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Bayesian inference of a spectral graph model for brain 
oscillations

Huaqing Jina,1, Parul Vermaa,1, Fei Jiangb, Srikantan S Nagarajana, Ashish Raja,1

aDepartment of Radiology and Biomedical Imaging University of California San Francisco, San 
Francisco, CA, USA

bDepartment of Epidemiology and Biostatistics University of California San Francisco, San 
Francisco, CA, USA

Abstract

The relationship between brain functional connectivity and structural connectivity has caught 

extensive attention of the neuroscience community, commonly inferred using mathematical 

modeling. Among many modeling approaches, spectral graph model (SGM) is distinctive as it 

has a closed-form solution of the wideband frequency spectra of brain oscillations, requiring only 

global biophysically interpretable parameters. While SGM is parsimonious in parameters, the 

determination of SGM parameters is non-trivial. Prior works on SGM determine the parameters 

through a computational intensive annealing algorithm, which only provides a point estimate 

with no confidence intervals for parameter estimates. To fill this gap, we incorporate the 

simulation-based inference (SBI) algorithm and develop a Bayesian procedure for inferring the 

posterior distribution of the SGM parameters. Furthermore, using SBI dramatically reduces 

the computational burden for inferring the SGM parameters. We evaluate the proposed SBI-

SGM framework on the resting-state magnetoencephalography recordings from healthy subjects 

and show that the proposed procedure has similar performance to the annealing algorithm in 

recovering power spectra and the spatial distribution of the alpha frequency band. In addition, 

we also analyze the correlations among the parameters and their uncertainty with the posterior 

distribution which cannot be done with annealing inference. These analyses provide a richer 

understanding of the interactions among biophysical parameters of the SGM. In general, the use 

of simulation-based Bayesian inference enables robust and efficient computations of generative 

model parameter uncertainties and may pave the way for the use of generative models in clinical 

translation applications.
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1. Introduction

A key endeavor in the field of neuroscience is to uncover the relationship between the 

brain’s complex electrophysiological and functional activity, and its underlying structural 

wiring contained in white matter fiber projections (Fornito et al., 2015; Suárez et al., 2020). 

Functional activity between the gray matter regions is estimated with functional magnetic 

resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography 

(MEG), while the structural wiring is assessed using diffusion tensor imaging from MRI. 

The brain structure-function relationship is then investigated using various data-driven and 

mathematical modeling-based techniques, assuming structural connectivity as a graph with 

different brain regions as graph nodes connected to each other via edges that are informed by 

the white matter fiber projections.

While both data-driven (Strogatz, 2001; Buckner et al., 2005; Achard et al., 2006; Bassett 

and Bullmore, 2006; Chatterjee and Sinha, 2007; He et al., 2008; Ghosh et al., 2008; 

Bullmore and Sporns, 2009; Rubinov et al., 2009; van den Heuvel et al., 2009; Bassett 

and Bullmore, 2009; Abdelnour et al., 2014; Hermundstad et al., 2013; Park and Friston, 

2013; Abdelnour et al., 2018) as well as modeling techniques (Wilson and Cowan, 1973; 

David and Friston, 2003; Destexhe and Sejnowski, 2009; El Boustani and Destexhe, 2009; 

Honey et al., 2009; Spiegler and Jirsa, 2013; Cabral et al., 2014; Muldoon et al., 2016; 

Siettos and Starke, 2016; Cabral et al., 2017; Breakspear, 2017) have been employed to 

uncover the brain structure-function relationship, mathematical models additionally provide 

insights into the underlying biophysics of brain activity. After fitting the model to empirical 

fMRI, EEG, and MEG data, the inferred model parameters can serve as biophysically 

interpretable markers of disease and brain states (Honey and Sporns, 2008; Alstott et al., 

2009; Haan et al., 2012; Yang et al., 2016; Zimmermann et al., 2018; Singh et al., 2020). 

For example, Zimmermann et al. Zimmermann et al. (2018) demonstrated that the model 

parameters can predict cognition. However, the practical impact of model-based biomarkers 

of pathophysiology is hampered by two key challenges, described below.

Lack of interval estimations and posterior probabilities.

An important goal of practical model fitting is to quantify how well a model’s parameters 

explain empirical neuroimaging data, and how confidently those estimates can be obtained. 

It is, therefore, necessary to capture their variability and find out all possible parameter 

settings compatible with the observed phenomena (Gonçalves et al., 2020). Bayesian 

inference is the established approach for achieving these goals, by making available the 

posterior distribution of parameters given the observations. Posterior distribution in turn 

provides rich information about how model parameters interact together, and quantifies 

the uncertainty of the model output — potentially critical for obtaining computational 

biomarkers in disease. Unfortunately, Bayesian inference methods have been proven to be 
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quite challenging for most current computational models of brain activity (Gonçalves et al., 

2020; Cranmer et al., 2020; Van Geit et al., 2016).

Tractability of model inference.

We identify three issues limiting the tractability of Bayesian model evidence in the field. 

First, powerful sampling methods like Markov Chain Monte Carlo (MCMC) require 

extremely large samples, numbering in the hundreds of thousands. Most current models, 

like the coupled neural mass models (NMMs), are evaluated via time-consuming numerical 

integration techniques, which in turn impose a prohibitive computational burden on any 

sampling technique. Second, coupled NMMs involve large parameter spaces, i.e. number of 

internal parameters that must be jointly inferred, making full Bayesian inference impractical. 

Third, due to inherent non-linearity, the theoretical posterior density in even the simplest 

computational models is so convoluted, non-smooth, and non-convex that conventional 

optimization or MCMC sampling techniques encounter huge challenges. Many of these 

issues are highlighted in previous studies (Hartoyo et al., 2019; Raj et al., 2022; Xie et al., 

2019), and together they have ensured that hardly any Bayesian inference is performed in 

these settings.

In this paper, we present a novel way for Bayesian inference of computational models of 

neural activity, focusing specifically on the recently proposed spectral graph model (SGM), 

a linear biophysical generative model that can accurately capture the steady state wideband 

power spectral density (PSD) as well as the spatial distribution of the alpha band obtained 

from MEG (Raj et al., 2020). We choose the SGM for the following reasons:

1. SGM involves a parsimonious set of global biophysically interpretable 

parameters; in our previous paper, we demonstrated that only 7 global, spatially-

invariant parameters, each having distinct biophysical meaning, were sufficient 

to accurately capture empirical MEG PSD (Verma et al., 2022a,b). This may 

be compared against previous models that have typically required substantially 

more spatially-varying parameters.

2. SGM explicitly estimates regional PSD and therefore can directly fit the 

frequency PSD obtained from MEG/EEG. Other models typically provide time-

domain simulations only, and their spectral content is usually not a target of 

model fitting.

3. SGM is extremely fast to evaluate since its solution can be obtained in a 

closed-form in the frequency domain. Other models typically require lengthy 

time-domain simulations, which can be impractical in MCMC or other sampling 

techniques.

As a result of its linearity and closed-form evaluation without the need for long simulations, 

SGM parameter inference is far more tractable compared to non-linear neural mass models 

— where identifiability of model parameter is not guaranteed (Hartoyo et al., 2019; Raj et 

al., 2022; Xie et al., 2019).

In our prior works we had estimated SGM parameters using a global optimization algorithm, 

the dual annealing method, as point estimates (Raj et al., 2020; Verma et al., 2022a,b; Raj 
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et al., 2022), as a preferred alternative over continuous gradient descent-based minimization. 

However, since the objective function of estimating SGM parameter (Raj et al., 2020; 

Verma et al., 2022a) is non-convex, the annealing approach does not guarantee a global 

optimum. Moreover, a single point estimate from the annealing method is far from enough 

to uncover the underlying entire range and behavior of biophysical processes and to lead to 

new insights. On the contrary, Bayesian method allows the estimation of the full posterior 

distribution of the SGM parameters, which is necessary for biological interpretation. As a 

result, Bayesian method is more suitable for inferring the SGM parameters. However, the 

conventional Bayesian inference is challenging due to the fact that the theoretical posterior 

density of SGM parameters may be rather complicated which causes difficulty in sampling.

To circumvent the computational difficulty, we propose a novel method to perform Bayesian 

inference of the SGM parameters. The method approximates the posterior density of the 

SGM parameters by using a neural network model, which is trained through a simulation-

based inference (SBI) framework (Cranmer et al., 2020). Thus the method is referred to as 

SBI-SGM. Our main contribution is to show that this custom combination of SGM with 

SBI is exquisitely well-matched for estimating posterior distribution of generative model 

parameters.

This provides a far more appealing practical utility, which may be exploited in future clinical 

applications. Given its speed, this tool can be used to quickly infer posteriors of model 

parameters for a large number of subjects which can subsequently be used to identify 

parsimonious markers of disease and brain states. In particular, SBI-SGM can capture the 

uncertainty of the estimates via providing the credible intervals, which are instrumental in 

deriving statistically robust conclusions. Once extensive validation on larger samples have 

been demonstrated, our approach can be a meaningful step in alleviating the critical issue of 

lack of large sets of empirical data.

Applying the SBI tool to the SGM, we demonstrate that the posteriors can accurately 

capture the empirical spatial distribution of alpha frequency band and PSD in MEG, and 

the inference of posteriors is substantially faster than the point estimate inference algorithm 

used in prior works. This combination of a fast and parsimonious forward model (SGM) 

with a fast neural network for posterior inference (SBI) is not currently available in the field 

of structure-function relationship, and could constitute a critical advance in the applicability 

of computational models to practical scenarios.

2. Methods

2.1. Dataset

We study the resting-state MEG data obtained from 36 healthy subjects (23 males, 13 

females; 26 left-handed, 10 right-handed; mean age 21.75 years, age range 7–51 years) as 

also reported in Raj et al.’s study (Raj et al., 2020; Xie et al., 2020). All study procedures 

were approved by the institutional review board at the University of California at San 

Francisco and were in accordance with the ethics standards of the Helsinki Declaration 

of 1975 as revised in 2008. MRI followed by tractography was used to generate the 

connectivity and distance matrices. The publicly available dataset consisted of processed 
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connectivity and distance matrices, and PSD for every subject. The data collection procedure 

was described in Raj et al. (2020), Verma et al. (2022a) as well as summarized below.

MRI.—A 3 T TIM Trio MR scanner (Siemens, Erlangen, Germany) was used to perform 

MRI using a 32-channel phased-array radiofrequency head coil. High-resolution MRI 

of each subject’s brain was collected using an axial 3D magnetization prepared rapid-

acquisition gradient-echo T1-weighted sequence (echo time [TE] = 1.64 ms, repetition time 

[TR] = 2530 ms, TI = 1200 ms, flip angle of 7°) with a 256-mm field of view, and 160 

1.0-mm contiguous partitions at a 256 × 256 matrix. Whole-brain diffusion-weighted images 

were collected at b = 1,000 s/mm2 with 30 directions using 2-mm voxel resolution in-plane 

and through-plane.

Region parcellations.—The T1-weighted images were parcellated into 68 cortical 

regions and 18 subcortical regions using the Desikan–Killiany atlas available in the 

FreeSurfer software (Fischl et al., 2002). To do this, the subject-specific T1-weighted images 

were back-projected to the atlas using affine registration, as described in the previous studies 

(Abdelnour et al., 2014; Owen et al., 2013).

Structural connectivity networks.—Different structural connectivity networks were 

reconstructed with the same Desikan–Killiany parcellations. Firstly, openly available 

diffusion MRI data were obtained from the MGH-USC Human Connectome Project to 

create an average template connectome. As in previous studies (Abdelnour et al., 2014; 

Owen et al., 2013), subject-specific structural connectivity was computed on diffusion MRI 

data: Bedpostx was used to determine the orientation of brain fibers in conjunction with 

FLIRT, as implemented in the FSL software (Jenkinson et al., 2012). In order to determine 

the elements of the adjacency matrix, tractography was performed using probtrackx2. 4000 

streamlines were initiated from each seed voxel corresponding to a cortical or subcortical 

gray matter structure and how many of these streamlines reached a target gray matter 

structure was tracked. The weighted connection between the two structures ci, j, was defined 

as the number of streamlines initiated by voxels in region i that reach any voxel within 

region j, normalized by the sum of the source and target region volumes (ci, j = streamlines
vi + vj

). 

Afterward, connection strengths were averaged between both directions (ci, j and cj, i) to form 

undirected edges. To determine the geographic location of an edge, the top 95% of nonzero 

voxels by streamline count were computed for both edge directions. The consensus edge was 

defined as the union between both post-threshold sets.

MEG data.—MEG recordings were acquired at UCSF using a 275-channel CTF Omega 

2000 whole-head MEG system from VSM MedTech (Coquitlam, BC, Canada). All subjects 

were instructed to keep their eyes closed for 5 min while their MEGs were recorded at a 

sampling frequency of 1200 Hz.

MEG processing and source reconstruction.—MEG recordings were down-sampled 

from 1200 Hz to 600 Hz, then digitally filtered to remove DC offset and any other noisy 

artifact outside of the 1 to 160 Hz bandpass range. Since MEG data are in sensor space, 

meaning they represent the signal observable from sensors placed outside the head, this 
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data needed to be “inverted” in order to infer the neuronal activity that had generated 

the observed signal by solving the so-called inverse problem. Adaptive spatial filtering 

algorithms were used from the NUTMEG software tool written in house (Dalal et al., 

2004). To prepare for source localization, all MEG sensor locations were co-registered to 

each subject’s anatomical MRI scans. The lead field (forward model) for each subject was 

calculated in NUTMEG using a multiple local-spheres head model (three-orientation lead 

field) and an 8 mm voxel grid which generated more than 5000 dipole sources, all sources 

were normalized to have a norm of 1. Finally, the MEG recordings were projected into the 

source space using a beamformer spatial filter. Only the sources belonging to the 68 cortical 

regions were selected to be averaged around the centroid. All dipole sources were labeled 

based on the Desikan–Killiany parcellations, then sources within a 20 mm radial distance 

to the centroid of each brain region were extracted, and the average time course of each 

region’s extracted sources served as empirical resting-state data for our proposed model. 

MEG recordings were bandpass filtered between 2 to 45 Hz using firls in MATLAB (Anon, 

2020) and the static frequency PSD was generated for every region of interest using the 

pmtm algorithm in MATLAB (Anon, 2020).

2.2. Spectral graph model

SGM is a hierarchical, linear, analytic model of brain oscillations, which has a closed-form 

solution in the Fourier frequency domain via the eigen-decomposition of a graph Laplacian 

(Raj et al., 2020; Verma et al., 2022a,b). A typical SGM has two model layers, a mesoscopic 

layer for the local neuronal subpopulations of every brain region and a macroscopic layer 

for the long-range excitatory neuronal subpopulations of the whole brain. SGM is briefly 

described below, and detailed illustrations can be found in the supplementary document and 

in prior publications (Raj et al., 2020; Verma et al., 2022a).

SGM is characterized by seven identifiable parameters s = τe, τi, α, v, gei, gii, τG
T, which 

include the excitatory and inhibitory time constants τe, τi and neural gains gei and gii at the 

mesoscopic level, and long-range excitatory time constant τG, coupling constant α, speed v at 

the macroscopic level. Given the signals x1 t , …, xN t T with N regions of interest (ROIs) in 

the time domain, the closed-form solution of SGM is obtained in the Fourier domain:

X(s, ω) = ℱ x1 t , …, ℱ xN t T = jωI + 1
τG

FG τG; ω ℒ(α, v; ω)
−1

Hlocal τe, τi, gei, gii; ω P(ω),

(1)

where ω is the angular frequency, X s, ω  is a vector of the Fourier transformation, or 

equivalently the PSD, of the macroscopic signal over all brain regions of interest at 

frequency ω, ℱ is the Fourier transformation, ℒ is the complex Laplacian, Hlocal is the 

mesoscopic model’s transfer function, P ω  is the input noise spectrum, and FG ω  is the 

Fourier transform of a Gamma-shaped neural response function, given as 1/τG
2

jω + 1/τG
2 . This 

response function is governed by the characteristic long-range excitatory time constant τG, 

and the function is intended to serve as a lumped model of various processes, including 
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dendritic arborization, somatic conductance, synaptic capacitance, etc (Raj et al., 2020). To 

facilitate the illustration of SGM, a schematic is presented in the top panel of Fig. 1.

2.3. Simulation-based inference for SGM

SBI is a powerful tool for the inference of large complex statistical models that have been 

extensively applied in many areas of science and engineering (Papamakarios and Murray, 

2016; Greenberg et al., 2019; Durkan et al., 2019). We adapt the SBI method for SGM 

parameter estimation and inference. Let X s, Ω = X s, ω ω ∈ Ω be the model output PSD in 

dB scale (Persson and Björkman, 1988) where Ω is the set of the frequency points we 

used and it contains 40 equally spaced frequencies in the range 2–45 Hz in the manuscript. 

G X s, Ω  is a monotonic transformation that standardizes the PSD across the frequency 

into a z-score; standardizes the regional distribution of alpha band power (i.e. summation of 

PSD from 8–12 Hz); and finally concatenates both into a single vector. Here and throughout 

the text, we present the PSD in dB scale. In our SBI-SGM framework, we assume the data 

model is

y = G X s, Ω + ϵ,

(2)

where ϵ N 0, σ2I  is additive i.i.d. noise with standard deviation (SD) σ and I is an identity 

matrix.

The random noise in (2) captures the model misfitting error in SGM model. We adopt the 

Gaussian noise for convenience; indeed, SBI-SGM demonstrates resilience concerning the 

choice of the noise distribution, provided that the standard deviation is well controlled, as 

delineated in Section S.2 of the supplementary material. Without this random noise, the 

target posterior density is discontinuous, which is difficult to estimate due to the well-known 

Gibbs phenomenon (Llanas et al., 2008). Adding this random noise to the model results in a 

smooth posterior distribution of SGM parameters, which can be accurately approximated by 

a neural network (Leshno et al., 1993).

Similarly, we define the observed sample yo = G XMEG Ω  where XMEG Ω  is the observed 

MEG PSD.

Since the parameters in the SGM model are assumed to be bounded to satisfy biological 

constraints, bounded priors are typically adopted for them, which causes difficulties for 

posterior sampling with SBI (Deistler et al., 2022). To address this issue, we re-parameterize 

the parameters so that the posterior sampling can be performed on the real line. More 

specifically, let ℋ x  be a scaled logit transformation function (Hilbe, 2009) defined as

ℋ(x) ≡ 10 × log x − xl / xu − xl
1 − x − xl / xu − xl

, for x ∈ xl, xu ,
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where xl and xu are lower and upper bounds of variable x, respectively. Slightly abusing 

the notation, let θ = ℋ s , where ℋ s  represents the values of function ℋ applied on each 

element of s.

Under a Bayesian framework, we are interested in the posterior distribution of θ given 

y, particularly the Bayesian credible interval of θ, which captures the uncertainty of the 

SGM parameters. To obtain the credible interval, we estimate the posterior distribution 

of θ through the SBI procedure (Cranmer et al., 2020). The density of y is denoted by 

p y ∣ θ  following (2), which is a multivariate Gaussian density function. We impose a 

multivariate Gaussian prior π θ  on θ. The posterior density is qΦ θ ∣ y ∝ π θ p y ∣ θ , where 

Φ is the unknown parameters that determine the posterior distribution. Instead of obtaining 

the posterior density for the SGM parameters s directly, we first derive the posterior density 

for θ, which results in the target posterior distribution through a Jacobian transformation 

(Henderson and Searle, 1979).

We use a deep learning architecture, namely neural spline flow (NSF) (Durkan et al., 

2019), to model the functional form of qΦ, where Φ is the parameter in the deep learning 

network. The dimension of Φ increases with the number of network layers in NSF, and 

when the dimension of Φ approaches infinity, qΦ approaches the true posterior distribution. 

When the deep learning architecture is given, Φ is the only unknown parameter in qΦ θ ∣ y . 

Hence estimating the posterior density is equivalent to estimating Φ. Now note that the 

true posterior distribution maximizes E log qΦ θ ∣ y , where the expectation is taken with 

respect to y and θ, we propose to obtain an estimator for Φ through maximizing the 

empirical version of E log qΦ θ ∣ y , that is 1
M ∑m = 1

M log qΦ θm ∣ ym , where the samples ym

and θm, m = 1, …, M are the simulated realizations of y and θ based on p y ∣ θ  and π θ , 

respectively.

To obtain the posterior density for s given the observed sampled from the empirical 

PSD of MEG data yo = G XMEG Ω , we can feed yo in the neural network and obtain 

the estimated posterior distribution qΦ θ ∣ yo  with the estimated parameter Φ. The target 

posterior distribution of s is qΦ̂ × det J  where J is the Jacobian matrix, i.e., J = ∂θ/ ∂s. 
We illustrate the details of obtaining the posterior distribution of θ in Algorithm 1, which 

contains a simulation step and an optimization step.

Algorithm 1

Posterior estimation with re-parameterization

Require: A multivariate Gaussian prior π θ N 0, 100I  a likelihood p y ∣ θ , an observation yo.

 Simulation:

 form = 1, …, Mdo

   Sample θm π θ
   Sample ym p y ∣ θm
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 end for

  Optimization:

 Φ argmin
Φ

− 1
M ∑m = 1

M log qΦ θm ∣ ym

 returnqΦ̂ θ ∣ yo  as the estimate of the posterior distribution of θ. The posterior distribution of s is qΦ × det J , 
where J is the Jacobian matrix, i.e., J = ∂θ/ ∂s.

2.4. Implementation details

For each subject, we use their MEG data from 68 cortical regions according to the Desikan–

Killiany atlas (Desikan et al., 2006) to obtain the posterior samples of the SGM parameters 

s. Under this atlas, we obtain a 68-region X s, ω  at frequency ω, and the dimension of 

G X s, Ω  is 68 × 40 + 68 = 2788 which is comprised of both the PSD feature and the 

spatial feature in the alpha band.

We implement SBI-SGM using the sbi package in Python (https://www.mackelab.org/sbi/) 

(Tejero-Cantero et al., 2020), where the hyperparameters in the original SBI algorithms 

are adopted as the default values provided in the package. We discuss the choice of the 

standard deviation of the noise σ and the number of simulation samples in Simulation step in 

Algorithm 1 in the next section.

In SBI-SGM, we adopt an average template structural connectome created via openly 

available diffusion MRI data obtained from the MGH-USC human connectome project 

(HCP) for training a universal posterior mapping from observation to the posterior 

distribution using Algorithm 1. After obtaining a trained posterior density for each observed 

yo, we draw a posterior sample of SGM parameters, denoted by s. We then obtain X s , Ω
using (1) and the individual structural connectome. Finally, we construct the standardized 

PSD and spatial distribution of the alpha band PSD as a G transformation of X s , Ω , where 

the function G is defined in (2). We perform this posterior sampling process 1000 times 

to obtain a set of posterior samples of the standardized PSD and spatial distribution of the 

alpha band PSD for each observed yo. The pipeline of SBI inference for SGM is presented in 

the bottom panel of Fig. 1.

We compare the performance of SBI-SGM with the performance of the annealing SGM 

approach (Raj et al., 2020; Verma et al., 2022a,b), namely Ann-SGM, on our MEG data. The 

details of the annealing implementation can be found in Verma et al. (2022a). SGM model 

assumes the parameters have finite supports as the ones listed in Table 1. In Ann-SGM, 

three different bounds are evaluated for gei and gii sequentially, and the largest bounds that 

satisfy the stability condition defined by Verma et al. (2022b) are chosen in the subsequent 

estimation. In SBI-SGM, the largest bounds in Table 1 are adopted for parameters gei, gii  and 

we only retain the posterior samples of the SGM parameters within the stability boundary 

defined in Verma et al. (2022b). For the other five parameters, SBI-SGM uses the same 

bounds as Ann-SGM does.
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3. Results

3.1. Adding random noise to the SGM improves the reconstructing accuracy of the PSD

For each subject, we obtain the reconstructed PSD by taking the mean of the posterior 

samples of the PSD. We then study how the change in noise variation affects the 

performance of SBI-SGM in reconstructing the observed PSD. We compare the median 

Pearson’s correlation between the reconstructed PSD and the observed PSD from MEG. 

Specifically, for each ROI, we calculate the correlation between the reconstructed PSD and 

observed PSD from MEG. We then average the correlations over all ROIs and obtain the 

median of this average correlation over 36 subjects. In this study, the number of simulations 

samples is fixed at 100,000 in the Simulation step in Algorithm 1 and the standard deviation 

of ϵ varies from 0 to 3.2. We report the mean results over 10 repetitions. Note that when 

σ = 0, there is no random noise added.

Fig. 2A shows that compared to the model without random error (when the σ = 0), 

adding random noise in (2) significantly reduces the reconstruction errors. This result is 

consistent with our theoretical conclusion that adding random noise results in a smooth 

posterior density which can be accurately approximated by a neural network. The Pearson’s 

correlation between the reconstructed and the observed PSD increases when σ < 1 . 6 and 

starts to decrease after σ reaches 1.6, when the signal-to-noise ratio is not sufficiently large 

for the SBI-SGM to recover the observed PSD. In practice, we suggest choosing σ in [0.8, 

2.0], which yields satisfactory performance with over 0.9 correlation between reconstructed 

and observed PSD. For all the following experiments, we fix σ = 1 . 6.

3.2. Increasing the number of simulation samples improves the SBI-SGM fit

We also investigate how the performance of SBI-SGM changes with the number of 

simulations in Simulation step in Algorithm 1. Fig. 2B shows that a larger number of 

simulations yields a better SBI-SGM fit with a higher correlation between reconstructed 

and observed PSD. As indicated by the right panel of Fig. 2B, the changes in Pearson’s 

correlation are not very notable and it varies from 0.887 to 0.906. However, when 

considering the standardized PSD curves for different numbers of samples, a clear trend 

is observed that typically larger sample size leads to a better fit visually. It is also worth 

noting that the performance of SBI-SGM is stable after the number of simulations reaches 

100,000. Therefore, we choose 100,000 simulations in the Simulation step in Algorithm 1 in 

the subsequent analyses.

3.3. Results from two representative MEG data

We show the results from two representative subjects whose Pearson’s correlations between 

reconstructed PSD and the observed PSD are the top two closest to the median correlation 

across 36 subjects in one experiment. To make it representative, we repeat the SBI-SGM 

procedure 10 times and choose the experiment which yields an overall correlation closest to 

the mean level in the 10 repetitions for the analysis.

The posterior samples of the seven parameters as well as the PSD for two subjects are 

displayed in Figs. 3A and B. In the left panels, we compare the posterior density of 
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SBI-SGM with the point estimate from Ann-SGM. We can observe multiple modes from 

the posterior densities. For τe, v, and gii, the point estimates from Ann-SGM are close to one 

of the modes of the posterior distributions, while the estimates of the rest of the parameters 

from Ann-SGM are far away from the posterior modes from SBI-SGM.

The middle panels of Fig. 3 shows the posterior mean and 95% credible interval of the PSD 

from SBI-SGM. In each subject, the 95% credible interval covers the observed PSD at low 

frequencies (lower than 20 Hz), which is consistent with the fact that SGM can successfully 

recover the low-frequency PSD (Verma et al., 2022a).

Moreover, we vectorize the reconstructed and observed PSDs and map them onto a 5-

dimensional manifold using the uniform manifold approximation and projection (UMAP) 

method proposed by McInnes et al. (2018). As shown in the right panels of Fig. 3, the 

projection of the observed PSD falls within the support of the projection of the reconstructed 

PSDs in the manifold, which further validates our Bayesian inference (Gabry et al., 2017).

3.4. Cohort level analysis of MEG datasets

In SBI, the variability of the posterior distribution exists due to the randomness of the 

simulated samples in the Simulation step and the randomness in the posterior sampling 

procedure using the trained posterior distribution. We evaluate the robustness of SBI-SGM 

in 10 repetitions. In Fig. 4A, we show the median of the reconstructed PSDs over 36 subjects 

for each repetition, the PSD Pearson’s correlation is changed between [0.905,0.907] (shown 

in the caption). The results indicate that SBI-SGM is robust throughout the repetitions. We 

choose an experiment that yields a correlation closest to the mean level in the 10 repetitions 

in the subsequent analyses.

We analyze the posterior samples of the SGM parameters from SBI-SGM across 36 MEG 

data. We first study the pair-wise correlation between the SGM parameters using the partial 

correlation method (Marrelec et al., 2006), which examines the correlation between any 

given two parameters after removing the effect from other parameters, Fig. 4B shows the 

pair-wise partial correlation averaged over 36 subjects. As shown in Fig. 4B, speed v has 

no correlation with the other parameters. The two time constants τe, τi have weak positive 

correlation, and the graph time constant τG shows moderate negative correlation with the 

exhibitory time constant τe and small positive correlation with the inhibitory time constant 

τi. Fig. 4C shows the distribution of the pooled posterior samples of the SGM parameters 

over 36 MEG data. Among the seven SGM parameters, the posterior distributions of τi, τG

are highly concentrated, which indicates their variabilities across different subjects are small. 

The histogram of the inhibitory time constant τi presents a second peak around 0.15s. The 

speed v has the highest density round 15 m∕s.

We further investigate whether the SGM model in (1) can generate the observed PSDs. We 

generate 1000 SGM parameters from the prior distribution of s, and obtain simulated PSDs 

through (1). We then compare the simulated PSDs with the observed ones. To facilitate the 

visualization, we vectorize the simulated samples of PSDs and observed PSDs and utilize 

the UMAP method to project them to a 2-dimensional embedding manifold. As shown in 
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Fig. 5, in the embedded manifold, all the observed projections fall within the projections 

of the simulated samples, which indicates that the SGM model captures the generating 

mechanism of the observed PSD, and therefore is a reasonable model of the data.

3.5. SBI-SGM and Ann-SGM comparision

We compare SBI-SGM with Ann-SGM. In Fig. 6A, we show the correlations between the 

reconstructed and observed PSDs and the correlations between reconstructed and observed 

spatial distributions of the alpha band PSD resulting from SBI-SGM and Ann-SGM. We 

also perform statistical tests on the difference between the results from the two inference 

methods. Specifically, we calculate the Pearson’s correlations for each ROI between the 

reconstructed and observed PSDs and take the average across ROIs. Furthermore, we 

obtain the spatial correlation as the inner product between the reconstructed and observed 

spatial distribution of the alpha band PSD weighted by D + wI where D is the row degree 

normalized structural connectivity matrix, I is the identity matrix, w is an empirical weight, 

and we adopt w = 10 as suggested by Raj et al. (2022).

As shown in Fig. 6A, SBI-SGM gives similar average correlation and spatial correlation as 

Ann-SGM does with insignificant p-values from two-sample t-tests. In Fig. 6B, we observe 

very similar spatial distributions of the alpha band PSD from SBI-SGM and Ann-SGM, and 

both of them are similar to the observed one from MEG data. In conclusion, SBI-SGM has a 

similar performance as Ann-SGM on recovering observed PSD and spatial distribution from 

the alpha band.

3.6. Computational cost of SBI-SGM

While SBI-SGM entails training a neural network, it remains considerably faster than Ann-

SGM. In our MEG data with 36 subjects, Ann-SGM takes about 8 h to estimate the SGM 

parameters for each subject and it necessitates repetition for every subject. On the same 

machine, SBI-SGM takes approximately 2 h to accomplish the Bayesian inference on SGM 

parameters for all subjects when trained with 100,000 simulation samples.

In fact, the computational bottleneck for SBI-SGM lies in the generation of the simulation 

samples, which can effectively leverage the parallel computing. If the simulation samples 

are produced, the training process only takes 0.34 h with 100,000 samples and the inference 

time is negligible. Moreover, using a template connectome, as in our case, allows the 

computational cost of SBI-SGM to be amortized, i.e., once trained, the model can be applied 

to all subjects without modification. These features render SBI-SGM more desirable in 

practice compared with other methods, such as Ann-SGM and MCMC (Sengupta et al., 

2015, 2016), which require to run the estimation procedure for each subject and are not 

easily adaptable to parallel computing.

The primary computational burden in generating simulation samples stems from the eigen-

decomposition of the Laplacian matrix whose computational complexity is O N3 , where 

N is the number of ROIs. During training or inference, the number of ROIs only affects 

input dimensionality, and exhibits linear complexity with respect to N. Consequently, the 

total complexity in terms of N is O N3 . In widely-used atlases (Desikan et al., 2006; Fan 
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et al., 2016), the number of ROIs remains below 250. Hence, despite the O N3  complexity, 

applying SBI-SGM to other atlases does not result in an excessive computational burden.

4. Discussion

Models with complex and stochastic simulators have been extensively applied in many 

areas of science and engineering (Lueckmann et al., 2021). In neuroscience, such 

computational models are typically built via incorporating biological mechanisms and 

hypothetical intuitions to explain the observed phenomena inferred from the neuroimaging 

data (Gonçalves et al., 2020). These models involve several free parameters that are required 

to be compatible with the observed phenomena. Due to the complexity of neural models 

and neural data, the determination of the free parameters generally relies on computation-

intensive optimization routines like grid search (Tomm et al., 2011), genetic algorithm (Van 

Geit et al., 2016) or simulated annealing (Raj et al., 2020; Verma et al., 2022a).

However, these algorithms are far from meeting the needs of the neuroscience community, 

as they can only provide a single point estimate of the free parameters, and make it difficult 

to incorporate prior knowledge about related neural processes. In neural models, it is always 

desirable to find out not only the best, but all parameter settings compatible with the 

observed data. The variability of the parameters under the observation can provide more 

insights into the neural models and processes (Gonçalves et al., 2020; Alonso and Marder, 

2019). Moreover, neural model parameters, e.g. of SGM, typically have biological meaning, 

hence their inference must accommodate the underlying biological mechanisms and their 

constraints, in order to avoid unreasonable solutions. Using the prior knowledge of these 

biological quantities can not only increase the optimization efficiency but also robustify the 

inferred models. Most importantly, the practical applicability of model fitting demands a 

solid assessment of the confidence bounds and variability associated with fitted parameters 

— something quite lacking in current methods. Due to these reasons, full Bayesian inference 

of posteriors is preferable to point estimates. However, the intricacy of the neural models 

typically results in intractable or complicated likelihood which makes the likelihood-based 

inference inaccessible.

Luckily, the SBI approach fills this gap by bypassing the evaluation of the likelihood 

function and giving the posterior samples directly. The results presented in this study have 

highlighted the key ways in which the proposed combination of SGM and SBI is exquisitely 

well-suited to the task of model inference of neural systems. First, the parsimony of SGM 

obviates a key weakness of SBI, which typically prefers to infer a small set of parameters 

(Cranmer et al., 2020; Durkan et al., 2019). For this reason, SBI may be challenging for 

coupled non-linear models such as NMMs and the Virtual Brain (Ritter et al., 2013) which 

consist of a potentially large set of parameters. Second, SBI requires a large number of 

forward-model evaluations to generate enough simulation samples for training, which would 

render large coupled NMMs unfeasible (Cabral et al., 2014; Sanz-Leon et al., 2015; Cabral 

et al., 2017; Siettos and Starke, 2016), but this is far less problematic for SGM due to its fast 

forward evaluation. Third, SBI requires far fewer empirical samples compared to simulation 

samples (Durkan et al., 2019; Cranmer et al., 2020), which is an important consideration 

in real data-poor medical settings. Lastly, while the training of the neural network requires 
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a high upfront cost involving numerous simulations, the trained SBI model can be applied 

almost instantaneously to new empirical data directly, which enhances the practical utility 

and amortizes the computational cost of fitting by front-loading the simulation effort.

We were able to show that the SBI-SGM framework gives speedy estimates of the full 

posterior distribution, achievable in a matter of seconds per subject. Using these posteriors, 

point estimates, e.g. mean or mode of the posterior, can be quickly produced, which we 

showed has comparable performance to prior point estimation methods like dual annealing, 

at a fraction of the computation time. Lastly, our posterior analysis showed that the model 

parameters were generally weakly correlated, implying that all of them are required to 

obtain model outputs that match the spectral and spatial patterns obtained from empirical 

MEG. This is a crucial finding since it suggests that we can identify unique markers of 

diseases and brain states in the form of inferred SGM parameters.

4.1. Relationship to previous works

For models closely related to SGM, such as the non-linear neural mass models or the 

dynamic causal models (DCM), Bayesian inferencing algorithms such as variational Bayes 

have been used previously. DCM employs variation Bayes to obtain effective functional 

connectivity (Kiebel et al., 2008; Pinotsis et al., 2012). A key difference is that DCM 

is primarily used to obtain effective connectivity from smaller networks and that these 

connectivities are obtained from second-order statistics such as cross-spectra using spectral 

DCM (Pereira et al., 2021). In contrast, SGM directly computes the PSD rather than 

individual elements of the second-order effective connectivity matrix. SGM instead employs 

an explicit structure-based model, where the inter-regional connectivity comes directly from 

the measured structural connectome. In this manner, SGM is better suited for SBI than 

DCM, since the latter would be required to infer an entire matrix of effective connectivities, 

in addition to other regional or global parameters.

The key challenges with inferring parameters of coupled non-linear neural mass models are 

that they require time-consuming simulations. These models exhibit bifurcations yielding 

discontinuities in the model solutions (Raj et al., 2022), and parameter identifiability is not 

guaranteed (Hartoyo et al., 2019). These challenges have been discussed in detail elsewhere 

(Xie et al., 2019; Raj et al., 2022). SGM overcomes these challenges by providing a 

closed-form solution that can be simulated within seconds, and by consisting of only a 

parsimonious set of 7 global model parameters.

Parsimony is an essential feature and motivation of our study, and indeed the sufficiency 

of only 7 parameters in SGM to explain whole brain activity is a powerful, if surprising, 

concept. This aspect was dealt with extensively in prior publications on the spectral graph 

model (Raj et al., 2020; Verma et al., 2022a; Raj et al., 2022). Here we offer some pertinent 

comments. It should be noted that the SGM, and other graph models like it, seeks a minimal 
model of brain activity, with highly circumscribed targets. It does not seek to model the 

full complexity of brain activity, but only its power spectrum. In this sense, it assumes 

the activity is strictly stationary. Most existing analyses of MEG activity already rely on 

stationary features like functional or effective connectivity, which represent the vast majority 

of use-cases.
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Another potential way to conduct Bayesian inference for SGM is MCMC methods (Raftery 

and Lewis, 1996) as SGM has a closed-form solution in the Fourier frequency domain. 

However, even under an explicit frequency domain solution, the likelihood function of 

SGM can be complicated (Verma et al., 2022b), which hampers analyzing the properties 

of the posterior density. Moreover, MCMC methods require a long burn-in step to reach 

the equilibrium distribution and samples from the equilibrium distribution are correlated. 

These properties make sampling from MCMC rather time-consuming for SGM. In addition, 

the computational cost of MCMC methods cannot be amortized which means the time-

consuming MCMC procedure needs to be run anew for each observation, regardless of 

prior observations. A previous MCMC-based inference was unable to capture the spectral 

features using a nonlinear neural mass model (Xie et al., 2019). In comparison, SBI is more 

flexible than MCMC methods. Due to the powerful neural network, it can easily handle the 

complicated likelihood function. More importantly, SBI is trained with simulation samples 

that help to reduce the requirements of real data. Once the model is trained, it can be applied 

to new observations without retraining. Therefore, compared with MCMC methods, SBI 

may be preferable for practical Bayesian inference.

It is worth noting that while this paper focuses on SGM, the SBI approach can be a robust 

and efficient alternative for parameter estimation of any complex generative model, e.g. 

above-mentioned coupled neural mass or DCM models. The key trade-off involves whether 

upfront simulation of a large number of forward model runs is practical and whether there is 

a compelling use case for achieving rapid inference of an unseen observation.

4.2. Limitations of the current approach

In the current inference procedure, our simulator outputs include the regional PSD and the 

spatial distribution of alpha band power — together they form a relatively high-dimensional 

feature space. While Algorithm 1 is capable of handling this, the high dimensionality 

of output features increases the computational burden and causes difficulty in learning 

useful information with neural networks from the data. Although we reported some basic 

diagnostics in Fig. 4 to verify the validity of our inference, the high-dimensional output 

hampers more extensive posterior diagnostics. Possible workarounds to deal with this issue 

include extracting some key features from the PSD and spatial distribution manually or 

embedding a neural network to learn the key features automatically. More experiments are 

required in this direction. Another limitation is the large number of simulation samples 

required in SBI-SGM, which slows the inference procedure and increases the computational 

burden. The number of required simulation samples can be dramatically reduced with 

multi-round inference (Greenberg et al., 2019) via focusing the training on a particular 

observation. Although the trained model loses the generality for other observations, it can be 

very useful when we are only interested in one specific observed dataset.

4.3. Potential applications and future work

In clinical practice, it can sometimes be even more important to know how accurate our 

estimate is than simply to know the best point estimate (Trkulja and Hrabač, 2019). 

For example, using only point estimates, it can be difficult to compare computational 

biomarkers from different cohorts. Even if two cohorts have very different values of the 
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biophysical parameters, no statistically robust conclusion can be drawn without knowing 

the uncertainty of those estimates. In such cases, SBI-SGM will be extremely helpful as it 

gives the posterior distributions of the parameters which fully captures the uncertainty of 

estimates. With posterior distributions, credible intervals and other measures of uncertainty 

can be easily obtained. This can also be used to obtain population-level parameters that 

are homogeneous across a population despite the individual variability, which can aid in 

establishing the descriptive validity of models like SGM (Bassett et al., 2018). Lastly, it can 

also be used to obtain time-varying posteriors of model parameters that can capture the fast 

temporal fluctuations in MEG, as has been done previously using point estimates (Verma et 

al., 2022b).
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Fig. 1. 
Top: A schematic of SGM. Bottom: The pipeline of SBI inference for SGM.
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Fig. 2. 
The performance of SBI-SGM when varying the noise SD and the number of simulation 

samples. A: Left: Median standardized PSD obtained from MEG and SBI-SGM with 

different noise SDs. Right: Change of Pearson’s correlation between reconstructed average 

PSD and the observed PSD when varying noise SDs. The red shadow indicates its 95% 

confidence interval. B: Left: Median standardized PSD obtained from MEG and SBI-SGM 

with different number of simulation samples. Right: Change of Pearson’s correlation 

between reconstructed average PSD and the observed PSD when varying the number of 

simulation samples. The red shadow indicates its 95% confidence interval.
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Fig. 3. 
Result analysis from SBI-SGM for two representative MEG data whose Pearson’s 

correlations between reconstructed PSD and the observed PSD are the top two closest to 

the median correlation across 36 subjects. A/B: Left: Posterior density of 7 parameters for 

one subject in the MEG dataset. The red vertical line and red star indicate the location of 

the point estimate from the annealing algorithm. Middle: Posterior mean PSD and the 95% 

credible interval for the subject. The black curve indicates the observed average PSD across 

ROIs. Right: Density estimations and observed values of low-dimensional representations 

after mapping raw vectorized PSDs to a 5-dimensional embedding manifold with UMAP. 

The red vertical line and red star indicate the location of the representation for observed 

MEG data in the manifold.
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Fig. 4. 
Cohort level analysis with SBI-SGM across the 36 MEG datasets. A: The median 

standardized PSDs obtained from SBI-SGM in 10 repetitions under noise SD 1.6 and 

number of simulation samples 100,000. The correlations between reconstructed and 

observed PSDs are between 0.905 and 0.907 in the 10 repetitions. B: Partial correlation 

between each pair of parameters averaged over 36 subjects. C: Histograms and the 

corresponding kernel density estimations of the posterior SGM parameters.
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Fig. 5. 
PSD representations after vectorizing and mapping the simulated PSDs and 36 observed 

PSDs to a 2-dimensional embedding manifold with the UMAP. In this instance, we adopt 

UMAP to reduce the dimensionality of the vectorized PSD matrix to 2 for visualization 

purposes.
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Fig. 6. 
Performance of SBI and annealing on SGM is comparable. A: Pearson’s correlation of 

PSD from each ROI and spatial correlation for the alpha frequency band. P-values are from 

two-sample t-tests. B: Comparison of the observed and reconstructed spatial distributions 

from the SBI and annealing algorithms of the alpha frequency band, averaged over all the 

subjects.
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