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Background: Posttraumatic stress disorder (PTSD) is a potential consequence of 

exposure to traumatic stress. PTSD has severe psychological, physical, interpersonal, 

and societal costs. The development of PTSD following traumatic stress is heritable. 

Studies of genetic risk factors have focused on common single nucleotide 

polymorphisms. The overwhelming majority of risk PTSD loci have yet to be identified. 
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The integration of detailed PTSD phenotyping has shown promise to increase power to 

identify PTSD risk loci. Rare genetic variation has only been sparsely examined in the 

context of PTSD, yet evidence is emerging that rare variation such as copy number 

variation (CNV) is relevant to psychiatric disorders. Findings of large genetic studies of 

PTSD and co-morbid disorders make it possible to make causal inferences and provide 

mechanistic insights using Mendelian Randomization (MR). 

Methods: This dissertation includes three studies, all of which were conducted 

among participants from the Psychiatric Genomics Consortium-PTSD data collection, a 

consortia made to investigate genomic risk factors for PTSD through meta-analysis of 

PTSD cohorts. Study 1 was a GWAS of PTSD symptom scores and lifetime trauma 

exposure phenotypes to identify common genetic risk variation for PTSD. Study 2 was 

an investigation of rare CNV and PTSD. Study 3 leverages GWAS summary statistics 

from PTSD and inflammatory phenotypes related to PTSD, using MR to make causal 

inferences about PTSD and inflammatory diseases.  

Results: In study one, multiple genetic risk loci were identified for PTSD and for 

lifetime trauma exposure, with the two traits having a substantial degree of genetic 

overlap. In study two, PTSD risk was elevated in CNVs that crossed over known 

neurodevelopmental CNV regions and pathways related to the function of the nervous 

system and brain. In study three, PTSD had evidence of causal effect on asthma and 

psoriasis, as well as inflammatory biomarkers. 

Conclusion: This dissertation enhances the general field of PTSD genetics, 

having identified novel common and rare risk variation, and supports hypotheses that 
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PTSD has a causal relationship with certain comorbid diseases with an inflammatory 

component. 
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Chapter 1: Introduction 

1.1 Post traumatic stress disorder (PTSD) 

PTSD is a psychiatric illness that develops in response to exposure to extreme 

traumatic stress 1. According to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5), PTSD is characterized by multiple symptoms that are clustered into 

four categories: intrusive memories, avoidance, negative changes in thinking and mood, 

and changes in physical and emotional reactions 2. Diagnosis of PTSD requires 

exposure to a traumatic event, as well as one or more symptoms of intrusion, one or 

more symptoms of avoidance, two or more symptoms of negative changes in thinking 

and mood, and two or more symptoms of changes in arousal 2. Symptoms must last for 

longer than one month, and cause considerable distress or interference with multiple 

areas of life 2. While PTSD is coded as a binary diagnosis, the wide variety of symptoms 

imply a potentially considerable heterogeneity of PTSD 3. As well, there is significant 

potential variation in symptom severity, which importantly influences the clinical 

trajectory of the disorder 4. Many tools exist for PTSD assessment 5, such as the gold 

standard Clinician Administered PTSD Scale 6 (CAPS-5), and self-reported measures 

such as the PTSD checklist (PCL-5)7. 

1.2 Treatment of PTSD 

There are clinical treatments for PTSD 8. Trauma-focused therapies are a widely 

used, evidence based treatment option 8, 9 . Currently recommended pharmacological 

treatment options include anti-depressants, anti-psychotics, and alpha-adrenergic 

receptor blockers 9 10. Other pharmacological treatments including anticonvulsants, 
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benzodiazepines, and other agents such as ketamine and cannabis, have been 

proposed but are not as well studied 10. The complex relationship between PTSD and 

co-morbid psychiatric conditions poses challenges in the treatment of PTSD 11. In terms 

of efficacy of treatments, survey data suggests that the mean time to remission is 

shorter for treatment seeking cases relative to those who do not seek treatment 12. 

However, not all cases attain a full remission of symptoms 9. It has been suggested that 

more efficacious PTSD treatments may rely on deeper understanding of the biological 

mechanisms of the disorder 13.  

1.3 Epidemiology of PTSD 

The estimated lifetime prevalence of PTSD in the United States is 5-10% 1.  

Prevalence is higher in lower income countries 14. Prevalence is widely conditional on 

the nature of trauma exposure 15. Risk is modified by demographic 16, social, 16, 

personality 17, and biological  18 factors, which can operate at pre, peri, or post-trauma 

levels 19. Importantly, interventions targeted at modifiable risk factors such as pain 20 

and lack of social support 21 can reduce the likelihood of developing PTSD. Biological 

risk factors, including psychophysiological response, brain structure and functioning, the 

neuroendocrine system, and genetics, are widely studied 18 . 

1.4 Co-morbidities and consequences of PTSD 

PTSD is often co-morbid with one or more other psychiatric disorders 12, most 

commonly with affective disorders such as major depressive disorder 11. Relative to 

other mental disorders, PTSD has a notably strong association with suicidal behavior 19. 

PTSD is also linked to increased rates of age related chronic diseases 22, worse 
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physical functioning 22, and elevated rates of diseases that involve immune 

dysregulation 23. In addition, there are social consequences of PTSD, such as 

educational failure, marital instability, and unemployment 24 19, where PTSD related 

work impairments translate into billions of dollars of lost productivity 24, 25.  

1.5 The link between autoimmune disorders and PTSD 

Longitudinal and cross sectional association studies suggest that individuals with 

PTSD are at increased risk of developing autoimmune disease 26-28.  The overlap of 

PTSD and autoimmune diseases is hypothesized to be related to the immune 

dysregulation seen in PTSD cases 23. Indeed, longitudinal studies show that 

inflammatory biomarkers are elevated in PTSD cases 29, 30. However, the causal 

relationship between PTSD and autoimmune conditions remains unclear 31. Determining 

this would enhance our general understanding of PTSD 32  and potentially lead to 

enhanced treatment options 33. For instance, it has been noted that early treatment for 

PTSD with antidepressants is associated with attenuated risk of developing certain 

autoimmune diseases27.  

1.6 Genetic contributions to PTSD 

Studying the genetic basis of PTSD has the potential to enhance biological 

understanding, as well as to guide the development of treatments for PTSD and it's 

comorbidities 32, 34, 35. The genetics of PTSD has been studied for over 25 years 36. Twin 

studies 36-38 suggested that genes are a major contributing factor to the development of 

PTSD, with heritability estimates ranging from 24%-71% across studies. This 
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considerable range of estimates may be due to limited sample sizes of some studies, 

but also perhaps due to the environment context specific nature of heritability 39.  

The first consistently replicable risk loci and genetic signals for PTSD have only 

recently emerged, from large scale meta-analysis across multiple cohorts, and analyses 

of biobank-scale data 40-45. Some of the loci identified in GWAS have been implicated in 

other mental disorders, possibly indicating a general shared liability across psychiatric 

disorders 40, 43.   The genetic pathways found to be enriched in GWAS include 

inflammatory pathways 41 and genes heavily expressed in the central nervous system 

40. However, the several loci identified by current PTSD GWAS only explain a small 

fraction of the total genetic contribution to PTSD risk, where several thousand PTSD 

associated genetic variants are yet to be identified by GWAS44. Increasing sample size 

is expected to lead to more loci being identified by GWAS and more biological insights 

being delivered 45. It has been proposed that well powered GWAS will have a direct 

translational impact in the near future, as there are prospective clinical applications 46 of 

the polygenic risk score, i.e. the estimate of individual genetic liability to disease 47. 

1.7 Further enhancing discovery power of PTSD GWAS 

Detailed characterization of the PTSD phenotype is expected to enhance 

discovery power and elucidate biological insights 48, 49. For example, evaluation of PTSD 

as a quantitative severity score led to the successful identification of risk loci, beyond 

what had been identified in GWAS based on a binary diagnosis 40. Thus, this 

information is important to integrate into GWAS of PTSD. Less is known about how 

trauma exposure phenotyping affects the power of a PTSD GWAS, yet this is also a 
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crucial component: by definition, individuals will not develop PTSD unless they are 

exposed to trauma, regardless of their genetic vulnerability to PTSD. In most GWAS, 

trauma exposure information has not been incorporated much beyond having restricted 

study participants to include only trauma exposed controls 42, 50-53. However, despite 

restricting controls to trauma-exposed subjects, most studies persistently have reported 

higher average trauma exposure in cases relative to controls. Thus, it remains to be 

seen what the genetics of PTSD look like, once thoroughly conditioned on trauma 

exposure. 

In consideration of trauma exposure in the context of PTSD GWAS, there is 

evidence from twin studies and GWAS of a genetic basis of trauma exposure itself 37, 54-

56.  The type of trauma related to PTSD vary greatly in nature, including witnessing 

death, sexual assault, combat exposure, suffering an accident, being in a natural 

disaster, et cetera 1, such that genetic influence on the different types of trauma may 

vary. Indeed, the estimate of the heritability of combat exposure by Lyons et al. ranged 

from 35 to 47% 55, but Stein et al. observed somewhat different heritabilities for 

assaultive and non-assaultive traumas 37.  Nevertheless, given a genetic basis for 

trauma exposure, trauma represents a potential intermediate factor in how genetic 

variants alter PTSD risk. Two recent GWAS focused on childhood trauma exposure 54, 

57, and identified loci related to mental health, risky behavior, substance use, and 

physical health. Similarly, PTSD has substantial genetic correlations with traits in these 

domains 41. Despite this evident genetic overlap, to my knowledge, there is no 

comparative investigation of the common variant genetics of PTSD and trauma 

exposure.  
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1.8 Rare variant contribution to PTSD 

Rare and structural forms of genetic variation make considerable contributions to 

the genetic liability of psychiatric disorders 45. An often studied form of rare genetic 

variation in this context is copy number variation (CNV) 58. CNVs have been thoroughly 

implicated in relation to neurodevelopmental disorders 59, but also autism 60 and 

schizophrenia 61, where variants of high penetrance have been identified. For example, 

there is the well-known 22q11.2 deletion, where approximately 25% of individuals born 

with this deletion will develop schizophrenia 62, thus accounting for up to 2% of 

schizophrenia cases in the general population 63. More recently, CNVs have been 

examined in other psychiatric disorders such as attention deficit hyperactive disorder, 

obsessive compulsive disorder, and major depressive disorder 64-66. One factor that has 

facilitated the study of CNV for psychiatric disorders is that rare CNVs can be reliably 

called by applying specialized calling algorithms to the signal intensity data gathered by 

standard single nucleotide polymorphism arrays 67. Thus, given the wide availability of 

psychiatric GWAS data, CNV is a form of rare variation that can be studied without 

requiring additional, potentially quite cost prohibitive sequencing efforts. Analyses of 

CNVs called in this manner have provided novel insights into psychiatric disorders such 

as major depressive disorder 66 and schizophrenia 61.  

1.9 The Psychiatric Genomics Consortium (PGC) PTSD data collection 

This dissertation was conducted using early-access data from the PGC-PTSD, a 

global collaborative effort to study the genetic basis of PTSD through meta-analysis of 

diverse cohorts genotyped and assessed for PTSD 34. Data access and authorship 

policies follow PGC guidelines. The contributing PTSD cohorts have been described in 
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great detail 41.  Briefly, within each cohort, participants were assessed for PTSD via 

clinical assessment, clinician administered inventory, self-reported inventory, or via 

diagnostic codes in a medical database. Participants were genotyped using single 

nucleotide polymorphism arrays. Study principal investigators provided the participant 

PTSD phenotype and DNA or genotype data to the PGC-PTSD, or alternatively, 

summary statistics from GWAS. Where genotype data was provided to the PGC-PTSD, 

genotype data was quality controlled using a standardized pipeline 68 to insure data 

compatibility across cohorts. Where individual level data was not provided, investigators 

followed similar protocols for QC and analysis. The data from contributing cohorts was 

analyzed in a meta-analytic framework.  

1.10 Dissertation overview  

The availability of genotype and dense phenotype data in the PGC-PTSD, 

including continuous symptom scores and trauma exposure measures, means that 

several of the aforementioned topics relevant to PTSD can be investigated:  First, the 

deep phenotyping allows for a more statistically powered investigation of common 

variant genetics, beyond what could be obtained by a binary case definition. The 

availability of trauma exposure measures in the same subjects allows for trauma 

exposure informed analysis of PTSD. Furthermore, it allows for the evaluation of the 

genetic contribution to trauma exposure itself, as well as the subsequent comparison of 

the genetic overlap of PTSD and trauma exposure. Second, the available genotype 

data, so far only used for GWAS, can also be used to estimate the contribution of CNVs 

to PTSD risk with unprecedented power. Lastly, risk variants identified in well-powered 

GWAS of PTSD can be used as genetic instruments (i.e. Mendelian Randomization 
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analysis 69), allowing for the evaluation of a potential causal association between PTSD 

and disorders involving immune dysregulation.  

The goal of this dissertation is to perform novel analyses to provide insight into 

the genetic architecture of PTSD, and to test mechanistic hypotheses related to the 

observed comorbidities between PTSD and disorders involving immune dysregulation. 

These analyses will be organized across three chapters. Chapter 2 includes GWAS of 

PTSD in PGC-PTSD cohorts. Quantitative symptom scores that measure the severity of 

PTSD are used to enhance discovery power beyond binary diagnosis. In addition, 

lifetime trauma exposure is incorporated as a phenotype to measure PTSD associations 

conditional on trauma exposure. Comparative evaluations of the genetics of PTSD and 

trauma are made. Finally, trauma exposure is leveraged in a multivariate approach to 

identify additional common genetic variant risk for PTSD. Chapter 3 examines the 

impact of rare CNV burden on PTSD in what is the first large scale study of this topic. 

Genotype array data is used to determine CNV carrier status. Rare CNVs are tested for 

association with PTSD at a variety of scales of burden, including genome-wide, across 

gene-sets, genes, and in individual neurodevelopmental CNVs. Chapter 4 evaluates the 

causal relationship between PTSD and immune related conditions and inflammatory 

biomarkers, via two sample Mendelian Randomization analyses of GWAS data from 

PTSD and these traits 70. 
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Chapter 2. Enhancing discovery of genetic variants for PTSD through integration 

of quantitative phenotypes and trauma exposure information 

2.1 Abstract 

Background: Posttraumatic stress disorder (PTSD) is heritable and a potential 

consequence of exposure to traumatic stress. Evidence suggests that a quantitative 

approach to PTSD phenotype measurement and incorporation of lifetime trauma 

exposure (LTE) information could enhance the discovery power of PTSD genome-wide 

association studies (GWAS). 

Methods: GWAS on PTSD symptoms was performed in 51 cohorts followed by a 

fixed-effects meta-analysis (N = 182,199 European Ancestry participants). A GWAS of 

LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic 

correlations were evaluated with LD-score regression. Multivariate analysis was 

performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of 

leading loci was performed with FUMA. Replication was evaluated using the Million 

Veteran Program (MVP) GWAS of PTSD total symptoms. 

Results: GWAS of PTSD symptoms and LTE burden identified 5 and 6 

independent genome-wide significant loci, respectively. There was a 72% genetic 

correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of 

genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for 

LTE reduced PTSD heritability by 31%.  Multivariate analysis of PTSD and LTE 

increased the effective sample size of the PTSD GWAS by 20% and identified 4 

additional loci. Four out of these 9 PTSD loci were independently replicated in MVP. 
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Conclusion: Through using a quantitative trait measure of PTSD, we identify 

novel risk loci not previously identified using prior case/control analyses. PTSD and LTE 

have a high genetic overlap that can be leveraged to increase discovery power through 

multivariate methods. 
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2.2 Introduction 

Posttraumatic stress disorder (PTSD) may develop after exposure to traumatic 

life events. PTSD can severely impact the mental and physical health of affected 

individuals and impair their interpersonal relationships1. While the estimated community 

prevalence of PTSD in the United States is 5-10%2, the rate of PTSD differs based on 

the nature of trauma exposure3, and other environmental4 and genetic factors5-7.  

Identifying the biological mechanisms associated with the etiology of PTSD will facilitate 

the discovery of biomarkers for screening and diagnostic purposes7 and the 

development of new treatments. 

Genome-wide association studies (GWAS) facilitate biological understanding of 

PTSD 8, 9, but are well known to be limited by statistical power to identify risk variation10. 

Quantitative measures of PTSD enhance discovery power over binary trait definitions 

9,11. Appropriately accounting for trauma exposure hypothetically enhances power, as 

individuals will not develop the disorder unless they are exposed to trauma, irrespective 

of high genetic vulnerability for PTSD 12, 13. Moreover, the notion that genetic variants 

can predispose to trauma exposure is only starting to be explored 14. As trauma 

exposure is a prerequisite for the development and manifestation of PTSD, investigating 

the genetics of trauma exposure will hypothetically lead to a clearer picture of PTSD 

genetics.  

The Psychiatric Genomics Consortium (PGC) PTSD is a global collaborative 

effort to study the genetic basis of PTSD through meta-analysis of diverse cohorts13. 

Subsequent to a case-control GWAS8, our collaborators have provided quantitative 

measures of PTSD and lifetime trauma exposure (LTE). To obtain genomic insights 
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from the quantitative PTSD phenotyping, we perform GWAS of PTSD symptoms in 

182,199 participants from PGC-PTSD Freeze 2. To determine if accounting for LTE 

would provide the hypothesized increase in discovery power, we perform GWAS of 

PTSD with covariate adjustment for LTE, showing that it lowers PTSD signal. We 

investigate the possibility that multicollinearity arising from high genetic correlation (rg) of 

PTSD and LTE was responsible for this result. To perform this investigation, we perform 

GWAS of LTE in most powered and unbiased 15 subsample of the data, 132,988 

participants from the UK Biobank (UKBB) 16, then evaluate the rg of PTSD and LTE. To 

explore the rg further, we contrast the rgs PTSD and LTE have with other traits. We 

show the high rg of PTSD and LTE can be leveraged to enhance the power of PTSD 

GWAS using multivariate methods. We replicate PTSD GWAS findings in the Million 

Veteran Program GWAS of total PTSD symptoms (MVPTOT). We contextualize genomic 

findings through functional annotation, tissue expression analyses, and phenome-wide 

association study (PheWAS). 

2.3 Methods  

2.3.1 Study population and phenotyping 

Participants were drawn from a collection of 51 cohorts within the PGC-PTSD 

freeze 2 dataset, as previously described in Nievergelt et al.8. All participants included in 

the present study were of genetically estimated European ancestry. PTSD symptoms 

and LTE were measured within each cohort using structured clinical interviews, self-

reported inventories, or by clinical evaluation. A summary of the assessment and 

scoring methods for the various studies is in Supplementary Table 2.1 and a complete 

description is available in Nievergelt et al.8. All participants provided written informed 
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consent and studies were approved by the relevant institutional review boards and the 

UCSD Human Research Protection Program (protocol #16097×). 

2.3.2 GWAS Quality Control 

Genotyping, QC, and imputation methods for the included studies have been 

described in detail8. In brief, participating cohorts provided phenotype and genotype 

data or GWAS summary statistics to the PGC-PTSD for quality control and analysis. For 

studies in which the PGC-PTSD analyst had direct access to genotype data, the 

RICOPILI pipeline17 was used to perform QC and imputation. QC included standard 

filters for SNP call rates (exclusion of SNPs with call rate <98% or a missing difference 

> 0.02 between cases and controls), call rate for participant genotypes (samples with 

<98% call rate excluded), Hardy-Weinberg equilibrium (HWE p < 1 x 10-6 in controls), 

and heterozygosity (FHET within +/- 0.2). Datasets were phased using SHAPEIT18 and 

imputed using IMPUTE219 with the 1000 Genomes Phase 3 reference panel data20. For 

the UKBB, quality control and imputation were carried out centrally by UKBB 

investigators as previous described16 and GWAS was carried out by the PGC-PTSD 

analyst.  For cohorts with data sharing restrictions, analyses were performed using 

similar protocols by the study team that had individual level data access and GWAS 

summary statistics were provided to the PGC-PTSD.  

2.3.3 GWAS 

Only unrelated (π < 0.2) participants were retained for analysis. Principal 

components were calculated within each cohort using EIGENSOFT v6.3.421. PTSD 

GWAS was performed within cohorts using PLINK 2.0 alpha with the --glm option, with 

the exception of UKBB and VETSA data, which were analyzed using BOLT LMM 



24 

v2.3.422. Where available, PTSD symptom scores were analyzed using linear 

regression (N = 36 cohorts); PTSD case/control status was used if symptom scores 

were not available, using logistic regression (N = 15 cohorts). In both cases, 5 principal 

components (PCs) were included as covariates to account for population stratification 

and genotyping artifacts. The UKBB PTSD GWAS included an additional PC as well as 

batch and assessment center covariates. Studies providing summary data used similar 

analytic strategies, as previously described 8. For each GWAS, SNPs with minor allele 

frequency < 1% or imputation information score < 0.6 were excluded. To perform 

GWAS of PTSD conditioned on LTE, GWAS was performed with LTE included as an 

additional covariate where, depending on data availability, as either a count of LTEs or 

a binary variable. GWAS of the LTE count phenotype in the UKBB sample was 

performed in BOLT-LMM using 6 PCs, batch, and assessment center as covariates. 

2.3.4 PTSD meta-analysis 

Sample-size weighted fixed effects meta-analysis was performed using 

METAL23. To account for different analytic methods and measure scales, effect 

estimates were converted into z-scores by dividing effect sizes by standard errors 24. 

Case/control and quantitative GWAS subsets were evaluated for rg to determine if they 

could be meta-analyzed. To account for differences in ascertainment, heritability, and 

power between case/control and quantitative subsets, modified sample size weights 

were derived as previously described 25, assuming 10% population prevalence of PTSD, 

the estimates of SNP-based heritability (h2
SNP), rg, and sample PTSD prevalence. Meta-

analysis was conducted on the reweighted z-scores. Only SNPs available in >90% of all 
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samples (N > 163,979) were included in analyses. Regional annotation plots of 

genome-wide significant loci were produced using LocusZoom26. 

2.3.5 Heritability and genetic correlation estimation with LD Score Regression 

(LDSC) 

Trait h2
SNP and rg were estimated from GWAS summary statistics using LDSC27. 

The LDSC intercept was used to test for inflation of test statistics due to residual 

population stratification or other artefacts and the attenuation factor ((Intercept -

1)/(mean(χ2)-1) was used to determine the proportion of inflation of test statistics due to 

residual population stratification (Supplementary Table 2.2).  Heritabilities were 

contrasted using a z-test where standard errors were estimated using the block-

jackknife approach. To estimate rg with other disorders, the LDhub web-interface was 

used28. To identify genetic differences between PTSD and LTE, the rgs observed for 

PTSD and LTE were contrasted using z-tests, where significance level was determined 

using Bonferroni correction for the 772 traits tested (p < 6.47x10-5). 

2.3.6 Functional Mapping and Annotation of Genome-Wide Association Studies 

(FUMA) 

FUMA version v1.3.6a29 was used with the default settings (Supplementary Text) 

to visualize and annotate GWAS results.  The FUMA pipeline integrates the MAGMA30 

tool to perform gene-based, gene-pathway, and tissue enrichment analyses, with 

significance based on Bonferroni correction. 1000 Genomes Europeans were used as 

reference genotypes. Tissue enrichment analysis included GTEx v8 expression data31. 

2.3.7 Cis Quantitative Trait Locus (QTL) mapping 

The effects of GWAS loci on transcriptomic regulation of surrounding genes 

(locus within ± 1 Mb of the gene transcription starting site) were tested for 49 tissues in 
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GTEx v8 with genome-wide false discovery rate correction applied. Using the same 

criteria, GTEx v8 data were also used to investigate the effects of GWAS loci on the 

regulation of alternative splicing isoforms. A detailed description regarding GTEx v8 

QTL mapping data is available at32. Briefly, cis-eQTL and cis-splicing QTL mapping was 

performed using FastQTL33 including top-five genotyping PCs, PEER (Probabilistic 

Estimation of Expression Residuals) factors34, sequencing platform, sequencing 

protocol, and sex as covariates. 

2.3.8 Replication analysis 

Summary data from MVPTOT (dbGaP Study Accession phs001672.v4.p1) was 

used to replicate GWAS results. MVPTOT included 186,689 European ancestry 

participants who completed the PCL-C and passed quality control. Details of MVPTOT 

have been published35. SNPs were deemed replicated in MVPTOT if they had matching 

effect direction and were nominally significant after Bonferroni correction for the 9 SNPs 

tested (p < 0.006). 

2.3.9 Multi-Trait Analysis for GWAS (MTAG) 

MTAG36 performs multivariate analysis of genetically correlated traits to increase 

discovery power for each input trait, providing trait-specific effect estimates and p-

values. MTAG was used to perform multivariate analysis with PTSD and LTE GWAS. 

The maxFDR statistic was used to test for MTAG model assumptions (supplementary 

text). 

2.3.10 Phenome Wide Association Study (PheWAS) 

To understand further how functional changes of significant loci are associated 

with human traits and diseases, we conducted a PheWAS of leading SNPs from PTSD 
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and LTE loci using data from the GWAS Atlas37 (available at https://atlas.ctglab.nl/). 

Bonferroni correction was applied to account for the 4,756 phenotypes available that 

were tested (p < 1.05 x 10-5). 

2.4 Results  

The PTSD GWAS meta-analysis included 182,199 participants of European 

ancestry from 51 cohorts (Supplementary Table 2.1). The largest cohort was the UKBB 

(N = 134,586 participants). Across the cohorts, PTSD was assessed using a variety of 

different methods (N=19 methods), the most common methods were versions of the 

Clinician Administered PTSD scale (N=18 studies) and PTSD Checklist (N=14 studies). 

The majority of participants (91%, N = 165,825, 36 studies) were analyzed based on 

PTSD symptom scores; the remaining participants (9%, N = 16,374, 15 studies) did not 

have symptom scores available and were analyzed based on PTSD case/control status.  

2.4.1 PGC PTSD GWAS meta-analysis 

The h2
SNP of meta-analysis of cohorts analyzed by symptom scores was 0.0547 

(se = 0.0042, p = 8.9e-39) (Supplementary Table 2.2). The h2
SNP was similar, albeit not 

significant, in the smaller meta-analysis of case/control cohorts (observed scale h2
SNP = 

0.0580, se = 0.0259, p = 0.17). The rg between the symptom score and case/control 

analyses was very high (rg = 0.9646, se = 0.36, p = 0.0074). Thus, symptom score and 

case/control GWAS were meta-analyzed. We identified 5 genome-wide significant loci 

(Table 2.1, Figure 2.1 panel A). Leading variants in significant loci mapped to an 

intergenic locus on chromosome 1, the intronic region of the GABBR1 gene on 

chromosome 6, the intronic regions of MPP6 and DFNA5 on chromosome 7, an intron 

of FOXP2 on chromosome 7, and the intronic region of FAM120A on chromosome 9. 
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Gene-based analysis identified 6 significant genes (DCAF5, EXD2, FAM120A, FOXP2, 

GALNT16, and PHF2) (Supplementary Table 2.3). 

2.4.2 PGC PTSD GWAS covariate adjusted for LTE 

We repeated the GWAS of PTSD with covariate adjustment for LTE.  h2
SNP was 

0.0389 (se = 0.00340, p = 2.6x10-30), 31% lower than the PTSD GWAS without LTE 

covariate adjustment (p = 8.6x10-20). There was a genome-wide significant locus in 

uncharacterized region, CTC-340A15.2, on chromosome 5 that was not identified in the 

PTSD GWAS (Supplementary Table 2.4). Effects changed slightly for the loci previously 

identified in the unadjusted PTSD GWAS (Supplementary Table 2.4).  Gene based 

analysis identified no significant genes. 

2.4.3 UKBB LTE GWAS 

We performed GWAS of LTE count in the UKBB subset of the PGC-PTSD 

GWAS data (132,988 UKBB participants). 30.9% of participants reported 1 LTE, 14.8% 

reported 2 LTEs, 6.3% reported 3 LTEs, and 3.3% reported 4 or more LTEs 

(Supplementary Table 2.5).  The SNP-based heritability of LTE count was 0.0734 (se = 

0.005, p = 8.7x10-49). Six loci were genome-wide significant (Figure 2.1, panel B, Table 

2.2). Leading variants in significant loci mapped to an intron of PRUNE on chromosome 

1, the intron of non-coding RNA AC068490.2 on chromosome 2, the intron of SGCD on 

chromosome 5, an intron of FOXP2 on chromosome 7 (also identified in the PGC-PTSD 

GWAS), an intergenic region in chromosome 14 near MDGA, and upstream of CCDC8 

on chromosome 19. Gene-based analysis identified SGCD (chr5:155297354-

156194799 BP, 2965 SNPs, 99 parameters, z = 5.53, p = 1.5x10-8) and C20orf112 

(chr20:31030862-31172876 BP, 296 SNPs, 21 parameters, z = 4.73, p = 1.13x10-6). 
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GWAS of LTE count weighted by trauma specific PTSD prevalences gave highly similar 

results, being highly genetically correlated to the unweighted count (rg = 1, se=0.0016 

p=<1.13x10-100). 

2.4.4 Genetic overlap between LTE and PTSD 

rg between PTSD and LTE was high, (rg = 0.7239, p < 1x10-100). To explore this 

genetic overlap, we contrasted patterns of rg of PTSD and LTE to other traits. Testing 

772 human traits and diseases, we observed 269 and 217 rgs that survived Bonferroni 

multiple testing correction (p<6.47x10-5) for PTSD and LTE, respectively 

(Supplementary Table 2.6). There was a complete directional concordance between 

PTSD and LTE among the 187 rgs that were significant in both analyses. For several 

traits, while the effect direction was concordant, the magnitude of correlation with PTSD 

was significantly different from the correlation with LTE (p < 6.47x10-5) (Figure 2). 

Fifteen traits showed significantly higher genetic correlation with PTSD than with LTE 

(e.g., neuroticism score p = 2.74x10-24; fed-up feelings p = 1.83x10-15; mood swings p = 

9.92x10-15; loneliness p = 8.07x10-8; depressive symptoms p =1.94x10-7; irritability p = 

2.27x10-7). Conversely, risk taking showed a significantly higher genetic correlation with 

LTE (rg= 0.55, p = 2.71x10-55) compared to PTSD (rg = 0.33, p = 3.9x10-20; p =8.09x10-

6).  

2.4.5 Multivariate analysis of PTSD and trauma exposure 

MTAG analysis that combined PTSD GWAS meta-analysis and UKBB LTE 

GWAS reported an effective sample size increase of PTSD GWAS from 182,199 to 

217,491. There were 8 genome-wide-significant loci for the MTAG PTSD analysis, 

including 4 loci not identified in the PTSD GWAS meta-analysis (Table 2.1, Figure 2.1 



30 

panel C). Leading variants from additional loci mapped to an intergenic region in 

chromosome 2, the intron of SGCD on chromosome 5, an intergenic region on 

chromosome 16 near ZKSCAN2 and AQP8, and the intron of STAU1 on chromosome 

20. In gene-based analysis, there were 8 significant genes, including five genes not 

identified from the original GWAS gene-based analysis (CSE1L, DFNA5, FOXP1, 

SGCD, TRIM26) (Supplementary Table 2.3). 

2.4.6 Cross-replication in MVPTOT 

Of the 9 loci identified across the PTSD GWAS (5 PGC GWAS and 4 MTAG 

loci), 4 replicated significantly in MVPTOT (p < 0.006) (Table 2.1) (Supplementary 

Figures 2-10). Of the 11 genes identified in gene-based analyses (6 GWAS + 5 MTAG), 

7 replicated at least at a nominally significant level in MVPTOT (Supplementary Table 

2.3). Additionally, of 15 loci identified in MVPTOT GWAS, 9 nominally replicated in PGC-

PTSD (Supplementary Table 2.7). Overall, rg between PGC PTSD and MVPTOT was 

high(rg = 0.8359, se = 0.0376, p = 2.5x10-109). 

2.4.7 Functional consequences of risk loci 

We examined the functional impact of the 9 GWS variants associated with PTSD 

(5 from GWAS and 4 from MTAG; Table 2.1). We observed that 7 loci were related to 

multiple tissue-specific expression quantitative trait loci (eQTL; Supplementary Table 

2.8), where 11% of FDR-significant eQTLs were in brain regions. A similar trend was 

present for splicing QTLs (Supplementary Table 2.9), where only 7% of gene-tissue 

combinations were related to brain regions. Further details of the eQTL analysis are in 

the supplementary text. 
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We found enrichment of genes involved in brain transcriptomic regulation in 

PTSD (Supplementary Table 2.10). All brain regions tested were at least nominally 

significant, with several remaining significant after Bonferroni correction (MTAG-

analysis: cortex p = 2.9 x 10-5, frontal cortex BA9 p = 3.53e-5, cerebellum p = 1.09e-4, 

anterior cingulate cortex BA24 p = 1.29 x 10-4, cerebellar hemisphere p = 1.43 x 10-3, 

nucleus accumbens/basal ganglia p = 3.6 x 10-4). There was no significant enrichment 

detected in any sets from the list of curated gene-sets and GO terms (Supplementary 

Table 2.11). 

2.4.8 PheWAS 

We identified 200 phenome-wide significant associations (Supplementary Table 

2.12), with more than half of the significant associations related to two domains: 

psychiatry (34%) and metabolism (18%). The strongest PheWAS associations with 

PTSD and LTE loci included: height and body mass phenotypes, educational 

attainment, social interaction, sexual activity, risk tolerance, and sleep phenotypes 

(Supplementary Text). Several PTSD  loci showed widespread pleiotropy across 

multiple psychiatric traits: rs10266297 (35 significant associations, 40% psychiatric 

domain, top psychiatric result: risk taking p=1.27e-11), rs10821140 (37  significant 

associations, 38% psychiatric domain, top psychiatric result: loneliness p=1.11e-11 ), 

rs146918648 (44 significant associations, 48% psychiatric domain, top psychiatric 

result: tenseness/restlessness p=2.13e-9).  
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2.5 Discussion  

Our GWAS study aimed to advance understanding of PTSD genetics by 

integrating quantitative PTSD phenotypes and LTE exposure information in 182,199 

participants of European ancestry from 51 cohorts. Overall, quantitative PTSD 

phenotyping captured similar genetic signal to our prior case/control analysis (rg = 0.92 – 

1.14)  8, but with substantially higher power. However, by using LTE as a covariate, 

which hypothetically accounts for unexpressed genetic vulnerability among unexposed 

participants12, we found a significant reduction in heritability and gene discovery. As 

high rg between PTSD and LTE would be one hypothetical explanation for this result 

(i.e. multicollinearity), we performed GWAS of LTE and contrasted it to GWAS results 

for PTSD. We found that LTE has h2
SNP comparable to PTSD and high rg  with PTSD.  

We leveraged the rg  to significantly enhance PTSD discovery power using a 

multivariate approach 36 .  

One explanation for h2
SNP  of PTSD adjusted for LTE being lower than the 

unadjusted estimate is that it may have removed genetic effects on PTSD mediated by 

trauma exposure 12, 13. Given that trauma is a prerequisite for PTSD, genetic effects on 

trauma exposure can have mediated (i.e. indirect) effects on PTSD. Indeed this seems 

plausible, as our LTE GWAS suggested a substantial amount of h2
SNP  related to trauma 

exposure. Therefore, the estimated h2
SNP  of PTSD conditional on LTE would 

theoretically reflect only non-mediated (i.e. direct) effects and thus would be smaller.   

We used rg  to quantify the genetic overlap between LTE and PTSD, finding 

similar magnitude to findings from twin studies5, 6. At the same time, incomplete rg  
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between these two phenotypes also suggested meaningful genetic differences. To 

investigate this, we contrasted the magnitudes of rg  that PTSD and LTE shared with 

other traits. For most traits, rg with PTSD was quite similar in magnitude to rg with LTE. 

However, we also found that negative affect traits like neuroticism and irritability were 

more strongly correlated with PTSD than LTE, whereas risk-taking behavior showed 

higher correlation with LTE than PTSD. This suggests that some variants influence 

PTSD and LTE through somewhat distinct psychological and behavioral mechanisms5.  

The high rg  between PTSD and LTE facilitates the application of multivariate 

approaches to PTSD GWAS. Whereas the rg  between PTSD and LTE induces loss of 

power in the PTSD analysis when conditioned on LTE, a multivariate approach can 

benefit from it. Our multivariate36 analysis resulted in a 19% increase in the effective 

sample size by adding LTE count data from the UKBB, and identified replicable loci and 

patterns of tissue expression not identified in a standard PTSD GWAS.  

The biological mechanisms associated with several of the protein products of 

identified genes have been linked to PTSD pathophysiology in animal and cell models: 

amygdala-mediated fear extinction (FAM120A38), neuronal transcriptional regulation 

(FOXP239), brain excitatory/inhibitory balance (ARFGEF2, GABBR1, STAUI140), 

intracellular vesicular trafficking and other synaptic activities  (ARFGEF241, MPP642, 

SEMA6C43, SGCD44), and inflammation (HIATL1, TRIM2645, TRIM2746, ZMYM4, 

ZNF16547). Blood and brain transcription-wide association and differential gene 

expression studies of PTSD have also implicated some of these genes, including a 

blood-based prediction of downregulation of ARFGEF2 in the dorsolateral pre-frontal 

cortex48 , and a postmortem study of human PTSD cortex indicating downregulation of 
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CTSS expression in the dorsal anterior cingulate cortex  and downregulation of 

OSBPL3 expression in the dorsolateral pre-frontal cortex49.  

Interestingly, PTSD loci show widespread pleiotropic associations in PheWAS 32, 

50-52. Some loci point to factors associated with existing clinical presentations of PTSD 

(e.g. sleep), while others point to potential risk/protective factors for PTSD like 

educational attainment and cognitive functioning.  Loci may affect PTSD through their 

direct influence on these risk/protective factors.  Alternatively, the high degree of 

pleiotropy shown by these loci suggests that they could influence PTSD risk through a 

more general alteration of biological function37, such as general predisposition to 

psychiatric illness 53. In particular, metabolic phenotypes such as height and body mass 

also appeared to be enriched in our PheWAS. This could be the influence of these loci 

on previously implicated inflammatory mechanisms for PTSD 8 or simply an artifact of 

their overrepresentation in the GWAS Atlas. Nevertheless, the broad variety of 

behavioral and clinical domains associated with these loci suggest complex etiologic 

heterogeneity of PTSD that could relate to subtypes 54.  

Further characterization of significant loci via eQTL analyses identified 

expression across a variety of tissue types. Given the high degree of shared eQTL 

architecture between tissues, the presence of some of these tissues might not be 

directly related to PTSD pathogenesis. Indeed, on the genome-wide level, our tissue 

enrichment analysis only suggests that brain tissues are relevant. The brain regions 

implicated are consistent with functional MRI and structural MRI findings of PTSD. 

Brodmann area 24 (as part of the ventral anterior cingulate cortex) is implicated in 

PTSD response to trauma-, fear-, and threat-related stimuli55, 56. Brodmann area 9 (as 
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part of the dorsomedial prefrontal cortex), reflects response to self-referential thought, 

theory of mind, empathy, and moral judgements, and shows greater engagement in 

PTSD and trauma-exposed individuals55, 57, 58. Nucleus accumbens expression is 

consistent with the neuroimaging evidence of its role in the reward system, which is 

prominently affected with emotional numbing symptoms of PTSD59-62.  

2.5.1 Limitations 

Stress-related disorders are phenotypically complex and heterogeneous63, which 

limits discovery power and complicates translation to clinical application. The strategies 

proposed for understanding and addressing heterogeneity in major depressive disorder 

such as harmonization of measures, additional phenotypic measures, and investigations 

of subtypes, could be applied to PTSD as additional avenues to enhance discovery 

power64. Sex differences may also contribute a significant source of heterogeneity8, 65-68 

Our analyses were restricted to participants of European ancestry given power 

limitations for other ancestry groups. However urgent scientific and ethical reasons call 

for extending analyses to individuals of non-European ancestry69. The PGC-PTSD 

group has actively been gathering data to increase representation from diverse ancestry 

and developing methods to optimize analyses in admixed populations70. As sample 

sizes increase, future investigations will be powered to investigate ancestry and sex-

specific genetic influences on PTSD and trauma exposure. In performing a GWAS of 

cumulative LTE, we identified several significant loci, including those previously 

identified in GWAS of childhood trauma exposure14. A full investigation of the genetic 

basis of LTE is clearly warranted. Future work could also examine the relationship 

between PTSD and specific types or numbers of trauma exposure, as they plausibly 
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have different relationships with PTSD 6, and may therefore be more informative than 

our cumulative measure for LTE.   Finally, trauma was assessed via participant self-

report, which may vary with mood and PTSD symptoms at the time of reporting71, and 

could inflate genetic associations with PTSD.  

2.5.2 Conclusions 

Novel replicable risk loci for PTSD identified by incorporating quantitative 

symptom data and trauma exposure information into GWAS offer us new insights into 

the genetic architecture of PTSD. Beyond the nature of LTE as an environmental 

exposure, there is a heritable component to LTE that overlaps highly with PTSD to 

impart an enhanced understanding of PTSD genetics.  In future investigations, the 

genetic architectures of PTSD and LTE could be further delineated using causal 

mediation analysis 72, which can provide estimates of LTE related mediation and gene-

by-environment interaction. Our results reinforce the notion that in addition to larger 

samples, more detailed phenotyping and sophisticated modeling are needed to account 

for the role of environmental exposure in developing PTSD, as these influence GWAS 

discovery power. Widespread pleiotropy of significant loci suggests that cross-disorder 

analysis with PTSD 73, 74 will enhance our understanding of how these loci modify risk 

for PTSD and related disorders. 
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2.8 Figures 

 

Figure 2.1. Manhattan plots of GWAS associations.  

Footnote: The X-axis is the position on the genome, ordered by chromosome and base-
pair position. The Y-axis is the -log10 p-value of association. Each dot represents the 
association between a given SNP and the trait. Colors alternate between chromosomes, 
with odd chromosomes colored blue, even chromosomes colored teal. Panel A) results 
of PTSD GWAS. Panel B) Results of LTE GWAS). Panel C) PTSD specific results of 
MTAG analysis of PTSD and LTE.  
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Figure 2.2. Comparison of the genetic correlations of PTSD and LTE to other 

traits.  

Footnote: The X-axis is the genetic correlation between LTE and a given trait from LD 
hub. The Y-axis is the genetic correlation between PTSD and a given trait. Each dot 
depicts a given trait. Colored (black, red, or blue) dots indicate traits with significant 
genetic correlation to both PTSD and LTE after Bonferroni adjustment. Non-colored 
(grey) dots indicate traits where genetic correlation is not significant after Bonferroni 
adjustment. Blue dots indicate traits with significantly higher genetic correlation with 
PTSD than with LTE. Red dots indicate traits with significantly higher correlation with 
LTE than with PTSD. The top five traits with a significantly higher correlation to PTSD 
than LTE and top trait with significantly higher correlation to LTE than PTSD have been 
labeled.  
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2.9 Tables 

Table 2.1. Genome-Wide Significant Loci from PTSD GWAS and MTAG with Replication in the MVPTOT GWAS 
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Table 2.2. Genome-Wide Significant Loci from GWAS of LTE 

   

Table 2.2. Genome-Wide Significant Loci from GWAS of LTE

rsID Chr Position A1 A2 A1 freq Z-score p -value

rs6661135 1 150999414 C T 0.93 -5.52 3.3E-08

rs4665501 2 22546151 G T 0.44 -5.77 7.7E-09

rs4704792 5 155757946 A T 0.26 5.75 9.2E-09

rs1476535 7 114071035 C T 0.44 -5.77 8.0E-09

rs2933196 14 47285917 G A 0.59 -5.51 3.6E-08

rs770444611 19 46917381 INS
a T 0.59 5.66 1.5E-08

a
Insertion of TGAGGCCAGGAGTTC

Abbreviations: Chr, chromosome; Position, base pair position on chromosome 

(hg19/GR37 Human Genome Build). A1, Allele 1 (coded); A2, Allele 2; A1 freq, 

frequency; C, cytosine; A, adenosine; T, thymidine; G, guanidine; 
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Chapter 3: Rare copy number variation in post traumatic stress disorder 

3.1 Abstract 

Background: Post traumatic stress disorder (PTSD) is a heritable (24%-71%) 

psychiatric illness. Copy number variation (CNV) is a form of rare genetic variation that 

has been implicated for its role in psychiatric disorders, but no large-scale investigation 

of CNV in PTSD has been performed. We present the largest association study 

between CNV burden and PTSD symptoms in a sample of 114,383 participants. 

Methods: CNVs were called using two calling algorithms and intersected to a 

consensus set. Quality control was performed to remove strong outlier samples. CNVs 

were examined for association with PTSD within each cohort using linear or logistic 

regression analysis adjusted for population structure and CNV quality metrics, then 

inverse variance weighted meta-analyzed across cohorts. CNVs were examined on the 

level of genome-wide total span of CNVs, enrichment of CNVs within specified gene-

sets, within individual genes, and implicated neurodevelopmental regions.  

Results:  PTSD risk was elevated in CNVs that crossed over known 

neurodevelopmental CNV regions (beta=0.0089, SE=0.0020, P=9.9 x 10-6). The 

genome-wide neurodevelopmental CNV burden identified explains 0.033% of the 

variation in PTSD symptoms. Specifically, CNVs overlapping known 

neurodevelopmental CNV regions, 15q11.2 and 22q11.2, were significantly associated 

with PTSD. No individual significant genes interrupted by CNV were identified, but 7 

gene pathways related to the function of the nervous system and brain were significant 

(FDR q<0.05). 
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Conclusion: This study is the first to identify significant association of CNVs with 

PTSD. Larger sample size data, better detection methods, and annotated resources of 

CNV are needed to explore this relationship further.   
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3.2 Introduction 

Post traumatic stress disorder (PTSD) has a substantial genetic component 1. 

Recent large investigations of PTSD genetics have focused on common genetic 

variation 2, 3, but rare and structural forms of genetic variation are hypothesized to be 

important contributors to the development of psychiatric disorders  4. Rare and structural 

variation have been little studied in the context of PTSD  5. However, these forms of 

variation have been studied more thoroughly in the context of other psychiatric 

disorders, where many investigations have specifically focused on copy number 

variants (CNVs) 6.  CNV associations have been identified for attention-

deficit/hyperactivity disorder (ADHD) 7, autism spectrum disorder (ASD) 8, depression 9, 

10, obsessive-compulsive disorder (OCD) 11, and schizophrenia 12. Many of the identified 

psychiatric associations involved neurodevelopmental disorder (NDD) implicated CNVs 

with high penetrance 9, 10, 13, but also the cumulative burden of CNVs across the 

genome and enrichment over specific pathways related to the brain and development of 

the nervous system 12. Largely owing to lack of available data, there has been no major 

reported investigation of CNVs and PTSD. However, the recent availability of large 

sample size PTSD genetic data 2 and available techniques to leverage this data to 

identify CNVs 14, means that it is now possible to investigate the association between 

PTSD and CNV burden with an unprecedented level of discovery power. 

We present an association study between CNVs and PTSD symptoms, 

conducted in a sample of 114,383 participants from the Psychiatric Genomics 

Consortium - PTSD 2, 15. We detected rare (<1% population frequency) CNVs using 

algorithms 16-18 applied to the SNP genotyping array intensity data. Following this, we 
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examined the impact of CNV on PTSD on multiple scales: genome-wide CNV burden, 

enrichment over 46 neuropsychiatric gene-sets (15), CNV burden on individual genes, 

and CNV carrier status over 53 previously implicated NDD CNV regions 9. We conclude 

by comparing the risk contribution from CNVs to the contribution of common variant 

polygenic risk scores (PRSs). 

3.3 Methods 

3.3.1 Participants and phenotyping 

The study sample consisted of 114,383 European ancestry participants across 

20 cohorts within the Psychiatric Genomics Consortium - PTSD freeze 2 data collection. 

Details of genotyping and phenotype measurement have been described in detail 2. In 

brief, participants were assessed for PTSD using either clinical assessment, clinician 

administered inventory, or self-reported inventory (Supplementary Table 3.1). 

Participants were genotyped using Illumina arrays, with the exception that the UK 

Biobank (UKBB) cohort used Affymetrix arrays. For this investigation, we retained only 

cohorts and collections of cohorts that were genotyped and analyzable together with at 

least 150 unrelated samples of genetically determined European ancestry (2).  All 

participants provided written informed consent, and studies were approved by the 

relevant institutional review boards and the University of California San Diego Human 

Research Protection Program. 

3.3.2 CNV calling  

Illumina genotype platform data was self-clustered in Genome-Studio 2.0 and 

exported as intensity data inputs for CNV callers (SNP name, chromosome, position, 

allele 1, allele 2, B allele frequency, log R ratio, X, and Y). Affymetrix platform genotype 
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data clustering methods have been described previously (9), and log R ratio and B 

allele frequency data were downloaded directly from the UKBB. For Illumina datasets, 

CNV were quality controlled according to the PGC CNV calling pipeline for Illumina data 

12. For Illumina data, CNVs were called using PennCNV 17 and iPattern 16. For 

Affymetrix data, CNVs were called using PennCNV and QuantiSNP 18. For PennCNV 

calling, population frequency of B allele files were generated using the data itself. 

Waviness correction was applied using a GC content model file generated from UCSC 

gc_model data (https://genome.ucsc.edu/cgi-bin/hgTables). For the Hidden Markov 

Model input of PennCNV, the pre-supplied files were used: hhall.hmm for Illumina data 

and was affygw6.hmm for the UKBB data 

(https://penncnv.openbioinformatics.org/en/latest/user-guide/input/#hmm-file). iPattern 

calls were made using the default program settings, in batches of up to 196 samples. 

Batches were selected such that samples within a batch were genotyped on the same 

plate or genotyped at approximately the same time.  

3.3.3 CNV quality control 

To ensure that the analysis included a reliable set of calls, CNV calls from 

PennCNV and iPattern were intersected and merged to produce a consensus set. 

CNVs called as gain by one method and loss by the other were also excluded from 

further analyses. Fragmented large CNVs in a locus were annealed if the gap length 

between them was less than 30% of the overall length of the annealed CNV. CNV 

quality metrics calculated by PennCNV were used to perform sample QC. Subjects 

were removed if their values for SD of log R ratio, B allele frequency, or waviness were 

>= Q3 + 3IQR, if >20% of any chromosome was copy number variant (aneuploidy), or if 
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they had excessive CNV count (>= Q3 + 3IQR CNVs) or KB burden  (>= Q3 + 3 IQR 

megabases). Participants who failed standard genotype QC described in Nievergelt et 

al.  2 (sample missingness rates>2%, excess heterozygosity, mismatch between self-

reported sex and genetically determined sex,  π relatedness coefficient>0.2) were also 

removed. We removed CNVs for any of the following reasons: 50% overlap with 

centromeres, telomere, immunoglobulin or T-cell receptor loci, >50% overlap with 

known segmental duplications, CNV frequency > 1% (measured within the data) in 

cases and controls and < 10kb in CNV length or intersecting < 10 probes. 

3.3.4 CNV burden calculation 

CNV burden was measured and evaluated for association with PTSD in multiple 

ways: The cumulative burden of CNVs was calculated as the genome-wide total 

distance (in megabases) spanned by CNVs.  For each of the 53 NDD CNV regions, 

NDD CNV carrier status was determined as having at least 50% of the NDD CNV region 

overlapped by CNV. As a sensitivity analysis, two different overlap criteria (>0% or 

100% overlap) were also evaluated. For gene-level CNV burden, first gene positions 

(GRCh37 human genome build) were downloaded from the UCSC table browser 

(https://genome.ucsc.edu/cgi-bin/hgTables). Genes were filtered to protein coding 

genes, based on having an "NM_" accession prefix in the National Center for 

Biotechnology Information reference sequence database 19. For genes with multiple 

isoforms, the minimum start and the maximum end positions were used.  For each 

CNV, the CNV was mapped to all genes it overlapped by at least one base pair. The 

CNV burden variable was then calculated for each gene, coded 1 if the subject carried a 

CNV that mapped onto the gene, and 0 otherwise. For gene-set analysis, a gene-set 
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burden variable was calculated for each set tested, coded as the number of genes 

within the set overlapped by the CNVs. The gene-set analysis included 53 gene-sets, 

consisting of 23 gene-sets related to neurofunction or nervous system, 6 brain 

expression from BrainSpan consortium and 7 mouse phenotype negative control gene-

sets from previous neurological disorders studies 12, 20, a set of loss-of-function 

intolerant genes as defined by gnomAD v2.0 21, and 16 brain-expressed gene-sets from 

human neocortex scRNA data 22. 

3.3.5 Statistical Analyses 

Within each cohort, the association between PTSD and CNVs was tested using a 

regression model of PTSD as predicted by the CNV variable, 5 principal components 

captured population structure 2, and the log R ratio standard deviation sample quality 

metric from PennCNV. For the gene-set analyses, in order to follow the enrichment test 

model outlined by Raychaudhuri et al. 23 analyses also contained predictors for 

genome-wide total CNV count, genome-wide average length of CNVs, count of CNV 

overlapping NDD regions, and average length of NDD overlapping CNVs. Linear 

regression was used for cohorts with continuous PTSD symptom measures, and probit 

regression was used for case/control cohorts. Results across cohorts were meta-

analyzed using fixed effects inverse variance weighted meta-analysis in the metafor 24 R 

package. For the meta-analysis, to account for the different PTSD measure scales used 

across cohorts, PTSD measures were scaled from 0 to 1 according to the theoretical 

range of scores of the assessment method (i.e. 0 = no PTSD symptoms, 1 = theoretical 

maximum possible PTSD symptoms), and case/control estimates were interpreted as 

being the observed, censored variable for a latent symptom measure variable.  
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Polygenic risk scores (PRSs) for PTSD were computed using PRSice2 v2.3.5 25, 

where Million Veteran Program PTSD GWAS 3 summary statistics were used as the 

discovery dataset and the UKBB was used as the target. SNPs were filtered to common 

(minor allele frequency > 1%) variants and were linkage disequilibrium clumped (r-

squared > 0.1, 250 KB window). The optimal PRS threshold was selected as the one 

with the lowest p-value in a regression model of PTSD in the UKBB. The proportion of 

variance in PTSD explained by PRS and CNV was the difference in model r-squared 

values between a baseline model that included basic covariates and an extended model 

with additional terms for PRS and CNV. 

3.4 Results 

The PTSD CNV meta-analysis included 114,383 participants of European 

ancestry across 20 cohorts (Supplementary Table 3.1, Table 3.1). 15 cohorts were 

genotyped using the Psych array (N=6,813 samples), 1 with the Psych Chip (N=756 

samples), 3 with the OmniExpressExome+Custom content (N=9,432 samples), and one 

with the Affymetrix UK Biobank Axiom array (N=97,382). The method of PTSD 

assessment varied across cohorts, with most participants being assessed via PCL 

(N=106,353). The final dataset included 103,036 CNVs (41,473 gains and 61,563 

losses), an average of 0.90 CNVs per sample (SD=1.03). 60.1% of subjects were 

carriers of at least one CNV (Table 3.1). Among CNV carriers, the average total span of 

CNV carried was 0.32 megabases (SD=0.35), and the average of within subject 

average CNV lengths was 0.23 megabases (SD=0.26)  
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3.4.1 Genome-wide CNV burden analysis 

Genome-wide cumulative CNV burden was significantly associated with PTSD 

(beta=0.0028, SE=0.0008, P=0.0003) (Figure 3.1). We examined CNV burden stratified 

by type (duplication or deletion), finding that the total distance covered by deletions was 

significant (beta=0.0046, SE=0.0013, P=0.0004) but the total distance covered by 

duplications was not (beta=0.0018, SE=0.0010, P=0.065). Next, we examined CNV 

burden stratified by overlap with any of 53 previously implicated NDD CNV regions. The 

cumulative burden of CNV deletions that overlapped NDD regions was significantly 

associated with PTSD (beta=0.0290, SE=0.0054, P=6.3 x 10-8), while the duplication 

burden was only suggestively significant (beta=0.0053, SE=0.0023, P=0.024). The 

genome-wide burden of non-NDD CNV deletions was only suggestively significant 

(beta=0.0031, SE=0.0013, P=0.023), but significant if we considered only the CNVs 

overlapping genes (beta=0.0039, SE=0.0014, P=0.0065) (Supplementary Table 3.2).  

3.4.2 Specific NDD CNV regions confer risk for PTSD 

We investigated the association between PTSD and NDD CNV carrier status. 33 

out of 53 NDD CNVs had at least 1 carrier (Supplementary Table 3.3).  The most 

common NDD CNV was the 15q11.2 BP1-BP2 deletion (N=529 carriers, frequency = 

0.0046). Two NDD CNV were significantly associated with increased PTSD symptoms, 

the 2q13 deletion (chr2:111,394,040-112,012,649, N=15 carriers, beta=0.1455, 

SE=0.0367, P=0.0001) and the 15q11.2 BP1‐BP2 microdeletion (chr15:22,805,313-

23,094,530, N=529 carriers, beta=0.0206, SE=0.0056, P=0.0002) (Figure 3.2). Given 

the limited number of carriers for 2q13, we tested the association again using robust 

standard errors, finding that the result was no longer significant (P=0.11). Overall results 

were similar under a stricter definition of carrier status (100% overlap of NDD CNV 
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region) (Supplementary Table 3.3). Under a loose definition of carrier status (>0% 

overlap of NDD CNV region), the 8p23.1 del, 15q11.2 BP1-BP2 del, 15q11.2q12 

Prader-Willi/Angelman syndrome del, and 22q11.2 dup regions were significant. 

3.4.3 Gene-level analysis 

We examined CNV association on the level of protein coding genes. 2,880 genes 

harbored CNV with at least 0.01% frequency. We found that no gene was significant 

after multiple comparisons correction for the number of genes, in any strata (overall 

CNV, duplications, or deletions) (Supplementary table 4.4). However, the most 

significant genes among deletions were those in the 15q11.2 BP1‐BP2 region and the 

most significant genes among duplications were in the 22q11.2 dup region. 

3.4.4 Deletion burden aggregates across nervous system related gene-sets 

We investigated if CNV burden association with PTSD was enriched in any of 46 

different gene-sets related to the brain and nervous system. We identified 7 sets 

enriched in deletions. Out of these 7 gene-sets, 4 were neurofunction or nervous 

systems-related, two were sets of genes expressed in maturing excitatory neurons, and 

a set of genes highly expressed in the brain (Supplementary Table 3.5). For the genes 

highly expressed in the brain, we found that the enrichment is mainly from those 

expressed in the postnatal stage (beta=0.0023, SE=0.0010, P=0.023, FDR-q=0.10) 

(Supplementary Table 3.5). Many of the leading genes in these significant sets were 

overlapped by NDD CNVs (Supplementary table 3.6). As a sensitivity analysis, we 

removed subjects with CNV overlapping NDD regions (Supplementary Table 3.7). 

Under this analysis, gene-sets related to nervous system and neurological functions 

remained FDR significant, while the others fell outside of significance (FDR-q<0.1). 
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3.4.5 Comparisons with common variant genetics 

We generated PTSD polygenic risk scores in our data using MVP PTSD GWAS 

as the training dataset and the UKBB as the target dataset. Common variant PRS 

explained 0.38% of the variation in PTSD symptoms (optimal pT=0.11, beta=0.0080, 

SE=0.0004, P=5.3 x 10-83).  Adding coefficient for cumulative burden of CNV 

overlapping NDD CNV regions explained an additional 0.033% of the variation 

(beta=0.0418, SE=0.0073, P=1.2 x 10-8) (Supplementary Table 3.8). 

3.5 Discussion 

The association between the cumulative burden of CNVs and PTSD was largely 

driven by CNVs overlapping previously implicated NDD CNV regions. This is a quite 

similar finding to those of two recent studies of major depression and CNVs 9, 10. In 

terms of how this burden modifies depression risk, Kendall et al. 9 suggested that some 

of the CNV effects are mediated by sociodemographic risk factors. As PTSD has similar 

risk factors 26, NDD CNVs may influence PTSD risk via the same mediated 

mechanisms. We propose that some of the psychiatric and neurodevelopmental 

consequences of CNVs may also increase PTSD risk, as they represent PTSD risk 

factors 27 28. 

In examining the individual NDD CNVs, the most significant association we 

observed with PTSD was the 15q11.2 BP1-BP2 microdeletion, one of the most 

frequently occurring pathogenic CNVs identified in humans 29. This CNV is associated 

with alterations in brain morphology and cognition 30. There a wide variety of possible 

clinical manifestations, including developmental delays, intellectual disability, as well as 

behavioral and psychiatric problems, including ADHD, ASD and schizophrenia 31. 
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However, some of these associated outcomes are thought to be false positives caused 

by ascertainment bias 32. Under a less strict definition of NDD carrier status (>0% 

overlap with NDD CNV region), the most significant association identified was with the 

22q11.2 duplication region. The 22q11.2 duplication has a variety of deleterious impacts 

33, but generally they are less severe than those observed in the 22q11.2 deletion 34. 

Rather than any specific functional aspects of these CNVs having led to the significant 

associations that we observed, we suspect that their relatively high frequencies in the 

data made them among the most statistically powered to identify.   

On a broader level, we observed enrichment of CNVs overlapping gene-sets 

related to the function of the brain and nervous system, such as deletions in genes 

expressed in maturing excitatory neurons, as well as those highly expressed in the brain 

during the postnatal stage. These results are fairly in line with findings from common 

variant analyses of PTSD and other psychiatric disorders, which tend to find enrichment 

of signals in brain regions and neurodevelopmental gene-sets 3, 35-37. Thus, CNVs may 

ultimately influence the same genes and pathways as common variants, as was 

recently hypothesized in an analysis of schizophrenia 38.  

Our PRS analysis suggests that CNVs represent genetic risk factors for PTSD 

that are not readily identified by common variant analyses. In terms of the accuracy of 

population risk prediction, the addition of CNVs was only a marginal improvement over 

PRS. However, given the rarity of CNVs, population genetic risk prediction may not be 

the most useful aspect 39 of determining CNV risk. Rather, CNV carriers may be a 

subset of individuals for whom a tailored health management strategy 39 applies. 

Indeed, CNV carrier status has been proposed as a tool in clinical decision making for 
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psychiatric disorders, albeit one that will first require expansion of the clinical knowledge 

base of CNVs 40. But it is unclear how much this will apply directly to PTSD, as the CNV 

effect sizes we observed were relatively modest compared to the ones observed in 

disorders like schizophrenia 12. 

3.5.1 Limitations 

We focused only on rare (<1% frequency) CNVs larger than 10 kilobases in 

length due to the detection limits of array based CNV calling. However, small CNVs may 

have clinical importance 41, 42 . Future investigation of the relationship between small 

CNVs and PTSD will likely require sequencing data, as the dense genotyping allows for 

the determination of CNV at a higher resolution than SNP genotyping arrays 43. Thus, 

we expect that CNV investigations will emerge as sequencing data becomes available 

from biobank resources 44 . We were unable to assess the impact of de novo CNV 

specifically, which would require case-parent trio data to identify. Yet, de novo variation 

is an important form of risk to investigate, as it occurs more often in cases than controls 

for ADHD, ASD, and schizophrenia 45. PTSD genetic studies usually do not gather 

parent genotype data, implying that new data would need to be gathered in order to 

study this. We note that several of the cohorts investigated were from specially selected 

populations. The UKBB is known to be healthier than the general population of the 

United Kingdom 46. As well, we analyzed several military populations, where good 

physical and mental health are required for enlistment. Due to carriers not having been 

selected for health reasons consequential to their carrier status, our study may have 

incorrectly estimated (or outright not detected) some effects of CNV on PTSD.  Indeed, 

this may be why we specifically identified the 15q11.2 BP1-BP2 deletion and 22q11.2 
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duplications: As these CNVs have relatively milder impacts compared to some CNVs 32 

34, more seemingly unaffected carriers would exist in the investigated cohorts. We did 

not identify any particular genes where the presence of CNVs had a significant 

association with PTSD. The limited statistical power of low frequency variation 47 

perhaps inhibited our ability to detect these genes. Therefore, we hypothesize that 

specific gene associations will emerge given greater sample sizes or analytic 

techniques more suited for this form of data, especially as we had positively identified 

specific gene-sets. We only tested for enrichment of gene sets related to the brain and 

nervous system, however, CNV may act on other relevant pathways; CNV are thought 

to have widespread phenotypic effects, such as on the immune system 48, which is also 

deeply implicated in PTSD development 49 .  

3.5.2 Conclusions 

We have performed, to our knowledge, the largest (N=114,383 participants) 

investigation of the influence of CNV burden on PTSD risk, and furthermore, are the first 

to identify significant associations. Risk was enriched in regions that crossed over 

known NDD regions and in pathways related to the function of the nervous system and 

brain. In particular, we have implicated the 15q11.2 BP1-BP2 microdeletion. Larger 

sample size data, better detection methods, and annotated resources of CNV are 

necessary to explore these relationships further.  
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3.7 Figures 

 

Figure 3.1. Genome-wide CNV burden association. 

Footnote: The bar plot depicts regression beta coefficients as effect sizes (on the x-axis) 

of genome-wide CNV burden on PTSD, including overall burden, overlapping 

neurodevelopmental regions only, and genome-wide with neurodevelopmental regions 

excluded (on the y-axis). Data are shown stratified by CNV type, both CNV types 

(colored black), duplications only (colored red), and deletions only (colored blue). Effect 

sizes are shown in terms of megabases of the genome spanned by CNV. 
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Figure 3.2. Association of individual NDD CNVs with PTSD 

Footnote: The bar plot depicts regression beta coefficients as effect sizes (on the x-axis) 

of NDD CNVs (on the y-axis) on PTSD. Data are colored by CNV type,  with deletions  

in blue and duplications in red. Effect sizes are shown in terms of megabases of the 

genome spanned by CNV. A star indicates an FDR significant CNVs. 
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3.8 Tables 

Table 3.1. Cohorts analyzed 
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Table 3.2. FDR significant gene-sets 

    

Table 3.2. FDR significant gene-sets

Set Name Set Category Beta SE Z p FDR

PhHs_NervSys_All PhenoNeuro 0.0053 0.0015 3.5842 0.0003 0.016

Neurof_GoNeuronProj Neurofunction 0.0054 0.0016 3.3300 0.0009 0.024

Neurof_UnionStringent Neurofunction 0.0047 0.0016 2.9809 0.0029 0.033

scRNA_Expressed_ExM scRNA brain expressed genes0.0033 0.0011 2.9549 0.0031 0.033

scRNA_Expressed_ExM_U scRNA brain expressed genes0.0031 0.0010 2.9786 0.0029 0.033

BspanVH_lg2rpkm4.74 ExprBrainSpan 0.0023 0.0008 2.8762 0.0040 0.035

PhHs_NervSys_ADX PhenoNeuro 0.0057 0.0021 2.7779 0.0055 0.042

Abbreviation: FDR, false discovery rate q value
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Chapter 4. The effects of genetically predicted posttraumatic stress disorder on 

autoimmune conditions and inflammatory biomarkers 

4.1 Abstract 

Background: Posttraumatic stress disorder (PTSD) is associated with elevated 

levels of peripheral inflammatory markers and increased risk of developing disorders 

with an inflammatory component. Some research suggests inflammation itself may 

increase risk of developing PTSD after trauma. It is uncertain if these relationships are 

causal, as associations originate from observational studies. Mendelian randomization 

(MR) can be used to investigate the causal relationships using readily available 

genome-wide association study (GWAS) summary data. 

Methods: The genetic correlations between PTSD and inflammatory biomarkers 

and diseases with an inflammatory component were estimated using linkage 

disequilibrium score regression. Genetic causality proportions were estimated using 

latent causal variable analysis. Bidirectional MR was performed using genome-wide 

significant, linkage disequilibrium independent single nucleotide polymorphisms. Inverse 

variance weighted, weighted median, and MR Egger estimates were generated. 

Sensitivity analyses for sample overlap (MRlap), heterogeneity (Cochran's Q test), and 

uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were 

performed.  

Results: PTSD had significant genetic correlations with 11 inflammatory 

phenotypes. CRP had a significant shared genetic causality with PTSD (gcp = -0.3, se = 

0.04, p = 1.3e-19). MR analyses indicated that genetically predicted PTSD was 

significantly associated with asthma, CRP, IL6, psoriasis, and white blood cell count 
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(FDR q < 0.05). MR effects were not significant in the other causal direction. Inferences 

were not significantly altered by sample overlap or horizontal pleiotropy. In multivariable 

MR analyses, the effect of PTSD on psoriasis was no longer significant when adjusted 

for CRP. 

Conclusion: Our findings suggest that PTSD has a putative causal effect on 

some inflammatory phenotypes, consistent with evidence of stress- and trauma-related 

disorders predicting greater risk of inflammatory disorders. Previously proposed 

inflammatory mechanisms seem to be involved in some of these relationships. 
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4.2 Introduction 

Post-traumatic stress disorder (PTSD) is a debilitating psychiatric illness that 

develops in response to traumatic stress exposure 1. PTSD is characterized by intrusive 

memories, avoidance, negative changes in thinking and mood, and changes in physical 

and emotional reactions2. Symptoms last for longer than one month and cause 

considerable distress and/or interference with multiple areas of life2.  PTSD is often co-

morbid with physical and psychiatric illnesses 3, many of which have an inflammatory 

component 4. For example, longitudinal studies suggest that PTSD precedes the 

development of asthma 5 and autoimmune diseases 6, 7. This has led to the general 

hypothesis that PTSD involves dysregulation of the immune system 4. Much of the direct 

evidence for an inflammatory component of PTSD comes from biomarker studies that 

show elevated serum measures of inflammatory cytokines 8 and white blood cell counts 

9 in PTSD cases. As well, evidence is provided from emerging genetic 10, epigenetic 11, 

12, and transcriptomic 13 studies. The causal relationship between inflammation and 

PTSD is unclear and suspected to involve a complicated temporality 4. The few 

longitudinal studies of the inflammatory biomarker C-reactive protein (CRP) have 

provided mixed evidence 14 of the temporal relationship between PTSD and 

inflammation.  

Deeper understanding of the nature of the relationship between inflammation and 

PTSD may enhance treatment options for PTSD, as well as treatment options for co-

morbid diseases with inflammatory components 15 4. Two sample Mendelian 

randomization (MR) 16 has been proposed as a means of evaluating the causal 

relationship between PTSD and inflammation 14. This method requires genetic 
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predictors of PTSD and inflammatory phenotypes, which have now been identified by 

large genome-wide association studies (GWASes) of PTSD and these traits 10, 17 18. 

Extensions of MR 19 and other methods of genetic causal inference analysis such as 

latent causal variable (LCV) analysis 20 continue to be developed to strengthen 

confidence in the validity of causal inferences made using genetic data. 

In the current study, we investigated the causal relationship between PTSD and 

several inflammatory phenotypes by applying genetically-informed causal inference 

analyses to large-scale GWAS summary data. First, we examined the genetic overlap 

between PTSD and these phenotypes using genetic correlation analyses 21. For traits 

with significant genetic correlation, we inferred genetic causality between them using 

LCV analyses and two sample MR. We performed several sensitivity analyses to 

evaluate the validity of our findings. We examined all associations for a confounding or 

mediating effect of a general inflammatory signal 22 

4.3 Methods 

4.3.1 Data sources and harmonization 

PTSD summary data came from the PGC-PTSD 10 Freeze 3 European ancestry 

GWAS (manuscript in preparation). For inflammatory phenotypes, we compiled a list of 

phenotypes with published association with PTSD, which included blood cell types, 

inflammatory biomarkers, autoimmune diseases, and other diseases with an 

inflammatory component. We searched Google Scholar and the GWAS catalog 

(https://www.ebi.ac.uk/gwas/) for GWASes of these phenotypes. SNP level summary 

statistics were downloaded where available, either via public link or request made to the 
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authors. To be considered for analysis, genome-wide GWAS summary data needed to 

contain SNP rs-id, coded and non-coded alleles, effect size, corresponding standard 

error, and p-value.  To prevent confounding due to ancestral differences, only European 

ancestry GWAS summary statistics were considered. When multiple GWAS were 

available for the same phenotype, our analytic preference was to use the set of 

summary statistics from the largest sample size data available. Our analytic sample 

consisted of 47 phenotypes, including allergic diseases and asthma 23, 15 blood cell 

phenotypes24, celiac disease 25, 16 circulating cytokines26,  CRP27, interleukin-6 (IL-6) 

28, inflammatory bowel disease 29 (including Crohn's and ulcerative colitis disease),  

Parkinson's disease 30, primary biliary cirrhosis31, psoriasis 32, rheumatoid arthritis33, 

systemic lupus erythematosus34, suPAR 35, and type 1 diabetes 36 (Supplementary table 

4.1). 

4.3.2 Linkage disequilibrium (LD) score regression (LDSC) 

SNP-based heritability of phenotypes and their genetic correlations (rgs) with 

PTSD were estimated using LDSC 21 with the 1000 Genomes Phase 3 European 

reference panel. Significance of rg was based on FDR adjustment for the number of 

correlations tested. Phenotypes with significant rg with PTSD were carried forward for 

MR analyses.  We omitted phenotypes with heritability z-scores < 4 from further 

analyses, as rgs are not easily interpretable when the precision of the heritability 

estimate is this low 37.  

4.3.3 LCV analysis 

To broadly estimate genetic causality shared between PTSD and immune-related 

phenotypes, we used the LCV method 20. This method estimates the rg between 
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phenotypes, then an LCV model is fit to determine the degree to which the rg is 

mediated by a latent variable with a causal effect on both phenotypes. This latent 

variable estimates the proportion of genetic causality shared between phenotypes 

(GCP), ranging from -1 to 1. Positive values reflect a causal influence of the first trait on 

the second, negative values reflect a causal influence of the second trait on the first. 

Values of -1 or 1 reflect total causal overlap, while a value of 0 indicates no shared 

causality. 

4.3.4 MR analyses 

The TwoSampleMR R package 38 was used to harmonize data and perform MR. 

Effect allele coding was harmonized across phenotypes using the harmonise_data 

function. As minor allele frequency was missing for several phenotypes, strand 

ambiguous SNPs were excluded. Genetic instruments were constructed using genome-

wide significant SNPs. SNPs were LD clumped (r2 <= 0.001 in 1000 Genomes Phase 3 

Europeans data 39) to insure independence. SNPs within two highly pleiotropic regions, 

the MHC region 20 (Chromosome 6, 28,477,797 - 33,448,354 BP) and 17q21.31 region 

inversion (Chromosome 17, 40,928,986 - 42,139,672 BP) were excluded, with a 3MB 

buffer added to ensure markers in LD were also removed. 

We conducted two-sample bidirectional MR analysis using the inverse variance 

weighted (IVW) estimator with multiplicative random effects. MR analysis was also 

performed using complementary MR Egger regression 40 and weighted median 41 

estimators. To account for multiple testing, false discovery rate (FDR) correction was 

applied within each estimator. Multiple sensitivity analyses were performed. To detect 

unbalanced horizontal pleiotropy (defined as direct effects of genetic instruments on the 
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outcome of interest with a net nonzero effect), we used the MR Egger intercept test 40. 

Heterogeneity among SNP instruments was identified using the Cochran’s Q test and 

the MR PRESSO 42 global test. The MR PRESSO outlier test was performed to identify 

outliers. The MR PRESSO distortion test was used to determine if the outlier-adjusted 

IVW estimate was significantly different from the unadjusted one. To evaluate if our 

associations could be explained by correlated horizontal pleiotropy (defined as genes 

influencing a third factor which in turn has pleiotropic effects on the exposure and 

outcome traits) on the investigated traits, we used the CAUSE method 19. This method 

fits a set of nested models: a 'null' model where only uncorrelated horizontal pleiotropy 

(defined as direct effects of genes on the outcome with net zero effect) is modeled, a 

'sharing' model where an additional parameter is fit to account for correlated horizontal 

pleiotropy, and a 'causal' model where an additional causal effect parameter is fit. The 

relative fits of the models are compared to determine if a causal model explains the 

relationship better than a model that only accounts for correlated horizontal pleiotropy. 

To account for potential sample overlap between PTSD and other phenotypes, we 

applied the MRlap 43 method. MRlap uses the LDSC genetic covariance intercept as an 

adjustment factor to account for sample overlap. MRlap compares the adjusted and 

unadjusted IVW estimates using a z-test. Multivariable MR analysis was performed 

using CRP as an additional exposure using the MendelianRandomization R package 44. 

4.4 Results 

4.4.1 rg and genetic causality between PTSD and immune-related phenotypes 

We evaluated the SNP-based heritability of 47 phenotypes. 17 phenotypes had 

heritability Z-scores less than 4, making them unreliable for estimating rg and were 
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therefore excluded from further analyses.  Of the remaining 30 phenotypes, PTSD had 

significant rg with 11 (Figure 4.1), with the correlations ranging in magnitude from 0.05 

(neutrophil cell count) to 0.28 (IL-6) (Supplementary Table 4.2). LCV analysis indicated 

that CRP was partially genetically causal for PTSD (genetic causality proportion = -0.3, 

SE= 0.04, p = 1.26x10-19
; rg= 0.25, se= 0.05).  No other phenotype had evidence of 

genetic causality that reached statistical significance (Supplementary Table 4.3). 

4.4.2 MR analysis 

The 11 phenotypes with significant rg with PTSD were carried forward for MR 

analyses. Up to 62 independent genome-wide significant SNPs were included in the 

genetic instrumental variable for PTSD. For the IVW based estimator, there was 

evidence of significant association between genetically predicted PTSD and seven 

inflammatory phenotypes, including asthma, CRP, IL-6, psoriasis, neutrophil count, and 

total white blood cell count (Table 4.1), all in the positive effect direction. With the 

exception of psoriasis, the IVW estimate that accounted for sample overlap between 

PTSD and the investigated phenotypes was significantly higher than the unadjusted 

estimate (Supplementary Table 4.4). For the weighted median estimator, CRP, asthma, 

and white blood cell count effects were FDR significant and similar to IVW effects. No 

result was significant under the MR Egger regression method. We performed 

multivariable MR using genetically predicted CRP as a surrogate variable for general 

inflammatory processes (Figure 4.2). The genetically predicted PTSD effect size on 

psoriasis was significantly weaker after this adjustment (Table 4.2). We performed MR 

in the other causal direction, testing for association between genetically predicted 
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inflammatory phenotypes and PTSD. No genetically predicted inflammatory phenotypes 

were significantly associated with PTSD (Supplementary Table 4.5).  

4.4.3 Sensitivity analyses 

Of the seven inflammatory phenotypes that were significantly associated with 

PTSD in the IVW MR analyses, Cochran’s Q test suggested significant heterogeneity 

for CRP, asthma, white blood cell count, and neutrophil count, indicating pleiotropy 

(Table 4.1). Similarly, MR PRESSO global test for horizontal pleiotropy was significant 

for these phenotypes (Supplementary Table 4.6).  However, following outlier removal, 

the outlier-corrected IVW estimates for these phenotypes were not significantly different 

from the original IVW estimates. The MR Egger intercept test for unbalanced horizontal 

pleiotropy was not significant for any phenotype tested (Table 4.1).  

To determine if putative associations could potentially be accounted for by a third 

factor, we contrasted CAUSE estimated sharing and causal models to null models 

(Supplementary Table 4.7). For the effect of genetically predicted PTSD on CRP, a 

causal model was a better fit than a sharing model (causal effect = 0.05, 95% CI=[0.13 - 

0.18], p=8.5x10-8). For asthma, psoriasis, and white blood cell count, the causal model 

was only a nominally significantly better fit than the sharing model (p < 0.05). When we 

tested for causal effects in the other direction, for CRP the sharing model was a better 

fit than the null model (p=0.0047), but the causal model was not a better fit than the 

sharing model (p=0.18). No other phenotype had a significantly better fit using sharing 

or causal models versus the null model. 
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4.5 Discussion 

PTSD is associated with a pro-inflammatory state and is co-morbid with 

inflammatory disorders 4. The causal relationship between PTSD and inflammation is 

unclear, as is the causal relationship between PTSD and the development of 

inflammatory diseases 4. In the current study, we performed genetic causal inference 

analyses of PTSD and several inflammatory biomarkers and diseases. We identified 

putative causal relationships between PTSD inflammatory biomarkers, CRP, IL-6, and 

white blood cell count (overall and neutrophils), as well as with diseases with an 

inflammatory component including asthma and psoriasis. 

CRP is often used as a biomarker of inflammation, such that it has been used as 

a surrogate variable for inflammation in MR 22. A recent MR study suggested that there 

is a bi-directional causal relationship between PTSD and CRP45, further suggesting the 

complicated directionality of the relationship between PTSD and inflammation 4. Our 

current results provided mixed evidence for both directions of causal association. Our 

MR analyses suggested a causal effect of PTSD on CRP, but that the causal effect of 

CRP on PTSD is perhaps confounded by a third factor. In contrast, the LCV analyses 

suggested that there is a shared genetic causality of PTSD and CRP that is driven by 

CRP. We however cannot rule out that the observed associations are the result of the 

limitations of using CRP as a biomarker for inflammation. Namely, CRP considered to 

be a downstream inflammatory biomarker 46 47, such that CRP may measure both 

upstream inflammation and pro-inflammatory effects of PTSD, thus resulting in bias 

from reverse causation. 
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Longitudinal studies suggest that PTSD increases the risk of autoimmune 

diseases such as psoriasis 7. We observed a significant causal effect of genetically 

determined PTSD on psoriasis. Given that the association attenuated upon conditioning 

on CRP, our results may suggest that the inflammatory component of PTSD is what 

mediates increased risk of psoriasis. Thus, to understand how PTSD relates to risk of 

autoimmune diseases, it remains imperative to understand the relationship is between 

PTSD and inflammation. 

Our MR results suggest a causal effect of PTSD on asthma, but that this 

association may be explained by an unknown confounding factor.  Adjustment for CRP 

as a surrogate for inflammation did not attenuate the observed association. Thus, 

despite the inflammatory component of asthma 48, the inflammatory signals measured 

by CRP may not represent a mediating factor in the association between PTSD and 

asthma. Longitudinal cohort studies suggest that stress and social factors related to 

PTSD do not account for this increased risk 5, 49, leaving us to speculate on what aspect 

of PTSD increases asthma risk. However, we note these findings are complicated by 

the general heterogeneity of asthma, which has an imperfect genetic correlation 

between subtypes 23, and thus findings may be different if asthma sub-types were to be 

considered. 

Adjusting for CRP provided some degree of attenuation for the effect of PTSD on 

IL-6 and white blood cell count. The production of CRP is stimulated by IL-6 (42), 

suggesting that there is a correlation between their serum measures. Further, white 

blood cells have a reciprocal relationship with cytokines (41), such that they may be 

measuring similar inflammatory signals. Indeed, we measured significant rg of CRP with 
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IL-6 and white blood cell count. It is not clear however, if CRP is measuring a broad 

inflammatory signal, such that it is also unclear if the underlying inflammatory signal 

measured by these three biomarkers is truly the same. For that reason, it would be 

beneficial to differentiate the genetic signals contributing to different inflammatory 

biomarkers to help differentiate what they measure 18, 26
, perhaps then leading to 

insights into their association with PTSD. 

4.5.1 Limitations 

Power to perform MR in the direction of phenotype effects on PTSD was limited 

due to phenotypes having relatively few genetic markers with strong effects. However, 

as this is a very active field of investigation,  we expect that more powered GWAS 

summary data will be released in the future. We did not focus on disorders related to 

systemic inflammation 4 such as cardiovascular disease and metabolic syndrome, but 

these are major co-morbidities with PTSD 1. Of the phenotypes examined, our 

investigation focused only on phenotypes with significant rg with PTSD. However, some 

traits may have significant genetic overlap with PTSD, albeit with complicated pleiotropy 

that rg cannot adequately summarize 50. MR could still be performed if this pleiotropy 

were properly accounted for. Thus, a future investigation could screen on shared 

genetic overlap rather than rg, then take great care in the selection of instrumental 

variables for MR. While outside the scope of this analysis, a detailed study of genetic 

overlap between PTSD and inflammatory traits, using recently developed methods 50 51, 

could help deliver additional mechanistic insights. It is unclear if the associations we 

observed are related to PTSD itself, or consequences of traumatic stress exposure, as 

in general stress is related to inflammation. It is also unclear if factors like socio-
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economic status mediate some of these relationships, as was suggested by Polimanti et 

al. 45.  

4.5.2 Conclusions 

PTSD has a putative causal effect on inflammatory phenotypes, consistent with 

evidence of stress-related disorders increasing risk of conditions with an inflammatory 

component 5, 7. Previously proposed inflammatory mechanisms may mediate some of 

these relationships. Further mechanistic investigation has to be performed to 

understand the role of inflammation in PTSD 14. 
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4.7 Figures 

 

 

Figure 4.1. Significant genetic correlations between PTSD and autoimmune 

disorders and inflammatory biomarkers. 

Footnote: The x-axis indicates the magnitude of genetic correlation with PTSD. The y-
axis represents each trait with significant association with PTSD, indexed in the style of 
a barplot. Each square represents the genetic correlation of a given trait with PTSD, 
with the bars representing 95% confidence intervals. 
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Figure 4.2. Causal effects of PTSD on autoimmune disorders and inflammatory 

biomarkers. 

Footnote: The x-axis indicates the magnitude of association of genetically predicted 
PTSD with each trait. The y-axis represents each trait evaluated, indexed in the style of 
a barplot. Each square represents the effect size of genetically predicted PTSD on a 
given trait with PTSD, with the bars representing 95% confidence intervals. Blue bars 
are single variable IVW MR estimates, red bars are MVMR IVW estimates adjusted for 
CRP. 
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4.8 Tables 

Table 4.1. Mendelian Randomization Analysis of PTSD on outcome phenotypes 
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 Table 4.2. MVMR analysis of PTSD exposure and trait outcome, adjusted for CRP 

 

    

Unadjusted IVW MR

PTSD PTSD CRP Relative reduction 
a

Outcome Beta SE p Beta SE p Beta SE p p

C-Reative Protein 0.090 0.018 4.28E-07 NA NA NA NA NA NA NA NA

Asthma 0.181 0.060 0.0027 0.208 0.075 0.006 -0.176 0.445 0.692 -0.152 0.615

IL6 0.051 0.017 0.0032 0.04 0.021 0.052 0.098 0.128 0.442 0.213 -0.904

White Blood Cell Count 0.037 0.014 0.0066 0.024 0.017 0.142 0.125 0.099 0.208 0.352 -1.282

Psoriasis 0.190 0.081 0.019 0.047 0.094 0.617 1.539 0.556 0.006 0.753 -2.992

Neutrophil 0.030 0.013 0.02 0.026 0.016 0.119 0.04 0.098 0.684 0.139 -0.471

Abbreviations: IVW, inverse variance weighted;

a 
The difference of  unadjusted and adjusted betas, divided by the unadjusted beta

IVW MVMR adjusted for CRP
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Chapter 5. Discussion 

Post traumatic stress disorder (PTSD) has severe psychological, physical, 

interpersonal, and societal costs 1-4. The lifetime prevalence of PTSD in the United 

States is 5-10% 5, albeit is highly conditional on trauma exposure 6. The burden of 

PTSD on the individual and on society makes the continued development of 

increasingly effectual treatments for PTSD very important. Deeper research into the 

biological basis of PTSD may aid these efforts 7. Furthermore, understanding how 

PTSD relates biologically to the development of other diseases, such as autoimmune 

conditions, also opens new potential avenues for treatment  8. The substantial 

heritability of PTSD implies that genetics are an important biological risk factor 3, one 

that is methodologically feasible to investigate 9.  

This dissertation aimed to extend analyses performed by the Psychiatric 

Genomics Consortium (PGC)-PTSD by leveraging additional phenotype data on PTSD 

symptoms and trauma exposure, and information on copy number variant (CNV) data 

available from the GWAS arrays, to identify additional genetic risk factors contributing to 

PTSD, then to use this genetic variation to evaluate a potential causal relationship 

between PTSD and co-morbid autoimmune conditions using a Mendelian 

Randomization (MR) approach. Specifically, in chapter 2, we explored the common 

genetic variation association with PTSD, leveraging continuous PTSD symptom scores 

and lifetime trauma exposure (LTE) to gain additional insights. We identified novel 

replicable risk loci, with widespread pleiotropic associations to other psychiatric 

disorders, co-morbid conditions, and traits. We also identified novel loci related to LTE. 

There was a high genetic overlap of PTSD and LTE, albeit with some key differences 
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identified: negative affect traits like neuroticism and irritability were more strongly 

correlated with PTSD than LTE, whereas risk-taking behavior showed higher correlation 

with LTE than PTSD. Our results indicate a significant amount of genetic effects on 

PTSD are potentially mediated by trauma exposure. We found that incorporating trauma 

exposure data as an additional outcome in a multivariate analysis enhanced PTSD 

GWAS discovery power, having identified additional replicable loci.  

Next, in chapter 3, we expanded the scope of genetic investigation of PTSD into 

rare genetic variation, performing the first large scale investigation of rare CNVs and 

PTSD. We found that the genome-wide burden of CNVs was positively associated with 

PTSD. This burden was largely concentrated in previously implicated 

neurodevelopmental CNV regions. Results specifically identify increased risk in CNVs 

overlapping the 22q11.2 duplication and 15q11.2 BP1-BP2 microdeletion regions. 

Outside of neurodevelopmental CNVs, association was found for several gene sets 

related to the function and development of the central nervous system, including small 

cell RNAs. In conclusion, we found that CNV burden predicted a significant fraction of 

the variation in PTSD symptoms, albeit one that is relatively small compared to common 

variant based polygenic risk scores (PRSs) generated from recent GWAS 10. 

Last, in chapter 4, we used Mendelian Randomization (MR) to investigate a 

potential causal association between PTSD and autoimmune conditions. We found a 

significant association between genetically instrumented PTSD and asthma, psoriasis, 

C-Reactive Protein (CRP), interleukin-6, neutrophil count, and total white blood cell 

count. The causal association with psoriasis could be explained by a general 

inflammatory signal, as measured by using CRP as proxy for inflammation. The 
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associations for inflammatory biomarkers, interleukin-6 and white blood cell count, 

seemed to be related to this signal as well. We observed that the previously reported 

effect of genetically instrumented CRP on PTSD 11 may have been confounded by an 

unknown factor.  

Our results suggest that future genetic studies of PTSD will benefit from the 

integration of trauma exposure information. Importantly, trauma exposure history is 

oftentimes gathered alongside PTSD status, meaning that the most important step of 

integration, the measurement of the phenotype, is already performed and available for 

researchers. We chose multivariate analyses as our means of integration, which we 

considered ideal for the shortcomings of our data. However, more sophisticated models 

integrating PTSD and trauma could be explored, in particular causal mediation analysis 

12. Causal mediation analysis allows for simultaneous investigation of mediation and 

gene by environment interactions (GxEs), which are thought to be an essential yet 

under-investigated aspect of PTSD genetics 13. The suggestion to incorporate trauma 

exposure equally applies to rare variant associations. In light of identifying 

neurodevelopmental CNVs as being associated with PTSD, it may be particularly 

relevant to explore their association as mediated by childhood trauma or other factors 

associated with early development that are risk factors for PTSD.  

While CNV primarily have been investigated in the context of autism and 

schizophrenia 14, 15, there is building evidence that they are relevant to other psychiatric 

disorders 16-18. We identified CNV risk associations with PTSD, but their effects were 

relatively modest compared to CNV effects on autism and schizophrenia. For example, 

schizophrenia has multiple highly penetrant variants 19, such as the 22q11.2 deletion 
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variant, for which 25% of carriers develop schizophrenia 20. It may be that differences in 

the genetic architectures of PTSD and schizophrenia seen in common variation 21 are 

also at least somewhat reflected in rare variation. Nevertheless, the identification of 

these rare variants is important, as it may still help pinpoint genes wherein mutational 

disruption considerably influences risk 22, suggesting them as targets for follow up 23. 

Overall, our CNV findings are fairly similar to those of major depressive disorder 18, 

which also follows what is observed in GWAS 21.  It has been hypothesized that 

studying psychiatric disorders together will greatly enhance understanding of the 

similarities and differences of these conditions 24, where efforts are now underway to 

perform such cross-disorder analysis with rare CNVs 25.  

The study of the causal association between PTSD and autoimmune conditions 

has potential applications to the diagnoses of these disorders and to the treatment of 

PTSD itself 8. Our results support the notion that PTSD precedes autoimmune disease, 

strengthening the evidence of longitudinal studies that suggest early treatment of PTSD 

relates to reduces risk of developing an autoimmune disease 26.  Our results also 

support the notion that the relationship between PTSD and some autoimmune 

conditions, like psoriasis, is related to a common inflammatory factor(s)  27. Thus, this is 

an important target for future investigation for both PTSD and autoimmune diseases, 

with further upstream in the inflammatory cascade being an obvious place to start 

investigation 28. 

There are several limitations to the analyses contained in this dissertation, which 

should be addressed in future works. First, we focused on European ancestry 

populations, but genetic investigation of non-European populations is necessary in 
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addressing health disparities 29. This is particularly relevant in the context of PTSD, as 

risk of PTSD is differential across ancestries 30. In general, genetic variation in non-

European populations is relatively less investigated than in European ancestry 

populations, due to data availability and other factors 31. The current efforts to gather 

non-European ancestry samples in the PGC and PGC-PTSD in particular 21 will provide 

much-needed data to expand analyses to other ancestries. Ancestry deconvolution 

methods that we have developed 32 will facilitate the analysis of admixed individuals in 

these data.  In addition to gene discovery and fine-mapping, availability of non-

European data will serve as a resource to develop and calibrate PRS estimation in non-

European populations 33. 

Second, I have performed multivariate modeling of LTE and PTSD, rather than 

attempt to implement the proposed causal mediation analysis method. There were two 

major factors for this, the first being the limitations of the data: Trauma exposure is 

typically assessed retrospective to PTSD via self report. Recall bias has been observed 

in the forms of both over and under reporting of trauma exposure 34. There is evidence 

to suggest that PTSD systematically influences recall bias of trauma exposure 35, which 

violates a required assumption of the mediation model. In contrast, there is no such 

required assumption for the multivariate model where LTE is treated as an additional 

outcome. Any causal mediation analysis should therefore consider a thorough 

sensitivity analysis, possibly calibrated on empirical data from prospective assessments. 

The second limitation was computational: causal mediation analysis takes significant 

computational resources to perform, for example being orders of magnitude slower to 

compute than a basic linear regression. Thus currently, it is feasible to examine a small 
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number of loci, such as the leading variants from GWAS. However, the true value of 

these analyses would come in the form of post-GWAS analyses of the whole genome, 

such as for tissue expression overrepresentation 36 or genetic correlations 37. Rather 

than increasing computing capacity, it may be better to optimize methods. One avenue 

may involve the assumption of infinitesimal genetic effects, which has been used 

successfully to speed up GWAS computations in other contexts 38. 

Third, the analysis of rare genetic variations focused only on large CNVs. 

Genotype arrays are limited to reliably calling only relatively large (>10,000 bases) 

CNVs, yet there is increasing evidence that very small CNVs are clinically relevant 39. 

As well, the currently available CNV calling algorithms tend to produce somewhat 

different call sets, and analyses are limited to consensus calls to insure validity. CNVs 

called from sequence data may be more accurate due to the denser set of probes and 

allow for calling smaller CNVs than traditional arrays are capable of 40. Additionally, 

outside of CNVs, large investigations of other forms of rare variation have yet to be 

conducted for PTSD. These deficits are now at the point of feasibility to address, given 

whole-genome sequencing data is becoming more affordable and is becoming available 

from large biobank resources  41.  As well, the emergence of large sequenced reference 

panels and other technical developments means that rare variation can, to some 

degree, also be imputed 42 43. 

Fourth, in investigating the association of autoimmune disorders and PTSD, we 

cannot rule out bidirectional associations, due to a lack of statistical power for many 

autoimmune traits (i.e. too few genetic instruments). We expect more adequately 

powered GWAS of autoimmune traits will be released in the near future, and that 
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putative associations will become clearer as this happens. Additionally, we did not 

capture all autoimmune disorders, so many putative associations outright remain to be 

investigated using MR. Joint analyses of autoimmune disorders were not considered, 

but recent evidence suggests that there is a substantial degree of sharing of risk alleles 

between disorders 44. To study autoimmune disorders in this joint way may more easily 

identify the shared and unshared causal factors between these disorders and PTSD. 

Last, we investigated PTSD as a homogeneous disorder, yet there may be 

important genetic differences that relate to different forms of PTSD, such as current and 

lifetime PTSD 45, externalizing and internalizing subtypes 46, symptom clusters 10, and 

the longitudinal course of PTSD symptomology 47. Investigating these different aspects 

may increase power 48. Genetic data can be used to indicate or provide biological 

validation 49 for putative subtypes 50, 51. Knowledge of subtypes may ultimately enhance 

treatment via a precision medicine approach 52. Nevertheless, my results provide 

additional insight into PTSD genetics that may provide targets for future investigations 

53. 

Recent evidence suggests that a substantial amount of the total genetic liability 

of some complex traits can be explained by rare variation 54.  My CNV analysis 

demonstrated, to a small degree, that there is a rare variant contribution to PTSD. It has 

been hypothesized that there is a convergence of common and rare variation 55, in that 

they ultimately may affect the same genes. Thus, examining rare variation in tandem 

with common variation will add to a more complete picture of the genetic architecture of 

PTSD. 
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GxE have long been thought to be highly relevant to PTSD 56. The causal 

mediation analysis method we have proposed allows for the investigation of GxE, where 

traditional GxE analysis would suffer estimate bias due to mediation effects not being 

modeled. As this method provides more or less a traditional estimates of GxE effects, 

then like traditional estimation of GxE it requires large sample sizes to detect 

interactions 57. Genome-wide methods are being developed that allow for the direct 

estimation of heritability under GxE 58, which would at least allow for an overall 

quantification of the contribution of GxE to PTSD risk.  

Ultimately, one primary goal of enhancing the biological understanding of PTSD 

is to enhance clinical treatment options. One means of achieving this may be from PRS 

59. However, PRS derived from recent GWAS 10 explain < 1% of the variation in PTSD 

symptoms. The theoretical upper limit of trait variance explained by a PRS derived from 

a GWAS of single nucleotide polymorphisms (SNPs) is the total SNP based heritability 

60, which in this dissertation was estimated as only approximately 5%. Thus, in using 

traditional methods of calculating and evaluating PRS 61 using SNP array data, even 

individuals at the extreme end of estimated polygenic risk are not at substantially higher 

risk for developing PTSD relative to the average person. Therefore, the individual utility 

of a PRS (i.e. for precision medicine) might require both common and rare variation be 

integrated together, to provide a genetic model that explains a large enough proportion 

of variation in PTSD to allow for meaningful individual risk prediction. However, PRS is 

a current focus of intense research, and future utility to individuals may extend well 

beyond simple additive risk prediction. For example, PRS could be partitioned based on 

biological annotations, to identify individual-specific relevant risk pathways and 
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treatments 62, 63. In addition, rare variation such as CNV may have a direct clinical 

relevance, as it may in the future guide the course of treatment in carriers of highly 

pathogenic alleles  64. 

In conclusion, my findings contribute to the genetics of PTSD, identifying some 

novel risk loci, for the first time significantly implicating rare CNVs with PTSD risk, and 

further supporting the notion that PTSD has a causal relationship with autoimmune 

disorders. From these findings and their limitations, I provide several suggestions for 

future analyses: causal mediation analysis of PTSD and trauma to explore mediation 

and GxE, quantification of PTSD heritability from GxE with trauma exposure, genetically 

driven investigation into PTSD subtypes, cross-disorder comparisons with other 

psychiatric disorders (particularly major depression), examination of a wider spectrum of 

genetic variation, deeper investigation of the genetic components that are shared jointly 

between autoimmune disorders and with PTSD, and investigation into non-European 

ancestries. While at present my results have limited translational aspects, it is my hope 

that as more is understood about the genetic basis for PTSD and improved methods are 

developed to leverage these findings, that genetic findings can be made clinically 

actionable. 
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