by
zero. For example, if § =3 with ®(-3) = 1.34E-3 and the computed distance is greater
than 5 which corresponds to ®(-5) = 2.87E-7, it is meaningless to find the exact value
of ¢, because the conditional probability of failure in that direction is less than one
thousandth of the conditionai probability of failure in the direction of the design point. In
such a case , we can set ¢ equal to 0 with little loss of acAcuracy .

In this method, it is not necessary to have found the exact design point, as long as

t
-1

the assumption regarding a unique solution of u, in G(u!_,u’)=0 is satisfied. However,
the accuracy of the computed design point and the nonlinearity of the limit-state surface
affect the coefficient of variation of the probability estimate in (4.6). The following
examples demonstrate these effects.

Example 4.1
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To see the effect of the accuracy of the design point, consider a simple two-dimensional
linear problem in the standard normal space, as shown in Figure 4.3. For this problem, if
we use the exact orthogonal plane, all computed distances to the limit-state surface will

be equal to B and the coefficient of variation of the ¢ values in (4.13) will be zero. Now,

su?pose we have an approximate design point, u:ppm , with the corresponding normalized

negative gradient vector ¢

approx APPIOX

and orthogonal plane @' _ u =0, see Figure 4.3. In this
case, the values of ¢ computed from (4.13) will be different for cach simulation and ¢

will have a non-zero coefficient of variation, thus leading to a less efficient simulation

result. As a specific example, Figure 4.4 shows the coefficient of variation of g as a

function of the-distance between the true and the approximate design points for the case

when B = 3. We can see that the coefficient of variation of ¢ increases lincarly with the

distance of the approximate design point from the true design point. One can also see that

any nonlinearity in the limit-state surface will increase the coefficient of variation of ¢

and, hence, decrease the efficiency of this sampling method. For this reason, this
sampling method is more efficient for mildly nonlinear problems than for strongly
nonlinear problems.

Exampie 4.2 |

To examine .the efficiency of this method in solving random vibration problems, we
consider Example 3.5 of Section 3.6 concerning a hysteretic Bouc-Wen oscillator
subjected to a Gaussian white noise excitation. Of interest is the probability that the

response at ¢, = & sec will exceed the threshold x,. All paramsters values are as

described in Example 3.5. We use two methods for this purpose: (a) sampling on the
orthogonal plane, and (b) design point importance sampling. Table 4.1 lists the solutions
by these two methods as well as the FORM solution for two values of the nonlinearity

parameter o and the three threshold levels x, =2c,, x, =36, and x, =4c,, where o,
is the root-mean-square of the linear oscillator {.=1), see Example 3.5. The case with

o =0.5 corresponds to a mildly nonlinear oscillator, whereas the case with o =0.1
corresponds to a strongly nonlinear oscillator. Also listed in Table 4.1 are the number of
simulations in each sampling method as well as the number of gufhnction evaluations (in
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parenthesis) for the orthogonal plane sampling method. Note that the number of g-
function evaluations in the design point importance sampling is the same as the number
of simulations. '

As can be seen in Table 4.1, the results by the two vastly different sampling
methods are in close agreement, but different from the FORM results, particularly for the
strongly nonlinear oscillator. This points to the“nonlineaﬁty of the limit-state surface. The
results in Table 4.1 clearly show that, for this example, the ofthogonal plane sampling
method is more efficient than the design point importance sampling method in terms of
the number of simulations. Even if we include the additional number of g-function
evaluations necessary for finding the distance to the limit-state surface for each sample,
the orthogonal plane sampling method is more efficient than the design point importance
sampling method.

One advantage of the orthogonal plane sampling method is that it is effective in
computing the mean out-crossing rate. The formula for the mean out-crossing rate, as

described in Chapter 2, is

P{g[x(1)] >0 g{x(t +86)] < 0}
o1

The intersection of the two events in (4.14) forms a thin curved wedge, as illustrated in

Vi) = small &¢ (4.14)

Figure 4.5. If we conduct importance sampling with the sampling density centered at the
design points, very few samples will fall in the intersection domain. Furtheﬁnore; it is not
easy to construct a sampling density that is more appropriate for this kind of a domain.
For this reason, the importance sampling method is not an effective solution method for
this problem. On the other hand, the orthogonal plane sampling method is effective for
this problem, as described below.

Let u, =h(m_,) for Ga)=glx(t)]=0 and « =h ) for G,)=
g[x(t +8)] = 0. We define the random quantity ¢ as

g = {01k, (0, )]~ D~ (0, )l () ~ Iy ()] (4.15)
wheré faj=11ifa 20 and I [a]=0 if a <0. One can easily verify that the above value
of g is equal to the conditional probability of the intersection event in the numerator of

(4.14) for the direction corresponding to the simulated point on the orthogonal plane. The
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probability of the intersection event can now be estimated as the sample mean of g as in
(4.5). The coefficient of variation of the estimate is obtained using (4.6).

It is observed that in using the orthogonal plane sampling method to compute the
mean out-crossing rate, the only additional work required is to find the distance to the

second limit-state surface, g[x(¢+087)]=0, which is a perturbation of the limit-state
surface, g[x(z)] = 0. Since the solutions of 'iz,', for the two surfaces are close to each other,

the first solution can be used as a good starting point for iterative solution of the second
distance. With this approach, the additional work needed to estimate the mean out-

crossing rate is trivial.

4.5 Example Applications

In this section we present a series of example applications for random vibration reliability
analysis of nonlinear dynamical systems. The goal is twofold: (a) io demonstrate
éppﬁcations of the proposed methods, and (b) to examine the accuracy of the proposed
methods. When possible, comparisons are made with exact solutions available in the
literature. Furthermore, in several examples, comparisons are made with results obtained

by the EQuivaleﬂt Linearization Method, ELM.
4.5.1 Duffing Oscillator
The Duffing oscillator is described by the differential equation

mi(t) + ci(f) + k{x(0) + @ (@] = () (4.16)

where m, ¢ and k are the system parameters and y represents a measure of nonlinearity

of the oscillator. The response of this oscillator 1s characterized by a nonlinear elastic

behavior. When considering the probability that the response at a given time will exceed
a.specified threshold, the design point excitation for this oscillator, when it is subjected to
a Gaussian white noisé input, can be obtained with a single free vibration analysis, as

described in Chapter 3. For non-white or non-stationary excitations, iterative calculations
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are necessary to find the design point. A good starting point for such calculations can be
obtained by use of the mirror image excitation, as described in Chapter 2.

Two examples are considered with different excitation patterns. In the first
example, the oscillator is subjected to a Gaussian white noise. The complementary
probability distribution and the mean up-crossing rate for a range of threshold values are
estimated by FORM and compared with the exact solution and with results obtained by
the ELM. In the second example, we consider a non—statiénary mput in the form of a
time-modulated, filtered Gaussian white noise. For this example, several reliability

statistics introduced in Section 2.5 are estimated.
Example 4.3

Assume f(#) in (4.16) is a stationary Gaussian white noise with intensity §,. An exact

solution for the joint probability density function of the response and its time derivative is

given by (see Lutes and Sarkani 1997)

f(x5) =B ex_p{— 2—WCS—[m,x (4 /2)]} @1

aQ

where B is a normalizing constant. The ELM result for the response of this oscillator is a

zero-mean Gaussian process with the mean square o° ==S, (ck,,), where

k,, = (S, /c)[6y HJ1+12ynS, [ ck —1)] (Lutes and Sarkani 1997).

For the numerical evaluation, the parameter values are setas m = 1 Kg, ¢ = 0.2n
N-see/m, k = (27)° N/m, and y = 1. The white noise excitation with intensity S, = 1
N*/(rad/sec) is idealized as a train of Gaussian randofn pulses as in Section 2.4 with Af =
0.025 sec, and the response is e?aluated at time ¢, = 10 sec, which is sufficient time to

achieve stationarity in the response of the oscillator. The perturbation time increment for
computing the out-crossing rate in (2.40) is selected as 8¢ = Az/100 sec. ‘

Figure 4.6 shows the computed compiementary camulative distribuiion function
of the response as a function of the normalized threshold x/o,, where o = 1S, /(ck)is
the mean-square of the linear oscillator, i.e., the case with v = (. Four different results are

shown in the figure: (a) the exact solution obtained by numerically integréting (4.17),
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shown as a solid line, (b) the ELM approximation, shown as a dashed line, (c) the FORM
approximatiqn, shown as a dash-dotted line, and, for the purpose of a reference, (d) the
result for a linear oscillator with y =0, shown as a dotted line. The distribution based on
the ELM approximation and for the linear oscillator are Gaussian. The exact solution and
the approximation based on FORM are nion-Gaussian distributions. The large difference
between the exact resuii and the result for the linear oscillator points to the extent ol
nonlinearity in the system. The results in Figure 4.6 clearly show that the ELM
appro.ximation is good at low thresholds, whereas the FORM approximation is superior to
the ELM at the higher thresholds. We can see this more clearly in Figure 4.7, which
shows plots of the approximate to exact cumulative probability for ELM and FORM.
Figure 4.8 shows plots of the computed mean up-crossing rate as a function of the

normalized threshold x/o, . Again, four results are shown: (a) the exact result (solid

line), oﬁtain by use of (4.17) in Rice’s well known formula, (b) the ELM approximation
(dashéd line), (c) the FORM approximation (dash-dotted line), ané, for the purpose of a
reference, (_d) the result for the linear oscillator {dotted line). Figure 4.9 shows the ratios
of .the approximate to cxact mean up—crc;ssing rates based on ELM and FORM
appréxi_mations. Trends in Figure 4.8 and Figure 4.9 are similar to those observed for the
complemeﬁtary cumulative distribution function in Figure 4.6 and Figure 4.7 with FORM
showing even better accuracy here. '

' It is important to note that the FORM result for each threshold in Figure 4.6 is
based on a single free vibration analysis of the oscillator. Furthermore, fhe FORM
estimate for the mean up-crossing rate at each threshoﬁd level is obtained by time-shifting

the design point excitation obtained from the free vibration analysis.
Example 4.4

We now apply a time-modulated, Gaussian, filtered-white noise excitation to the Duffing
oscillator. The parameters of the oscillator are as in Example 4.3. The excitation is

obtained as _
fO=g)f () (4.18a)

where
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F) = 5,0+ (O =250 %) - 0, (1) (4.18b)
where W(¢) is a white noise process, ©, and {, are the filter frequency and damping
ratio, respectively, and x,(¢) is the response of the filter, The white noise with mtensity

Se = 1 Nz/(rad/sec) is discretized in the same mammer as i Example 4.3. Thé filter

parameters are set as @, = 57 rad/sec and £, = 0.6. The modulating function in {4.18a)

is specified as

gty =125 <5
=1 5< <10
- =exp[-(~10)72] 10<¢ (4.19)

Reliabﬂity analysis is performed for the limit-state function g = 3o, —x(r) , where
o’ =S, /(ck). No exact solution of this problem is available. |

- Figure 4.10 shows the probability of the response ekceeding the specified
threshold as a function of time, as computed by FORM using the exact desigh point for
each value of ¢. For reference, a scaled plot of q(zf) is shown as a dotted line. It 1s seen
that the probability of exceeding the specified threshold has a shape resembhng g(t), but

with a time delay. The highest value of the probability occurs near ¢ =10 sec, which is
the termination point of the strong phase of the mput excatatlon o _
Figure 4.11 shows the mean up-crossing rate for the spemﬁed threshold as a
function of time, as computed by FORM by time-shifting the design pomt obtained from
the above analysis. Remarkably, the plots for the exceedance probability and the mean
up-crossing rate are nearly identical in shape. o
Other interesting statistics of the response process are obtained as follows:

An upper bound to the probability of a first excursion above the threshold 3o, is

obtained from (2.46) by integrating the mean up-crossing rate in time. This is essentially

equal to the area undemneath the mean up-crossing rate curve in Figure 4.11. The result is
P, < 2.50E~2. This upper bound estimate is 37% larger than the result of £, = 1.83E-2

obtained by Monte Carlo simulation with a coefficient of variation of 0.05.
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The mean and standard deviation of the cumulative excursion time above the

threshold 3¢, are obtained by use of (2.49) and (2.50). The mean is equal to the area
underneath the probability curve in Figure 4.10 and equals E[n(12)] =0.00234 sec. The
mean-square is obtained by solving a series of parallel system problems for a grid of time
points, followed by integration in timé, as in (2.50). The result by FORM is E[n*(12)]=

0.00120 sec®. This gives the standard deviation Coazy = 0.035 sec, which is much larger

than the mean, indicating vast uncertainty in the cumulative excursion time.

The mean duration of a single excursion above the threshold of 3¢, is estimated
from (2.55) by dividing the probability estimates in Figure 4.10 by the corresponding
mean up-crossing estimates in Figure 4.11. Over the time period 5 ~ 12 sec, the mean
duration of a single excursion above the specified threshold varies from 0.063 sec to
0.095 sec.

To estimate the mean of the cumulative excursion area as in (2.59), we need to
compute the probability sensitivity measure —dP/dB over a wide range of parameter

values @ for all discrete time points ¢,, i =1,---,n. If we compute the sensitivity measure
for each value of @ at each time ¢, by performing the sensitivity analysis, the amount of

work will be enormous, Rather than computing these values individually from the
sensitivity analysis, we will use the formula (2.24), which can approximately estimate the
sensitivity measure without performing the sensitivity analysis. To check the accuracy of
the approximation, we computed the reliability index [ and the corresponding.'sensitivity
measure —dP/df for the thresholé values 3.5¢, and 4o, at time £ = 10 sec from FORM
analysis and compared the results with the approximate values obtained from (2.24).
Figure 4.12 and Figure 4.13 show how well the approximate values fit the values
obtained by performing the sensitivity analysis individually. The mean of the cumulative

excursion area estimated by this method is B[A(12)]= 0.000153 m-sec. Since the mean
cumulative excursion time is E[n(12)]=0.00234 sec, the mean depth of excursion above

the threshold 3o, is roughly 0.000153/0.00234 = 0.0654 m.
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The above examples serve to demonstrate the ‘many different statistics of a

random vibration response that one can compute with the proposed method.

4.5.2 Elastic SDOF Oscillator with Nonlinear Damping

Consider a nonlinear elastic oscillator described by

m(t) + c[£ () + (k/ m)x™ (O13(0) + kx(t) = £ () - (4.20)
where m, ¢ and k.a:re the system parameters. As can be seen, the damping force for this
oscillator changes depending on the magnitude of the total energy. When the excitation
F(t) is a zero-mean, stationary Gaussian white noise of intensity §,, the exact joint

probability density function of the responé;e-and its derivative is given by (Lutes and

Sarkami 1997)

—c(mi’ + kxz)z] (4.21)

=B
S 3) exp[ 4mas,

where B is a normalizing constant. The ELM result for the response of this oscillator is a

zero-mean Gaussian process with the mean square o =nS, e, k), where
¢, = 24/cnS, /m (Lutes and Sarkani 1997).

Examplie 4.5

In this example, the oscillator in (4.20) is subjected to a Gaussian white noise. We
compute the complementary probability distribution function and the mean up-crossing
rate for a range of threshold values with FORM and compare the results with the exact
solution and the results obtained by the ELM. As an improvement on FORM, the
orthogonal plane sampling is performed. |

Nurmerical values are assigned as m= 1 Kg, ¢ = 1 N-sec/m, and £ = 100 N/m.

The white noise excitation §, = 100 NZ/(rad/sec) is idealized as a train of Gaussian

random pulses with Az = 0.01 sec. The duration of the excitation is set as 10 sec. The
time increment for the mean up-crossing rate in (2.40) is set at 8¢ = Az/100 sec.
Figure 4.14 and Table 4.2 show the results for the complementary cumulative

distribution function as a function of the normalized threshold x/c , where
97




6 =(1/2k)jmnS,/c is the mean-square response of the nomlinear oscillator. Four

different results are shown in Figure 4.14: (a) the exact solution obtained by numerically
integrating (4.21), shown as a solid line, (b) the ELM approximation, shown as a dashed
line, (c) the FORM approximation, shown as a dash-dotted line, and, as an example of the
improvement on FORM, (d) the result of the érthogonal plane sampling with c.ov. =
0.05, shown as open circle marks (sce Table 4.2 for the number of simulations). Asin
Duffing dsciliator, the ELM approximation is good at low thresholds, whereas the FORM
approximation is superior to the ELM at the higher thrasholdé. We can see this more
clearly in Figure 4.15, which shows plots of the approximate to exact cumulative
probability for ELM and FORM. The estimates based on orthogonal plane sampling are
in close agreement with the exact results. '

Figure 4.16 and Table 4.3 show the computed mean up-crossing rate as a function
of the normalized threshold x/c . Again, four results are shown: (a) the exact result
(solid line), obtain by use of (4.21) in Rice’s well known formula, (b) the ELM
approximation (dashed line), (c) the FORM approximation (dash-dotted line), and, as an
improvement on FORM, (d) the result the orthogonal plane sampling with.c.o.v. = 0.1,
shown as a circle (see Table 4.3 for the number of simulations). Figure 4.17 shows the
ratios of the approximate to exact mean up-crossing rates based on ELM and FORM
approximations. Trends in Figure 4.16 and Figure 4.17 are similar to those observed for
the complementary cumulative distribution function in Figure 4.14 and Figure 4.15.

As in the case of the Duffing oscillator, the FORM result for each threshold in
Figure 4.14 is based on a single free vibration apalysis of the oscillator, and the FORM
estimate for the mean up-crossing rate at each threshold level is obtained by time-shifting
the design point excitation obtained from the free vibration analysis. As shown in Table
4.2 aﬁd Table 4.3, we can easily improve the FORM solution with a relatively small

number of simulations using the orthogonal plane sampling method.

4.5.3 SDOF Hysteretic Oscillator

Consider a SDOF hysteretic oscillator having the Bouc-Wen constitutive model
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mE(t) + cx(t) + kox(t) + 1 - a)z())] = f (D) . (4.22)

2(1) = =) 2(6) = Blz()

where m , ¢ and k are the system parameters, z{f) is an auxiliary variable that

(1) + Ax(1) (4.23)

represents the hysteretic component of the restoring force, and o is a parameter that
controls the degree of hysteresis. In (4.23), v, P, » and A are parameters that can be
adjusted to match an observed hysteretic loop. No exact solutions for the response of this

oscillator are available. The solution by ELM can be obtained numerically, as described

in Wen (1980).
Example 4.6

Consider the hysteretic oscillator in (4.22) subjected to a Gaussian white noise excitation
of intensity S, = 1 N*/(rad/sec). The system parameters are set as m=1 Kg, ¢ =3
N-sec/m, and & = (31)* N/m. Numerical values assigned to the other parameters are o =
0lL,n=1,4d=1andy =[3:1/(2c;0), where o> =n§, /(ck)is the mean-square of the
linear oscillator with o = 1. The white noise excitation is idealized as a traiﬁ of Gaussian
random pulses with A7 = 0.02 sec. Time ¢, = 8 sec is used to achieve stationarity in the
response. | _

Figure 4.18 and Table 4.4 show the results for the complementary cumulative
distribution function of the response as a function of the normalized threshold x/ .O‘o.
Shown in the figure are the “exact” result (soiid line) obtained by the orthogonal plane
sampling with c.o.v. = 0.05 (see Table 4.4 for the number of simulations), the ELM
- approximation (dashed line), and the FORM approximation (dash-dotted line). We see
that the FORM result performs superior to the ELM result at moderate to high thresholds.

Figure 4.19 and Table 4.5 show the results for the mean up-crossing rate as a
function of the normalized threshold x/c,. The orthogonal plane sampling is used for

simulation of the mean up-crossing rate with c.0.v. = 0.10 (see Table 4.5 for the number

of simulations). The nature of the results is similar to those in Figure 4.18.
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4.5.4 Two-Degree-of-Freedom Bouc-Wen Structure

Consider a two-degree-of-freedom Bouc-Wen structure (see Figure 3.9)

. | . d]d] (f) (1- Gﬂ})zl (l‘} _ .
Mii(r) + Cx(7) + K[{%dz (I)} + {(I e @H = M1, (¢) (4.24)

4Oy =7 {d Oz @ 20 - B OO + 4d, @) i=1,2 (4.25)

where M is the mass matrix, C is the damping coefficient mairix, K is the linear stiffness

matrix, d,(t)=x,), d,)=x,()—x() are the inter-story drifts, z,(#), i= 1, 2, are

hysteretic rcomponent's of the response, and # (¢) is the ground acceleration. We set the

0 1

' - 20 16 =2 20 0O
system parameters as M= kg, C= N-sec/m, K= N/m, and
& -2 2. 10 10
the parameters related to the hysteretic behavior are set as 4 =4, =]
¥, =B, =1/(20,,) , and ¥, =B, =1/(20,,,), where o, and G, are. the standard
deviations of the interstory drifis of the linear system (o, =, =1). In (4.24), 1 is a 2-

vector of ones. We examine two cases for the ground acceleration i, (f) — one with a
stationary Gaussian white noise, and the other with a non-stationary Gaussian excitation.
Example 4.7

In this example, we consider the case when the oscillator is subjected to a stationary
Gaussian white noise. The white noise excitation with the intensity §, = 1

(m/sec®y/(rad/sec) idealized as a train of Gaussian random pulses with Az = 0.025sec,
and the responsc is evaluated at time 7, = 12 sec, which is sufficient time fo achieve
stationarity. The perturbation time increment for computing the outcrossing rate in (2.40)
is selected as & = Ar/20 sec. The root-mean-square responses for the linear system are
G, =0.562mand c,,, =0.481 m.

Figure 4.20, Table 4.6 and Table 4.7 show the results for the complementary

cumulative distribution functions of the two inter-story drifts, where simulation by the

~ orthogonal plane sampling with c.o.v. = 0.05, FORM, and ELM are compared (see Table
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4.6 and Table 4.7 for the number of simulations). Trends are as seen for the SDOF
oscillators: ELM provides good results for low thresholds, whereas the FORM provides
supeyior results at high thresholds (low probabilities). ,

Figure 4.21, Table 4.8 and Table 4.9 show the results for the mean up-crossing
rates for the two inter-story drift responses, where simulation by the orthogonal plane
sampling with c.o.v. = 0.10, ELM, and FORM are compared (see Table 4.8 and Table 4.9
for the number of simulations). Trends are similar to those observed in Figure 4.20 for

the cumulative distribufion.
Example 4.8

In this example, the system is subjected to a non-stationary, Gaussian, filtered-white-
noise excitation, which is produced in the same manner as in Example 4.4. The white
noise with intensity §, = 1 (m/sec?)/(rad/sec) is discretized as in Example 4.7. The
numerical values for the filter parameters are set as @, = 2x rad/sec and £, = 0.6. The
modulating function ¢(¢) is as in (4.19). The reliability analysis is performed for the
limit-state function g =606, —d,(t}, i =1, 2.

Figure 4.22 and Figure 4.23 show tﬁe probabilities of the responses exceeding the
thresholds 66, , i = 1, 2 and the cormresponding mean up-crossing rates over time,
respectively. For reference, a scaled plot of g(¢) is shown as a dotted line. The upper

bounds of the first excursion probabilities estimated by using (2.46) are £, = 5.20E-2

for the inter story drift D, and F,, = 1.09E-2 for the interstory drift D,. These results

compare favorably with Monte Carlo simulation results of IST'I = 5.41E-2 and iﬁn =

1.16E-2, respectively, which are obtained with c.o.v. = 0.05. The reason that the results
obtained using (2.46) are slightly smaller than the simulation results can be explained by
observing the trend of the mean up-crossing rate shown in Figure 4.21, where the FORM

solution tends to be slightly smaller than the simulation.
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Table 4.1. Comparison of simulation methods with Bouc-Wen oscillator (c.0.v. = 0.05).

Ortho. Plane. Sampl. | Importance sampling
Parameter | Threshold : - :
FORM Probability | Samples & Probability | Samples
20, 8.41E-3 5.75E-3 229 5.49E-3 1,972
(1,031)
=05 3o, 1.98E—4 | 1.30E+4 330 1.39E-4 4,547
_ (1,454) _
40, 1.88E-6 1.40E—6 490 1.31E-6 4,409
1 (2,370) o
20, 1.23E-2 1.78E-2 1,057 1.93E-2 7,794
(3,822)
a=0.1 35, 8.40E-4 | 1.30E-3 2,274 1.28E-3 | 21,695
' (7,750}
- 4a, 4.61E-5 6.48E-5 4,433 6.27E-5 | 19,373
(15,639)

Numbers in parentheses indicate the number of evaluations of the limit-state function in the orthogonal
plane sampling method.
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Table 4.2. Comparison of probability values P[X > x] for res?onse of elastic SDOF
oscillator with nonlinear damping (c.0.v. = 0.05 for simulation).

Orthogonal Plane Sampling

x/c Exact ELM FORM
P Samples

0.5 3.30E-1 2.98E-1 4.60E-1 3.23E~1 327 (1,458)
1.0 1.78B-1 1.44E~1 3.45E-1 1.72E~1 324 (1,500)
1.5 6.87E-2 5.55E-2 1.85E~1 6.80E-2 563 (2,674)
2.0 1.48E-2 1.68E-2 | S5.53E-2 1.34E-~2 885 (4,160)
2.5 1.23E~-3 3.96E-3 | 6.34E-3 G 58E-+4 1,610 (7,335)
3.0 2.38E-5 7.19E-4 1.66E—4 1.52E-5 | 2,348 (10,219)
3.5 5.61E-8 1.00E—4 5.28E-7 2.25E-8 | 2,796 (11,048)

plane sampling method.

Numbers in parentheses indicate the number of evaluations of the limit-state function in the orthogonal

Table 4.3. Comparison of mean up-crossing rates v(z) for response of elastic SDOF
oscillator with nonlinear damping (c.0.v. = 0.1 for simulation).

Orthogonal Plane Sampling

x/c Pxact ELM FORM -
. v{t) Samples

0.5 1.47 1.38 1.65 1.47 340 (3,348)
L.0 1.11 0.91 1.80 | 1.27 221 (1,760)
1.5 5.88E-1 447E-1 1.45 6.93E-1 336 (2,771)
2.0 1.76E-1 1.67E-1 6.22E-1 2.61E-1 353 (2,958)
2.5 2.01E-2 4.68E-2 9.90E-2 2.22E-2 797 (6,749)
3.0 5.25E-4 9.92E-3 347E-3 5.06E-4 744 (6,348)
3.5 1.63E-6 1.59E-3 1.40E-5 9.98E-7 1,443 (7,935)

Numbers.i;l parentheses indicate the number of evaluations of the limit-state function in the orthogonal
plane sampling method.
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Table 4.4. Comparison of probability values P[X > x] for response of Bouc-Wen
osciliator (c.0.v. = 0.05 for simulation).

Orthogonal Plane Sampling
x/o, ELM . FORM
~ P Samples

0.2 4.085-1 4.14E-1 4.02E-1 294 (1,102)
0.4 3.20E-1 3.24E-1 3.49B-1 289 (1,087)
0.6 2.42E-1 . 2.41B-1 2.59E-1 394 (1,482)
0.8 1.75E~1 C1.72E-1 1.78E~1 463 (1,732)
1.0 1.22B-1 1.18E~1 1.47E-1 521 (1,973)
1.2 8.07E-2 7.90E-2 9.79E-2 549 (2,032)
1.4 5.12E-2 5.14E-2 6.75B-2 729 (2,698)
1.6 | 3.10B2 3.25E2 4.74FE—2 1,002 (3,665)
1.8 1.79E-2 © 2.03E-2 3.08E-2 870 (3,163)
2.0 9.81E~3  1.23B-2 1.78E-2 1,446 (5,168)
2.2 5.13E-3 7.35B-3 1.07B-2 1,614 (5,709)
2.4 2.55E-3 4.37E-3 ~ 6.58E-3 1,988 (7,115)
2.6 1.21E-3 2.55E-3 3.67E-3 1,639 (5,726)
28 | 54404 1.52E-3  2.24E-3 2,248 (7,759)
3.0 2.32E—4 8.40E—4  1.30BE-3 2,274 (7,750)
3.2 . 9.44E-5 4.76E—4 7.22E—4 4,061 (1,4000)
34 3.64E~5 2.63E—4  3.65B-4 2,179 (7,490)
3.6 1.33E-5 - 1.50E-4 2.12E-4 3,216 (10,928)
3.8 4.64E—6 8.26E—5 1.20E~4 4,231 (14,315)
40 1.53E-6 4,61E-5 6.48E-5 4,433(15,039)

Numbers in parentheses indicate the nmmber of evaluations of the limit-state function in the oréthogonai
plane sampling method.
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Table 4.5. Comparison of mean up-crossing rates v(¢) for response of Bouc-Wen
oscillator (c.0.v. = 0.10 for simulation).

Orthogonal Plane Sampling
x/c, . ELM FORM
V(i) Samples

0.2 9.49E—1 1.43 1.01 260 (1,560)
0.4 8.75E-1 1.30 9.78 E~1 353 (2,140)
0.6 7.63E-1 1.10 7.42 B~1 323 (1,933)
0.8 6.31E-1 8.83E-1 6.82 BE~1 283 (1,664)
1.0 4,94E-1 6.68E—1 5.59B~1 373 (2,203)
1.2 3.66E-1 4.90E~1 3,78 E-1 341 (1,963)
1.4 2.57B-1 3.43E~1 268E-1 | 346 (1,967)
1.6 1.71E~1 2.34E~1 2.00 B-1 505 (2,852)
1.8 1.08E~1 1.54E-1 ~ 1.66E-1 673 (3,839)
2.0 6.41E-2 1.01B~1 9.64 B2 888 (5,019)
2.2 3.62E-2 6.30E-2 6.90 E-2 1,222 (6,868)
2.4 1.94E-2 3.88E-2 3.81 E-2 2,017 (11,084
2.6 9.80E-3 2.38E-2 2.51E-2 ©2,425(13,399)
2.8 4.70E-3 1.44E-2 1.52E-2 3,504 (19,152)
3.0 | 2.13E-3 8.32E-3 8.32 E~3 1,689 (9,224)
32 9.17E~4 ~ 4.90E-3 " 555BE-3 | 4657(25,062)
3.4 3.74E-4 2.83E-3 2.70E-3 2,718 (14,659)
3.6 1.44E—4 1.63E-3 1.65 E-3 3,060 (16,515)
3.8 5.26E-3 92764 |  7.46E-4 1,395 (7,527) -
4.0 1.82E-5 5.23E—4 5.72 E—4 6,165 (32,887)

Numbers in parentheses indicate the number of evaluations of the limit-state finction in the orthogonal
plane sampling method. :
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Table 4.6. Comparison of probability values P[D, > d,] for the inter-story drift D, of
two-degree-of-freedom Bouc-Wen system (c.o.v. = 0.05 for simulation).

: Orthogonal Plane Sampling
d, /o, ELM ~ FORM
P Samples

03 | 435E-1 3.97B-1 454E-1 232 (844)
0.6 3.72E-1 3.26E-1 4.24E-1 206 (627)
09 3.12E-1 -~ 2.70E-1 3.56E-1 266 (982)
1.2 - 2.56B-1 2.26E~1 3.23E-1 203 (707)
15 2.07B-1 1.90E-1 2.80E~1 304 (1,086)
18 | . 164B-1 | 1.60E-1 2.58E-1 245 (840)
21 | 127E-1 133E-1 | 2.17E-1 252 (855)
24 |  9.58E2 11181 T 1.80E—1 304 (1,026)
2.7 7.09E—2 9.23E-2 1.66E-1 254 (857)
3.0 | 5.13E2 760E-2 | - 1.26E-1 333 (1,087)
33 3.63E2 | 624E2 |  125E-1 371 (1,218)
3.6 251E2 51065 | ES0E2 355 (1,138)
39 | 1.69E2 A11E-2 73562 427 (1,369)
42 111E2 3.31E-2 6.84E—2 T 536 (L.725)
45 7.176-3 2.65E2 5.00E2 515 (L,649)
48 450E-3 | 2.10B2 | 3.856-2 394 (1,248)
5.1 276E-3 1.65E-2 3.05E2 491 (1,558)
54 1.65E-3 1.29E2 26162 447 (1,426)
5.7 9.63E4 T101E2 | 1.88E-2 434 (1,362)
6.0 54864 7.78E—3 154E—2 | 598 (1,864)

Numbers inpafentileses indicate the nomber of evaiuations of the limit-state function in the orthogonal
plane sampling method. .
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Table 4.7. Comparison of probability values P[D, > d,] for the inter-story drift D, of
two-degree-of-freedom Bouc-Wen system (c.0.v. = 0.05 for simulation).

' Orthogonal Plane Sampling
d,/c,, ELM FORM A
P Samples

0.3 4.13E-1 3.86E-1 4,20E-1 302 (1,058)
0.6 3.29E-1 2.94E-1 3.75E-1 274 (1,003)
0.9 2.54E-1 2.27B-1 ' 3.45E-1 248 (899)
1.2 1.89E-1 1.77E-1 2.91E-1 284 (1,020)
1.5 1.35E-1 1.39E-1 2.19E-1 377 (1,363)
1.8 9.26E-2 1.09E-1 1.96E-1 394 (1,397)
2.1 6.118-2 8.51E-2 1.39E-1 380 (1,317)
2.4 3.86B-2 6.62E-2 1.26E~1 480 (1,648)
2.7 2.34E-2 5.11E-2 1.04E~1 549 (1,858) |
3.0 1.36E-2 3.91E-2 6.98E-2 575 (1,900)
3.3 7.56E-3 2.96B-2 5.75E-2 726 (2,375)
3.6 4.02E-3 2.23E-2 4,50B-2 975 (3,166)
3.9 2.05E-3 1.66E-2 3.50E-2 975 (3,169)
4.2 9.95E—4 1.22E-2 2,552 1,190 (3,800)
4.5 4.62E—4 8.92E-3 1.70B-2 1,314 (4,123)
4.8 2.058—4 © 6.42E-3 1.22E-2 1,181 (3,701)
5.1 8.69E-5 4.58E-3 7.20E-3 809 (2,511)
5.4 3.52B-5 . 3.24E-3 - 5.87E-3 1,054 (3,256)
5.7 1.36E-5 2.26E~3 4,20E-3 1,913 (5,900)
6.0- 5.01E-6 1.576-3 2.85E-3 1,952 (5,980)

Numbers in parentheses indicate the number of evaluations of the limit-state function in the orthogonal
plane sampling method.
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Table 4.8. Comparison of mean up-crossing rates v(z) for the inter-story drift D, of two-
degree-of-freedom Bouc-Wen system (c.0.v. = 0.10 for simulation).

‘ Orthogonal Plane Sampling
d, /G4 ELM FORM
' (1) Samples
0.3 1.71E-1 3.00E-1 1.16E-1 290 (1,662)
0.6 1.65E-1 - 2.47E-1 - 1.59E-1 239 (1,300)
0.9 1.54E~1 2.09E-1 1.18E-1 259 (1,449)
1.2 1.40E-1 1.77E-1 - 1.18E-1 240 (1,374)
1.5 1.24E-1 1.51E-1 1.12E~1 242 (1,371)
1.8 1.07E~1 2.78E-1 1.10E~1 225 (1,237)
21 9.03E-2 1.09E-1 9.07E-2 227 (1,265)
24 7.40E-2 9.24E-2 9.84E-2 264 (1,455)
2.7 5.90E-2 - 7.82E-2 8.21E-2 266 (1,476)
3.0 - 458E-2 6.63E-2 742E-2 266 (1,451)
33 3.46E-2 5.54E-2 - 60.02E-2 301 (1,636)
3.6 . 2.55E-2 - 4.60E-2 5.51E-2 233 (1,255)
39 | 1.83E-2 3.83E-2 . 4.89E-2 258 (1,367)
42 1.27E-2 3.15E-2 4.06E-2 327 (1,697)
4.5 8.66E-3 2.57E-2 3.23E-2 370 (1,918)
4.8 5.73E-3  2.08E-2 3.02E-2 484 (2,522)
51~ 3.69E-3 1.68E-2 2.00E-2 428 (2,168)
54 2.32E-3 1.35E-2 - 2.05E-2 394 (2,025)
5.7 1.41E-3 1.07E-2 1.57E-2 312 (1,586)
6.0 - 8.41E+4 8.44E-3 1.16E-2 - 424 (2,119)

Numbers in parentheses indicate the number of evaluations of the limit-state function in the orthogonat
plane sampling method.
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Table 4.9. Comparison of mean up-crossing rates v(z) for the inter-story dnift D, of two-

degree-of-freedom Bouc-Wen system (c.0.v. = (.10 for simulation).

Orthogonal Plane Sampling
d, /Gy, EILM FORM — :
V{t) Samples
0.3 1.78E-1 3.09E~-1 L.I9E-1 262 (1,506}
0.6 1.66E-1 2.54E-1 1.12E~1 202 (1,201)
0.9 147E-1 2.01E-1 1.22E-1 171 (1,027)
1.2 1.24E-1 1.59E-1 1.OSE-1 249 (1,440}
1.5 9.92E-2 1.24E-1 8.75E-2 252 (1,478)
1.8 7.598-2 9.85E-2 7.56E-2 277 (1,588}
2.1 5.53E-2 7.78E-2 6.03E~2 299 (1,658)
2.4 3.83E-2 6.15E-2 6.23E-2 395 (2,182)
2.7 2.53E-2 4.84E-2 4.98E-2 447 (2,399)
3.0 1.59E-2 3.77E-2 4.17E-2 380 (2,052}
3.3 9.54E-3 2.92E-2 3.16E-2 406 (2,152)
3.6 5.45E-3 2.23E-2 2.69E-2 422 (2,211)
3.9 2.96E-3 1.70E-2 1.56E-2 504 (2,508)
4.2 1.53E-3 1.28E-2 1.53E-2 538 (2,772
4.5 7.56E-4 9.53E-3 1.04E~2 413 (2,063)
. 4.8 3.55E—4 © 7.05E-3 9.43E-3 438 (2,200)
5.1 1.59E—4 5.14E-3 6.78E-3 526 (2,581)
5.4 6.76E-5 3.70E-3 4.33E-3 635 (3,126)
5.7 2.74E-5 2.64E-3 3.06E-3 502 (2,410)
6.0 1.06E~5 - 1.86E-3 2.43E-3 830 (3,946)

Numbers in parentheses indicate the mumber of evaluations of the limit-state funetion in the orthogonal

plane sampling method.
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Figure 4.1. Shape of limit-state surface along first principal axis for the system with
nonlinear damping. '
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Figure 4.2. Sampling in the orthogonal plane.
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Figure 4.3. Orthogonal plane sampling with approximate design point.
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Figure 4.5. Simulation of the mean out-crossing rate by sampling in the orthogonal plane.
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Figure 4.6. Complementary distribution function of response of Duffing oscillator.
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Figure 4.7. Comparison of relative errors for response of Duffing oscillator.
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Figure 4.8. Stationary mean up-crossing rate of Duffing oscillator.
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Figure 4.9. Comparison of relative errors of mean up-crossing rate of Duffing oscillator.
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Figure 4.10. Probability of response exceeding threshold 3¢, for Duffing oscillator
subjected to non-stationary Gaussian excitation.
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Figure 4.14. Complementary distribution function of response of elastic SDOF oscillator
with nonlinear damping.
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Figure 4.18. Complementary distribution function of the response of Bouc-Wen
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Figure 4.20. Complementary distribution functions of the inter-story drifts of two-degree-
of-freedom Bouc-Wen System (c.0.v. = 0.05 for simulation).
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two-degree-of-freedom Bouc-Wen system subjected to a non-stationary
Gaussian excitation.
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5 Simulation of First-Excursion Probability

5.1 Introduction

~ The first-excursion probability is one of the most important reliability statistics in random
. vibrations. Unfortunately, no general solution procedure is available for this problem,
except under restrictive conditions when the response can be treated as a one-dimensional
Markov process (Lin and Cai, 1995). For this reason, approximate solutions are pursued
for most engineering applications.

In Chapter 2, we have reviewed an approximate method based on the out-crossing
rate. In general, we can estimate the upper bound of the First-excursion probability by
integrating the out-crossing rate over the duration of the response. In order to apply this
method to nonstationary problems, however, the ouf-crossing rates have {o be evaluated
for many time points during the period under consideration, which makes the method
rather costly. Even if we have computed the out-crossing rates accurately, we can at best
get an upper bound.

 An alternative approach for solving this problem is Monte Carlo simulation. As is
well known, this approach is versatile but computationally inefficient, especially for
small probabiiity problems. In structural reliability, importance sampling is widely used
to improve the efficiency of the crude Monte Carlo simulation method.

Recently, Au and Beck (2001) proposed an efficient importance sampling method
for simulation of the first-excursion probability of a linear system subjected to a Gaussian
excitation., They first transformed the first-excursion problem. into a series-system

reliability problem by discretizing the time axis into small intervals Ar=i,,—¢;,
i= 1,+-+,n, where #n is the number of time steps, or components of the system. They then

approximated the first-excursion probability as the probability of the union of the failure
events in all the {ime-point components. They used a sampling density composed of

standard normal probability density functions conditioned on the failure event in each
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time step (component), say p(u]EL.), i=1,n, where u is the standard normal vector

and E, 1s the failure event of the i-th component. They showed that this sampling density

18 highly efficient for simulation of the first-excursion probability of a linear system with
deterministic parameters and subjected to Gaussian excitation.

In this chapter, we extend the importance sampling method proposed by Au and
Beck (2001} to nonlinear random vibration problems, including systems with uncertain
parameters. A two-degree-of-freedom Bouc-Wen structure in Section 4.5.4 is used to
demonstrate the method. The efficiency and accuracy of the me{hodare compared with
those of a conventional importance sampling method and the crude Monte Carlo

simulation method.

5.2 Problem Formulation

Consider the First-excursion probability for an interval (0,7),
' = : < 5.1
Fr = Pimin g[x(z),v] < 0} Gy
where g(-) is a limit-state function described in terms of a response vector x{¢) and a
vector of system parameters v,. It is assumed that the input excitation pfocess 18

discretized (see Der Kiureghian 2000), such that its randomness is represented in terms of

a vector of random variables v,. Thus, the response x(¢) is an implicit function of the
vector of random variables v =(v,,v,) that collectively define the random nature of the

input process and the system. As is common in reliability analysis, a probability-

preserving transformation u ="T(v) is used, such that w is a vector of standard normal
variables. The limit-state function is then written as g{x(v,,v,,0),v,] = g(v,t) =
g[T(w),t] = G{u,1).

The problem in (5.1) can be reformulated as a series-system reliability problem by
considering a set of closely and equally spaced time points ¢, i=1--,n, with
At=t.,—t, ;=0 and ¢, =T . The number of time steps, #n, determines the nﬁmber of
components of the series system. {This number is not neéessarily equal to the number of
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time steps used in discretizing the input excitation) For ~convenience, let

Gm;'n (u) = ﬁlsI},G(usz) and Gf(u) = G(u:t;‘) 5 i= 1:' LH. 'Then, Gj(u) Z Gmin (“) s i= 13 Tt Fl,
and we can write
B, = PGy, (u)éf}]zP[{;Gg(u) s"e} (5.2)

Thus, the series-system probability provides a lower bound to the first-excursion
probability. This bound can be improved by selecting a dense grid of time points (smajl
Atr), as described below. Figure 5.1 depicts the above concept in the space of the
_standard normal random variables u. The failure domains of the individual components
(time points) collectively approximate the failure domain of the series system, i.e., the
domain of the first-excursion event.

 As mentioned above, the lower bound in (5.2) can be improved by selecting a
dense grid of time points. However, too dense a grid is not necessary, since component
events for the successive time points are closely correlated and additional points in
between will not confribute to the progability on the right side of (5.2). Numerical
experiments reveal that, for practical purposes, it is sufficient that the correlation
coefficient béfween the linearized limit-state functions for two neighboring time points be
no less than about (}9 In the first-order reliability method (FORM), this correlation

coefficient is given by the scalar product of the unit direction vectors towards the design
points of the corresponding limit-state surfaces, ie., p;,, =0;®,,, see Figure 5.1.

Efficient methods for finding the design point for the individual components are

developed in Chapter 3 and Koo and Der Kiureghian (2001). In the following, we denote
the design point for the i-th component as n; .

The probability in (5.2) can be written as

p[u1 G.(u) < 0} = j I{i:n;{ﬁ(m G, (u))}p(u)du

,,,,,

- By 1] max(- Gw) | (5:3)
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where f{aj=1 for a2 0 and ]| ['a] =0 for a <0, ¢() is the standard normal probability
density function, and E,,{} denotes the expectation with respect to ¢(-}. It is clear that
for any random realizations u,, £ =1,---,N, generated according to o(-), the probability
of Interest can be computed as the sample mean of the corresponding indicator values 7,,

k=1,--,N,where N denotes the sample size.' Let

g(u) = I[g}a)i (-G (u)):l | | (5.4)

.......

and ¢, = g(u,} . Then, an unbiased estimate of the First-excursion probability is

5«13 | 55)
= F ; g -
A measure of uncertainty of this estimate is given by the coefficient of variation

(5.6)

8, =m\7ﬁ1_f\76 .
where 8, is the sample coefficient of variation of g, , k=1,---,N.
When the first-excursion probability is small, most of the simulated points & , fall
within the safe domain, where ¢, = 0. In that case, %he number of simulations N must be

very large to achieve reasonable accuracy. To improve the efficiency of the simulation, it

is common to use importance sampling (Rubinstein 1981). Equation (5.3) is written as

{UG(HKO} J, 1| ma(- G(u)ﬂjii)ﬂu)du

Ef{u}{ {max( G. (u))} ;Pi((u))} : 5.7)

where f(u) is a sampling density and E,{} denotes the expectation with respect to

f(u). Setting

ot =1 max(-Gw) | 22 8

the estimate of the first-excursion probability can now be obtained from (5.5) — (5.6) by

simulating a sample u,, k=1,--,N, according to the sampling distribution f(u) and
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computing the corresponding sample-of g(u) from (5.8). One can show that the estimate
in (5.5) is unbiased, as long as- f(n)=0 for any u in the failure domain, i.e., for

ue {.rrzlin G.(u) < 0}. Furthermore, the coefficient of variation of the estimate will be

small, if f(u) is only non-zero in the failure domain and if it is proportional to @(u) in
the failure domain of the systém. '
As should be clear, the main issue in importance sampling is the choice of the sampling

density f(u). In the following, we describe two choices of the sampling density: a

commonly used sampling density constructed by use of the design points, and a sampling
density proposed by Au and Beck (2001) based on conditional distributions. The latter is

extended to nonlinear reliability problems.
5.3 Importance Sampling Distribution

A nataral way of constructing an importance sampling distribution for a series system is
to compose it from importance sampling distributions of the individual components. Let

fi(w), i=L,---,n, denote selected importance sampling distributions for the components

of the system. The sampling distribution for the series system may then be constructed as
F)=> wf,(w) (5.9)
i=1

where w,, i=1---,n,with w, >0 and w, +---+w, =1, are a set of weight factors. Each
factor w;, may be taken proportional to a measure of importance of the corresponding

component of the system, say its probability of failure.
A widely used choice for the individual component sampling distribution is the
standard Gaussian probability density centered at the corresponding design point

{(Shueller and Stix 1987). Combining this with (5.9) yields (Melchers 1989)
f@)=> wea-u) (5.10)
f=l

This method usually performs far better than the crude Monte Carlo simulation method.
However, it is not as efficient as is possible because of two reasons: (a) as much as half
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or more of the simulated points w, may fall within the safe domain, where ¢, =0, (b)
the function @{u-u) is far from being proportional to the probability density function

o{n) in the failure domain. Improvements in the choice of the importance sampling

distribution can be made on both grounds.

Au and Beck (2001) devised a sampling distribution for linear systems having
deterministic parameters and subjected to .Gaussian excitation in such a way that the
sampling density has the same shape as the original probability density function in the

failure domain, at least at the component level. According to their formulation,
f)=3 wplE) (5.11)
i=1

where E; ={G,(u) <0} is the failure event at time ¢, (component i)} and p(usz.) is the
conditional probability density function of u given the failure event E .. The latter can be
written as

p(ul
y7

where p; = P(E,). For the weight factors w,, Au and Beck (2001) selected

i : |
W= (5.13)
ij
=i
Substituting (5.12) and (5.13) in (5.11) and the latter in (5.8), we have
rr (5.14)
g(u) = H_ff_iu%__

> 116w

=1
The estimate of the first-excursion probability can now be obtained from (5.5) — (5.6) by
simulating a sample u,, k=1,---,N, according to the sampling distribution in (5.11)
—{5.13) and computing the corresponding sample of g(u) from (5.14). In deriving the

expression in (5.14), we have dropped the indicator function I{_ni}ax {~G,(u)}] that
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appears in (5.8) because it is. always equal to unity for the selected sampling density.

This, in fact, is an important advantage of this choice of the sampling distribution.

5.4 Application to Linear and Nonlinear Systems

So far, we have not made any assumption regarding the linearity or nonlinearity of the
vibrating system, or the Gaussian or non-Gaussian nature of the input excitation. Neither
have we specified whether the system parameters are deterministic or random. Therefore,
if we can simulate samples of u according to the distribution i (5.11) and accurately
compute the statistic g{u) in (5.14), then we can use the above approach for estimation
of the first-excursion probability of general dynamical systems, possibly with random
properties, subjected to Gaussian or non-Gaussian excitation. Au and Beck (2001) used
this ai}pi'oach to estimate the first-excursion probability for linear, deterministic systems
subjected to Gaussian excitation. Their method is described in the following sub-section.
Subsequently, we cxtend their method to general nonlinear problems, which may involve

nonlinear dynamical systems, non-Gaussian excitation, or uncertain system properties.

5.4.1 Linear System Subjected to Gaussian Excitation

For a linear system subjected to a Gaussian excitation, the failure domain of the i-th
component is the half space separated by the hyperplane o (a —u;) =0, where u, is the
design point and @, is the unit vector in the direction of the design point (see Figure 5.2).
Let w' =(u,-,u) be an orthonormal transformation of u such that the u, axis
coincides with @, . We can express the failure event E, as u, > B,, where B, = & u; is the

reliability index of the i-th component. The variables u,---,u;_, are clearly independent

n-1

of E,. Thus, we can write

p(“EEi) = p(ﬂ'iE})

E )p(u,

_ . f ! '
=00, U, 1yl B )
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= Ottt Ol = B,) R (5.15)

It is seen that the conditional probability density function is the product of the n—1

dimensional normai density function ¢(u,..,u, ,) and the truncated normal density

u! >P,). Furthermore, the individual component failure probabilities are

function ¢{u/
given by p,=®(-f,), where @() is the standard normal cumulative probability

function.

Following Au and Beck (2001), simulation of a sample u,, k=1--,N,
according to f(u) in (5.11) — (5.13) can be carried out in the following manner:

a) Compute the design point u;, the unit direction vector o, the reliability index j,,

and the probability p, = ®(-f,) for each time-point component i, i=1---,xn. It is

noted-that, for linear systems, closed form solution of the design point is available
{see Der Kiureghian 2000). | |

b) Randomly select a time-point component according to the discrete probabilities w,,
i=l-n, in (5.13). Sﬁppose_ that the i-th component is selected with the
corresponding unit direction reliability @, and feiiabﬂity index B,. |

c¢) Simulate a standard normal vector w = (u,,--,u,).

d) Simulate a uniform variable U/ on [0, 1] and compute

d=07[U+(1-HPE)] (5.16)

e} Compute '

u, =(2—ojue,)+de,
=u+(d-ana (5.17
The first expression in (5.17) can be interpreted as the following two-step simulation (see
Figure 5.2): (a) the simulated vector u is projected on the orthogonal plane « u=0,

vielding a random point according to ©(u),...,%, ), and (b) the truncated normal variable

d is simulated according to @(u,u, 2 B,). The sum of the two vectors u—o;ue, and
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da, yields a vector, which is always in the failure domain of the component and has the

distribution in (5.15).

5.4.2 Extension to Nonlinear Problems

For general nonlinear problems that involve nonlinear dynamical systems, non-Gaussian
excitation, or random system properties, it is not so easy to compute the component
probabilities p,, which are needed in (5.14). Furthermore, simulation according to the

conditional density p(uiEi) is problematic, since we do not have a closed form

expression of this distribution. Here, we make two assumptions to proceed with an
approxiniate solution approach. |
The first assumption concerns the geometry of the failure domain of the

individual components in the standard normal space. We assume that any line

perpendicular to the plane & u=0, where @, is the unit direction vector for the design
point of component 7, intersects the limit-state surface G,(u)=0 of the corresponding

component in at most one point. When there is no intersection, we assume the point is at

infinite distance on either side of the plane, depending on the sign of G,(u)=0. Under
this assumption, we can represent the limit state surface G,(w)=0 as an explicit function
of the. points on the orthégonai plane ou= 0, ie. u,=hy ,.-'--,u;_l) , where
v = (uy,-,u,) is the orthqnorrnal transformation of u defined in Section 5.4.1. For a

linear system subjected to a Gaussian excitation, as discussed in Section 5.4.1, this

assumption holds strictly. In that case, the imit-state surface G,(u)=0 is a plane parallel
to the orthogonal piane ou=0 and, therefore, G(u)=0 can be written as u/ =§,,
where B, is the distance between the two planes. For nonlinear problems, there is no

guarantee that the assumption holds. For practical purposes, however, it is sufficient if the

assumption holds in the neighborhood of the design point u; .
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The second assumption is that the FORM approximations ©(-,), i=1,--,n, for

the time-point component probabilities are proportional to the corresponding exact

probabilities p,, i=1,-.,n. This assumption strictly holds for stationary' random

vibration problems, where the probabilistic definition of the response is invarant with
respect to a shift in the time origin. For non-stationary processes, this assumption
mntroduces an approximation in the proposed method. However, considering the case of
stationary processes, this approximation is not expected to be critical, particularly if the
first-excursion event is associated with a nearly stationary, strong-motion phase of the
non-stationary excitation. This is the case, for example, for most far-field earthquake
ground motions.

Based on the first assumption, we can represent the conditional density function

of u given the failure of the i-th component, p(alEi), in a manner similar fo (5.15).

Specifically,

PliE)- plE)

t
=p@wwu_

i}P (u;

Using Bayes’ rule, the first density function on the right side can be written as

Uy g UL Ei) (5.18)

[ A e b

B = o) Dl )] (5.19)
y2h '

P(”la U

where A(u;,--,u,_,) is the distance of the point (ul',---,u;_],()) on the orthogonal plane
from the limit-state surface G.(u)=0, as shown in Figure 5.3. The second term on the

right-hand side of (5.18) is the truncated normal density function

plu,

st B = ol 2 (et )] | (5.20)
Using (5.19) and(5.20), the final form of the conditional density function is

p(u!E) - (1., U n_l)q)[ 13,;”_}1(3“ " n—a)]q}[ gty )] (5.21)

It is seen that the conditional density function for a nonlinear problem has almost
the same form as the one for a linear problem in (5.15). Compared to the latter, the

reliability index P, of the component has been replaced by the function A, (x,,- ) to

nl
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account for the nonlinearity of the limit state surface. The factor ®[—-% (u;; -, u, )]/ p,
multiplied at the end of (5.21) corrects the normal density function @(u],-+-,% ) to the

true conditional density function plu o }E ). The exact probabﬂlty p; Temains .

n -1
unknown, but it will drop out, as shown below. _
Since the exact component probabilities are unknown, instead of (5.13), we use

the normalized weight factors based on the FORM apprommatmns

o(-p,)

w=——=>—,i=1...,n

i o(-B,) (5.22)

Now suppose that a time-point component is randomly selected according to the
weights in (5.22), and let B:; o, and P, respectively denote its design point, unit

direction vector and reliability index. We must generate a random u according to (5.21)

and compute g{u) from (5.14). Equivalently, we can generate u according to

p(ulE) = cp(u{,...,u;__i)(p{u; - ] (5.23)
and compute g(u) according to
Pl HZ“ 5.24
q(u) R Y _1 J=i ( . )
ZI[_ g (u)] i
J=
Note that the product of (5.14) and (5.21) is identical to the product of (5.23) and(5.24).
Also note that (5.23) is a valid probability density function

We now introduce an approximation based on our second assumption above.
Namely, we replace the ratio of the exact component probabilities in (5.24) by their first-
order approximations, i.e.,

Z O(-5))

[ h( Hyseees n-—l)]J =1 (525)
Srg@]  OCP)

g(u) =

As mentioned earlier, this reformulation is exact for stationary processes. In fact, in that
case, the ratio of the sum of component probabilities to the probability of component {
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(the last quotient in (5.24) and (5.25)) equals- the number of components » for both the
exact and first-order probabilities. For non-stationary processes, the _aboVe reformulation
may introduce an approximation, which for reasons described carlier is not expecied to be
critical for most practical applications.

Based on the above, the procedure for simulating a sample u,, k=1,---,N, fora

nonlinear problem involving a nonlinear dynamical system, non-Gaussian excitation, or

uncertain system properties can be stated as follows:

a) Compute the design point u;, the unit direction vector «,, the reliability index B,,
and the FORM probability approximation ®(—f,) for each time-point component 7,
i=1--,n. Efficient methods for finding the design point for ﬁoﬁiinear systems are

described in Chapter 3 and Koo and Der Kiureghian (2001).

b) Randomly select a time-point component according to the discrete probabilities w;,
i=L-,n, in (5.22). Suppose that the i-th component is selected with the
corresponding unit direction vector &, and reliability index B,.

¢) Simulate a standard normal vector u = (u,,--,u,) .

d) Project u onto the orthogonal plane ou =0. The result, u— ¢ ug,, is identical to
the point (u;,--+,u,_,,0) in the u’ space.

¢} Determine the distance 4 (x4, --,u,_;) from the point (u],---,u_,,0) to the limit-state
surface G;(u) =0 in the direction parallel to e, . |

f) Simulate a uniform variable U/ on f0,1] and compute

d=0"[U+1-)d(Hh)] (5.26)

g) Compute | | o - '

u, =(u—oue,) +de,
cis(d-aTu)y, 52

The above simulation procedure is similar to that for 1inea£ systems described in the

previous section, with the additional tasks being: (a) the design point u; for each time-

point component must be obtained by solving an optimization problem (see Koo and Der
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Kiureghian 2001), (b) the distance A.(u, -1, ) to the component limit-state surface

must be computed for each point simulated in the orthogonal plane. This is typically done
by a simple iterative scheme, such as bi-section analysis, involving a few computations of

the component limit-state function.
5.5 Applications

Exarﬂple 51
The two-degree-of-freedom Bouc-Wen structure in Example 4.8 (Section 4.5.4) 1s

reconsidered. The system parameters and the excitation pattern are as before except the

hjfsteretic paramstersc,, =12, We consider three sets of values of the hysteretic
parameters, i.e. o, =0, =1 for a linear system, o, =0, =0.5 for a mildly nonlinear
system, and o, =, = 0.1 for a strongly non}iﬁear system.

The limit state function is set as g =d,, —d,{t), where d,; is a threshold, for
which the three values 30,,,, 60,,, and 9G,,, are considefed. The first-excursion

probability during the interval 5.5 — 14 seconds is considered, since owing to the
modulating function in (4.19), the probability of an excursion before 5.5 seconds or after
14 seconds is negligible compared to that during the specified interval. This duration is
discretized into 35 time-point .componen‘ss with equal interval of 0.25 seconds. The
correlation coefficients between the neighboring time-point events range from 0.95 to
0.98.

Simulation for the first-excursion probability is performed using methods: (1)
importance sampling with the proposed conditional distributions (“Proposed 1.S.7), (2)
importance sampling with the conventional method of using normal densities centered at
component design points (“Conv. 1.8.7), and (3) the crude Monte Carlo simulation
method (“M.C.”). The simulation results are listed in Table 5.1. Each simuiétion is
carried out until the coefficient of variation of the probability estimate réaches 0.05.
Listed in Table 5.1 are the mean estimates of the first-excursion probabiiity and the
required number of simulations. For the proposed method, the number of evaluations of
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the limit-state function (typically 3 — § per simulation for finding-the distance
B(uy,e--,u, ) to the component limit-state: surface) is given in parenthesis. In some
cases, it was not possible to achieve the target coefficient of variation with the M.C.
method with one million simulations. These cases are indicated as “NC” (not converged).

It 15 seen in Table 5.1 that in all cases the proposed importance sampling method

achieves faster convergence in terms of the number of simulations, as compared to. the

conventional importance sampling method and the Monte Carlo simulation method. For

nonlinear problems, however, the proposed sampling method requires several evaluations
of the limit-state function in order to find the point on the component limit-state surface

for each sample, while the other two methods require only one evaluation of the limit-

state function per simulation. When the numbers of evaluations of the limit-state -

functions are compared, the proposed sampling method is still more efficient than the
other two methods for linear and mildly nonlinear problems. For strongly nonlinear
problems, however, the computational efficiency of the proposed sampling method falls
behind the conventional importance sampling method.

Examination of the results in Table 5.1 indicates that the number of required
simulations in the proposed method is more sensitive to the nonlinearity of the problem
than to the threshold level. Therefore, the proposed importance sampling method is

particularly effective for problems with small-excursion probability.

Example 5.2

In this example, we consider the case with uncertainﬁes in the system parameters. The
system and the excitation are the same as before, except that we now consider the
hysteretic parameters o, and @, as random variables. It is assumed that «, and a, are

statistically independent and identically distributed random variables having the beta
distribution within the interval (0, 1) with means equal to 0.5 and coefficients of variation
equal to 0.1. The limit state function is as before, and for the threshold the three valies

36,3, 4 G, and 50, are considered. The results of the analysis are compared with

the results of the case with deterministic parameters o, =, = 0.5 in Table 5.2.

138




It is observed in Table 5.2 that, regardless of the threshold, the ﬁrst~excufsion
probability of the uncertain system is greater than that of the deterministic system. As in
the case with deterministic system parameters, the proposed importance sampling method
is more efficient than the other two methods in the number of simulations. When the
numbers of evaluations of the limit-state functions are compared, the overall efficiency of
the proposed method is more or less similar to that of the conventional mmportance

sampling method.
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Table 5.1. Comparison of the simulation results of the first-excursion probability,

Simulation method (c.0.v. = 0.05)

System Threshold
Proposed LS. Conv. LS. M.C.
B 4.37E-2 4,78E-2 4712
3 GdZo -
Linear N 127 932 8,097
(a,=a,=1) P, 5.66E—7 5.90E-7 0
6 T 2o - :
| N 237 2,980 NC
B 8.82E-2 8.44-2 8.58E~2
3 Ga’ZO
Mildly nonlinear N 134 (745) 948 4,266
(o =0, =05) B 3.95E-5 3.64E-5 3.50E~5
6 Gd2o
N 228 (960) 2,442 NC
P, 2.24E-1 2.48E-1 2.31E~1
3 O-dza
N 604 (2,524) 626 1,335
Highly nonlinear B 1.16B-2 ' 1.13E-2 1.10E-2
6 Gﬂ'Zo
(o, =a, =0.1) N 955 (4,215) 1,930 36,388
y23 1.75E-4 1.85E—4 1.77E—4
96,2,
N | 1,134 (4,956) 3,597 NC

Nurnbers in parentheses indicate the number of evaluations of the limit-state function in the proposed

important sampling method.
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Table 5.2. Comparison of the simulation results of the first-excursion probability for
deterministic and uncertain systems.

Simulation method (c.0.v. = 0.05)
Threshold System :
' Proposed LS. Conv. LS. M.C.
Deter- P 8.82E~2 8.44-2 8.58E-2
ministic | N 134 (745) 948 4,266
. 3 0-9’20
P, 9.30E-2 9.67E-2 9.18E—2
Random L
N 258 (1,050) 1,094 3,964
Deter- P, 9.73 E-3 1.10E-2 1.04E-2
ministic | 179 (744) 1,302 38,089
46,4,
P ‘1.14E-2 1.24E-2 1.07E-2
Random
N | 269(1,533) 1,581 - 30,796
Deter- B, 8.82E-4 - 837E-4 8.30E—4
ministic | 510 (2,456) 1,782 482,109
5 Gdzo
P, 9.73E~-4 9.97E-4 9.72E—4
Random -
N 579 (2,378) 2,676 411,172

Numbers in parentheses indicate the mumnber of evaluations of the limit-state function in the proposed
important sampling method.
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Figure 5.1. First-excursion probability as a series system.
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Figure 5.2. Simulation procedure for a linear system subjected to Gaussian excitation.
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Figure 5.3. Simulation procedure for a nonlinear system.
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6 Representation of Narrowband Process by
- Envelope and Phase Processes Using Nataf

Distribution
6.1 Introduction

In solving randonﬁ vibration problems, sometimes it is desired to represent a random
process in a discrete form. For example, when using a simulation approach to solve a
random vibration problem, the input process must be represented in terms of a set of
random variables so it can be gencrated on a computer. Likewise, when a random-
variable-based solution approach, such as FORM or SORWM, is pursued, the inpuf process
must be represented in terms of random variables. There are a variety of ways to
approximately represent a Gaussian random pmcéss as a linear function of a finite
number of standard Gaussian random variables (see Der Kiureghian 2000). In general,
the discrete represéntatién is obtained by multiplying a vector of deterministic basis
functions, itself discretized at a grid of time points, by a standard normal vector, where
the basis functions depend on the correlation structure of the process. For any selection of
discrete time points in the representation, the correlation matrix of the process must be
positive definite in order to construct the basis functions.

In the case of a narrowband process, the correlation function tends to fluctuate
nearly harmonically with an amplitude that decays slowly. As a result, in the discrete
representation by the conventional ‘methods, one often faces the difﬁcuity that the
correlation matrix of the process for the selected grid of time points is near singular. This
situation is exasperated when the process has a high frequency content, in which case a
large number of time points are necessary to properly represent the process. In this sense,

| representation of the narrowband process 1n a discrete form is a challenging task.

In this chapter, an altemative, approximate representation of a narrowband
process is explored. The main idea is to discretize the envelope and phése processes, and

then compute the corresponding realization of the process itself. This way, advantage is
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taken of the slowly varying property of the envelope and phase processes, which enables
us to take large time steps in the discretization. This':approach not only is efficient in
terms of the number of needed time points, but also avoids the near singularity problem
assoctated with the correlation matrix of the process. The Nataf distribution model is
employed to construct approximate non-Gaussian joint distributions of the envelope and
phase vectors.

The findings of the study show that the method can efficiently generate a
narrowband process with a relatively small size of the artificially generated random
vector. Typically, the size of this vector can be 1/20 to 1/10 of that used in the
conventional method. The Nataf distribution is found to be a convenient model to
describe the joint distribution of the amialii’ude and phases processes at two selected
points. However, the analysis also shows that this model of the joint distribution is not
sufficiently accurate for reliability analysis, for which the description of the exact
distribution in the tail region is essential. Therefore, the representation in ferms of
discretized envelope and phase processes may be considered useful for simulation
purposes, as long as the interesf 1s not in the tail region of the probability distributions. It
is also determined that this discretization approach is not appropriate for FORMSOM

solution of random vibration problems.

6.2 Properties of a Narrowband Process

A process is narrowband when its power spectral density is zero, exéept for a narrow
band of frequencies around a central (or average) frequency, ,. The sample function of
a narrowband process shows a nearly harmonic behavior with slowly varying amplitude

and phase. Based on this property, a narrowband random process X{¢) can be represen{eé
in the form (Rice 1944, 1945) |

X(@) = A(t)cos[o 1 +OF)] | | (6.1)

where A(?) is the envelope process and @(F) is the phase process.
Let X(¥) be a narrowband Gaussian pfocess with zero mean. The envelépe and

phase piocesses can be defined as

146




A@D) =X @) + X ()2 | | (6.2)

| e XD . |
@) =tan Yo% o (6.3)

where X (t) is é conjugate process of X(¢). Various deﬁhitions of the envelope result
from alternative selections of X(¢). The most popular definition of the envelope, known

as the Cramer-Leadbetter envelope, is obtained when X(t) is defined as the Hilbert

transform of X{¢) (Middleton 1960, Cramér and Leadbetter 1967), In that case, one can
show that

X(0) = A(t)sin[o £ + O@)] (6.4)

Furthermore, X (z‘) is also zero-mean Gaussian and, for a given time ¢, X{¢) and X (¢) are

uncorrelated.

When a random process varies slowly, one can represent it in. a discrete form with
relatively large time steps. Since the envelope. and phase .processes of a narrowband
process vary slowly, one can make a discrete representation of these processes with iarge
time steps. Once the discrete representation of the envelope and phaées processes is
.made, the corresponding realization of the narrowband process can be computed using
(6.1) with an appropriate interpolation rule between the discrete time points.

For a discrete representation of a process, the joint distribution of the process at
all time points is necessary. Unlike a Gaussian process, the higher-order joint distribution
of a non-Gaussian process for multiple time points can be complicated and almost
impossible to work with when the number of time points becomes large. The envelope
and phase processes are no exception. For this reason, we make use of an approximate
joint distribution for the discrete representation of these processes rather than the exact
joint distribution. The Nataf distribution is particularly convenient for this purpose in the
sense that it 1s closely related to the Gaussian distribution and that it can correctly match
- the correlation structure of the process. In the next section, we describe the joint
distribution of the envelope and phase processes up to the second-order, which is

sufficient for construction of the corresponding Nataf distributions.
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6.3 Probability Distributions of Envelope and Phase Processes

The first-order joint probability density function of the Cramer-Leadbetter envelope and

phase processes for a given time ¢ is given by (Cramer and Leadbetter 1967)

2
fla,0)= 2;% SXP{— ; f} : (6.5)
where &, = E[X*(¢)] =% is the mean-square or Varianéé of the original process X(7) in
(6.1). It is evident that, for a given time #, the envelope process A(f) and the phase process
©(7) are statistically independent. Furthermore, A(#) has the Rayleigh distribution and
©O(¢) has the uniform distribution.

In principle, the n-th order joiﬁt distribution of A(f) and ©(¢) for any set of
selected time poinis £, ..., f, can be derived by transformation of the random variables
X(f;) and X (), i=1...,n, and the relations in (6.1) and (6.4). However, due to
dependence of the random variables for different time steps and the non-Gaussianity of
the enveiépe and phase processes, the joint. density function quickly becomes
complicated as the order » increases. However, the second-order distribution can be
obtained relatively easily and solutions have been available since at least 1955 (sce Price
1955, Davenport and Root 1958, Middleton 1960). Here, the solution for the second-
order joint distribution and related properties are described. | '

Let X=[X(), X)X (), X)) r[Xl,Xi,Xz,)E_'E]T denote the vector of

random variables representing the stationary Gaussian narrowband process X(¢) and its

conjugate X(¢) at discrete time points #; and #,. The joint distribution of X is given

G0 :(ZTE)zi;etExerxp{“%XTz;X} e
where
A, 0 R R
N 0 A -RE) R®)| 67)

TlR@ —Bm a0

2]

R(®)  R(1) 0 A

[
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and-
det T = 2 — R()* — R (6.8)
where A, =05 : T=f~% . R(1)=R,(1)=EX{¢)X(®)] ; and R(t)= R, .{7)
=B[X(1,)X(,)]. |
The corresponding joint distribution of the envelope and phase variables, A(z,),

A(t,), ©() and ©(z,), denoted f(a,a,,0,,68,), can be obtained by transformation of

the random variables X. Specifically, |

f(alzenapgz) = f(xlﬂ‘%i5x2"£2)|detJ(Izainxmfz),(ﬂnﬂz:Bixaz}

= G expd — Ay [(af +a§)—2aia2'y] 6.9
enPfldetE ] | 2yJdetE ] (6.9)

0<a,,a, <o and 0561,92 <27

where J is the Jacobian of the transformation, whose elements are the

():1 sxhlst:‘{'Z }x(ﬂlsffz,g;,ez)
partial derivatives of x,, %, x, and %, with respect to a,6,, ¢, and9,, as derived from

(6.1yand (6.4), and

v= %@cos-(mcr +6, - Gi - o) (6:10)
where
k(T) = y R(1)* + R(x)* (6.11)
and
o =tan™ —{A{iﬂ (6.12)
R(7)

It is seen that the envelope and phase processes are not statistically independent, i.e, in
general f(q,,4,,0,,8,) = f(a,,a,)f(6,,8,) . However, .as T, detE, — A0 | and
k(1) — 0, and accordingly y — 0. Therefore, if the time lég 1 15 sufficiently large, the
joint probability density function distribution becomes separable, i.e. [(g,a,,0,,0,) —

Sla) f{a,)f(0,)f(0,) , and the envelope and phase random variables become
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statistically independent, as expected. Obviously, the dependence of the random variables
is a function of the time lag.

By integrating over one of the phase random variables, say 8,, we obtain

aa a,a,%{T) 1 2 2
(@,0,0,) = —— 2 [ | 22D Jexp) — —e (0 +a2) 6:13
/(2.0 2myfldet ] | |JldetE 2fdetz, ] (613

where 7 (-} is the modified Bessel function of the first kind of order zero. We can see
that the joint density function f(ai,az_,ez) can be written as f(a,a,)f(9,). This implies
f(a,8,) = fla,)f(6,) and f(a,.8;) = f(a,)f(6,). Thus, although the envelope

Aprocess is not independent of the phase process, the envelope and phase at two distinct
time points (including the same time point) are statistically independent. Further
integration of (6.13) over the domain of the remaining phase angle gives the second-order

joint probability density function of the envelope process as

)= el N 2,a,%(7) __;____1__% 2, 2 '
Sla,a) \/Edetzmi {\/jdet):ﬂ} CXp 5 r———idetzﬂi a4 +a) (6.14) |

It is secen that the envelope variables at two distinct time points are statistically

dependent. However, as shown above, we can see that lim f(a,,a,) = f(a,)f(a,).

Integration of f(a,,a,,9,,0,) over the domains of ¢ and «, yields

det X 3 1 T —cos” .
f(0,,0,)= (EQR)Z;? {I_Yl{lnﬂ( Jl—yz V) ;0<60,,8, <2n (6.13)

As in the case of the envelope process, we can see that the dependence between the phase
angles at two time points decreases as the time lag increases.

Considering the complicated dependence structure between the envelope and
phase processes and also the required high order of the joint probability densi{}? function
needed for the discrete representation of these processes, it appears not to be practical to
pursue the exact high-order distribution. Instead, as mentioned in the introduction, we
explore the possibility of using the Nataf distribution model instead. For this purpose, the

correlation functions of the envelope and phase processes are needed.
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The correlation function of the envelope process, demoted R, (), has been

derived by Uhlenbeck (1943}

R (%)= ﬂg" [%;—%; I8 p('z)zj (6.16)

In the above, F(a;b;c;x) is the hyper-geometric function and

_x(® . 6.17
p(v) . . (6.17)

[

The correlation function of the phase process, denoted R.,(T), is given by Middleton
(1960), '

Rao(5) = {1+ 24 = 4¢* + - Qlp(®)]} BN AL

-1 rp -l 6 < p(T)Zk : :
where g = (27)” sin” p(t), Q(p(1))= ?—Z P and p(t) isasin (6.17).
k=t

Using the above formulae, we can compare the correlation function of the original
process with those of the envelope and phase processes. Figure 6.1 to 6.6 show the
correlation coefficient functions and the corresponding power spectral deﬁsities for
various selections of the correlation function R, () or power spectral density S, (®) of
the process X (¢). For convenience, the spectral densities have been normalized such that
the processes have unit variances. The processes in Figures 6.1, 6.2 and 6.4 are not
narrowband processes, as can be seen by examining their spectral densities. For these
processes, the rate of variation of the correlation functions of X(¢), A(¢) and O(f) are
not significantly different. The processes in ‘Figures 6.3, 6.5 and 6.6 are narrowband
processes. For these processes, the spectral density function of X(7) is concentrated in a
narrow band around a central frequency. In contrast to the former, we see that the
envelope and phase processes of the narroWband processes have correlatioﬁ functions
that exhibit much slower rate of change as compared to that of the parent process X(¢).
This implies that much larger time increments can be used in discretizing the envelope

and phase processes than discretizing the corresponding narrowband process.
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6.4 Nataf Distribution of Envelope and Phase Processes

Consider a set of random variables w=(w,,---,w,) with marginal distributions 7 (w,),
i=1,---,n, and correlation coefficients Py = Puyw, between pairs of the random variables
w, and w;, I, j=1,---,n. The Nataf joint distribution of the random variables w is

defined as

9,(z,R)

6.19
o) 0(z) (©.19)

Fwy=fw)- f(w,)
where z = (z,,-+-,z,) are joiﬁﬂy normal random variables with zero means, unit variances
and correlation matrix R=[p, ], ¢,(-) denotes their n-variate normal density function,
¢(’) denotes the uni-variate standard normal density function and f(w;)=dF(w,)/dw,
are the probability density functions of w,, i=1,..., % The random variables z, are
related to w; by |

=@ [F(w)] i=1l..n (6.20)
and the correlation coefficients p, ; are related to p; by

%]i , " _H |
py - .[:3 fw( G‘F’L ]( JG j }(QZ(ZESZijo,ﬁ)dZide : (6.21)

J

where p, and o, are the mean and standard deviation of w,, respectively.

In the Nataf distribution, the depeﬁdence between the random variables w is
described by the correlation structure of variables z. The difference between the two sets
of correlation coefficients is usually small, éxcept for strongly non-normal distributions.

Closed form expressions of p,, in terms of p, have been given by Liu and Der
Kiureghian (1986). For example, If w, and w, are Rayleigh random variables with the
correlation coefficient p, , the correlation coefficient of the corresponding normal

random variables z; and z, obtained from (6.20) is p,, = 1.028 p, — 0.029 p . For

o.4f
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uniform distribution w; and w;, the correlation coefficient of the jointly normal random

variables z, and z; is given by p,, = 1.047p, —0.047 Py -

Comparison of conditional probability density functions provides an indication of
how well the Nataf distribution fits the exact joint distﬁbuﬁon of two non-Gaussian
random variables. Figure 6.7 compares the conditional density functions f(a, |a,;) of the
amplitudes A(z) and A(s,) for a, =E[A(z,)] at selected time lags, as obtained by the
exact joint distribution in (6.14) and its Nataf approximation. Figure 6.8 compares the
conditional density functions f(8,|6,) of the phases O(z,) and ©(,) for 8, = E[O()]
at selected time lags, as obtained by the exact joint distribution in (6.15) and the Nataf
approximation. It is seen that Nataf distribution fits quite well to the joint distribution of
the amplitudes, but rather pooﬂy to the joint distribution of the phases.

~ Figure 6.9 and 6.10 show the exact joint probability density function and its Nataf
approximation of the amplitudes and phases for the time lag /T =1. For amplitudes, we
can see that the overall shape of the Nataf distribution is similar to the exact jomnt
distribution as in the conditional density function shown in Figure 6.7. For phases, in the

exact density function, the mode is formed along the line 6, =6, and ©, =6, +2x, and
the density function rapidly dies out as the difference }81 mezl increases. In the Nataf

approximation, on the other hand, there are two sharp modes at 6, =6,=0 and 6, =8,=

27, and the line between the two modes forms a flat, curved ridge. The overall shape of
the density function looks flatter than the exact one. The reason why Nataf distribution
does not fit well for the phase variables is attributed to the strong non-Gaussian property

of the uniform disiribution.
6.5 Applications

" So far, we have described the relation of the narrowband process with the envelope and
phase processes, the second-order distributions of the amplitude and phase processes, and
the Nataf distribution as a means for approximating the higher-order joint distributions of

the envelope and phase processes. In this section, two possible applications are

153




considered, i.e., simulation of a narrowband random processes, and random vibration

analysis by FORM for a narrowband input excitation.

6.5.1 Simulation of Env'eiop_e and Phase Processes

We wish to simulate a narrowband process by first simulating its envelope and phasé
processes, and then computing the corresponding realization of the process from (6.1).
For simulation, a continuous random process must be represented in a discrete form, i.e.,
in terms of a vector of random variables. We need to use the joint distribution of the
random vector. When the components of the random vector are non-Gaussian.and
dependent, as 1s the case with the envelope and phases processes, the simulation becomes
exceedingly difficult. The inverse fransform method, also known as the Rosenblatt

transformation, is known to be a general method for simulation of a dependent random

vector (Hohenbichler and Rackwitz 1981, Rubinstein 1981). Let w =(w,,---,w,) denote

the vector of non-Gaussian dependent random variables representing the process of

interest and let F{w,,...,w,) denote their joint cummlative distribution function. The

mverse fransformation method uses the following formulae for the simulation of w:
Fw)=u,

F,(w,w)=u .

2 21 1 2 (6.22)

E(wjwyuw, ) =u,

where u = (u,-,u,) are independent, uniformly distributed random variables in [0, 1]
and E(Wféw,,---, w,_,) denotes the conditional distribution of w, for given values of

W, ..

-» W,y . For a random sample of w, one can find the corresponding w by solving the
set of equations (6.22). However, as the number of random variables increases, the
conditibnai distribution, if it is known, becomes more complicated and it is harder to
solve the set of equations (6.22). Therefore, this method is not practical for simulation of
non-Gaussian random processes. |

Simulation of a random process having the ‘Nataf distribution is much simpler

than that described above. In fact, the simulation of a non-Gaussian dependent vector
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described by the Nataf distribution is as simple as that of a Gaussian vector. The only
additional step is the marginal transformation (6.20), which must be computed for each
simulated value. The steps of the simulation of a non-Gaussian, Nataf random process

w{t)} with marginal cumulative distribution function F(w) can be summarized as

follows:

o Select a set of time points #,,...,7, and compute the corresponding correlation

n

coefficients p,, i, j=1,...,n, of the process w(z). Define w, = w(Z,).
s Using the formulae relating p,; and p, , for the given marginal distribution, construct
the corresponding correlation coefficient matrix R = [p, ;] and find L such that

R =LL" by Cholesky Decomposition. Note that the time points should be selected
sufficiently apart so that R is not nearly singular.

e Simulate a set of standard normal variables u = (5 00,u,)

e Compute z < Lu _
e Compute w, = F[®(z)].
e Use an appropriate interpolation function to describe the values of the process
betwéen the time points values w(?,) and w(z,,,).

The above is performed for the envelope and phase farocesses, A(t)y and O3 ,
respectively, and the resulting realization is used in (6.1) to compute the corresponding
reahzation of the parent process X (¢).

Flgure 6.11 shows one sampie of a narrowband process simulated by the above

procedure.  The correlatlon function of the narrowband process s

Ry (T) =COSmCT§-I—§£;—C;—2 with _=2n rad/sec and b = 1 sec”". The time points have
- _

been selected at intervals of Ar = 2 sec for the envelope process and At = 4 sec for the
phase process. 1\40{6 that these intervals are even longer than the predominant period of
the process, which is 1 sec. The dotted line in Figure 6.11 is the envelope process and the
dashed line is the phase process. The corresponding narrowband process, shown as a
solid line in Figure 6.11, is gencrated using (6.1). This realization of the process seems to

be reasonable and consistent with what one expects of a narrowband process. However,
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considering the approximation-introduced by using the Nataf distribution, cantion should
‘be exercised in using this simulation method for the study of problems that deal with the

tails of the distributions, e.g., the first-excursion probability above high thresholds.
- 6.5.2 Application to FORM

-Consider a linear vibrating system subjected to a Gaussian excitation f(¢)
X(t) + 2L0x() + 0’ x(f) = f(1) (6.23)
where f(¢) is a narrowband Gaussian excitation with variance ¢® =1 and the correlation

function R(T)=COS@0TSL§§%—2 with ©, =27 rad/sec and & = 1 sec”’. The system
. _

parameters are set as @ = 4rn rad/sec and £ = 0.05. With the Gaussian excitation, the
response of the linear system is also a Gaussian process, whose variance is estimated as

~ 0.00844)* at the stationary state. We wish to compute the probability of the
P

response exceeding a threshold x, at a given time.

We wish to solve the problem using the envelope and phétse procésses. We

represent the narrowband excitation f(r) as

£(0)= A®)oos[o £ +6()] (6.24)
where A(r) is the envelope process and ©(z) is the phase process, as defined in Section
6.2. Recall that for a nam)W—band process the correlation matrix obtained from a dense
grid of tlme points is near singular. To avoid this problem, we dlscretize the envelope and
phase processes mstead of the process f(z) itself.

Let A=[4, -, 4] and 8=[0,,,0,]" denote veciors of random variables
with elements 4, = A(z,) and ©, =0(z) , respectively, for a grid of time points £,
i=1 ...., n. We use a simple linear interpolation function to describe the processes A(z)
and @(z) between the time points. The continuous functions are then used in (6.24) to

compute the corresponding description of the narrowband excitation. The response of the

linear oscillator is thus completely defined by the set of random variables A and ®. The
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problem is now formulated as a FORM reliability problem, which requires the solution of
the constrained optimization problem

min {ju: G(u,2) = x, - x(w,z) < 0} - (6.25)
where u is the standard normal vector obtained by transforming the variables A and ©
having the Nataf distribution.

The above reliability problem is nonlinear due to the nonlinear reiation between
the non-Gaussian variables A and ® on one hand and the standard normal variables u on
the other. The FORM solution can be obtained by the iterative method introduced in
Section 2.2.2. For the FORM solution, we have set the target response time as ¢, = 6 sec
and have taken the time intervals of Az = 0.5 sec for the envelope and phase processes.
With a large time interval as taken above, we need only 26 random variables, ie. 13
~ variables for the envelope process and 13 variables for the phase process, to represent the
whole narrowband process. The time step for the corresponding narrowband process has
been taken as one twentieth of Af. The results of FORM analysis are listed in Table 6.1.
We can .se,e that the values of the FORM solutions are not satisfactory. _

To investigate the reason for the poor result by FORM, we examine the shape of
the liinit-stafé function around the origin of the standard normal space. At the origin, we

have a zero vector. Then, the normal counterparts z,, i =1,---, 2n, are all zeros, and the
corresponding envelope and phase vectors have the median values, say, a=[a,,, -, a,,]
and § ={8,;,---,0,5]". Under this condition, the system undergoes harmonic vibration
with an amplitude a;ﬁpmkimately equal to 1.170_, as shown in Figure 6.12. By putting
x, =1.17c, in the limit state function (6.25) and setting the {arget time ¢, aé the time of
the system reaching the amplitude, we obtain “uﬂ =0, ie, p = 0 and P, = 0.5
Comparing with the exact solution f§ = 1.17 (£, =0.12), we can see that there is a large

difference. One can understand the reason of this by examining the shape of the limit
state surface, which is shown in Figure 6.13 along two axes. It is evident that the
nonlinearity of the limit-state surface comes from the nonlinear relation of the envelope

and phase variables with the standard normal variable.
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Monte Carlo simulation was performed using the Nataf distribution for the
envelope and phases processes. If the simulation shows results similar to the exact
solution, we can conclude that the approximation by Nataf distribution works well and
the error is due to the FORM approximation. As shown in Table 6.2, the results of the
simulation are in close agreement with the exact solutions in Table 6.1 for low thresholds,
but the agreement deteriorates at the high threshold. This suggests that fhe Nataf
distIiBution performs well iﬁ the high probabﬂify density region and rather poorly in the
tail region. Considering that the Nataf distribution fits the joint distribution up to the
second-order moments, the poor performance in the tail region is not surprising. It is alsé
clear that ‘the large errors found in the comparison in Table 6.1 at low thresholds are
mostly due to the FORM approximation, and less due to the Nataf approximation of the
joint distribution of the envelope and the phase processes.

In summary, two major factors are contributed to the poor result of the FORM
approximation in this problem. One is the nonlinear relation of the envelope and "phase'
random variables with the standard normal random variables. This causes a strong
nonlinearity of the limit-state surface in the standard normal space. The other is the
approximate construction of the joint distribution by the Nataf approximation. This
causes problems in the analysis for the tail region. .

We conclude that this approach may not be appropriate for the FORM analysis of
random vibrations due to the strong nonlinearity of the limit state surface. Considering
that very few random variables are used to represent the continuous random process,
‘however, this approach can be -efficiently used for simulation of random ﬁbration

problems concerned with small thresholds having high probability density.

158




Table 6.1. FORM solution of random vibration problem by Nataf approximation of
envelope and phase processes.

Threshold Computed Reliability Index B Exact Reliability Index
1o, : —0.21 1.0
20, 1.16 2.0
3o 2.36 3.0

X

Table 6.2. Monte Carlo simulation of the random vibration problem using Nataf

" approximation of envelope and phase processes.

No. of Simulations

Threshold Generalized Reliability Index f3.
: (c.ov.=0.1)
1o, 1.01 (p, =1.56E~1) 544
26, 1.91 (pf =2.78E-2) 3,520
30, 2.72( p, =3.25E-3) 30,759
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167




25 Wataf
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Figure 6.12. (a) Narrowband excitation f(¢#) when all components of the envelope and
phase random vectors are median values, i.e, @, and 6,,,, i=1,---,n, and
(b) the response of the linear system to the narrowband excitation.

171




L
w
T

o
tn
T

o
W
T

G(uy=0

Figure 6.13. Limit-state surface G(u) = 0 along principal axis u; for x, =1.17c, .

0

Hi'

172

0.5




7 Summary and Conclusions

7.1 Summary of Major Findings

Approximate solution methods for nonlinear random vibration problems are developed
using the methods of time-invariant structural reliability. The approach requires a
representation of the continuous-parameter input process in terms of a finite number of
ranidom variables, and a reformulation of the random vibration problem into one or more
limit-state functions for each response statistic of interest. Considered statistics include
the distribution of the response at a given time, the mean oui-crossing rate, the first-
excursion probability, the mean and variance of the cumulative excursion time, the mean
duration of a single excursion, and the mean of the cumulative area of excursion. System
uncertainties are easily accounted for by considering the system parameters as additional
random variables. Standard structural reliability computation methods, such as FORM,
SORM and various sampling techniques, are used to approximately estimate these
statistics of the nonlinear random vibration response. |

A key step in the proposed solution approach is finding the design point, which is
the point on a limit-state surface that is nearest to the origin in a transformed standard
normal space of the random variables. This involves solving a constrained nonlinear
optimization problem, which generally requires i‘{érative calculations of the dynamic
response and its gradient for selected realizations of the random variables. Two factors
contribute to making this problem challenging: (1) the large number of random variables
resulting from the discretization of the input process, and (2) the nonlinear nature of the
limit-state function, which may arise from nonlinearity in the system response, non-
Gaussian nature of the input process, or uncertainty in the system characteristics. It is
known that for a linear oscillator subjected to a Gaussian white noise input, the design-
poﬁnt excitation is proportional to the mirror image of the unit-impulse response function
of the oscillator. Motivated by this finding, we investigate the dynamié characteristics of
nonlinear oscillators by observing their free vibration and its mirror image. Specifically,

the excitation that generates the mirror image of the free vibration is determined. It is
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shown that for a nonlinear elastic oscillator subjected to a Gaussian white noise, the
design point excitation is identical to the excitation thét generates the mirror image of the
free vibration response, when the oscillator is released from the target threshold. For
more general nonlinear systems, including multi-degree-of-freedom systems, a similar
approach leads to an approximate solution of the design point excitation. This solution.
can be used as a “warm” starting point in the optimization algorithm, thus significantly
reducing the computational effort required for finding the exact design point.

Next, we investigate the accuracy and effectiveness of approximate reliability
computation techniques, including FORM, SORM and sampling, for solving nonlinear
random vibration problems. FORM approximates the limit-state surface by a tangential
hyperplane at the design point. Though FORM is the simplest method among the
methods investigated in this report, its accuracy is found to be fairly good for most
moderately nonlinear random vibration problems. For several examples studied, the
FORM approximation is found to be consistently superior to results obtained from the
equivalent linearization method for high response thresholds that are of interest in
reliability analysis.

SORM is usually used as a refinement tool to improve the accuracy of the FORM
- approximation. In SORM, the limit-state surface is approximated by a quadratic surface
using the principal curvatures at the design points. While SORM usually requires second-
derivative calculations, methods are available to compute the principal curvatures with
large magnitude in an iterative way by use of the response gradients. However,
investigations in this report revealed that for certain nonlinear random vibration problems
the shape of the limit-state surface near the design point changes rapidly and, therefore,
the curvatures estimated at the design point may not properly represent the shape of the
limit-state surface away from the design point. As a result, estimates obtained by SORM
may not be reliable. For this reason, SORM approximations are not pursued in this report.

Two sampling techniques are investigated in this report: importance sampling
using désign points, and sampling on the orthogonal plane. It is found that impoﬁance
sampling using the design points is an efficient method for approximate solution of
random vibration problems involving the distribution of the response. However, this

approach is not effective for solving the mean out-crossing rate probiem. It is also found -
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that the sampling on the orthogonal plane is better than or at least equivalent to the
important sampling method in its efficiency. Furthermore, this sampling method is found
to be effective for solving the mean out-crossing rate problem. Both methods are found to
be significantly more efficient than the crude Monte Carlo simulation method.

" The next topic of investigation is the first-excursion probability of nonlinear
random vibration response. After discretizing the time axis, the first-excursion probability
is represented as a series-system reliability problem. This formulation has been used
recently to develop an efficient sampling method for computing the first-excursion
probability of linear systems. In this report, importance sampling uging design points and
the sampling on the orthogonal plane methods are used to extend this series-system
reliability approach to solving the first-excursion probability of nonlinear systems.
Comparisons with the crude Monte Carlo simulation method demonstrate the efficiency
and accuracy of the two sampling methods. It is found that the sampling on the
orthogonal plane is at least as efficient as the sampling using design points method.

Lastly, an approximate representation of a narrowband Gaussian process in terms
of discretized envelope and phase processes using the Nataf distribution model is
explored. Second-order joint probability disiributions of the envelope and phase
processes are investigated and the Nataf distribution model is used to approximate. the
second- and higher-order joint distributions. With this formulation, it is possible to
approximately represent the narrowband process with a relatively smali number of
random variables (compared to that required if the processes itself is discretized), which
is convenient for FORM and sampling analysis. However, application of this method in
conjunction with FORM does not produce sufficiently accurate results. Further analysis
reveals that the error lies mostly in the Nataf approximation of the second- and higher-

order joint distributions of the envelope and phase processes.

7.2 'Recommendations for Future Study

Regarding the proposed approach as a solution method for nonlinear random vibration
problems, several topics are recommended for future research to improve the efficiency

of the solution procedure and the accuracy of the solution.
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Formulation of limit-state functions to describe response statistics of interest. In this
report, a number of response statistics, including the distribution at a given time, the
mean out-crossing rate, the mean and variance of cumulative excursion time, and the
cumulative area of excursion, were formulated. Identification of other response
statistics of interest and formuiaﬁon of corresponding limit-state functions would
broaden the scope of application of the proposed methodology.

Development of a method for efficient representation of a continuous random
process. In Chépter 6, we explored approximate generation of a narrowband process
in terms of the envelope and phase processes using the Nataf distribution. Though the
result 1s not sufficiently accurate for the reliability analysis, the method is far more
efficient in terms of the number of random variables. There can be many other
approaches for representation of a continuous random process. For example, one can
use the frequency domain analysis to .represent a continuous random process. More
investigation on the effective representation of a continuous random process is
desirable.

Development of more efficient optimization algorithm to find the design point. In this
report we developed an efficient approach to find the design point based on the
dynamic characteristic of the oscillator. This approach may not be quite efficient for
general nonstationary problems having spectral nonstationarity or strongly non-
Gaussian input process. To -déaI with general problems efficiently, development of
more efficient algorithm for finding the design point is necessary.

Investigation of the geometry of the lmit-state surface in high-dimensional standard
normal space. When a random vibration problem is solved using the proﬁosed
approach, one inevitably has to deal with a large number of random variables. For a
high-dimensional nonlinear problem, understanding of the geométly of the limit-state
surface can help to develop more accurate solution tools, whether one uses analytical
approaches or simulation techniques. Techniques to explore and map the surface in

the standard normal space would be useful.
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Appendix A Formula for Bi-variate Normal Probability

Consider the bi-variate standard normal cumulative probability function with correlation

coefficient p;3, deﬁned by

Pz

D, (1,1, pp, ) = Pl )P, } + J.(Pz (uy,u,, p)dp (A1)

where @a(241,us,p) 1s the bi-variate standard normal probability density function with zero
means, unit variances and correlation coefficient p.

Our interest is in the special case where u; = —u; and py2 = —1+dp, where dp > 0 is
close to zero. For this special case, the integral in (A.1) can be reduced into a simple
expression, as shown 5eiow. First, observe that |

O, (0, ~,~1) =0 (A2)
It follows that

-1+3p

i  [o,Gn,-u,p)dp =-OWu)D(-w) (A.3)

dp—=0

For our special case, (A.1) can be written as

~1+8p

O, (o, — i, =1+ 6p) = P(u, )O(—u, ) + I@z(u§’ —u,p)dp
2 .

—1+8p

-1
= )O(-) + [o,(—u,p)dp+ o, (u, ~u,p)dp
' 0 -1

~1+&p

= j@z(ui’_uvp)dp
-1
17 ( ul J

= exp| ——— ldp Ad
n _J; J1-p? I-p (A4)

Considering that p ~ —1 in the narrow range of the integration, the exponential term is

nearly constant and can be taken out of the integral, vielding the approximation
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1 75 L |
Q)E(ulx—ui:—l-i_ép) z—exp(_ _Jm-] j dp
27

2 34 i1— pz
~ —z—l;t-exp(—- u—;}[sin" {(—1+06p)— sin;I (—1)] (A.5)

Table A.1 compares solutions obtained by the above formula with results obtained by
numerical integration of (A.1) with a high level of accuracy. The comparison is made for
é:énge of u, and 8p values that are of interest in the estimation of the mean out-crossing
rate. It is seen that the simple expression in (A.5) for the bi-variate probability provides

excellent accuracy for all the parameter values considered.
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Table A.1. Comparison of the results of the numerical evaluation of (A.1) and the
approximation formula (A.5).

i = =it 5p Numerical Evaluation of | Approximation Formula
(A1) (A.5)

1E-2 3.03E-3 3.05E-3
1E-3 9.52E-4 9.64E-4

2

i 1E—4 2.93E—4 3.05E-4
1E-5 8.51E-5 9.64E-5
1E~2 2.48E—4 2.50E-4
1E-3 7.84E~5 7.91E-5

: 1E-4 2.43E-5 2.50E-5
IE-5 7.23E-6 791E-6
1E-2 7.44E-6 7.56E-6
1E-3 23766 2.39E-6

! IE—4 7.39E-7 7.55E-7
1E-5 2.23E-7 2.39E-7
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