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EPIGRAPH

A theory is the more impressive the greater the simplicity of its premises, the more different kinds
of things it relates, and the more extended its area of applicability.

Therefore the deep impression that classical thermodynamics made upon me.

It is the only physical theory of universal content which I am convinced will never be overthrown,
within the framework of applicability of its basic concepts.

Albert Einstein
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at University of Illinois Chicago and Université de Genève, as well as the Templeton Foundation,
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ABSTRACT OF THE DISSERTATION

Classical Thermodynamics Beyond the Classical Domain

by

Eugene Yew Siang Chua

Doctor of Philosophy in Philosophy

University of California San Diego, 2023

Professor Craig Callender, Chair

Physicists have historically taken the concepts of classical thermodynamics to be uni-

versally applicable, well-understood, and secure. Thus Eddington’s famous proclamation that

“the law that entropy always increases, holds, I think, the supreme position among the laws of

Nature”, and that “if your theory is found to be against the second law of thermodynamics, I

can give you no hope; there is nothing for it but to collapse in deepest humiliation.” (1928, 74)

Somewhat more cautiously, Einstein remarked that “[classical thermodynamics] is the only

physical theory of universal content which I am convinced will never be overthrown, within the

framework of applicability of its basic concepts.” (1946, 33, emphasis mine) Suffice to say, classical

thermodynamics is accorded a special status few other physical theories could dream of having.

xi



This can still be observed in contemporary physics, where classical thermodynamic concepts

are typically borrowed wholesale and applied into new domains like black hole physics and

quantum gravity research by physicists like Bekenstein, Hawking, and others.

My task here is to subject this faith in classical thermodynamics to philosophical

scrutiny. What is the ‘framework of applicability’ for thermodynamic concepts, and what are

its limits? In this vein, my dissertation critically examines and challenges the foundations of

thermodynamics by studying the historical trajectory of classical thermodynamic concepts and

their justifications, as well as the extent to which these justifications can be carried over to new

domains of inquiry. In particular, I survey how classical thermodynamic concepts extend into

the domains of information theory, quantum mechanics, special relativity, general relativity,

and quantum gravity. I argue that the ‘framework of applicability’ of classical thermodynamic

concepts is more limited than typically assumed, and more open questions remain in the

foundations of thermodynamics than one might expect.
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Preface

Classical thermodynamics – the science of macroscopic properties (e.g. temperature,

volume, or pressure) of ordinary systems such as steam engines, boxes of gases, or cups of coffee

– has been tremendously empirically successful. Due to its seemingly ‘solved’ status, physicists

often assume that classical thermodynamic reasoning is applicable to other domains: very

small quantum-mechanical systems, very fast special-relativistic systems, very large systems

like black holes, and even exotic quantum gravity regimes.

Historically, prominent physicists have taken the concepts of classical thermodynamics

to be universally applicable, well-understood, and secure. Thus Eddington’s famous proclama-

tion that “the law that entropy always increases, holds, I think, the supreme position among the

laws of Nature”, and that “if your theory is found to be against the second law of thermodynam-

ics, I can give you no hope; there is nothing for it but to collapse in deepest humiliation.” (1928,

74) Somewhat more cautiously, Einstein remarked that “[classical thermodynamics] is the only

physical theory of universal content which I am convinced will never be overthrown, within

the framework of applicability of its basic concepts.” (1946/1979, 33, emphasis mine) Planck (1920)

in his Nobel prize speech says likewise that “the main principles of thermodynamics from the

classical theory will not only rule unchallenged but will more probably become correspondingly

extended” even in light of the new quantum theory.

Suffice to say, classical thermodynamics is accorded a special status few other physical

theories could dream of having. This can still be observed in contemporary physics as well,

Classical thermodynamic concepts like entropy, temperature and pressure are typically bor-

rowed wholesale and applied into new domains like black hole physics and quantum gravity

1



research by physicists like Bekenstein, Hawking, and others.

Likewise, philosophers of science in the 20th century have tended to treat the concepts of

classical thermodynamics in a similar fashion by borrowing them wholesale into new domains.

For instance, Reichenbach (1956) applied the classical concept of entropy (and its associated

gradient) to space-time in order to ground his proposed arrow of time, though, as Earman

(1974, 20) notes, there are considerable difficulties in “joining traditional thermodynamics

and statistical mechanics with relativity theory”. Earman charitably concedes to Reichenbach,

“Whatever one’s decision about the Lorentz transformation properties of thermodynamic

quantities, the entropy of a thermodynamic system as measured in the rest frame of that

system is a meaningful notion, and this is enough for Reichenbach’s purposes.” However, for

our purposes, we might want to ask whether relativistic thermodynamics per se is likewise

meaningful in light of these ‘considerable difficulties’, or runs into conceptual knots. In Chapter

3, I investigate this question specifically for relativistic temperature, and show that trouble

does arise.

Similarly, in discussions of reduction and emergence, 20th century philosophers of sci-

ence have generally taken for granted the existence of supposedly straightforward translations

between temperature and kinetic energy, thermodynamic entropy and statistical mechanical

entropy, heat and energy, and so on. Ernest Nagel (e.g. 1968) famously took there to be a clear

reductive relationship between the concepts of thermodynamics and statistical mechanics,

using that as a paradigmatic example of his general theory of reduction. Others like Thomas

Nickles (1973) argued that there is more of a complicated relationship between these concepts

involving approximations and limit-taking (what he termed reduction2), though he did not

really delve into the nature of these approximations in his work.

However, I believe that the qualification Einstein made deserves more philosophical

scrutiny: what is the framework of applicability of the canonical thermodynamic concepts? Is

it universal? That is, are there no limits to their applicability? Hasok Chang (2004) reminds

us that the establishment of the thermodynamic concept of temperature, even in the classical

2



thermodynamic domain, was highly non-trivial. Their development involved iterative and

messy interactions between theory and experiments. Much has been done by philosophers of

science to study how to justify the extension of thermodynamic concepts into new domains.

Lurking in the background is Callender’s (2001) warning against ‘taking thermodynamics

too seriously’: can these classical thermodynamic concepts be extended and applied to new

domains without issue? Do they ‘break’ or ‘fall apart’ in these new domains, or is there a smooth

transition? For instance, the works of Jeremy Butterfield (e.g. 2011), Craig Callender (e.g. 1999),

John Norton (e.g. 2016), Patricia Palacios (2018), Christian Wüthrich (2017), Roman Frigg and

Charlotte Werndl (e.g. 2021), among many others, explore and critique the approximations

that go into the extension of thermodynamic concepts to new domains, sometimes vindicating

them, and other times not. The existence of this debate emphasizes that the applicability of

thermodynamic concepts is not a priori universal and of utmost generality, and there may

well be limits to how we can extend them. There may well be limits to the ‘framework of

applicability’ of these thermodynamic concepts.

I see my dissertation as part of this philosophical tradition. Here, I take some preliminary

steps towards investigating the various conceptual moves one might take in extending classical

thermodynamic concepts like temperature and entropy beyond their original use in macroscopic

scenarios, via approximations, idealizations, and/or introduction of new notions into the

discourse.

The question of thermodynamics’ universality has implications for both theoretical

physics and philosophy. After all, thermodynamics is often understood as one of the three

‘pillars of physics’, alongside quantum mechanics and general relativity. Correspondingly, much

work in theoretical physics goes towards the application of thermodynamics in aforementioned

new domains in order to search for clues to new physics, such as the postulated statistical

basis of black hole physics. But the foundations of the thermodynamic pillar might be shakier

than one would like. To briefly mention one worry at the intersection of both: there’s a

question about where the universe’s direction of time comes from. Philosophers and physicists

3



alike have tried to explain the universe’s directionality through thermodynamics: entropy

represents the irreversibility of processes; this quantity always increases over time (e.g. Albert

2000). Elsewhere, physicists have studied black holes – big and enormous structures in space

made of pure gravitational energy – in terms of thermodynamics (e.g. Bekenstein 1973). Both

of these explanations relying on thermodynamics require that we treat very foreign things,

the entire universe, or huge black holes, just as we would familiar things like a cup of hot

coffee or a glass of cold beer. That is, we are assuming the universality of the applicability of

thermodynamic concepts, as well as explanations couched in these concepts. But does this

stretch thermodynamics too far?

The essays here inaugurate my investigation of this question by exploring and evaluating

how some of these classical thermodynamic concepts were extended and generalized beyond

the classical domain, into five new domains: information theory, quantum mechanics, special

relativity, general relativity, and quantum gravity. In most of these domains, it turns out that

the application of classical thermodynamics might not be as straightforward as we’d like it to

be. That is, the framework of applicability might not be as universal as we’d like to think.

Laying out the themes of the dissertation more explicitly, Chapter 1, “Degeneration and

Entropy” provides an exegesis of Lakatos’s Proofs and Refutations (1976) and excavates a general

account for how concepts might degenerate – by exhibiting authoritarianism and superfluity

– as they get extended and stretched. I take this account to be complementary to Lakatos’s

account of growth and degeneration in the Methodology of Scientific Research Programmes

(1978). This account is then applied to the development of the statistical mechanical concept of

entropy and its extension into information theory. Specifically, it focuses on the progression of

entropy as a thermodynamic concept to one laden with information-theoretic notions, notably

Jaynes’ arguments in his landmark 1957 paper, which I conclude to be a degenerate transition.

The themes in Chapter 1 echo through the remainder of the chapters. In the quantum

mechanical domain, Chapter 2, “Does von Neumann Entropy Correspond to Thermodynamic En-

tropy?”, evaluates the extension of the concept of entropy from another angle, by re-examining
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the argument that the quantum-mechanical von Neumann entropy is genuinely thermodynamic.

That is, it evaluates the extension of the concept of entropy from the classical thermodynamic

domain into the quantum mechanical one. Conventional wisdom holds this extension to

be unproblematic, but Hemmo & Shenker (2006) argues against this view by attacking von

Neumann’s (1955) landmark argument. I argue that Hemmo & Shenker’s arguments fail due

to several misunderstandings: about statistical mechanical and thermodynamic domains of

applicability, about the nature of mixed states, and about the role of approximations in physics.

As a result, their arguments fail in all the cases they discussed: in the single-particle case, the

finite-particles case, and the infinite-particles case.

In the relativistic realm, Chapter 3, “T Falls Apart: On the Status of Classical Tempera-

ture in Relativity”, evaluates the extension of the classical concept of temperature into special

relativity. Given widespread use of notions like “temperature” in e.g. the relativistic domain

of black hole physics, one might expect there to be an unproblematic notion of relativistic

temperature. However, I assess the numerous attempts to extend classical temperature into

the special relativistic domain and argue that it ‘falls apart’ in a specific sense. I examine

four consilient procedures for establishing the classical temperature: the Carnot process, the

thermometer, kinetic theory, and black-body radiation. I argue that their relativistic counter-

parts demonstrate no such consilience in defining the relativistic temperature. Hence, classical

temperature doesn’t appear to survive a relativistic extension. I suggest two interpretations for

this situation: eliminativism akin to simultaneity, or pluralism akin to rotation.

In the general relativistic realm, Chapter 4, “Do Black Holes Evaporate? The Case of

Quasi-Stationarity”, argues against the extension of thermodynamics into relativistic black hole

physics by arguing against a typical argument for black hole evaporation. Since Hawking first

predicted that black holes lose mass and ‘evaporate’ via Hawking radiation, the phenomenon

has become a linchpin of black hole research and a key motivation for taking black holes to

be thermodynamic. However, I argue against a typical derivation of black hole evaporation

which essentially relies on the use of the idealization of quasi-stationarity. I argue that this
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idealization cannot be suitably de-idealized, and hence cannot yet be interpreted realistically.

This being the case, these idealizations are not justified for application to our real world, and

hence cannot support the argument for the evaporation of realistic black holes yet. Hence, the

extension of thermodynamics to black holes might be less secure than previously envisioned.

Finally, Chapter 5, “The Time in Thermal Time”, examines and critiques Connes &

Rovelli’s (1994) thermal time hypothesis and its attempt to extend and apply the concept

of thermal equilibrium into quantum gravity research. Attempts to quantize gravity in the

Hamiltonian approach lead to the ‘problem of time’; the resultant formalism is often said to

be ‘frozen’ and fundamentally timeless. The thermal time hypothesis responds by proposing

that time emerges thermodynamically from a fundamentally timeless ontology. We define time

in terms of thermal statistical states against the background of a certain algebraic structure,

the C*-algebraic structure. These statistical states define a time according to which they are

in equilibrium. To avoid circularity, however, we had better have a grasp on notions like

‘equilibrium’ and the algebraic structure, independent of time. However, I argue that these

concepts implicitly presuppose some notion of time, and cannot be extended justifiably yet to

the fundamentally timeless context.

I acknowledge that my analysis here is by no means exhaustive. However, I believe it

paves the path forward for a much larger research program, one that continues to engage with

the question of the limits of classical thermodynamics. This will involve the careful study of

other thermodynamic concepts and how they are extended into various domains.

There are many more loose ends which I plan to investigate in the future. For instance,

while one might take the approach to equilibrium to be on rock-solid foundations, it turns out

that there are open questions surrounding the status of equilibration in quantum mechanics

and the so-called Eigenstate Thermalization Hypothesis.

In relativistic physics, there are also many open questions which can benefit from philo-

sophical scrutiny and rumination. This dissertation only examines the relativistic temperature,

but deeper investigation reveals that almost all of the canonical thermodynamic concepts rest
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on potentially shaky grounds.

Firstly, the status of equilibrium and the Zeroth law of thermodynamics in light of the

Tolman effect in general relativity deserves more attention, for these revise the very concepts

of temperature, heat flow, and equilibrium, that we are used to in classical thermodynamics:

the equivalence of the measured temperature of two systems no longer entails no heat flow,

and their non-equivalence does not entail heat flow either, because of general relativistic effects.

I hope to work out the philosophical and conceptual implications of this effect in the future.

Secondly, the concept of entropy is often assumed to be Lorentz-invariant, owing to

old arguments by Planck (1908) among others. However, it’s been noted by Gavassino (2021)

that this argument is circular: it assumes the possibility of reversible Lorentz boosts, but this

amounts to assuming the invariance of entropy under Lorentz boosts. I believe it remains an

open question whether there is a watertight argument for the Lorentz-invariance of entropy.

Likewise, the concept of pressure is also assumed to be Lorentz-invariant. Standard

arguments, however, tend to claim that the pressure simply is the rest-frame pressure, rather

than show that the pressure is Lorentz-invariant. Sutcliffe (1965) furthermore disputes the

Lorentz-invariance of pressure by disambiguating thermodynamic and mechanical pressure,

arguing that the rest-frame thermodynamic pressure p0 transforms to the moving-frame ther-

modynamic pressure p′ via p′ = γ2p0 instead (where γ is the Lorentz factor). In the future, I

hope to inspect these arguments in further detail.

Finally, even the concept of a force has been placed under scrutiny. As Landsberg &

Johns (1970) point out, differences in two proposed relativistic temperature transformations –

whether a moving body is cooler or hotter – can be traced back to a difference in two choices

of the force law, both of which coincide in the rest frame. Is there a genuine dispute here, and

to what extent can this worry be settled?

It thus seems that classical thermodynamics, despite its enormous empirical success

in the rest frame and in the macroscopic world, rests on shaky foundations when extended

to other domains. Only further work can reveal the extent to which this shakiness should be
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worrying. Unfortunately, these loose ends deserve more care and rumination than is allowed

by the present space and time constraints. I thus leave them for future work.

Eugene Y. S. Chua

University of California San Diego

June 2023
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Chapter 1

Degeneration and Entropy

“As a young man I tried to read thermodynamics, but I always came up

against entropy as a brick wall that stopped my further progress. I found

the ordinary mathematical explanation, of course, but no sort of physical

idea underlying it. No author seemed even to try to give any physical

idea. Having in those days great respect for textbooks, I concluded that the

physical meaning must be so obvious that it needs no explanation, and

that I was especially stupid on the particular subject.”

– James Swinburne (1904, p. 3)

“My greatest concern was what to call it. I thought of calling it ‘information’,

but the word was overly used, so I decided to call it ‘uncertainty’. When I

discussed it with John von Neumann, he had a better idea. Von Neumann

told me, ‘You should call it entropy, for two reasons. In the first place your

uncertainty function has been used in statistical mechanics under that

name. In the second place, and more importantly, no one knows what

entropy really is, so in a debate you will always have the advantage.”

– Claude Shannon,

according to McIrvine and Tribus (1971, p. 180)
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1.1 Introduction

Lakatos (1976/2015) argued in Proofs and Refutations (P&R) that the comprehension

of mathematical concepts must be accompanied with a clear understanding of how and why

these concepts came into existence. For Lakatos, a concept is to be understood in terms of

a temporally extended process through which the initial, primitive, concept is continually

refined. To rip a concept apart from its context of discovery or its problem-situation – the

problems or questions which led to the concept’s genesis and evolution – is to miss a complete

understanding of it.

All of the above – concerning how to comprehend a concept – has been much discussed

over the last few decades.1 Less discussed is how to evaluate a concept according to the

heuristic approach presented in P&R: how do we know whether a concept is problematic,

needs rehabilitation, or, worse still, must be abandoned, given the heuristic approach? In short,

how do we know whether a concept is degenerating?

That not much has been said about this is curious, since Lakatos clearly had some such

standard in mind. In this paper, I explore Lakatos’ views on degeneration in P&R, which has

often been neglected for the sort of degeneration Lakatos (1978) discussed in Methodology

of Scientific Research Programmes (MSRP). It seems to me that P&R offers new criteria for

degeneration that sheds light on Lakatos’s approach.

The primary goal here is to motivate an account of degeneration based on my reading of

P&R. I propose two criteria for degeneration: superfluity, or generalization for generalization’s

sake, which involves the introduction of trivial extensions or terminology to a theory or concept;

and authoritarianism, the introduction and employment of a concept into the discussion without

justification while ignoring the problem-situation of said concept. In my view, these notions

of degeneration depart from the two conditions found in MSRP: the former relate not to the

content of a concept or theory,2 but to their methodological aspects (i.e. what I’ll call depth).
1See e.g. Corfield (1997), Leng (2002), and Werndl (2009).
2It seems to me that Lakatos did not really have a clear-cut distinction between concept and theory. For
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As such, by considering the notions of degeneration in both P&R and MSRP, I propose an

extended account of Lakatosian degeneration which evaluates both content and depth.

The secondary goal is to apply this extended account of degeneration to entropy. Why

entropy? The concept of entropy has a tumultuous past, with many interpretations,3 com-

plications,4 and disagreements colouring its rich history. This is coupled, however, with its

extensive usage in countless sciences, be it in black hole thermodynamics,5 quantum theory,6

AdS/CFT research in theoretical physics,7 and even biology and neuroscience.8 There remains

much room to evaluate these applications and extensions of the concept of entropy, including

whether we should extend it in these ways.9 This makes entropy an interesting case study

for degeneration – after all, my proposed account of degeneration is intended to evaluate the

extension of a concept. Since the assessment of the concept of entropy remains pretty much

an open question, it is hoped that my account will provide some heuristics for beginning this

assessment. Here, as proof of concept, I focus on one key transition point for the concept

of entropy – the transition from thermodynamic to information-theoretic interpretations of

entropy. In Lakatosian style, I identify a key piece of writing in this transition and evaluate

it with the twin criteria developed here. By critiquing Jaynes’s (1957) landmark paper on

thermodynamics and information, I argue that this transition suffered from superfluity and

authoritarianism, and hence, degeneration.

instance, he talks about the ‘theory of polyhedra’ throughout P&R, but also refers to the “concept of polyhedron”
as well. I see no cost to this lack of distinction here. Hence, I follow Lakatos in using “concept” and “theory”
interchangeably in this paper whenever the context is clear. Thanks to Craig Callender and Kerry McKenzie for
independently raising this concern.

3See Uffink (2001) for how interpreting the original thermodynamic concept of entropy is itself a challenge.
4See e.g. Callender (1999), Chua (2021), or Goldstein et al. (2020) for some of these complications concerning

how different entropies relate to others.
5See e.g. Dougherty & Callender (ms) or Wallace (2020).
6See e.g. Bub (2005).
7See e.g. Natsuume (2015).
8See Friston & Stephan (2007).
9See e.g. Roach (2020) who evaluates the use of entropy in biology.
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1.2 Degeneration in P&R

P&R takes the form of a dialogue between a fictional teacher and his students which

includes Gamma (and later Alpha, Rho and Zeta, among others). Lakatos’s main target was a

‘deductivist’ approach to mathematics:

This style starts with a painstakingly stated list of axioms, lemmas and/or defi-
nitions. The axioms and definitions frequently look artificial and mystifyingly
complicated. One is never told how these complications arose. The list of axioms
and definitions is followed by the carefully worded theorems. These are loaded
with heavy-going conditions; it seems impossible that anyone should ever have
guessed them. The theorem is followed by the proof. (1976/2015, p. 151)

In Lakatos’s view, this approach to mathematics is misguided. By rationally reconstructing the

historical development of the Euler characteristic:10

V − E + F = 2 (1.1)

he showed that these definitions, axioms, theorems and so on developed only as the result of a

long history of proofs and refutations: they are proof-generated concepts.

For Lakatos, actual mathematics is not deductivist. Nevertheless, it is a rational affair

representative of what he called the heuristic approach:

[…] deductivist style tears the proof-generated definitions off their ‘proof-
ancestors’, presents them out of the blue, in an artificial and authoritarian way.
It hides the global counterexamples which led to their discovery. Heuristic style
on the contrary highlights these factors. It emphasises the problem-situation: it
emphasises the ‘logic’ which gave birth to the new concept. (1976/2015, p. 153)

More generally, a concept is only appropriately understood when we understand its historical

trajectory. In Lakatos’s view, “there is a simple pattern of mathematical discovery– or of the

growth of informal mathematical theories” (1976/2015, pp. 135–136), which is given by the

following seven stages:
10The Euler characteristic was initially postulated to universally describe polyhedra in terms of their number of

faces (F), vertices (V), and edges (E).
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1. Primitive conjecture.

2. Proof (a rough thought-experiment or argument, decomposing the primitive conjecture

into subconjectures or lemmas).

3. ‘Global’ counterexamples (counterexamples to the primitive conjecture) emerge.

4. Proof re-examined.

5. Proofs of other theorems are examined to see if the newly found lemma or the new

proof-generated concept occurs in them.

6. The hitherto accepted consequences of the original and now refuted conjecture are

checked.

7. Counterexamples are turned into new examples – new fields of inquiry open up.

Call this the heuristic process. This tells us how a mathematical theory or concept ought to

grow, from a rough primitive conjecture to a proof-generated concept (and beyond), through

the use of heuristics like employing counterexamples, discovering hidden lemmas, and so on.

We appropriately comprehend a concept only when we start with the primitive conjecture –

the genesis of the concept – and grasp the ensuing adjustments and responses to the concept

through which it is precisified and stretched.

But as Gamma points out, growth is opposed to degeneration. (1976/2015, p. 103)

However, while Lakatos paints a clear picture as to how mathematical theories grow, he is

much less explicit about degeneration. This is curious because the term ‘degeneration’ seems

to bear significant normative weight in Lakatos’s appraisal of research methodologies. My goal

here is to remedy this situation by explicating Lakatos’s account of degeneration in terms of

two distinct criteria.
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1.2.1 Superfluity

The first criterion for degeneration appears when Alpha (1976/2015, p. 86) charts the

development of the dialogue in P&R thus far, in response to ever-exotic counterexamples:11

1. One vertex is one vertex

2. V = E for all perfect polygons

3. V − E + F = 1 for all normal open polygonal systems

4. V − E + F = 2 for all normal closed polygonal systems, i.e. polyhedra

5. V − E + F = 2− 2(n–1) +
∑F

k ek for normal n-spheroid polyhedra

6. V − E + F =
∑F

j=1 2− 2(nj − 1) +
∑F

k=1 ekj for normal n-spheroid polyhedra with

multiply-connected faces and with cavities

Alpha proclaims that “this is a miraculous unfolding of the hidden riches of the trivial starting

point [(1)]”. However, Rho retorts: “Hidden ‘riches’? The last two only show how cheap

generalisations may become!” Gamma concurs:

(6) and (7) are not growth, but degeneration! Instead of going on to (6) and
(7), I would rather find and explain some exciting new counterexample [to
V − E + F = 2]! (1976/2015, p. 103, emphasis mine)

Degeneration is tied, in part, to ‘cheap generalisation’ in the process of developing a concept

or theory. It plays an evaluative role insofar as it tells us when, in something like the chain of

generalizations from (1) to (7), we should stop in response to a new counterexample. Gamma

describes (7) as a pointless generalization: who cares about polyhedrons with cavities or

multiply-connected faces? To Gamma, “it serves only for making up complicated, pretentious

formulas for nothing.” (1976/2015, pp. 102–103)

A cheap generalization, in Gamma’s view, is a trivial extension of a concept. (1976/2015, p.

102) The generalization was not well-motivated, and thus nothing deep was gleaned from doing
11See Lakatos (1976) for discussion.
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so, even though our formula does become more general. It is, to put it bluntly, generalization

for the sake of generalization. When a concept is extended in order to encompass new cases, but

those cases were not relevant to the original problem-situation (or the heuristics that followed),

Gamma would consider them trivial extensions.

Lakatos, channelling Pólya, assents to this in his description of what cheap generaliza-

tion amounts to:

Pólya points out that shallow, cheap, generalisation is ‘more fashionable nowa-
days than it was formerly. It dilutes a little idea with a big terminology. The
author usually prefers to take even that little idea from somebody else, refrains
from adding any original observation, and avoids solving any problem except a
few problems arising from the difficulties of his own terminology.

Another of the greatest mathematicians of our century, John von Neumann,
also warned against this ‘danger of degeneration’, but thought it would not be
so bad ‘if the discipline is under the influence of men with an exceptionally
well-developed taste’. One wonders, though, whether the ‘influence of men with
an exceptionally well-developed taste’ will be enough to save mathematics in
our ‘publish or perish’ age. (1976/2015, p. 104, fn. 160, emphasis mine)

For our purposes, it certainly helps that Lakatos directly connects ‘shallow, cheap, generali-

sation’ to the ‘danger of degeneration’. Alternatively stated, the generalization of a concept

to new domains without justification is superfluous and only adds unnecessary terminology

(“pretentious formulas”). This, in Lakatosian terms, is concept-stretching ‘gone wrong’ – a

concept is stretched too far without justification, resulting in trivial generalizations. This leads

to the concept’s degeneration. Call this first criterion of degeneration superfluity.

What counts as justification and can avoid superfluity? Of course, the justification must

be relevant to the problem-situation at hand,12 but what else? We can distil further insights

from Lakatos’s discussion of the Euler characteristic: in that case, the problem-situation is one

where the key concern is about classifying (what we intuitively might call) polyhedra. However,

while cavities were helpful in categorizing polyhedra based on Definition 1, i.e. the naı̈ve notion
12Some might argue that this is too restrictive – what if a proposal has relevance elsewhere? Then it must prove

its relevance to that problem-situation.
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of a polyhedron as a solid, a single ‘polyhedron with a cavity’ corresponds to an entire class

of polyhedra in the succeeding proof-generated concept of polyhedra as connected surfaces

(Lakatos calls this Definition 2). (1976/2015, p. 16) On this definition, a polyhedron is not a

solid. Given this background, the number of cavities does not actually pick out a unique type of

polyhedra,13 and hence any extension of the Euler characteristic which takes into account the

number of cavities simply plays no real role in advancing the research of polyhedra.14 Instead,

we have merely added superfluous terminology which do not concern objects of interest.

From this we might infer that the sort of justification which vindicates any particular

generalization or introduction of terminology is one that can motivate why this terminology

or generalization was introduced – particularly in relation to the sort of objects or concepts we

care about – and how it can possibly lead to the growth of the theory or concept. It cannot

be just a trivial pun, which is essentially what a ‘polyhedron with a cavity’ is, since it is not

a polyhedron per se at all given the problem-situation where Definition 2 is accepted as a

proof-generated concept – it must serve some use and justify its own existence, so to speak.

Of course, this requirement is not precise, for it is not always clear what is trivial. Alpha

questions: “You may be right after all. But who decides where to stop? Depth is only a matter

of taste.” (1976/2015, p. 103) In response, Gamma proposes:

Why not have mathematical critics just as you have literary critics, to develop
mathematical taste by public criticism? We may even stem the tide of pretentious
trivialities in mathematical literature. (1976/2015, p. 104)

Unfortunately, Lakatos does not say much more about what ‘taste’ amounts to, though his

comment on von Neumann’s comment suggests skepticism towards its role.

Nevertheless, hindsight helps, as in the case of cavities failing to pick out the relevant

sort of properties for polyhedra: ‘relevance’ is determined as a matter of practice, adoption,
13See Lakatos (1976/2015, p. 97, fn. 150(a)).
14Likewise for multiply-connected faces: it was simply not interesting for research because our means of

classifying polyhedra simply did not require multiply-connected faces. As Lakatos notes, as the theory of polyhedra
evolved, “the problem of how multiply-connected faces influence the Euler-characteristic of a polyhedron lost all
its interest” (1976/2015, p. 97, fn. 150(c)).
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and actual contribution to the problem-situation, e.g. Definition 2 as an improvement over

Definition 1. As Kiss puts it succinctly (though in the context of the MSRP): “One step in a

research program can be treated as progressive or degenerating only in hindsight, when we see

future developments. Appraisal of research programs is as fallible as the theories themselves.”

(2006, p. 316)

We can do better in other cases. In line with the heuristic approach, conscious awareness

of the problem-situation – and the heuristics associated with it – allows one to avoid superfluity.

Lakatos discusses the example of the mathematician Becker, who aimed to provide a conclusion

to the classification problem by providing a new generalization to the Euler characteristic:

V − E + F = 4− 2n+ q (1.2)

where n is the number of cuts that is needed to divide the polyhedral surface into simply-

connected surfaces for which V −E +F = 1, and q is the number of diagonals that one has to

add to reduce all faces to simply-connected ones. (1976/2015, p. 103, fn. 158) Unfortunately for

Becker, Lakatos notes that the mathematicians Lhuilier and Jordan had already written about

this over half a century ago, except in different terminologies. While Becker’s work does count

as a valid generalization of Euler’s original formulation, it was ultimately trivial – adding only

new terminology – and did not contribute to the development of the concept. Here it is clear

that a cognizance of the problem-situation would have helped: being aware of the concept’s

past iterations, problems, and errors, one learns what not to do.

By being aware of the problem-situation for the concept, we can avoid trivial gener-

alizations. Beyond that, we can only hope to pinpoint degeneration in retrospect unless we

are blessed with the great gift of ‘exceptional taste’ in the subject matter at hand (in which

case, a certain sort of clairvoyance – of what will work out in research – is possible). However,

given Lakatos’s distaste for formalism and inclination towards informal heuristics – which are

themselves not always precise – this might be to Lakatos’s liking.
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1.2.2 Authoritarianism

In discussing the heuristic approach, Lakatos notes a common response to byzantine

definitions (in this case, Carathéodory’s definition of a measurable set) with disapproval:

Of course there is always the easy way out: mathematicians define their concepts
just as they like. But serious teachers do not take this easy refuge. Nor can they
just say that this is the correct, true definition . . . and that mature mathematical
insight should see it as such. (1976/2015, p. 162)

There is something problematic with the deductivist style of simply introducing concepts out

of thin air without appropriately situating them within the proof’s problem-background. This

approach is authoritarian:

One can easily give more examples, where stating the primitive conjecture,
showing the proof, the counterexamples, and following the heuristic order up to
the theorem and to the proof-generated definition would dispel the authoritarian
mysticism of abstract mathematics, and would act as a brake on degeneration. A
couple of case-studies in this degeneration would do much good for mathemat-
ics. Unfortunately the deductivist style and the atomisation of mathematical
knowledge protect ‘degenerate’ papers to a very considerable degree. (1976/2015,
p. 163, emphasis mine)

This provides a new criterion for degeneration, which occurs when a concept (or terminology,

or definition, or perhaps even a theory) is introduced without justification into some line of

inquiry. New concepts are instead used with the attitude “that this is the correct, true definition”

without qualification. This adds a ‘mystical’ and ‘authoritarian’ element to these new concepts

which ignores the background problem-situation leading to that line of inquiry to begin with.

Call this criterion for degeneration authoritarianism.

While many of Lakatos’s examples of authoritarian methodology were textbooks (like

Rudin or Halmos), I should emphasize that there is no reason to interpret his discussions about

authoritarianism as something which only applied to pedagogical works.15 For instance, in the

quote above, Lakatos was clearly discussing how the dispelling of “authoritarian mysticism” is

needed to remove the protection of degenerate papers, i.e. research, by the deductivist style of
15I thank an anonymous reviewer for pushing me to clarify this.
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mathematics. Furthermore, in Appendix I, Lakatos writes that:

It was the infallibilist philosophical background of Euclidean method that bred
the authoritarian traditional patterns in mathematics, that prevented publication
and discussion of conjectures, that made impossible the rise of mathematical
criticism. (1976/2015, p. 147, emphasis mine)

It was the infallibilist philosophical background of Euclidean method that bred the authoritarian

traditional patterns in mathematics, that prevented publication and discussion of conjectures,

that made impossible the rise of mathematical criticism. (1976/2015, p. 147, emphasis mine)

Lakatos is here using authoritarianism as a criterion for evaluating mathematics as a

whole, including research like publications and discussions, rather than pedagogy in particular.

As such, I believe that authoritarianism should be interpreted as a criterion of evaluating

degeneration which is applicable to research as well as pedagogy.

Lakatos raises the example of Rudin’s discussion of bounded variation. While introduc-

ing the Riemann-Stieltjes integral, Rudin introduces the notion of bounded variation.16 He then

proves a theorem to the effect that a function of bounded variation, satisfying other criteria, is

also a member of the class of Riemann-Stieljes integrable functions. However, Lakatos accuses

Rudin of failing to explain why the Riemann-Stieljes integral and bounded variation were

relevant to begin with:

So now we have got a theorem in which two mystical concepts, bounded vari-
ation and Riemann-integrability, occur. But two mysteries do not add up to
understanding. Or perhaps they do for those who have the ‘ability and inclina-
tion to pursue an abstract train of thought’? (1976/2015, p. 156)

The non-degenerative way of presenting the concept would have shown that the two concepts

arose as proof-generated concepts out of the same problem-situation:

A heuristic presentation would show that both concepts – Riemann-Stieltjes
integrability and bounded variation – are proof-generated concepts, originating
in one and the same proof: Dirichlet’s proof of the Fourier conjecture. This proof
gives the problem-background of both concepts. (1976/2015, p. 156)

Lakatos notes that Rudin does mention this, but in a way disconnected from the two aforemen-
16For Lakatos’s discussion, see Lakatos (1976/2015, pp. 155–162).
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tioned concepts: it was hidden in some exercise in a different chapter. Lakatos declares that the

two concepts, introduced this way, were introduced in “an authoritarian way” (1976/2015, p.

156, fn. 12).17

Thus, both superfluity and authoritarianism arise from a failure to grapple with the

problem-situation. While superfluity arises from trivial generalizations of concepts arising

from this lack of awareness, authoritarianism arises from the unmotivated introduction and

application of concepts.

For Lakatos, to ‘introduce’ a term out of the blue into a discussion is a “magical operation

which is resorted to very often in history written in deductivist style!” (1976/2015, 157, fn. 17)

To treat bounded variation or the Riemann-Stieltjes integral as an “introduced” concept rather

than a proof-generated one – as he shows in (1976/2015, pp. 156–162) – is to miss out on the

understanding of the concept. On the heuristic approach,

[. . . ] the two mysterious definitions of bounded variation and of the Riemann-
integral are entzaubert, deprived of their authoritarian magic; their origin can
be traced to some clear-cut problem situation and to the criticism of previous
attempted solutions of these problems. (1976/2015, p. 158)

In sum, I understand authoritarianism – the second criterion of degeneration – as introducing

new concepts into some line of inquiry without justification, while ignoring the problem-

situation and the heuristics that led us to that discourse to begin with.

1.2.3 Their Normative Import

Recall that the heuristic approach places emphasis on understanding the background

and historical trajectory of a concept, over and above the concept in its current form. The

original problem and the errors that followed (i.e. the problem-situation) are just as important

as the end-product and the proof-generated concept, because they tell us what has not worked
17Some might worry that having a complete grasp or presentation on any problem-situation might be too

demanding. However, Lakatos’s reply to this “pedestrian argument” is: “let us try.” (1976/2015, p. 153) He thinks of
this stringency as a positive point: while this makes academic work demanding and long, “. . . it has to be admitted
that they would be much fewer too, as the statement of the problem-situation would too obviously display the
pointlessness of quite a few of them.” (1976/2015, p. 153, fn. 5) Thanks to Nuhu Osman Attah for raising the worry.
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(and will not worked), why the concept is the way it is now, and hopefully the available

routes for development based on those errors (at least, it rules out the unavailable routes for

development).

By failing to grasp this problem-situation, superfluity and authoritarianism miss out on

a complete understanding of the concept as part of a historical trajectory, instead atomizing it

as a stand-alone concept – methodologies with superfluity and authoritarian tendencies thus

hinder an understanding of the concept. As Zeta puts it, “A problem never comes out of the

blue. It is always related to our background knowledge”. (1976/2015, p. 74) By adopting a

methodology which elides this background knowledge, our understanding of a concept and

the associated problem is rendered incomplete.

On one hand, authoritarianism fails to account for past problems and errors by tearing

apart present discussions from past problems – the discussion is presented without context;

the reader is told to accept it on faith, or that they need “mathematical maturity” to understand

it. (1976/2015, p. 151, fn. 1) This obscures the errors and problems crucial to generating the

proof-generated concept. We then lose sight of the direction the concept was taking in the long

chain of proofs and refutations: we are “rewriting history to purge it from error” (1976/2015, p.

49) and hence “the zig-zag of discovery cannot be discerned in the end-product”. (1976/2015, p.

44) The degenerate concept becomes atomized as a result, which hinders growth in Lakatos’s

view.

On the other hand, superfluity reflects a lack of concern for a concept’s problem-

situation. Terminology is produced, but not because it presents an insightful development for

the concept and its trajectory. Sometimes, as in Becker’s case, one mistakes themselves to

be presenting fruitful development for a concept. Again, this approach treats the concept at

hand as one that is divorced from its problem-situation – instead of considering what problems

the terminology is meant to resolve, we are instead pursuing ‘cheap, shallow generalisations’

even if the result is ultimately trivial. We have seen this in the case of generalizing the Euler

characteristic to (6) and (7): obviously, we can generalize the Euler characteristic to the case of
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intuitive polyhedra with cavities and multiply-connected faces, but the naı̈ve terminology – of

cavities and multiply-connected faces – and the accompanying generalizations were simply no

longer fruitful to the discussion of polyhedra at that point of the trajectory of the concept in the

dialogue. A superfluous extension of a concept involves ever more esoteric ‘generalizations’ to

cover cases no one cares about (in the context of the line of inquiry surrounding that concept).

In Lakatos’s words:

Quite a few mathematicians cannot distinguish the trivial from the non-trivial.
This is especially awkward when a lack of feeling for relevance is coupled with
the illusion that one can construct a perfectly complete formula that covers
all conceivable cases. Such mathematicians may work for years on the ‘ulti-
mate’ generalisation of a formula, and end up by extending it with a few trivial
corrections. (1976/2015, p. 103, fn. 158)

By failing to grasp what is trivial (which can be aided by hindsight or a grasp of the problem-

situation), research degenerates by either treading trodden grounds (as with the case of Becker)

or extending a concept to domains which are simply unfruitful (as in the case of cavities and

multiply-connected faces).

In short, both superfluity and authoritarianism have clear normative import: if our goal

is to pursue growth for the concept by having a clearer understanding of the concept, we ought

to avoid both forms of degeneration. Degeneration in these two senses thus play an evaluative

role for the growth of a concept.

1.3 Degeneration in P&R vs. Degeneration in MSRP

I have focused on degeneration in the context of P&R, but how does this connect with

Lakatos’s much more famous classification of scientific research programmes as degenerative

or progressive? For Lakatos in MSRP, scientific theories should be understood akin to the

heuristic approach to mathematical theories and concepts. They are not isolated atoms but

sequences of theories or concepts – what he later calls a scientific research programme – grouped
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together by various criteria (such as their positive and negative heuristics).18 This “shifts the

problem of how to appraise theories to the problem of how to appraise series of theories. Not an

isolated theory, but only a series of theories can be said to be scientific or unscientific: to apply

the term ’scientific’ to one single theory is a category mistake.” (24, p. 34)

The trajectory of this sequence of theories over time (i.e. its ‘problemshift’ from one

theory to another) is progressive or degenerative according to two criteria: whether it is (i)

theoretically progressive and (ii) empirically progressive. (1978, pp. 33–34) Being theoretically

progressive refers to a succeeding theory containing ‘excess empirical content’ by predict-

ing novel facts compared to its predecessor, and would distinguish, according to Lakatos, a

‘scientific’ problemshift from a non-‘scientific’ one. Being empirically progressive refers to

the excess empirical content of this succeeding theory leading to the discovery of new facts,

thereby corroborating the new theory’s novel predictions. A problemshift is deemed overall

progressive if it is both theoretically and empirically progressive, and overall degenerating if it is

not.

Much ink has been spilled over this point.19 What I am interested in is how the account

of degeneration presented in MSRP can be augmented by the account of degeneration I have

presented based on P&R, and how they can be collectively marshalled for the philosopher of

science despite the obvious differences between the sciences and mathematics.20

There might be some doubt as to whether Lakatos’s views on mathematics in P&R can

be so neatly transplanted to the scientific context. Despite the differences between science and

mathematics, however, Lakatos emphasized that “mathematical heuristic is very like scientific

heuristic – not because both are inductive, but because both are characterised by conjectures,
18See Lakatos (1978, pp. 47–52).
19For an excellent collection of essays on Lakatos’s methodology, see Kampis, Kvasz & Stöltzner (2002).
20Some might object that there are some differences between the sciences and mathematics that prevent such

analysis. Interestingly, Hallert (1979a, 1979b) and Stöltzner (2002) did something to similar effect but in the
opposite direction of what I am doing here. They do the reverse, by proposing that we can apply the application
of the conditions of progress and degeneration described in MSRP to mathematics (and mathematical physics)
profitably. What I am doing here can be seen as a continuation of that sort of project – to bring Lakatos’s insights
from his discussion of informal mathematics into physics. My analysis of Jaynes is an attempt to demonstrate that
such an analysis is possible.
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proofs, and refutations. The important difference lies in the nature of the respective conjectures,

proofs (or, in science, explanations), and counterexamples”. (1976/2015, p. 78) In my view,

Lakatos would likely take the heuristic approach to be applicable to both physics (and the

sciences) and mathematics.

I believe the two accounts of degeneration complement each other: while the account

in MSRP focused on content, the account in P&R focused on depth – how deep or trivial the

research is, how it connects with its predecessors, the potential or actual fruitfulness of the

research, and so on (discussed above in II) – which in turn hinges on methodology.

This former account of degeneration with respect to content takes a central role in

Lakatos’s project for scientific research programmes. Furthermore, it can be straightforwardly

cashed out in terms of the number of theoretical predictions a theory makes and actually

corroborated predictions relative to its rivals and competitors. These properties make them

an easy target for analysis: for starters, we can just count the number of propositions (or

sentences, or whatever your favourite truth-bearers are) non-vacuously entailed by the theory

(and whether they are corroborated)!21 This is not to say that considerations about content

is somehow unimportant. We need yardsticks for discussing, comparing, and evaluating the

content produced by scientific research programmes. If these yardsticks are clear, all the better.

However, the focus on content – in terms of the predictions of a theory – does not really consider

the methodological issues that might also be considered progressive or degenerating. I think

this is important. In Rho’s words in P&R: “not every increase in content is also an increase

in depth.” (1976/2015, p. 103) A theory might have superior content while simultaneously

experiencing a degeneration in methodology and depth of research.

This is where my proposed account of degeneration comes into play. This focuses on

the depth of research at each problemshift – and this of course depends much more on the style

and methodology of research, which may also be far more diverse than a generally accepted

theory and its contents. Nevertheless, just as there are authoritative interpretations of theories
21Of course, what counts as ‘non-vacuous’ may yet be a matter for contention.
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even when there are generally numerous interpretations of any single theory, there are also

authoritative figures, presentations, rhetoric, and methodologies, which may yet be open to

analysis of depth. (An attempt to analyze one such authoritative presentation is made later in

IV.) This, in turn, requires analysis of notions like taste, triviality, fruitfulness, awareness of the

problem-situation and so on, as we have discussed in II, which are not obviously amenable to

logical analysis like the content-oriented notions of degeneration are.

But both are inseparable aspects of scientific research – we need to be concerned about

both the depth of research, in terms of whether authoritarianism and superfluity are occurring,

and the content being produced by the research, in terms of whether there is theoretical and

empirical progress.

If I am right, we can extend Lakatos’s classification of scientific research programmes

quite straightforwardly: a problemshift is overall progressive if it is overall progressive with

respect to content (content-degeneration) and avoids degeneration with respect to depth

(depth-degeneration), that is, by being theoretically and empirically progressive while avoiding

authoritarianism and superfluity. It is degenerating otherwise. Depth-degeneration comes in

degrees – not all research at any one time will typically contain authoritarianism and superfluity,

but how much research falls afoul of authoritarianism and superfluity will determine the degree

of degeneration with respect to depth. My account of degeneration, based on the P&R, thus

augments the account of degeneration found in MSRP and provides a new dimension of

analysis for Lakatos’s overall framework.

1.4 Entropy: Degeneration from Physics to Information

As a proof of concept, I begin this project by analyzing one important shift for the

concept of entropy – the incorporation of information-theoretic notions into entropy by Jaynes

(1957).22 Entropy plays a role of ever-increasing importance in our best sciences. Despite its
22I focus solely on the first of two papers he published on the topic in 1957, as the second part focuses largely

on applying the account developed in part I, rather than presenting any novel arguments for the account itself.
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ubiquity, the concept of entropy is not easily grasped. Some like Swinburne complained that

“there is no sort of physical idea underlying [entropy]” (1904, p. 3); the concept of entropy does

not come equipped with an obvious physical idea for us to latch onto, despite being defined

in terms of physical quantities. This hints at degeneration – how can a concept that is so

ubiquitous in physics be so imprecisely understood? In what follows, I examine the concept

of entropy with Lakatos’s method in the Appendix of P&R: highlight a piece of work which

significantly influenced a concept’s trajectory and point out its various degenerative traits,

while suggesting what could have been done otherwise.

1.4.1 Jaynes’s ‘Information Theory and Statistical Mechanics’

Jaynes was not the first to propose a marriage between information theory and statistical

mechanics – that honour goes to Leon Brillouin.23 However, Jaynes’s paper is one of the (if

not the) most influential. As Seidenfeld (1986, p. 468) notes, “I doubt there is a more staunch

defender of the generality of entropy as a basis for quantifying (probabilistic) uncertainty

than the physicist E. T. Jaynes.” In a footnote to his famous 1973 paper on black hole entropy,

Bekenstein observed that “the derivation of statistical mechanics from information theory was

first carried out by E. T. Jaynes”. (1973, fn. 17) In that same paper, he notes that by 1973, “the

connection between entropy and information is well known”, (1973, p. 2335) and later states,

in a matter-of-fact way, that entropy “is the uncertainty in one’s knowledge of the internal

configuration of the body.” (1973, p. 2339) Clearly, Jaynes’s information-theoretic subjectivist

interpretation of statistical mechanics had won out by the 1970s – entropy has transformed from

a quantity that keeps track of the reversibility or irreversibility of thermodynamic processes

to a quantity that keeps track of the amount of information we have (or have lost) about said

processes.

This makes Jaynes’s paper the perfect candidate for evaluating the degeneration in the

transition from entropy as a thermodynamic, physical, concept about physical systems to an
23See e.g. Brillouin (1956, Ch. 12 and beyond).
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information-theoretic, subjective, concept about our ignorance or partial knowledge about

physical systems.

Before Jaynes, the Gibbsian approach to statistical mechanics was by far the dominant

paradigm in physics. Under the Gibbsian approach, the Gibbs entropy SG of a physical system

is defined by:

SG = −k
∫
Γ

ρ(x, t) log ρ(x, t) dx (1.3)

Here, is the 6N -dimensional phase space of the physical system in question, x is a point in

Γ, dx is the volume element of Γ, and, importantly, ρ(x, t) is some probability distribution

defined over Γ which may or may not change over time. The Gibbs entropy is thus a function

of these probability distributions. To define ρ(x, t), consider a fictitious infinite ensemble of

systems having (generally differing) microstates (position and momentum) consistent with the

known macrostates (e.g. temperature, volume, pressure) of the actual system. In short, the

macrostate(s), together with the dynamics of course, determine the choice of ρ(x, t). SG, in

turn, is supposed to match the thermodynamic entropy at the thermodynamic limit,24 which

justifies its definition and also provides a physical basis for using it. Just as the (change in)

thermodynamic entropy tracked the reversibility or irreversibility of thermodynamic processes,

being equal to zero for reversible processes and greater than zero for irreversible ones (for

closed systems over time), so does SG at the appropriate limit.

Setting aside the debate over the nature of these fictitious ensembles (among other

conceptual issues with the Gibbsian approach) for present purposes,25 the approach so far

is physical and world-oriented. In particular, the probability distributions ρ(x, t) depend on

the physical state of the system and are empirically determined – for instance, a system

in equilibrium with an arbitrarily large heat bath is described with the canonical ensemble

distribution, an isolated system with constant energy is described with the microcanonical
24This is when the number of particles in the system and the volume of the system itself approach infinity, with

the ratio between particle number and volume held constant.
25See, again, Callender (1999) and Goldstein et al. (2020) for a nice overview of the issues with the Gibbsian

approach
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ensemble distribution, and so on. These distributions then tell us the probability of some set

of microstates obtaining given said constraints. We are here concerned simply with whether

(and how likely) certain microstates of the actual physical system occur. Nothing in the

Gibbsian theory forces us to employ notions of ignorance or knowledge so far, i.e. notions that

would typically be described as ‘subjective’ do not need to be employed in Gibbsian statistical

mechanics.26

In contrast, Jaynes (1957) explicitly introduces the notion of “subjective statistical

mechanics” – where the usual rules of statistical mechanics can be “justified independently of

any physical argument, and in particular independently of experimental verification”. (1957,

p. 620) For Jaynes, statistical mechanics should not be interpreted as a physical theory in

itself, with its equations, choice of distributions, and rules of computation justified by physical

reasoning. Rather, it should be interpreted as a system of statistical inference, concerned

primarily with our partial knowledge about physical systems. This system is then underpinned

by the maximum entropy principle, which prescribes maximizing entropy as a formal means of

representing maximal ignorance about that which we do not know. This principle is intended by

Jaynes as an a priori principle of reasoning. The physics provides only the means of enumerating

the possible states of the system and their properties. (1957, p. 620) We use these as constraints

on our knowledge (or lack thereof) and infer from these a set of equations via an appeal to

information theory and subjectivist interpretations of probability and entropy.

Jaynes makes two related but distinct claims about his proposed account of statistical

mechanics. First, Jaynes’ first overarching claim is that statistical mechanics should be inter-

preted in a subjectivist fashion. This is opposed to an objectivist approach, which treats the

probabilities produced by statistical mechanics as objective chances about events in the world

(independent of what we think about those events). In his words:
26There is a debate about whether the use of coarse-graining in Gibbsian statistical mechanics (which is

necessary to recover the second law) might be anthropocentric and hence ‘subjective’ – see Robertson (2020) for a
discussion of why that is not necessarily the case (and hence why the Gibbsian approach still need not appeal to
subjectivist notions).
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The ”subjective” school of thought regards probabilities as expressions of human
ignorance; the probability of an event is merely a formal expression of our
expectation that the event will or did occur, based on whatever information is
available. (1957, p. 622)

For the subjectivist interpretation of statistical mechanics, the probability distributions, such

as the canonical ensemble, the grand canonical ensemble, the microcanonical ensemble etc. are

used to represent our partial knowledge of the system given certain constraints. The probabil-

ities given by these ensembles are not really about the objective chances of the microstates

occurring per se. Rather, these probabilities are interpreted to represent the degrees of belief

we ought to have about these microstates, given suitable constraints.

What is important, however, is that the suitable constraints are not merely physical

ones given by how the system is set up or behaving. This is his second major claim.

In addition to the subjectivist interpretation of statistical mechanics, Jaynes famously

proposed an additional constraint to the inferential process: the maximum entropy principle

(or MAXENT). (1957, p. 623) In short, the principle calls for the maximization of the entropy

of the system, in addition to the other relevant physical constraints. However, the entropy

of the system is interpreted in an information-theoretic way, over and above the subjectivist

interpretation. Recall the Gibbs entropy:

SG = −k
∫
Γ

ρ(x, t) log ρ(x, t) dx (1.4)

Under the subjectivist interpretation, ρ(x, t) now represents the degrees of belief we ought

to have in some (set of) microstates x obtaining at time t. Over and above that, SG is to be

interpreted (with the Boltzmann constant k set to unity via a choice of units) as the (continuous

version of) Shannon entropy instead, representing ‘uncertainty’ contained in ρ(x, t), i.e. the

‘uncertainty’ contained within our degrees of belief about said system. The intuition is that a

peaked distribution contains less uncertainty than a flat distribution, and it turns out that SG

for a peaked distribution is indeed lower than a flat distribution (see Fig. 1. for a visual aid).
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Figure 1.1. A schematic representation of a ‘peaked’ distribution vs. a ‘flat’ one.

Furthermore, just as collecting information is additive, so too is SG additive (as a simple result

of its logarithmic form).

In sum, MAXENT is treated as an a priori rationality constraint: we assume maximal

ignorance about a system except what we know about it, where ‘maximal ignorance’ is equated

to adopting a maximum information-entropy constraint on the system. This is what Jaynes

meant by his account of statistical mechanics being a general account of statistical inference.

(1957, p. 621, pp. 629–630) Jaynes then showed that the adoption of MAXENT can recover all

the usual equations and expressions of statistical mechanics.

As with Lakatos’s account in MSRP, much has already been said about the content of

Jaynes’s claims, and I will not add more to the mix.27 I focus on the methodological depth of

Jaynes’s paper instead by applying the extended account of growth and degeneration.

I begin with the problem-situation. The founding motivations of statistical physics,

found in the works of Boltzmann and Gibbs, are quite clear: to understand the molecular

foundations of thermodynamics, and to interpret thermodynamics in terms of molecular

mechanics.28 As Boltzmann states in the introduction to his Lectures on Gas Theory:
27See e.g. Seidenfeld (1986) and the references therein.
28The transition from Boltzmann to Gibbs is itself an interesting chapter in the history of statistical physics, but

will be left, hopefully, to future work.
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I hope to prove in the following that the mechanical analogy between the facts
on which the second law of thermodynamics is based, and the statistical laws
of motion of gas molecules, is also more than a mere superficial resemblance.
(1896/1995, p. 5)

Gibbs, while differing in his approach to statistical mechanics, held a similar view about the

goal of statistical mechanics:

We may [. . . ] confidently believe that nothing will more conduce to the clear
apprehension of the relation of thermodynamics to rational mechanics, and to
the interpretation of observed phenomena with reference to their evidence re-
specting the molecular constitution of bodies, than the study of the fundamental
notions and principles of that department of mechanics to which thermodynam-
ics is especially related. (1902, p. ix)

The search for an appropriate interpretation of statistical mechanics which connects thermody-

namics to statistical mechanics was a prime focus of both Gibbs and Boltzmann, even though

their methods differed significantly.

This problem-situation – the search for molecular foundations for thermodynamics

– remains relevant today. For instance, Callender (2001, p. 540) notes that “kinetic theory

and statistical mechanics are in part attempts to explain the success of thermodynamics in

terms of the basic mechanics.” More recently, Frigg and Werndl (2021) argues that this problem-

situation is tied to a demand for explanation, namely why and how statistical mechanics relates

to thermodynamics at all. To ignore this problem-situation is akin to quietism about this

relationship, and:

While practitioners may find it expedient to avoid the issue in this way, from a
foundational point of view quietism is a deeply unsatisfactory position because
it leaves the relation between [statistical mechanics] and [thermodynamics] (or
indeed any macroscopic account of a system’s behaviour) unexplained. (2021, p.
7)

This highlights a need to explain why thermodynamics is related to statistical mechanics, and

that is precisely what the problem-situation is about. Indeed, Jaynes (1957, p. 620) situates his

work in terms of this problem-situation as well. Suffice to say, this problem-situation is not an

arbitrary one, but one that has motivated the foundations of statistical mechanics and plays a
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crucial role in its history and development.29

As is well-known, the Gibbsian approach and its associated entropy face several concep-

tual troubles in attaining this goal. Recall the unclear nature of the fictitious ensembles and how

to interpret the probabilities provided by the approach, as well as issues such as the require-

ment to assume various physical hypotheses. For instance, ergodicity or metric transitivity30 is

typically introduced as a founding assumption31 in statistical mechanics textbooks to connect

measured (i.e. time) averages to expectation values over phase space. However, there are some

crucial issues with this assumption: for instance, systems relevant to statistical mechanics

are not always ergodic.32 Jaynes does discuss some of these worries, such as the appropriate

interpretation of statistical mechanical probabilities and the requirement for Gibbsian statistical

mechanics to include seemingly arbitrary ‘physical hypotheses’ such as ergodicity or an a

priori principle of indifference. (1957, p. 621) However, the question is whether his paper

contributes in a significant way to this problem-situation. Does his proposed interpretation

of entropy-as-ignorance solve the issues faced by this problem-situation? Does it provides a

clearer understanding of the issues above, or does it obfuscate the issues at hand?

The stated motivations for his paper (1957, p. 261) suggest preliminary grounds for

concern about superfluity. Jaynes claims that his primary motivations are (i) bringing in new
29Of course, it may be the case that there are other problem-situations beyond the above. Wallace has recently

argued that “it may be misleading to regard statistical mechanics itself as itself wholly or primarily a conceptual
underpinning for thermodynamics.” (2015, 286) Instead, he opts for an approach that emphasizes an understanding
statistical mechanics as used in contemporary practice, “concerned little with providing a foundational underpin-
ning for the general principles of thermodynamics” (2015, 292), contra Frigg and Werndl above. This may well be
true, and it is not the goal of this paper to argue for the ‘one true problem-situation’ for statistical mechanics and
entropy (if one should even exist). There is no reason why degeneration must be understood only in terms of some
problem-situations and not others: we could always perform the analysis of degeneration in terms of Wallace’s
proposed problem-situation. This raises an interesting further question of when and how problem-situations
evolve and change. There could very well be an analysis of degeneration of problem-situations themselves, though
I will leave that for future work. In any case, to my knowledge, Wallace’s proposal remains a minority view. The
goal of searching for the molecular foundations of thermodynamics remains generally accepted as historically
and conceptually important. Many thanks to an anonymous reviewer for pointing this out.

30Roughly, ergodicity (or what Jaynes referred to as ‘metric transitivity’, and also known elsewhere as ‘metric
indecomposibility’ (see Sklar (1993, 165)) is the idea that the phase space for a system is such that a phase point’s
trajectory is not confined only to one sub-region – another way to think about it is that the phase point’s trajectory
traverses the entire volume of phase space.

31See Frigg and Werndl (2021) for an overview of the status of this principle and related notions.
32See Earman and Rédei (1996).

34



mathematical machinery to statistical mechanics, and (ii) the notion that information theory

is “felt by many people to be of great significance for statistical mechanics”, although “the

exact way in which it should be applied has remained obscure.” But these motivations do not

help with respect to the problem-situation above. Jaynes also does not specify any concrete

problem-situation relevant to statistical mechanics, only mentioning the above issues in passing.

1.4.2 Assessing the Depth of Jaynes’s Claims: Superfluity

The distinction between subjective and objective interpretations of probabilities was

presumably an attempt by Jaynes to address the issue with interpreting the probabilities

prescribed by Gibbsian statistical mechanics. This is, of course, a real interpretative issue with

statistical mechanics. As mentioned, we can distinguish between interpreting probabilities as

worldly objective chances, or subjective degrees of belief about events (which may or may not

be subject to further rational constraints); the usual debate ensues as to which interpretation is

appropriate.33 However, regardless of the result of that debate, Jaynes’s actual proposal with

regards to MAXENT simply does not rely on a choice between them. As I see it, Jaynes’s

proposed ‘subjectivist statistical mechanics’ is simply generalization for generalization’s sake.

The discussion of the subjective/objective distinction is superfluous in the context of

Jaynes’s paper. To see the irrelevance and superfluity of that distinction, consider that concepts

like information and uncertainty, and what is sometimes confusingly called ‘knowledge’ or

‘our knowledge’ about something, in information theory, are in fact neutral between the two

interpretations of probability (contrary to folk usage of these terms). The Shannon entropy is a

formal quantity that tracks the flatness of any probability distribution (be it a distribution for

objective chances or degrees of belief): the more peaked it is, the more information (and less

entropy) it contains. Indeed, looking at its use in communications, the relevant distributions

involved are typically distributions of objective frequencies (e.g. of letters, words and so on), not

degrees of belief. Unless one is understandably tricked by the occurrence of subjective-sounding
33For a more detailed discussion of the general positions one might take, see Sklar (1993, p. ch. 3).
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words like ‘surprise’, ‘information’ (in the sense that it informs someone), ‘uncertainty’ and

‘knowledge’, the notion of information is, I claim, neutral between the objective and subjective

interpretations of probability.

And why should it? Information theory is an extremely useful tool for our everyday

communications, but it is ultimately a mathematical tool, without explicit metaphysical import.

The distinction between objective and subjective interpretations of probability, on the contrary,

is clearly a metaphysical one. As Jaynes notes: “the theories of subjective and objective

probability are mathematically identical”, though they differ conceptually. (1957, p. 622) So it is

for the information-theoretic (Shannon) entropy. Even though common introductions gloss it

as a measure of ‘uncertainty’, this does not force a subjective interpretation of probability onto

the Shannon entropy.

If so, the MAXENT proposal – which simply requires maximizing the Shannon entropy

of any probability distribution, over and above other physical constraints – is likewise neutral

between interpretations. We can certainly choose to interpret MAXENT in a subjectivist way

as Jaynes did. Since we are considering only probability distributions as degrees of belief,

maximizing entropy is akin to adopting the ‘flattest’ distribution of degrees of belief regarding

a certain class of events given the available constraints. But we can also consider probability

distributions as objective chances, in which case the MAXENT proposal becomes one in which

we postulate that the probabilistic behavior of systems simply act in a way that maximizes

entropy given the constraints.

Jaynes seems to see the latter as unpalatable and the former acceptable: he mentions how

his subjectivist proposal avoids ‘arbitrary assumptions’ (1957, p. 630) or ‘physical hypotheses’

(1957, p. 621) several times. But why should physical hypotheses be avoided or labelled arbitrary

in the field we call physics? Ergodicity might have its own conceptual issues and concerns

over applicability, but it is surely a valid hypothesis to be considered and debated about, rather

than dismissed seemingly a priori as one would in Jaynes’s approach. This is especially since

ergodicity allows us to reproduce much of the physics we care about at the macroscopic level.
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And, at the very least, we are making a claim about the system’s actual behavior (which may

obtain or otherwise) and why it fits the predictions we make about it in our theory. Compare

this to the subjectivist proposal, in which the theory of statistical mechanics no longer describe

the dynamics of the chances of events occurring on phase space, but merely our degrees of

belief about those events occurring. As Albert famously quipped,

Can anybody seriously think that our merely being ignorant of the exact micro-
conditions of thermodynamic systems plays some part in bringing it about, in
making it the case, that (say) milk dissolves in coffee? How could that be? What
can all those guys have been up to? (2000, p. 64)

Is the subjectivist proposal really any less arbitrary when it comes to connecting our physical

theories to the world? Jaynes does not elaborate. I do not want to adjudicate the debate here,

though it suffices to say that the interpretation of probabilities is simply superfluous to the

actual MAXENT proposal – the proposal itself, as a piece of mathematics, is independent of

interpretation. Since both interpretations will inevitably reproduce the same mathematics (and

hence the same equations), both interpretations inevitably rise and fall together.

There is little reason to think that Jaynes meant the MAXENT proposal to be much more

than just a useful piece of mathematics that can help us compute and make predictions in a more

tractable fashion, for it seems that his discussion of MAXENT entirely brackets off the issue of

interpretation. If that is the case, however, the question of interpreting probabilities in statistical

mechanics does not even arise. The actual goal of the paper is not about interpretation or the

metaphysics of statistical mechanics. In turn, the question of interpreting the thermodynamic

entropy, defined over these probabilities about the system, does not arise. Rather, MAXENT is a

proposal concerning convenient prediction and computation. Jaynes writes:

Although the principle of maximum-entropy inference appears capable of han-
dling most of the prediction problems of statistical mechanics, it is to be noted
that prediction is only one of the functions of statistical mechanics. Equally
important is the problem of interpretation; given certain observed behavior of
a system, what conclusions can we draw as to the microscopic causes of that
behavior? To treat this problem and others like it, a different theory, which we
may call objective statistical mechanics, is needed. (1957, p. 627)
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The MAXENT proposal is here just a convenient proposal for arriving at the computations

required for prediction problems. Hence Jaynes claimed that adopting the ‘subjective point

of view’ and MAXENT for predictions serves a “great practical convenience”. But if we were

to press Jaynes on the interpretation and metaphysics of statistical mechanics, we would still

need ‘objective statistical mechanics’:

In the problem of interpretation, one will, of course, consider the probabilities
of different states in the objective sense; i.e., the probability of state n is the
fraction of the time that the system spends in state n. (1957, p. 627)

Jaynes’s take on the interpretation of probabilities about the actual physical system remains

an objectivist one – and one seemingly adopting some version of the ergodic hypothesis he

claimed to have eschewed!34 This goes to show that the probabilities prescribed by statistical

mechanics about actual systems – and their interpretations – are not even in question here

in Jaynes’s paper, since his proposal is supposed to be one concerning ‘subjective statistical

mechanics’, rather than ‘objective statistical mechanics’. If we are only interested in prediction

and computation, all we need is the mathematical MAXENT proposal, and a formal proof

that it does in fact recover the equations we want. The ability for the MAXENT proposal to

shorten and speed up the derivations of certain equations (as Jaynes shows in the paper) is,

by and large, not in question here. Yet there is also no need to provide an interpretation for

MAXENT and the notion of entropy involved in that case. There is no more need to interpret

the mathematical shortcuts that one takes, any more than one needs to justify and interpret

the algorithms behind WolframAlpha when one takes a shortcut with their integrals. All this

renders Jaynes’s insistence on packaging the MAXENT proposal with a choice of interpretation

for both probabilities and entropy confusing.

Furthermore, since we are not tackling the actual issue of how to interpret the proba-
34As Frigg and Werndl (2021, p. 8) puts it, ergodicity holds “if for all measurable functions the infinite time

average is equal to the ensemble average for almost all initial conditions”. Roughly, an ergodic principle states that
the time-averages of some parameter is equal (in the infinite time limit) to the expectation value of that parameter
(and hence the probability of that parameter having some quantity is equal to that amount of time the system
spent in the region of phase space with that quantity, as Jaynes says here).

38



bilities assigned to the states of the actual system, the subjectivist MAXENT package is not

even relevant to the original problem-situation. In other words, the insistence on providing

an information-theoretic interpretation of entropy – replacing the previous thermodynamic

and physical interpretation via the second law of thermodynamics and notions of reversibil-

ity/irreversibility of actual processes – is simply unjustified because the MAXENT proposal

has no real need for interpretation.

No other genuine argument for the information-theoretic interpretation can be found

in his paper. He starts off with a proviso:

The mere fact that the same mathematical expression
∑
pi log pi occurs both

in statistical mechanics and in information theory does not in itself establish
any connection between these fields. This can be done only by finding new
viewpoints from which thermodynamic entropy and information-theory entropy
appear as the same concept. In this paper we suggest a reinterpretation of
statistical mechanics which accomplishes this, so that information theory can
be applied to the problem of justification of statistical mechanics. (1957, p. 621)

As I have shown, information theory is not ultimately applied to the justification of statistical

mechanics. That project requires interpreting statistical mechanics and the metaphysics within

it (e.g. about whether swarms of particles can actually recover the macroscopic description).

Despite Jaynes’s claim that he is proposing a reinterpretation of statistical mechanics, he does

not succeed in doing so – that is all left in the ‘objective statistical mechanics’ side of things,

which he has chosen to downplay. Jaynes’s proposal is the adoption of new mathematical tools

for computing predictions in statistical mechanics, which does not force any interpretation at

all. In any case, such interpretations have no real import for the actual issue of the problem-

situation, that of interpreting the probabilities attached to events themselves. It is important to

note that Jaynes does not specify an alternative problem-situation either. Instead, he simply

asserts:

Since
∑
pi log pi is just the expression for entropy as found in statistical me-

chanics, it will be called the entropy of the probability distribution pi; henceforth
we will consider the terms ”entropy” and ”uncertainty” as synonymous. (1957,
p. 622)
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But he has not yet shown that the thermodynamic entropy, i.e. “entropy”, and the information-

theoretic entropy, i.e. “uncertainty”, are the same as a matter of interpretation, because the

paper is not at all concerned with interpretation and ‘objective statistical mechanics’, only

prediction and ‘subjective statistical mechanics’.

In sum, Jaynes’s discussion of interpretative issues is superfluous. Jaynes has added

unnecessary terminology from information theory and confused these new concepts with

old questions without actually addressing any of the old questions from the original problem-

situation. He has generalized for generalization’s sake. The insistence on interpreting entropy

as information-theoretic ignorance in a subjectivist sense, defined over distributions interpreted

as degrees of belief, is likewise superfluous. As Denbigh correctly notes, “Jaynes’ remark [on

interpreting entropy in a subjectivist manner], though undoubtedly illuminating in a certain

sense, is quite superfluous to the actual scientific discussion”. (1990, p. 111)

1.4.3 Assessing the Depth of Jaynes’s Claims: Authoritarianism

Jaynes also displays authoritarianism when insisting on treating statistical mechanics

as a general means of prediction, apparently viewed through subjectivist lens.

Authoritarians introduce new concepts into a line of inquiry without justification,

while ignoring the problem-situation and heuristics which led us to those concepts. This is an

important issue in Jaynes’s paper, since the problem-situation at hand is barely specified. No

details about the issues facing ‘objective statistical mechanics’ or the Gibbsian approach are

presented. Instead, Jaynes presents the information-theoretic interpretation, the subjectivist

interpretation, and the maximum entropy principle, as though they must be taken altogether.

Jaynes proclaims that, in

freeing [statistical mechanics] from its apparent dependence on physical hy-
potheses of the above type, we make it possible to see statistical mechanics in a
much more general light. (1957, p. 621)

Throughout the paper, Jaynes insists that the subjectivist approach is necessary for approaching
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the prediction issue. However, two questions arise. First, why the downplaying of ‘physical

hypotheses’ used by ‘objective statistical mechanics’ and why do we need to ‘free’ statistical

mechanics from them? Second, why the focus on prediction and information theory, and the

downplaying of the importance of interpretation? Both questions are unanswered.

To the first question, Jaynes demands that a satisfactory theory connecting microscopic

to macroscopic phenomena should, among other things, “involve no additional arbitrary

assumptions”. (1957, pp. 620–621) He notes a worry that this condition might be too severe

since, rightfully, “we expect that a physical theory will involve certain unproved assumptions,

whose consequences are deduced and compared with experiment.” (1957, 621) However, his

response to this worry is unsatisfactory. After listing some additional assumptions historically

used in statistical mechanics to ensure empirical adequacy, he notes that

with the development of quantum mechanics the originally arbitrary assump-
tions are now seen as necessary consequences of the laws of physics. This
suggests the possibility that we have now reached a state where statistical me-
chanics is no longer dependent on physical hypotheses, but may become merely
an example of statistical inference. (1957, 621)

However, the fact that some arbitrary assumptions eventually come to be explained by quantum

mechanics does not entail that statistical mechanics is (or should be) free of all physical

hypotheses. The possibility that this could be possible is not a good argument for thinking

that this is in fact the case (which would be necessary for him to argue so strongly against

the use of physical hypotheses). Furthermore, even granting that this were true, the inference

from this to statistical mechanics becoming “merely an example of statistical inference” is an

unexplained leap as well.

In short, Jaynes believes that these physical hypotheses are undesirable – for instance,

he spends some time claiming that metric transitivity is not needed if we adopt the MAXENT

principle. (1957, p. 624) However, he never provides an adequate reason for why we should not

adopt any physical hypotheses about the systems we are studying.

He focuses instead on how MAXENT can help us do away with these hypotheses. But
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it is not clear that it does – MAXENT merely shifts our attention away from whether those

hypotheses hold. Jaynes notes that adopting MAXENT is in fact akin to adopting ergodicity

– except about our own degrees of belief about the system’s behavior, rather than about the

actual system’s behavior:

Even if we had a clear proof that a system is not metrically transitive, we would
still have no rational basis for excluding any region of phase space that is allowed
by the information available to us. In its effect on our ultimate predictions, this
fact [i.e. MAXENT] is equivalent to an ergodic hypothesis, quite independently
of whether physical systems are in fact ergodic. (1957, p. 624)

Is the system really ergodic? And is ergodicity needed to derive the equations concerning

those systems’ behavior? Jaynes’s proposal has two options: one is to say nothing at all – an

unsatisfactory answer. Another option is to reply: the MAXENT proposal says that you should

have degrees of belief matching the situation where the system is ergodic (as the quote above

suggests). But that means I ought to believe that the system is ergodic after all, i.e. believing the

physical hypothesis of ergodicity. Yet that was the original issue in our problem-situation: we

want to know whether ergodicity is necessary for the statistical mechanical system to behave

in accordance with our observations. Either MAXENT is irrelevant to our problem-situation,

or it adds nothing new. Old questions remain.

The original problem-situation has been neglected. Yet, we are made to believe that

these questions are to be ignored in favour of the new proposal – MAXENT, information theory,

subjectivism – without justification for why that should be so. This is a case of authoritarianism.

Turning to the second question: as discussed above, the founding fathers of statistical

mechanics were concerned first and foremost with the interpretative issues – how do we

connect the particles or systems of statistical mechanics to the bulk macroscopic behavior we

find in thermodynamics? Of course, that is not to say that prediction has no role to play in

statistical mechanics. However, it is strange to ignore a core tenet of statistical mechanics,

which seems like what Jaynes has done here. Reading the paper, one gets the impression

that prediction holds supreme place in statistical mechanics. Interpretation seems to be an
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after-thought. But prediction goes hand in hand with interpretation – to predict the behavior

of the system we must understand what the system is, and that is a matter of interpretation.

As I have argued in §1.4.2, Jaynes’s paper is completely divorced from interpretative issues. In

this respect his paper is authoritarian: it ignores the problem-situation of statistical mechanics,

such as the importance of interpretative issues.

The introduction of information theory, and the shift in focus on statistical mechanics

as a general tool of statistical inference, is likewise authoritarian. Jaynes offers no reason for

adopting information theory – we are told that the Gibbs entropy can be interpreted as the

Shannon entropy, and that “the development of information theory has been felt by many

people to be of great significance for statistical mechanics”. (1957, p. 621) Likewise, we are

not told why statistical mechanics should be a general tool of statistical inference, freed from

physics, where “the usual rules are thus justified independently of any physical argument, and

in particular independently of experimental verification.” (1957, p. 620) These are all core tenets

of the MAXENT proposal, but they remain unjustified.

In conclusion, Jaynes’s paper falls afoul of both superfluity and authoritarianism. With

respect to methodological depth, then, it was a degenerative piece of work. Since the key

transition of entropy from a concept concerned with thermodynamics and actual physical

systems to a concept concerned with ignorance and our knowledge of said systems occurred

here, this shift is a degenerative one as well.

Jaynes’ paper changed the trajectory of the entropy concept. For instance, by appearing

as though the paper presented an interpretative package, despite the actual proposal not needing

one, the paper introduced confusion to the actual interpretative issues. The interpretative

package of information-theoretic entropy and subjectivism became adopted as an answer

for the interpretative issues associated with ‘objective statistical mechanics’ instead. Recall

the Bekenstein quote: a mere twenty years later the information-theoretic interpretation

has escaped from ‘subjective statistical mechanics’ into ‘objective statistical mechanics’, with

thermodynamic entropy (defined over probability distributions of the microstates of the actual
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systems) being interpreted as ignorance or uncertainty. Three years later, Hawking would

simply assert: “an intimate connection between holes (black or white) and thermodynamics

[. . . ] arises because information is lost down the hole.” (1976, p. 197) Degeneration has occurred.

1.4.4 Content-Oriented Degeneration

It is worthwhile to conclude by briefly considering the content-degeneration of the

MAXENT proposal under the generalized Lakatosian account I have developed in III. It seems

to me that MAXENT is both theoretically and empirically degenerative on this account.

Recall the definitions: being theoretically progressive refers to a succeeding theory

predicting more novel facts compared to its predecessor. Being empirically progressive refers

to the excess empirical content of this succeeding theory actually leading to the discovery of

new facts, thereby corroborating the new theory’s novel predictions.

As Jaynes notes, nothing new is added in terms of theoretical progress, because ‘sub-

jective statistical mechanics’ will recover exactly the same predictions as ‘objective statistical

mechanics’:

Conventional arguments, which exploit all that is known about the laws of
physics, in particular the constants of the motion, lead to exactly the same
predictions that one obtains directly from maximizing the entropy. (1957, p. 624)

And that

the subjective theory leads to exactly the same predictions that one has attempted
to justify in the objective sense. (1957, p. 625)

This shows that no new predictions are provided by this proposal. The ‘new’ proposals attached

in Jaynes’s papers are typically just new ways of doing the same calculations. For instance:

Jaynes’s treatment of Siegert’s ‘pressure ensemble’ is also merely a reworking of Siegert’s own

derivations, published just a year prior. (1956) In short, the MAXENT proposal is theoretically

degenerative. Furthermore, since there are no new predictions, there are no new predictions to

corroborate. The proposal is empirically degenerative. This, of course, also adds to that sense

of superfluity one gets when analyzing Jaynes’s proposal in detail.
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Overall, then, Jaynes’s paper is degenerative tout court in terms of its place in statistical

mechanics.35 Given that it had such a huge influence on the current understanding of entropy

as ignorance and uncertainty, especially in the field of contemporary black hole thermody-

namics (Bekenstein and Hawking are typically known as the founding fathers of black hole

thermodynamics), this current understanding must be re-assessed. Some have already begun

this work. For instance, Wüthrich have recently argued that

the original argument by Bekenstein with its detour through information theory
does not succeed in establishing the physical salience of the otherwise merely
formal analogy between thermodynamic entropy and the black hole area, and
so cannot offer the basis for accepting black hole thermodynamics as “the only
really solid piece of information”. (2018, pp. 219–220)

Importantly, Wüthrich diagnoses the problem with Bekenstein’s arguments to be the failure to

recognize that “Fundamental physics is about the objective structure of our world, not about

our beliefs or our information”, and that “information, one might argue, is an inadmissible

concept in fundamental physics.” (2018, p. 217) Given my analysis here, we can see why that

is the case. The introduction of information theory by Jaynes to statistical mechanics was

already superfluous to begin with. Others like Prunkl & Timpson (ms), recognizing the flaws

with information-theoretic arguments for black hole thermodynamics, are already attempting

to provide a defense of black hole thermodynamics sans information theory. A possibility of

doing so further suggests – in agreement with my diagnosis here – that information-theoretic

concepts may just have been superfluous to the discussion, and, to quote Wuthrich again, a

“detour”.

1.5 Conclusion

I have provided and motivated an extension to Lakatos’s account of growth and de-

generation from MSRP by appealing to P&R. This extension, in terms of superfluity and
35There is certainly room to argue for this paper’s contributions in the context of other fields, given Jayne’s and

MAXENT’s ubiquity outside of statistical mechanics. However, this is not Jayne’s original goal.
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authoritarianism, enables a new dimension through which we may evaluate a piece of mathe-

matical or scientific work, independent of the analysis in terms of theoretical and empirical

progress or degeneration found in MSRP.

As proof of concept, I have evaluated Jaynes’s proposal, a key transition point in the

historical trajectory of the concept of entropy. I hope to have shown that my account does

provide a novel means of assessing the degeneration or progress of this transition, by critically

analyzing the aspects of his paper which exhibited superfluity and authoritarianism.

Some might object that my criticisms of Jaynes’ proposal could have been made inde-

pendent of the account of degeneration I have sketched here.36 I agree that one could have

arrived at these criticisms independent of my account, for there are likely many ways to arrive

at the same conclusion I reached. However, that does not discount the fact that my account

of degeneration does arrive at these criticisms, guided by the twin heuristics of superfluity

and authoritarianism. I hope to have shown in this paper that this account provides us with a

grip on the nature of these criticisms (as methodological ones) and motivates them in a con-

ceptually clear fashion. This should give us a good reason to consider and adopt this account

of degeneration regardless of whether there might be other ways to arrive at these criticisms.

In any case, we should rejoice – not despair – when there are multiple ways of evaluating a

problem, for this means we have more tools in our conceptual toolbox for analysis.

In my view, developing more tools for understanding how scientific and mathematical

concepts degenerate or grow has natural affinities with an increasingly popular understanding

of philosophy as conceptual engineering.37 As Chalmers [2020, p. 4) writes, conceptual

engineering is “the project of designing, evaluating, and implementing concepts”, where

we consider not only what a concept is, but also what it should be. Developing new tools

for identifying points of degeneration in a concept’s historical trajectory helps us evaluate a

concept and consider alternative ways of designing and developing said concept.
36Many thanks to an anonymous reviewer who raised this point.
37See e.g. Haslanger (2000) or Chalmers (2020).
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This paper thus leaves behind a variety of fruitful directions, ripe for the picking by the

hopeful conceptual engineer. For those who, like me, are puzzled by the concept of entropy:

if we want to re-engineer and design a newer, better, conceptually clearer notion of entropy,

we would do well to engage with – and dispel – other similarly degenerative transition points.

For other philosophers, too, I believe the tools developed here can be used to assess concepts

elsewhere: in science, mathematics, perhaps even philosophy itself. There remains much to be

done.

Acknowledgements

“Degeneration and Entropy”, is, in full, a reprint of the material as it appears in the

special issue of Kriterion – Journal of Philosophy 36 (2), 123-155, 2022, on Lakatos’s Undone

Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science

(eds. S. Nagler, H. Pilin, and D. Sarikaya). The dissertation author was the sole author of this

paper.

47



Bibliography

Albert, David Z. (2000). Time and Chance. Cambridge, Massachusetts: Harvard University Press.

Bekenstein, Jacob D. (1973). “Black Holes and Entropy”. In: Phys. Rev. D 7.8, pp. 2333–2346. doi:

10.1103/PhysRevD.7.2333. url: https://link.aps.org/doi/10.1103/PhysRevD.7.2333.

Boltzmann, Ludwig (1896–1995). Lectures on Gas Theory. New York: Dover.

Brillouin, Louis Marcel (1956). Science and Information Theory. New York: Academic Press.

Bub, Jeffrey (2005). “Quantum mechanics is about quantum information”. In: Foundations of

Physics 35.4, pp. 541–560.

Callender, Craig (1999). “Reducing Thermodynamics to Statistical Mechanics: The Case of

Entropy”. In: The Journal of Philosophy 96.7, pp. 348–373.

— (2001). “Taking Thermodynamics Too Seriously”. In: Studies in History and Philosophy of

Science Part B: Studies in History and Philosophy of Modern Physics 32.4. The Conceptual

Foundations of Statistical Physics, pp. 539–553. issn: 1355-2198. doi: https://doi.org/10.

1016/S1355-2198(01)00025-9. url: https://www.sciencedirect.com/science/article/pii/

S1355219801000259.

Chalmers, David (2020). “What is conceptual engineering and what should it be?” In: Inquiry.

doi: 10.1080/0020174X.2020.1817141.

Chua, Eugene Y. S. (2021). “Does Von Neumann Entropy Correspond to Thermodynamic

Entropy?” In: Philosophy of Science 88.1. doi: 10.1086/710072.

Corfield, David (1997). “Assaying Lakatos’s philosophy of mathematics”. In: Studies in History

and Philosophy of Science 28, pp. 99–121.

48

https://doi.org/10.1103/PhysRevD.7.2333
https://link.aps.org/doi/10.1103/PhysRevD.7.2333
https://doi.org/https://doi.org/10.1016/S1355-2198(01)00025-9
https://doi.org/https://doi.org/10.1016/S1355-2198(01)00025-9
https://www.sciencedirect.com/science/article/pii/S1355219801000259
https://www.sciencedirect.com/science/article/pii/S1355219801000259
https://doi.org/10.1080/0020174X.2020.1817141
https://doi.org/10.1086/710072


Denbigh, Kenneth (1990). “How Subjective is Entropy?” In: Maxwell’s demon: Entropy, Informa-

tion, Computing. Ed. by Harvey Leff and Andrew Rex. Princeton, New Jersey.

Dougherty, John and Craig Callender (2016). Black Hole Thermodynamics: More Than an Analogy?

Available at: http://philsci-archive.pitt.edu/13195/. (last accessed 13th March 2022).
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Chapter 2

Does Von Neumann Entropy Corre-
spond to Thermodynamic Entropy?

2.1 Introduction

According to conventional wisdom in physics, von Neumann entropy corresponds to

phenomenological thermodynamic entropy. The origin of this claim is von Neumann’s (1955)

argument that his proposed entropy corresponds to the thermodynamic entropy, which appears

to be the only explicit argument for the equivalence of the two entropies. However, Hemmo and

Shenker (H&S) (2006) – and earlier, Shenker (1999) – have argued that this correspondence fails,

contrary to von Neumann. If so, this leaves conventional wisdom without explicit justification.

Correspondence can be understood, at the very least, as a numerical consistency check:

in this context, this means that the von Neumann entropy has to be included in calculating

thermodynamic entropy to ensure consistent accounting in contexts where both thermody-

namic and von Neumann entropy are physically relevant. Successful correspondence provides

strong evidence of equivalence. While it does not guarantee equivalence, it seems to be at

least a necessary condition for equivalence. If thermodynamic entropy and von Neumann

entropy correspond, then we have reason to think that von Neumann entropy is rightfully

thermodynamic in nature, since proper accounting of thermodynamic entropy would demand

von Neumann entropy. By contrast, a failure of correspondence seems to entail that the von

Neumann entropy is not thermodynamical in nature, since it is irrelevant to thermodynamic
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calculations in contexts where both entropies are physically significant (e.g. when a system

has both quantum degrees of freedom and is sufficiently large to warrant thermodynamical

considerations).

Although Henderson (2003), in my view, has successfully criticized Shenker’s earlier

argument, little has been done in the philosophical literature to evaluate H&S’s more recent

arguments.1 This lacuna is striking because, as I mentioned, von Neumann’s argument appears

to be the only explicit argument for correspondence for the two entropies.

My goal in this paper is to fill this lacuna by providing a novel set of criticisms to

H&S. Here’s the plan: I introduce key terms (§2.2) and then present von Neumann’s thought-

experiment which aims to establish the correspondence between thermodynamic entropy

and von Neumann entropy; along the way, a novel counterpart to the usual argument for

correspondence is discussed (§2.3). I then present and criticize H&S’s arguments for the

single-particle case in the context of thermodynamics (§2.4.1) and in the context of statistical

mechanics (§2.4.2), the N-particles case (§2.4.3), and the infinite-particles case (§2.4.4). I conclude

that their argument fails in all cases – in turn, we have good reasons to reject their claim that

the von Neumann entropy fails to correspond to thermodynamic entropy, and hence the claim

that von Neumann entropy is not thermodynamic in nature.

2.2 Key Terms

Let me first define the notions of thermodynamic entropy and von Neumann entropy.

Following H&S, I define the change in thermodynamic entropy STD between two thermodynamic
1It is only slightly better in the physics literature: Deville and Deville (2013) appears to be the only paper

to critique H&S. On the philosophical side, one (very recent) exception is Prunkl (ms), though she restricts
discussion to the single-particle case and appears to conflate information entropy with thermodynamic entropy.
See §2.4.1/§2.4.2 for why this is not obviously right.
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states in an isothermal quasi-static process,2 as:

∆STD =
1

T

∫
P dV (2.1)

We will restrict our discussion to ideal gases in equilibrium (i.e. systems where pressure P ,

volume V , and temperature T remain constant).

Next, the von Neumann entropy SVN, for any pure or mixed quantum system, is defined

as:

SVN = −kTr(ρ log ρ) (2.2)

where k is the Boltzmann constant and Tr(.) is the trace function. Generally, the density matrix

ρ is such that:

ρ =
i∑

n=1

pi |ψi⟩ ⟨ψi| (2.3)

where ψ1, ψ2, ... ψn correspond to the number of pure states in a statistical mixture represented

by ρ, with p1, p2, ... pn being their associated classical probabilities (which must sum to unity).

In the case where there is only one pure state possible for a system (e.g. when we are absolutely

certain about its quantum state), then n = 1, with probability 1, so the appropriate density

matrix is ρ = |ψ⟩ ⟨ψ|. For such a system in a pure state (i.e. represented by a single state vector

in Hilbert space), SVN = 0. For mixed states (i.e. states which cannot be represented by a single

state vector in Hilbert space, hence mixture of pure states or a mixed state), Tr(ρ log ρ) < 1 and

SVN > 0 in general. A mixed state is often said to represent our ignorance about a system – this

will suffice as a first approximation (more on how to interpret this ignorance in §2.4.2).

Prima facie, SVN and STD appear to share nothing in common, apart from the word

‘entropy’. However, von Neumann claims that there are important correlations between the

two, which suggests a correspondence between STD and SVN.
2There is no change in temperature in an isothermal quasi-static process, which is why T is taken to be

constant. As a matter of historical note, von Neumann uses an isothermal set-up in his argument, with a box
containing a quantum ideal gas coupled to a (much larger) heat sink ensuring constant temperature over time
(von Neumann 1955, 361/371).
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2.3 Von Neumann’s Thought-Experiment

For parity, I adopt H&S’s presentation of von Neumann’s thought-experiment,3 which

aims to show that changes in thermodynamic entropy can only be made consistent with

the laws of thermodynamics if we considered the von Neumann entropy as contributing to

the calculation of the thermodynamic entropy. Figure 2.1 depicts the stages of the thought-

experiment.

We begin, in stage one, with a box with a partition in the middle. On one side of the

partition there is a gas at volume V , constant temperature T , and constant pressure P . Each gas

particle starts off having the pure state spin-up along the x-direction
∣∣ψ↑

x

〉
, which is equivalent

to a superposition of spin-up and spin-down pure states along the z-direction, labelled
∣∣ψ↑

z

〉
and

∣∣ψ↓
z

〉
respectively. According to standard quantum mechanics, the state of each particle is

thus 1√
2
(
∣∣ψ↑

z

〉
+
∣∣ψ↓

z

〉
).

In this context, particles with quantum behavior may be taken to be ideal gases, i.e.

sets of particles each of which do not interact with other particles and take up infinitesimal

space. Following von Neumann’s assumptions (von Neumann 1955, 361),4 each gas particle

is understood as a quantum particle with a spin degree of freedom contained inside a large

impenetrable box, and each gas particle is put inside an even larger container isolated from the

environment (i.e. the box we began with). This ensures that each spin degree of freedom is

incapable of interacting with other particles. These boxes’ sizes also ensure that the positions

of these boxes (and hence of the particles) can be approximately classical. Since the container

is much larger than each gas particle, this ensures that the gas particles take up negligible

space relative to the massive container. Accepting these assumptions, we may then take these

quantum particles to behave like an ideal gas.5 Following H&S, we further assume that the
3It is not clear to me that von Neumann’s original 1932/1955 argument is exactly the same as the argument

H&S reproduces. However, for the sake of argument, I will refer to H&S’s version as von Neumann’s argument
in this paper.

4These assumptions are borrowed from Einstein (1914). For more, see Peres (Peres 2002, 271).
5I shall follow everyone in this debate in assuming that the above set-up is physically possible.

55



position degrees of freedom of the gas particles have no interaction with the spin degrees of

freedom at this point, and “due to the large mass of the boxes, the position degrees of freedom

of the gas may be taken to be classical and represented by a quantum mechanical mixture”.

(Hemmo and Shenker 2006, 155)

Moving on, stage two involves a spin measurement along the z-axis on all the particles

in the container, with a result being an equally weighted statistical mixture of particles with

either
∣∣ψ↑

z

〉
or

∣∣ψ↓
z

〉
states. As a result, the spin state of each particle is then represented instead

by a density matrix ρspin, such that:

ρspin =
1

2
(
∣∣ψ↑

z

〉 〈
ψ↑
z

∣∣+ ∣∣ψ↓
z

〉 〈
ψ↓
z

∣∣) (2.4)

More precisely, there should be terms for the measurement device too, when truly considering

the entire system. ρspin describes only the subsystem (i.e. the quantum ideal gas) sans mea-

surement device, i.e. a state with the measurement device traced out – this is in line with von

Neumann’s focus on the entropy changes due to changes in the subsystem (von Neumann 1955,

358–379). I follow Henderson (2003) and H&S in talking about the system’s state as though I

have already traced the measurement device out whenever measurement is involved.

Stages three and four are where the particles are (reversibly) separated according to

their spin states by a semi-permeable wall into two sides of the box, each with volume V .6 As

a result of this separation, we in effect double the mixture’s volume. The gas expands to fill up

volume V on each side.

Stage five involves an isothermal and quasi-static compression of the mixture so that

we return to a total volume V (effectively halving the volume on each side of the box), while

pressure on both sides becomes equal. Importantly, due to this compression, STD decreases due

to the decrease in volume.
6This semi-permeable wall can be assumed to be a black box which reversibly separates particles to different

sides based on their different orthogonal/disjoint states; see (von Neumann 1955, 367–370) for discussion. I follow
everyone in the debate in accepting this assumption.
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Figure 2.1. From top to bottom, stage one to stage seven, as described by H&S.

Stage six brings all the particles into the pure spin state
∣∣ψ↑

x

〉
quasi-statically and without

work done, while stage seven removes the semi-permeable wall, such that the system returns

to its original state.

Now consider how SVN and STD change across the various stages. Stage seven ends

with the body of gas having the same thermodynamic state (same V , same P , and constant T )

as stage one. Furthermore, all the thermodynamic transformations performed were reversible,

and removing the wall alone does no additional work. Thus, the system at stage one must have

the same thermodynamic entropy as stage seven, i.e. ∆STD = 0, since STD depends only on the
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initial and final state of the system. ∆SVN = 0 from stage one to seven too, since the system is

in the same state in both the first and seventh stages.

Since stage six does not involve thermodynamic transformations, there is no change

in STD. Likewise, the transformation of ρspin to
∣∣ψ↑

x

〉
here does not change SVN as the trans-

formation can be performed unitarily. This is possible as a result of our separation of the

gases to different sides of the box according to their spin-eigenstates - given this, we can

perform unitary operations on each side of the box (or perform the more general measurement

procedure recommended by (von Neumann 1955, 365-367)), to transform them into the same

state as stage one. Both unitary transformations and von Neumann’s procedure do not increase

SVN, and so there is no change in SVN at stage six as a result.

There are no changes in STD or SVN in stages three and four. While there is an increase

in the gas’s volume, as noted above, from V to 2V , and hence an accompanying increase

in STD by n.R.log 2,7 there is also a compensating change in the thermodynamic entropy of

mixing8,9 by −n.R.log 2 which exactly compensates this increase in STD.10 Since the particles

are in orthogonal spin states at this stage, there are no quantum effects (e.g. ‘collapse’ effects)

from simply filtering the gases with the semi-permeable walls, and hence SVN does not change

either.11

7Here, n refers to the number of moles of gas in the system, and R is the gas constant.
8Henderson (2003) explains the mixing entropy, describing the mixing of different gases, crisply: “After

separation, each separated gas occupies the original volume V alone. To return to the mixture, each gas is
compressed to a volume ciV (where c is the concentration of the ith gas). The compression requires work
W = −n.k.T

∑
i ci log ci to be invested, and the entropy of the gas is reduced by ∆S = −n.k.

∑
i ci log ci. An

increase in entropy of the same amount must then be associated with the mixing step of removing the partitions.
This is the ‘mixing entropy’.” (Henderson 2003, 292) Separation simply results in a decrease in entropy of the same
amount.

9Tim Maudlin raised the following objection to the applicability of the entropy of mixing in this context when
a version of this paper was presented at a summer school. Mixing should have a thermodynamic effect only when
differences between the gases are already assumed to be thermodynamically relevant: for example, mixing differ-
ently colored gases should not have a thermodynamic effect unless the difference in color is thermodynamically
relevant. It is, however, not clear whether the difference in spin is a thermodynamically relevant one, and might
amount to begging the question. This is a good point, but one that I am setting aside for now, since everyone in
the debate accepts the assumption that separating the gases here decreases the entropy of mixing. As we shall see
later, a more fundamental issue arises with using the entropy of mixing in the ‘single particle’ case.

10see (H&S 2006, 157, fn. 4).
11This is argued for in (von Neumann 1955, 370–376).
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However, importantly, there is a decrease in STD in stage five, of −n.R.log 2 due to the

isothermal compression and decrease in volume. Yet, nowhere else is there any further change

in STD. We have to account for why the overall change in STD from the first to the seventh

stages is 0.

As von Neumann argues, only one possibility remains. While STD remains constant in

stage two, notice that there was an increase in SVN, of −N.k.−log 2 = N.R
NA

.log 2 = n.R.log 2,12

as a result of the spin measurement. This is equivalent to the change of STD in stage five. The

state of each particle changes from a pure state 1√
2
(
∣∣ψ↑

z

〉
+
∣∣ψ↓

z

〉
) to a mixed state represented by

ρspin, and hence SVN for the gas increases on the whole. In order to ensure that entropic changes

are consistent, von Neumann thinks that we should accept SVN’s contribution to STD in this

context, where both quantum effects and thermodynamical considerations are at play. Without

accepting SVN in our entropic accounting, we end up with a violation of thermodynamics since

we have a reversible thermodynamic cycle with non-zero change in STD, contra the Second Law.

In other words, we should accept that SVN corresponds to STD.

Furthermore, the correspondence of SVN and STD in this context can be defended from

another perspective, apart from considerations about consistency from the thermodynamic

perspective: consistent accounting from the perspective of quantum mechanics also demands

correspondence. This is simply a change in perspective with regards to the thought-experiment,

but, to my knowledge, this argument has not been explicitly made in the literature, thus

underselling the case for correspondence in von Neumann’s thought experiment.

Instead of arguing for correspondence by considering thermodynamic consistency,

i.e. ensuring that ∆STD = 0 throughout the cycle, we can also consider consistency from the

quantum mechanical perspective. We started and ended with the same spin state, and so it

should be the case that ∆SVN = 0 throughout the cycle. Yet, there is an inconsistency: if we

only consider the increase of SVN in stage two as a result of measurement, we should end in
12N is the total number of particles: since each particle is assumed to be non-interacting and independent from

others under the ideal gas assumption, their entropies are additive. NA is Avogadro’s number.
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stage seven with an increase in SVN, not ∆SVN = 0. As described, there is nowhere else in the

thought-experiment where SVN changes. However, there is a decrease in STD in stage five due

to the thermodynamic process of isothermal compression, exactly balancing out the increase in

SVN. Hence, we can ensure consistency, i.e. that ∆SVN = 0, only by taking SVN to correspond

to STD. In other words, just as the thermodynamic accounting of STD is consistent only if we

consider SVN, the quantum entropic accounting of SVN is also consistent only if we consider STD.

Consistency from a quantum mechanical perspective also demands correspondence between

SVN and STD.

Though the debate has largely focused only on how the thought-experiment demon-

strates one direction of correspondence, of SVN to STD as a result of thermodynamical consider-

ations, the correspondence demonstrated by this thought-experiment in fact goes both ways.

Of course, since von Neumann was focused on demonstrating the thermodynamic nature of

SVN (specifically the irreversibility of measurement), rather than the quantum nature of STD, it

was natural that he chose to approach it the way he did.

2.4 Hemmo and Shenker’s Arguments

H&S disagree with von Neumann’s argument, and criticize it by considering three

cases: the single-particle case, the finite but large N particles case, and the infinite particles

case.

2.4.1 Single Particle Case - Thermodynamics

H&S first consider von Neumann’s argument in the single particle case (see Figure 2.2).

They claim that the argument does not go through here, since STD actually remains constant,

contrary to our thought-experiment’s description. In other words, using thermodynamical

considerations, they find that SVN should not be included in our accounting for STD.

Here’s their argument. Consider the stages where there are entropic changes. In stage

two when the spin measurement was performed, SVN increases as before, since it tracks the
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change of the particle’s spin state from pure to mixed.

Contrariwise, STD does not change in stage five (isothermal quasi-static compression)

nor anywhere else (this will be important later). After stage two, the single particle is in either the∣∣ψ↑
z

〉
state or the

∣∣ψ↓
z

〉
state. After stages three and four, with the expansion and separation via

semi-permeable wall, there is a particle only in one side of the box, and not the other. We make

an STD-conserving location measurement13 to figure out which side of the box is empty and

which side the particle is at, so as to compress the box against the empty side. The compression

is then performed as per before. However, this compression does not decrease STD:14 to restore

the volume of the ‘gas’ to V no work needs to be done, since we are compressing against

vacuum. Since there is a change in SVN in this cycle, but no change in STD, the apparent answer,

in order to do our entropic accounting, is to ignore, not incorporate, SVN into STD. Hence SVN

does not correspond to STD.

Their analysis is problematic. Though their ultimate point in this analysis – that STD

fails to corresponds to SVN – still holds, it does not hold in the way they claim. In fact, the way

it fails suggests to us that we should disregard the single particle case.

For the single particle case, they claim that “… [STD] is null throughout the experiment.”

(H&S 2006, 162) This then allows them to claim that thermodynamic accounting for STD is

consistent only if we did not consider SVN. This then supports their claim that SVN does not

correspond to STD since adding SVN into the thermodynamic accounting actually renders the

otherwise consistent calculations inconsistent.

They are right to say that the stage five compression (after location measurement) has

no thermodynamic effect because we are compressing against vacuum: no work needs to be
13Prunkl (ms) claims that the location measurement leads to a violation of the Second Law. If true, this makes

H&S’s argument even more problematic. Here, for the sake of argument, I assume that the location measurement
is unproblematic.

14As an anonymous reviewer rightfully notes, the location measurement is important for ensuring ∆STD = 0
here. Without the location measurement, we might end up compressing in the wrong direction against the side
with the gas, rather than the empty vacuum - this will have thermodynamic effects since we are doing work on
the gas. However, the H&S set-up emphasizes the location measurement, and I will play along for the sake of
argument.
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Figure 2.2. From top to bottom, stage one to stage seven for the single particle case as described
by H&S.

done, and so ∆STD = 0 for stage five. However, I claim that ∆STD ̸= 0 for the single particle

case overall, because ∆STD ̸= 0 in stages three and four in this context.

As far as I can tell, H&S did not analyze stage three and four, i.e. the isothermal

expansion and separation, in terms of the single particle case at all. Rather, they seem to have

assumed that ∆STD = 0 in these stages as with the original case of the macroscopic gas.15

However, this assumes that there is both a change in entropy of n.R.log 2 due to isothermal

expansion and a change in the entropy of mixing of −n.R.log 2 due to separation, as they say

so themselves for the original case: “The increase of thermodynamic entropy due to the volume

increase ∆S = 1
T

∫
P dV is exactly compensated by the decrease of thermodynamic mixing

entropy ∆S =
∑
wk ln wk (where wk is the relative frequency of molecules of type k) due to the

separation.” (H&S 2006, 157, fn. 4, emphasis mine)

In the single particle case, it makes sense that isothermal expansion should still increase

STD, since the single particle ‘gas’ is expanding against a piston and doing work. However,
15Prunkl (ms) appears to do the same.
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it does not make physical sense to speak of the entropy of mixing here at all, since there is no

separation of gases in the single particle case. The entropy of mixing is explicitly defined for

systems where different gases are separated from/mixed with one another via semi-permeable

walls, but a single particle cannot be separated from/mixed with itself. The quote above makes

this conceptual point explicit: by H&S’s own lights, the relative frequency of a single particle

is simply unity (and null for particles of other types), so the entropy of mixing is 1 ln 1 = 0.

There is no thermodynamic entropy of mixing in the single particle case.

Discounting the entropy of mixing, however, we find that ∆STD = n.R.log 2 ̸= 0 for

stages three and four, and hence for the entire process, contrary to H&S’s claim. Interestingly,

correspondence does fail to obtain between STD and SVN, since ∆STD+∆SVN = 2n.R.log 2 ̸= 0,

despite the process being reversible ex hypothesi: incorporating SVN into thermodynamic

accounting violates the Second Law.

However, on this new analysis, we gain some clarity as to why the single particle case is

problematic. While it is true that incorporating SVN into the thermodynamic accounting violates

the Second Law, STD accounting by itself also violates the Second Law (contrary to H&S). Even

without considering SVN, ∆STD ̸= 0 despite the process being reversible. Thermodynamic

accounting is inconsistent here no matter what we do, which suggests that the reversible process

they described for the single particle case is thermodynamically unsound: if so, any argument

H&S make in this context may be disregarded.

The upshot: I agree with H&S that correspondence fails for the single particle case,

but not why it fails. It is not because the process they described is already thermodynami-

cally consistent without taking SVN into account. Rather, it is because the process is already

thermodynamically inconsistent anyway.

In recent work, John Norton argued that thermodynamically reversible processes for

single-particle systems are impossible in principle, which might explain why the process

described by H&S is thermodynamically unsound: it was not justified to assume the process

was reversible for a single particle system. For Norton, a reversible process is “loosely speaking,
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one whose driving forces are so delicately balanced around equilibrium that only a very slight

disturbance to them can lead the process to reverse direction. Because such processes are

arbitrarily close to a perfect balance of driving forces, they proceed arbitrarily slowly while

their states remain arbitrarily close to equilibrium states.” (Norton 2017, 135) Norton notes that

these thermodynamic equilibrium states are balanced not because there are no fluctuations,

but because these fluctuations are negligible for macroscopic systems. However, fluctuations

relative to single-particle systems are large, and generally prevent these systems from being

in equilibrium states at any point of the process, rendering reversible processes impossible

in the single particle case. (Norton 2017, 135) If reversible processes are impossible for single

particle systems in general, then it should come as no surprise that the particular single particle

reversible process used by H&S is likewise thermodynamically unsound, as my analysis above

suggests. If so, H&S’s claim that correspondence fails in this process is simply besides the

point, since this process is not thermodynamic at all.

Since any reversible process cannot be realized for single particle systems in general,

the issue seems not to be with any particular process per se, but with the single particle case

simpliciter. To my knowledge, no one prior to H&S discussed von Neumann’s experiment

in terms of a single particle; von Neumann (1955), Peres (1990, 2002), Shenker (1999) and

Henderson (2003) all explicitly or implicitly assume a large (or infinite) number of particles.

This is for good reason. As H&S acknowledge, and as we have seen: “The case of a single particle

is known to be problematic as far as arguments in thermodynamics are concerned”. (H&S

2006, 158) Matter in phenomenological thermodynamics is assumed to be continuous.16 A ‘gas’

composed of one particle can be many things, but it is surely not continuous in any commonly

accepted sense. In other words, it is just not clear whether the domain of thermodynamics

should apply to the single-particle case at all.

As Myrvold (2011) notes, Maxwell also made a similar claim with regards to phenomeno-
16See Compagner (1989) for a discussion of the so-called ‘continuum limit’ as a counterpart to the thermodynamic

limit in phenomenological thermodynamics.
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logical thermodynamics in general; it does not and should not hold in the single particle case.

On his view, the laws of phenomenological thermodynamics, notably the Second Law, must be

continually violated on small scales:

If we restrict our attention to any one molecule of the system, we shall find its
motion changing at every encounter in a most irregular manner.
If we go on to consider a finite number of molecules, even if the system to which
they belong contains an infinite number, the average properties of this group,
though subject to smaller variations than those of a single molecule, are still
every now and then deviating very considerably from the theoretical mean of
the whole system, because the molecules which form the group do not submit
their procedure as individuals to the laws which prescribe the behaviour of the
average or mean molecule.
Hence the second law of thermodynamics is continually being violated, and that
to a considerable extent, in any sufficiently small group of molecules belonging to
a real body. As the number of molecules in the group is increased, the deviations
from the mean of the whole become smaller and less frequent […] (Maxwell
1878, 280)

The Second Law, and hence phenomenological thermodynamics, should not be expected to

hold true universally in small scale cases, and especially not in the single-particle case. Von

Neumann and everyone else in the debate should have recognized this point. Why, then,

should it matter that the thought-experiment succeeds or fails in this case? Phenomenological

thermodynamics does not apply to single-particle cases. There is thus no profit in trying

to establish correspondence between SVN and STD in this case. Indeed, if we took seriously

Maxwell’s claim that the Second Law fails at small scales, a failure of thermodynamic entropic

accounting might even be expected; it does not rule out the possible thermodynamic nature of

SVN even though the sum of SVN and STD might be inconsistent with the Second Law. In short,

it is not clear why the single-particle case is relevant to the discussion at hand.

H&S’s reasoning is untenable, because they fail to respect the context of phenomeno-

logical thermodynamics by bringing it into a context where it is not expected to hold. Instead, it

seems more appropriate that the single-particle case is precisely beyond the purview of classical

thermodynamics, requiring an analogue that only corresponds to classical thermodynamics
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at the appropriate scales and limits. We may then take SVN to be the analogue of STD in this

case, only approximating STD as the system in question approaches the context suitable for

traditional thermodynamic analysis. If so, we may see von Neumann as merely demonstrating

that SVN corresponds, not at all domains but in the domain where thermodynamics is taken to

hold, to STD.

2.4.2 Single Particle Case Redux - Statistical Mechanics and Informa-
tion

Given the foregoing discussion, H&S might insist that SVN fails to correspond to STD

even when take into account a more relevant domain for single particles – statistical mechanics.

After directly arguing that SVN does not correspond to STD (H&S 2006, 162–165), they

further argue that SVN does not correspond to information entropy (more on this below) in

the single-particle case. Prima facie, this should seem irrelevant to von Neumann’s argument,

which was to establish the correspondence of the thermodynamic STD and quantum SVN: why

should information entropy’s failure to correspond with SVN be a worry at all?

Here’s one plausible worry, on a charitable reading. If information entropy corresponds

to STD, and H&S shows that SVN fails to correspond to information entropy, then we might

conclude, indirectly, that SVN does not correspond to STD after all.17 This argument assumes

that information entropy does correspond to STD, an assumption H&S seem to hold as well:

this is in line with the so-called ‘subjectivist’ view of statistical mechanics.18 Furthermore, my

above argument against the misapplication of phenomenological thermodynamics does not

seem to apply here, since this argument is being made in the context of statistical mechanics

and its particle picture, with no commitment to phenomenological thermodynamics.

However, H&S do not do much to motivate the linkage between information entropy

and STD; indeed, in their words, “a linkage between the Shannon information and thermody-
17Caveat: I am not committed to the information entropy’s relationship to thermodynamics. One may, like

Earman and Norton (1998, 1999), be skeptical that information entropy is related to STD at all, in which case H&S’s
argument here is simply irrelevant.

18Notably, see Jaynes (1957).
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namic entropy has not been established” (H&S 2006, 164). Without this link, the failure of

correspondence between the information entropy and SVN appears, at best, irrelevant to the

correspondence between STD and SVN. Nevertheless, I will take a charitable view here and

assume that there is a correspondence between information entropy and STD, for the sake of

assessing their argument. Here’s a plausible (if arguable) sketch: if one were a subjectivist like

Jaynes (1957), one might take the Gibbs entropy in statistical mechanics to be a special case of

the information entropy. After all, both have the form:

−
∑
i

pi ln pi (2.5)

with i being the number of possible states with associated probabilities of occurring pi, with

the Gibbs entropy being multiplied by an additional Boltzmann’s constant k.19 We know that

statistical mechanics corresponds to phenomenological thermodynamics at the thermodynamic

limit so we can think of the Gibbs entropy, and hence information entropy, as corresponding

to STD. I take this to be in line with what H&S have in mind: “to the extent that the Shannon

information underwrites the thermodynamic entropy, it does so via statistical mechanics” (2006,

165). Assuming that the above picture is plausible, a failure of correspondence between SVN and

the information entropy provides evidence against the correspondence between SVN and STD.

Their argument comes into two parts. Ignoring STD for the time being (which does not

change throughout the cycle for the single-particle case – see §2.4.1), they claim that we can

consider the stage five location measurement to be a decrease in information entropy of ln 2,

as a result of learning information about which one of two parts of the box the particle is in.

On first glance, this seems to resolve the arithmetic inconsistency in entropic accounting: ln 2

is exactly the increase in SVN as a result of the spin state changing from a pure state
∣∣ψ↑

x

〉
to

the mixed state ρspin in stage two. In other words, for both the information and von Neumann
19Using the so-called Planck units, where k = 1, Gibbs entropy and information entropy are then formally

equivalent.
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entropy’s accounting to be correct (i.e. net change of zero across the cycle), we must consider

SVN as corresponding to information entropy. Now, since information entropy also corresponds,

ex hypothesi, to STD, we have an indirect argument for the correspondence of SVN to STD.

However, H&S claim that this argument fails for collapse interpretations, i.e. interpre-

tations of quantum mechanics on which a superposed quantum state ontologically collapses

into a pure state upon measurement (either precisely or approximately).20 They allow that,

on no-collapse interpretations, e.g. Bohmian or many-worlds interpretations, the location

measurement in stage five does not decrease SVN, since the state of the system never changes

in light of measurements, and so the above argument goes through.

Let us see what they could mean by this claim by following the state of the particle

through the cycle. At stage two, everyone agrees that the state of the system is ρspin following

the z-spin measurement; SVN increases by ln 2. At this point, the particle’s position degrees of

freedom remain independent from its spin degrees of freedom, as per our ideal gas assumption,

though we might assume the particle starts out on the left half of the box, with the mixture of

position states ρpos(L) with ‘L’ representing the left side. (Consider Figure 3.1 but with only

one particle). Following the semipermeable wall’s filtering at stages three and four, the location

of the particle becomes classically correlated with the spin. Let’s say that the semipermeable

wall sends
∣∣ψ↑

z

〉
particles to the left, represented by ρpos(L), and

∣∣ψ↓
z

〉
particles to the right,

represented by ρpos(R). As such, the (mixed) state of the particle is now:

ρparticle =
1

2

( ∣∣ψ↑
z

〉 〈
ψ↑
z

∣∣⊗ ρpos(L) +
∣∣ψ↓

z

〉 〈
ψ↓
z

∣∣⊗ ρpos(R)

)
(2.6)

For no-collapse interpretations, H&S agree that the state of the particle stays the same as

above after the location measurement in stage five. We perform the compression in stage five

and remove the partition at the end of stage six, thereby removing the classical correlations
20On GRW-type approaches, though, collapse occurs with or without measurement, but measurement increases

the likelihood of collapse, roughly speaking.
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between position and spin. No further change in either information entropy or SVN occurs, and

hence the correspondence goes through (H&S 2006, 164) - the spin state remains mixed until

unitarily transformed into a pure state and completing the cycle.

For collapse interpretations, they claim that the location measurement decreases SVN

by ln 2, because, on collapse interpretations, the state of the particle upon the measurement,

depending on which side the particle is found, becomes:

ρparticle =


∣∣ψ↑

z

〉 〈
ψ↑
z

∣∣⊗ ρpos(L)∣∣ψ↓
z

〉 〈
ψ↓
z

∣∣⊗ ρpos(R)

(2.7)

The spin state of the system here effectively goes from being a mixed state to a pure state as a

result of this measurement: SVN decreases by ln 2. Summing up the entropy changes, there was

a decrease of ln 2 in information entropy, and a net change of zero for SVN as a result of the

increase in stage two and the decrease in stage five. Overall, then, the change is not zero but

−ln 2; our accounting has gone awry, and there is a failure of correspondence between SVN

and information entropy. If this is right, SVN does not correspond to STD.

However, I think that H&S are wrong to claim that SVN decreases following the location

measurement for collapse interpretations. As Prunkl (Prunkl ms, 11–12) notes, there is an

inconsistency here. Everyone, including H&S, agrees that the spin state of the particle is mixed

– not pure – after stage two’s spin measurement, even on collapse interpretations (H&S 2006,

160). In that case, why does the particle’s spin become pure after the location measurement?

I think this results from a confusion over the nature of mixed states. In particular, they

seem to have adopted what Hughes (Hughes 1992, §5.4, §5.8) call the “ignorance interpretation”

of mixed states, confusing what I call classical and quantum ignorance. They seem to be

assuming that mixed states simply represents classical ignorance, i.e. the lack of knowledge

about a particular system: a system represented by a mixed state really is in a pure state, but we

know not which. This is why the location measurement is supposed to reveal to us the pure state
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of this system (by revealing which side it is on and hence the correlated spin state) and hence

‘wash away’ our classical ignorance of the real state of the system - post-measurement, we

know exactly which pure state this system is in, unlike pre-measurement; hence SVN decreases.

However, as Hughes (Hughes 1992, 144/150) argues, this interpretation of mixed states

– as representing classical ignorance about which pure state a particular system is in – cannot

be the right interpretation of all mixed states. To begin, a mixed state can be decomposed in

non-unique ways in general. Here’s a simple example: a mixed state representing a mixture of∣∣ψ↑
z

〉
and

∣∣ψ↓
z

〉
can also represent a mixture of

∣∣ψ↑
x

〉
and

∣∣ψ↓
x

〉
and so on. If we insist that a mixed

state represent our classical ignorance about the real state of a particular system, then we end

up having to say that a system’s state is really both either
∣∣ψ↑

z

〉
or

∣∣ψ↓
z

〉
, and either

∣∣ψ↑
x

〉
or

∣∣ψ↓
x

〉
.

Of course, this is impossible given quantum mechanics. The defender of the classical ignorance

interpretation might insist that we simply pick one pair of possible pure states but not both at

once. In general, however, there’s no way to do that non-arbitrarily given some density matrix.

Furthermore, this problem only worsens when we consider that there are usually more than

just two ways to decompose a density matrix - a principled choice based on the mixed state

alone is not feasible. The mixed state cannot be a representation of classical ignorance.

Instead, to paraphrase Hughes (Hughes 1992, 144–145), mixed states should be (min-

imally) interpreted as such: if we prepared in the same way an ensemble of systems, each

described with the same mixed state, i.e. a mixture of pure states with certain weights, then

the relative frequency of any given measurement outcome from the ensemble is exactly what

we would get if the ensemble comprised of various ‘sub-ensembles’ each in one of the pure

states in the mixture, with the relative frequency of each sub-ensemble in the ensemble given

by the corresponding weights.

In other words, the sort of quantum ignorance relevant in the right interpretation of

mixed states is not whether we are ignorant about the real state of this particular system, but

whether we are ignorant about the measured states of an ensemble of identically prepared systems

like this one. If this is right, quantum ignorance cannot be ‘washed away’ upon measurement
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of a single system unlike the sort of ignorance H&S were implicitly assuming, and it seems

like this quantum ignorance is precisely what remains after the location measurement.

This was roughly Henderson’s (2003) criticism against Shenker (1999), which is why it

is puzzling that H&S (2006) commit the same mistake:

This preparation produces the pure states [
∣∣ψ↓

z

〉
] and [

∣∣ψ↑
z

〉
] with equal probabil-

ities. In a particular trial, the observer may take note of the measurement result,
and he therefore discovers that he has say a [

∣∣ψ↑
z

〉
]. If he applies a projective

measurement in the [{
∣∣ψ↑

z

〉
,
∣∣ψ↓

z

〉
}] basis, he could predict that he will measure

[
∣∣ψ↑

z

〉
]. However, this does not mean that, if someone handed him another state

prepared in the same way, he could again predict that the outcome of his mea-
surement would be [

∣∣ψ↑
z

〉
]. In this sense the observer does not know the state of

the system which is being prepared, and it is because of this ignorance that the
state is mixed. Looking at the measurement result does not remove the fact that
there is a probability distribution over the possible outcomes. (Henderson 2003,
294)

This applies to the location measurement in stage five too: measuring the location of the

particle in this case does not change the state of the particle from a mixed one to a pure one

even on collapse interpretations. Firstly, it seems quite irrelevant whether we adopt a collapse

or no-collapse interpretation, because the collapse mechanism applies to superposed pure

states, not statistical mixtures. If anything, collapse had already happened in the stage two

measurement procedure, yet everyone including H&S (H&S 2006, 160) accepts that the system

is in a mixed state after stage two even for collapse interpretations. More importantly, there

remains a probability distribution over the states of the particle as a result of stage two’s spin

measurement, even after the location measurement. Given an ensemble of particles prepared

from stages one to five in the same way, we are still not be able to predict with certainty

whether an ensemble of particles would all be measured on the left or right sides of the box (and

hence all spin-up or spin-down) as a result of the mixed state resulting from stage two, only

that half of the ensembles will be on the left and the other half will be on the right. Quantum

ignorance remains – the system remains in a mixed state even after the location measurement,

as:
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ρparticle =
1

2

( ∣∣ψ↑
z

〉 〈
ψ↑
z

∣∣⊗ ρpos(L) +
∣∣ψ↓

z

〉 〈
ψ↓
z

∣∣⊗ ρpos(R)

)
(2.8)

This is exactly the state of the system in no-collapse interpretations, i.e. quantum ignorance

does not discern between collapse and no-collapse interpretations. What has gone away is the

classical ignorance that H&S (mistakenly) assumed was relevant for mixed states, ignorance

about this particular system’s state. By measuring the system’s location, we come to learn of

the correlations between location measurement and the particle’s spin. This ignorance does

not change the mixed state to a pure state: instead, this loss of classical ignorance – gain

in information – is represented as a decrease in information entropy just as before, and this

information is what we use to perform the compression in stage five.

As a result, there is no additional decrease in SVN in stage five for collapse interpretations;

the entropy accounting lines up after all, as with no-collapse interpretations: the decrease in

information entropy does correspond to the increase in SVN, and so information entropy does

correspond to SVN after all. H&S’s argument does not establish the failure of correspondence

between SVN and STD via the failure of SVN and information entropy to correspond.

To sum up, their arguments in the single-particle case are either ill-motivated and

irrelevant to von Neumann and our discussion of correspondence when considered in terms of

phenomenological thermodynamics, or outright fails when considered in the more relevant

domain of (informational approaches to) statistical mechanics. Either way, their argument does

not support the failure of correspondence between SVN and STD.21

21Let me briefly note that their argument in the two particles case fails for similar reasons. On the one hand,
from the perspective of phenomenological thermodynamics, their argument is irrelevant: following Maxwell
and others, two particles do not a thermodynamic system make. On the other hand, in the domain of statistical
mechanics, the analysis in terms of information entropy is irrelevant from non-informational views of statistical
mechanics. From an informational perspective, however, their argument rests again on the supposed difference
between collapse and no-collapse interpretations of mixed states. Since this difference is non-existent, their
argument likewise fails apart in that case.
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2.4.3 Finitely Many Particles

H&S’s argument in the case of finitely many particles rests on the assumption of

equidistribution, i.e. that the particles will be equally distributed across the left and right sides

of the box after separation by the semi-permeable wall.

Assuming equidistribution, the increase in SVN given the spin measurement in stage

two is Nln2 (H&S 2006, 169). Furthermore, the decrease in thermodynamic entropy in the

fourth stage is Nln2 as well. The entropic accounting therefore seems to work out.

However, H&S press further on the ‘rough’ nature of equidistribution when N is

large but finite: they claim that the change in SVN will only only be Nln2 when N is infinite,

since equidistribution only truly holds when N → ∞. In other cases, SVN will strictly only

approximate STD, and hence SVN and STD combined will never be exactly zero; hence, “Von

Neumann’s argument goes through as an approximation” (H&S 2006, 169). However, they

claim that this state of affairs suggest, instead, that von Neumann’s argument strictly fails:

“[…] since Von Neumann’s argument is meant to establish a conceptual identity between the

quantum mechanical entropy and thermodynamic entropy, we think that such an implication

is mistaken […] no matter how large N may be, as long as it is finite, the net change of entropy

throughout the experiment will not be exactly zero.” (H&S 2006, 169)

As I have already discussed in §2.4.1, it is not clear to me that von Neumann’s goal really was

to establish strict identity (what they call “conceptual identity”), i.e. correspondence between

SVN and STD in all domains. Rather, it seems to be the establishing of correspondence only in

domains where STD is taken to hold. If so, their argument here simply misses the point.

Furthermore, as is well-known, the particle analogue of thermodynamics, statistical

mechanics, become equivalent to phenomenological thermodynamics only when N = ∞, viz.

whenN arrives at the thermodynamic limit. As such, to complain that SVN does not match up to

STD outside of this domain is to demand the unreasonable, since it is not clear that even statistical

mechanics, the bona fide particle analogue of thermodynamics, can satisfy this demand. Since
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SVN approximates STD the same way statistical mechanical entropies approximate STD (and

becomes equivalent at N = ∞), and physicists generally accept that statistical mechanics

corresponds to thermodynamics nevertheless, why should this problem of approximation be

particularly problematic for SVN? I think H&S take too seriously the notion of conceptual

identity involved in von Neumann’s thought-experiment to be strict equality, though I suspect

a better way to understand von Neumann’s strategy is to understand SVN as an approximation

to STD that is more fundamental than STD in small N cases, but becomes part of the STD calculus

in domains where STD applies.

To have a case against SVN as a quantum analogue of STD in the case of finitely many

particles, H&S must explain what exactly the problem is with approximations in this case, if it

has worked out so well for the case of statistical mechanics and thermodynamics. If not, they

might just be “taking thermodynamics too seriously’.22

One might say something stronger: unless they can justify why we cannot use ap-

proximations at all in science, they do not have a case at all. As they note themselves, STD

is itself only on average approximately −Nln2 (H&S 2006, 169), only being equal to −Nln2

when N = ∞. So, in fact, the approximate quantity of SVN, ∼ Nln2, exactly matches the

approximate quantity of STD, ∼ −Nln2, in the case of finitely many particles. Unless there is

something wrong with approximations in physics in general, this, then, is in fact a case of SVN

corresponding to STD, contrary to their argument.

2.4.4 Infinitely Many Particles

H&S consider von Neumann’s argument in the infinite particles case in two different

ways: one as N → ∞ and one as N = ∞. As they rightly point out, the two cases are very

different for calculations of physical quantities.

Consider stage two and stage five in this context. H&S emphasize that a spin measure-

ment is “a physical operation which takes place in time” (H&S 2006, 170), which constrains
22See Callender (2001).
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what is physically possible.

For the case where N → ∞, stage two is to be understood as a succession of physical

measurements where “we measure individual quantities of each of the particles separately and

only then count the relative frequencies” (H&S 2006, 170), before coming up with a density

matrix describing this state. In this case, as with the case described in §2.4.3, SVN approaches

Nln2 as N → ∞. Their complaint here consist of two premises: one, that, as with §2.4.3, SVN

never reaches Nln2 unless N = ∞. Two, that since measurements are physical measurements,

we can never perform an infinite series of these measurements, and so we can never measure

infinite particles. A fortiori the measurable SVN can never arrive at Nln2, and so the entropic

accounting is again supposed to be inconsistent if we consider both SVN and STD.

However, it is clear that their argument is moot given a clear understanding of the sort

of thermodynamics we are interested in (see §2.4.3). While it is true that SVN will never reach

Nln2, recall that STD (or, more likely, one of its statistical mechanical analogues, given the

domain of finitely many particles merely approaching ∞ rather than N = ∞) will likewise

never reach Nln2. In other words, it does not matter that we can never perform an infinite

series of these measurements, and hence never come to know of SVN at the thermodynamic

limit, since we can likewise never have a thermodynamic entropy equivalent to Nln2 unless

we are at the thermodynamic limit. The two entropies, then, in fact correspond in this case.

What of the second case? Here, H&S concede that “arithmetically Von Neumann’s

argument goes through at the infinite limit” (H&S 2006, 172), which makes sense because, as I

have insisted so far, von Neumann’s strategy was never to demonstrate the strict identity of

SVN and STD, i.e. the correspondence of SVN and STD in all domains. Instead, it was to show

that SVN corresponds to STD only in the domain where phenomenological thermodynamics hold,

in all other cases merely approximating STD in large N cases or replacing it altogether (in e.g.

single-particle cases). I maintain that H&S’s main mistake was to confuse the domain where

phenomenological thermodynamics hold, with domains where they do not hold.

H&S complain that “[…] real physical systems are finite. This means that Von Neu-
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mann’s argument does not establish a conceptual identity between the Von Neumann entropy

and thermodynamic entropy of physical systems. Identities of physical properties mean that

the two quantities refer to the same magnitude in the world.” (H&S 2006, 172) In line with

what I have said in §2.4.1, it seems that there was no physically meaningful theoretical term in

phenomenological thermodynamics that could refer to some quantity in the single-particle case,

which was why von Neumann needed to come up with a new measure of entropy to begin with.

Furthermore, extending a concept to a new domain does not require strict identity, as we have

seen and understood for a long time in the case of statistical mechanics and phenomenological

thermodynamics.

As Peres (2002) summarizes: “There should be no doubt that von Neumann’s entropy. . .

is equivalent to the entropy of classical thermodynamics. (This statement must be understood

with the same vague meaning as when we say that the quantum notions of energy, momentum,

angular momentum, etc., are equivalent to the classical notions bearing the same names).”

(Peres 2002, 174) ‘Equivalence’ here should not be understood in terms of strict (or conceptual)

identity i.e. correspondence at all domains. Rather, we should understand equivalence loosely as

correspondence in the suitable domains of application, and successful extension of old concepts

in these domains to new domains. As Peres noted above, ‘equivalence’ should be understood in

the context of discovery, where one is trying to develop new concepts which are analogous

to old ones in different domains. For von Neumann, we have a theory (phenomenological

thermodynamics) that is well-understood, but also another theory (quantum mechanics) that

we want to understand in light of the former theory. Finding correspondence provides us with

ways to extend concepts from the original theory to the new theory: for example, with SVN we

may now define ‘something like’ STD whereas before there was no way to talk about these cases.

The same goes for statistical mechanics: by finding a correspondence between e.g. temperature

to mean kinetic energy in the thermodynamic limit, we can extend the notion of ‘something

like’ temperature beyond its original domain into systems with small numbers of particles,

whereas before there was, again, no way to talk about these cases.
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I see nothing wrong in these cases in the context of discovery. We should give up a

strong and untenable notion of conceptual identity in this context. If so, H&S’s objection loses

much bite.

They further claim that “the fact that the behavior of the two quantities coincides

approximately for a very large number of particles is not enough, because in any ensemble

of finite gases there are systems in which the identity will not be true. This means that in a

real experiment the Von Neumann entropy is not identical with the thermodynamic entropy.”

(H&S 2006, 172) This again reveals a confusion between phenomenological and statistical

thermodynamics. If they want to talk about particles at all, it seems they must adopt some

form of statistical mechanical picture with microscopic variables, given phenomenological

thermodynamics’ emphasis on purely macroscopic variables like volume or temperature. Yet, if

so, they must recognize that thermodynamic entropy STD is in general not strictly identical to

statistical mechanical entropy, e.g. the Gibbs entropy or information entropy (briefly discussed

in §2.4.2) either. Their complaint about approximate coincidences not being enough for (the

relevant sort of) equivalence thus weakens significantly, especially since they must assume

some such equivalence (which cannot be strict identity) to even talk about particles within the

context of phenomenological thermodynamics to begin with. Furthermore, statistical mechan-

ics is evidently empirically successful in explaining and predicting traditionally thermodynamic

phenomena despite this ‘non-equivalence’ – it is not clear why this ‘non-equivalence’ should

matter if, for all practical purposes, statistical mechanics is the conceptual successor of ther-

modynamics. Of course, if they could come up with a principled reason why approximations

should not be allowed period, while accounting for statistical mechanics’ empirical success

in accounting for thermodynamic behavior, then this could change. As of now, I see no such

argument forthcoming.
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2.5 Conclusion, and Some Open Questions

Given the above, I hope to have shown that H&S’s argument against the correspondence

of SVN and STD – to my knowledge the only one in the philosophical literature – fails to hold in

all three cases considered (§2.4.1 – §2.4.4), as a result of their misunderstanding about domains

where phenomenological thermodynamics should hold and domains where it should not. This

is compounded with misunderstandings about the role of approximations and the relevant

interpretation of density matrices and ignorance in quantum mechanics. I conclude that their

argument fails on the whole; the correspondence holds for now.

Of course, even if H&S’s claims were debunked, this does not yet amount to a positive

argument for the equivalence between von Neumann entropy and thermodynamic entropy.

Even assuming correspondence, correspondence does not entail equivalence. However, the

former does provide good prima facie reasons to believe the latter, especially given the novel

take on correspondence I provided in the end of §2.3: we can accept the correspondence based

on thermodynamic considerations about the Second Law and STD accounting, but also based

on quantum mechanical considerations about SVN accounting. The correspondence supports a

‘two-way street’ – equivalence – between STD and SVN.

While I hope to have conclusively refuted H&S’s argument, this is but the beginning of

further inquiry into questions arising from this supposed correspondence. Amidst the tangle

of entropies, there remains much more housekeeping to be done for philosophers of physics.
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Chapter 3

T Falls Apart: On the Status of Classical
Temperature in Relativity

Dear Laue: I hear the voice of my conscience when I remind

you of the dispute concerning the rendering of the fundamen-

tal thermodynamic concepts in the special-relativistic form.

There is actually no compelling method in the sense that one

view would simply be ’correct’ and another ’false’. One can

only try to undertake the transition as naturally as possible.

– Albert Einstein,

1953 letter to Max von Laue

3.1 Introduction

Do the laws and concepts of classical thermodynamics (CT) hold a universal charac-

ter? Einstein, for instance, wrote that “[CT] is the only physical theory of universal content

concerning which I am convinced that, within the framework of the applicability of its basic

concepts, it will never be overthrown.” (1946/1979, 33) Given such proclamations, and how

research in black hole thermodynamics – birthed by formal analogies with CT – continues

to this day, one naturally assumes that CT can be extended into the relativistic regime and

beyond – there is no limit to the “framework of applicability” of its basic concepts.1

1For more on black hole thermodynamics and its formal analogies with thermodynamics, see e.g. Bekenstein’s
(1973 and 1975). See Dougherty & Callender (2016) for criticism, and Wallace (2018) for a rejoinder.
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It is therefore interesting that a parallel debate drags on without resolution. Although

Planck and Einstein pioneered the special relativistic extension of thermodynamical concepts

by developing a set of Lorentz transformations, they by no means settled the issue. Importantly,

temperature resists a canonical relativistic treatment: there are different equivocal ways of

relativizing temperature. While physicists appear to treat this as an empirical problem,2 or

something to be settled by convention,3 the issue seems conceptually problematic to me.

I argue that this situation suggests a breakdown of the classical non-relativistic concept

of temperature – Tclassical – in special-relativistic regimes, i.e. when we consider the temperature

of a relatively moving body at high speeds. The procedures which jointly provided physical

meaning to Tclassical do not do so in relativistic settings. Tclassical breaks down in this regime;

there is a limit to the framework of applicability of the classical thermodynamic concepts.

Notably, my argument will rest not on the fact that there is no way of defining tempera-

ture in relativistic regimes, but that there are many, equally valid procedures for defining the

relativistic temperature which disagree with each other. I focus on four procedures:

• one can attempt to construct a relativistic Carnot cycle,

• use a co-moving thermometer,

• consider a relativistic extension of kinetic theory and particle mechanics,

• or scrutinize the black-body radiation of a moving body.

I chose these four because their classical counterparts were significant in determining the

physical meaning of Tclassical: its theoretical relationship with heat (via the Carnot cycle), its

phenomenology (with a thermometer), its ontology (via particles), and its connection with

radiation (via black-body radiation). It is through this lens that I propose we understand
2For instance, Farias et al (2017) remarks that “the long-standing controversy […] is mainly based on the initial

assumptions, which need to be tested […] to discern which set of Lorentz transformations is correct for quantities
such as temperature”.

3Landsberg & Johns (1967) suggests that the choice of Lorentz transformation for temperature could be “settled
by convention”.
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Einstein’s above notion of ‘natural’-ness: there is strong consilience between these procedures,

in the operational sense that the temperature established via any of these procedures agrees with

the temperature in other procedures.4 Contrariwise, their relativistic counterparts demonstrate

no such consilience: different procedures predict starkly different behaviors for the temperature

of a moving body. Furthermore, for each procedure, we find conceptual difficulties too. ‘Natural’

procedures in CT – which generated a consilient and robust concept of temperature – do not

appear to be ‘natural’ at all in relativistic settings.

I end by proposing two possible interpretations of this situation: an eliminativist one on

which we interpret temperature akin to simultaneity, or a pluralist one on which we interpret

temperature akin to relativistic rotation.

3.2 The Quest to Relativize Thermodynamics: The Odd
Case of Temperature

I focus on attempts to relativize CT,5 i.e. some extension of its laws and concepts into

special relativity.6

The pioneers of relativistic thermodynamics, e.g. Einstein (1907) and Planck (1908),

sought a set of Lorentz transformations for the laws and quantities of CT,7 just as we have

for e.g. position and time. For instance, an observer O′ (or the associated inertial frame) with

positions and times (x′, y′, z′, t′) moving along the x-axis away from another observer O (and

their inertial frame) at constant velocity v can be understood by O to be at positions and time

(x, y, z, t) via:
4Given a proper understanding of the approximation, idealization, and de-idealization procedures.
5I refer to the usual classical / phenomenological set of laws governing a system’s approach to equilibrium, the

meaning of equilibrium, conservation of energy in terms of heat and work, entropy non-decrease, and entropy at
the absolute zero of temperature. See e.g. Planck (1945) for a locus classicus on the topic.

6That is, we assume that events occur on a background Minkowski (flat) spacetime with signature {−,+,+,+},
where the allowed coordinate frames are inertial frames, that is, frames or observers moving at constant velocity
(or zero velocity).

7The details are excellently summarized in Liu (1992 and 1994).
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t′ = γ(t− vx
c2
)

x′ = γ(x− vt)

y′ = y

z′ = z

(3.1)

where γ = 1√
1− v2

c2

is the Lorentz factor, and c is the speed of light.

Relativistic thermodynamics hopes to find similar transformations for thermodynamic

quantities like temperature, pressure, volume, etc. The underlying assumption is that ther-

modynamics can be shown to have physical meaning in relativistic regimes only when we

have a set of Lorentz transformations under which thermodynamic quantities can be shown to

transform, just as we do for position and time.8

Planck and Einstein successfully derived the transformations for most thermodynamic

quantities like pressure p, volume element dV , and entropy S:9

dV ′ = dV
γ

p′ = p

S ′ = S

(3.2)

Fixing S appears to indirectly fix the concepts of heat and temperature, via the well-known

relation Q = TdS. However, surprisingly, the Lorentz transformation for temperature turns

out to be highly equivocal.

3.3 The Classical Temperature

In CT, at least four well-known procedures exist for establishing the concept of tem-

perature. Notably, there is significant consilience between them, which suggests there really is
8That the only physically meaningful quantities are ones which are invariant or covariant under Lorentz

transformations, and that the laws must hold true in similar fashion in all inertial frames, is a common idea in
relativity. See Lange (2002, 202) or Maudlin (2011, 32) for an exposition of this idea.

9The argument for entropy’s Lorentz invariance is generally accepted; I will do the same here. However, see
Earman (1986, 177–178) and Haddad (2017, 41 – 42) for criticisms of Planck’s argument.
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a physically significant quantity: Tclassical.

3.3.1 The Carnot Cycle

The Carnot cycle is a foundational theoretical concept in CT by which we can define

absolute temperature in terms of heat.10 The typical idealized example is an ideal gas acting on

a piston in a cylinder (the ‘engine’) while undergoing reversible processes (see Figure 3.1):

1. The gas receives heat Q2 from a heat bath at temperature T2 and isothermally expands,

doing work on the surroundings.

2. The cylinder is thermally insulated, and the gas adiabatically expands and continues to

do work on the environment, decreasing in temperature to T1.

3. The gas is isothermally compressed at T1 at the second heat bath, losing Q1 to the heat

bath.

4. The cylinder is thermally insulated, and the gas is adiabatically compressed as the envi-

ronment continues to do work on the gas.

5. The cylinder is then brought back to the initial heat bath with T2.

In such a cycle, a simple relationship between the heat exchange to and from a heat reservoir,

and their temperature, can be derived. In a foundational statement of the relationship between

heat and temperature in classical thermodynamics, Joule and Thomson (1854/1882) wrote:

If any substance whatever, subjected to a perfectly reversible cycle of operations,
takes in heat only in a locality kept at a uniform temperature, and emits heat
only in another locality kept at a uniform temperature, the temperatures of
these localities are proportional to the quantities of heat taken in or emitted
at them in a complete cycle of operations. [say, a Carnot cycle laid out above]
(1854/1882, 394)

10For an excellent historical account of Lord Kelvin’s definition of the classical temperature via the Carnot
cycle, see Chang (2004, Ch. 4).
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Figure 3.1. An example of a Carnot cycle, with T2 > T1.

Formally, it is a remarkably simple statement:

T1
T2

=
Q1

Q2

(3.3)

If one can calculate the amount of heat exchanged between the two reservoirs, we can then

theoretically derive the ratio between the two reservoirs’ temperatures. With this in hand,

Thomson, as McCaskey (2020, 32) puts it, proposed that “we should construct a temperature

scale from the mathematics of a non-existent idealized Carnot engine and the behaviour of

a non-existent idealized gas. Any differences between the calculated temperature and the

readings of a thermometer will be attributed to shortcomings in the thermometer.”

This is the problem: how do we actually connect this to actual measurements and the

world? Actual Carnot cycles are hard to construct realistically, and they depend crucially on

the fact that gases in these cycles obey the ideal gas law:

PV = nRT (3.4)
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where T is the temperature defined by (3).11 While no gases are strictly ideal gases, Thomson,12

and later Callendar (1887) and Le Chatelier & Boudouard (1901), pursued a variety of opera-

tionalizations and experiments which succeeded in measuring the extent to which actual gases

deviated from the predicted behavior of ideal gases, i.e. deviated from (4): only about 0.628◦ at

1000◦C for constant-volume air thermometers, and 1.198◦ for constant-pressure air thermome-

ters. In other words, actual air thermometers approximated theoretical ideal gas thermometers

remarkably well. In doing so, we can establish how measurements of temperature derived from

observations of actual gases approximates that of the theoretical temperature predicted for

ideal gases in Carnot cycles. This, in turn, establishes the legitimacy of the theoretical notion

of classical temperature defined here.13

3.3.2 The Thermometer

This brings us to thermometers and how they establish the concept of temperature. One

crucial development was Fahrenheit’s invention of a reliable thermometer, which allowed one to

make independent measurements of this physical quantity called the temperature, consistently

compare said measurements, and grasp temperature as a robust and (fairly) precisely measured

numerical concept rather than one associated with vague bodily sensations. It is not an

understatement to say that the classical notion of temperature would not be developed without

such an invention.14

While thermometers made with the same material were reliable with respect to each

other, thermometers made with different materials differed in their rates of expansion and

contraction. Importantly, the Carnot cycle discussed above provides a theoretical foundation

for temperature by providing a definition of temperature independent of material. As Thomson
11P is pressure, V is volume, n the amount of substance, and R the ideal gas constant.
12For a discussion of Thomson’s strategies and the extent to which they succeeded, see Chang & Yi (2005).
13For a much more detailed discussion of just how complicated these operationalizations were, and why they

are nevertheless successful, see Chang (2004, sub-section “Analysis: Operationalization—Making Contact between
Thinking and Doing”).

14For an involved discussion of this development, see Chang (2004, chs. 1 and 2) For a general overview, see
McCaskey (2020).
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himself explained:

As reference is essentially made to a specific body as the standard thermometric
substance, we cannot consider that we have arrived at an absolute scale…

In contrast:

The relation between motive power and heat, as established by Carnot, is such
that quantities of heat, and intervals of temperature, are involved as the sole
elements in the expression for the amount of mechanical effect to be obtained
through the agency of heat; […], we are thus furnished with a measure for inter-
vals according to which absolute differences of temperature may be estimated.
(Thomson 1848/1882, 102)

In other words, the Carnot cycle is intended to provide theoretical foundations to the observed

measurements of temperature provided by actual thermometers.

However, as we have already seen, actual thermometers themselves were in turn

crucial for supporting the theoretical notion of temperature. Given the difficulties in building

an actual Carnot engine and the non-ideal nature of actual gases, actual air thermometers

provided a means of de-idealization. They showed how actual temperature measurements can

be understood as approximating the abstract theoretical notion of temperature defined by an

idealized Carnot cycle and ideal gases.

Put another way, in yet another sign of consilience, we can understand the concept

of classical temperature to be co-established by both the observed quantity of temperature

provided by a thermometer and the theoretical quantity provided by the Carnot cycle, with

each procedure supporting the other.

3.3.3 Kinetic Theory of Heat

The kinetic theory of heat provides another way to understand temperature via the

Maxwell-Boltzmann distribution. For a system of ideal gas15 in equilibrium with temperature

T , the Maxwell-Boltzmann distribution connects the notion of temperature explicitly with the

notion of bulk particle velocities via:
15Here an ideal gas is interpreted as a set of n identical weakly interacting particles.
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f(v) =

√( m

2πkT

)3

4πv2e−[ 1
2
mv2+V (x)]/kT (3.5)

where m is the particle’s mass, T is the temperature, k is Boltzmann’s constant, V(x) is the

system’s position-dependent potential energy, and v is an individual molecule’s velocity.16

Importantly, f(v) tells us, for a system of ideal gas in equilibrium, how many particles we

expect to find with some range of velocities v to v + dv, given some temperature.

Figure 3.2. A schematic Maxwell-Boltzmann distribution at three different temperatures
T1 < T2 < T3.

Figure 3.2 shows the schematic connection between a gas’s temperature and velocities

of the particles composing said gas. This distribution plays a significant conceptual role by

allowing us to derive the well-known relationship between temperature and mean kinetic

energy:

⟨1
2
mv2⟩ = 3

2
kT (3.6)

This provides foundational support for thermodynamics – and the concept of temperature – in

terms of particle mechanics, by allowing us to understand the concept of a system’s temperature

in terms of the mean kinetic energy of particles composing said system.17

Importantly, though, this distribution holds only for ideal gases. As such, the de-
16For a historical account of this distribution, see Brush (1983, §1.11).
17This has been much discussed in the philosophical literature. See e.g. De Regt (2005) and references therein.
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idealization of ideal gases in terms of actual gases, already mentioned in previous sections,

also plays a role here and further highlights the consilience of these various procedures in

establishing the concept of temperature. They show us that measured temperatures of actual

gases are approximately the temperatures of ideal gases with similar pressures and volumes;

in turn, the idealized relationship between mean kinetic energy and temperature here, which

holds for ideal gases, can also be understood to approximate that of real systems of particles.18

This provides us with a reason to accept that the temperature of actual systems really can be

understood in terms of mean kinetic energy as well, providing further physical meaning to

the concept of temperature. There is, again, a consilience between the concept of temperature

employed here and the concept of temperature developed through the other procedures.

3.3.4 Black-Body Radiation

Finally, the study of black-body radiation connects temperature to electromagnetic

radiation. A black-body is defined as one which absorbs (and emits) all thermal radiation

incident upon it without reflecting or transmitting the radiation, for all wavelengths and angles

of incident upon it. Notably, since a black-body does not distinguish directionality, it emits

isotropic radiation.

There are simple laws relating the properties of radiation to the black-body’s tempera-

ture.19 Firstly, the Stefan-Boltzmann law states:

j∗ = σT 4 (3.7)

where j∗ is the total energy emitted per unit surface area per unit time by the black-body, T is

its temperature, and σ is the Stefan-Boltzmann constant.20

18In particular, highly dilute gases at non-extremal temperatures.
19For a historical account, see Brush (1983, §3.1) or Stewart & Johnson (2016).
20For less idealized bodies which do not absorb all radiation, the law is given by:

j∗ = ϵσT

where 0 < ϵ < 1 is the emissivity of the substance.
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Secondly, Wien’s displacement law:

ρ(f, T ) = f 3g(
f

T
) (3.8)

states that the energy density ρ of radiation from systems with temperature T , at frequency

f , is proportional to f 3g( f
T
) for some function g.21 Integrating over all possible f amounts to

computing the total energy density of radiation from all frequencies, and entails the Stefan-

Boltzmann law regardless of choice of g. Furthermore, if ρ(f, T ) achieves its maximum for

some value of f , fmax, then:

fmax ∝ T (3.9)

or in terms of peak wavelength λpeak:

λpeak ∝
1

T
(3.10)

This captures the familiar observation that things which are heated first turn red and then into

other colors associated with higher frequencies – and hence shorter wavelengths – as their

temperature increases.

These laws form the foundations of the relationship between radiation and temperature

for a radiating black-body in equilibrium in CT. In particular, much of the work in the late

19th century revolved around the search for the appropriate function g, and modifications or

generalizations to Wien’s law, pursued by others like Rayleigh, Planck, and Einstein.

Interestingly, as another mark of consilience, Einstein’s famous 1905 discussion of the

quantization of thermal radiation drew upon analogies between thermal radiation and the

ideal gas law as well as the Maxwell-Boltzmann distribution for ideal gases: the energy density

formula one extracts from the former looks remarkably like the latter.22 This led Einstein to
21See Brush (1983, Ch. 3) for a historical narrative.
22See Norton (2005) for a discussion of the analogies and disanalogies between the two. See also Uffink (2006).

91



conclude that we can understand thermal radiation as quantized, analogous to how an ideal gas

can be understood as composed of a number of particles. Crucially for our purposes, we once

again see how the same classical temperature concept is supported and applied across different

procedures, establishing temperature as a physically significant and meaningful concept across

these contexts.

3.4 From Classical to Relativistic Temperature

In CT, the above procedures show remarkable consilience in that the very same con-

cept of temperature can be determined or understood in terms of any of these procedures

without much practical issue. For instance, the temperature observed by a thermometer for

a radiating body is approximately the temperature deduced via the observed frequencies of

their radiation. A box of gas can equilibrate with a radiating system and both will come to the

same temperature.23 Finally, the theoretical definition of temperature found by considering a

Carnot cycle can also be connected back to the empirical temperature measurements of actual

thermometers.

This consilience then motivates why we might find the concept of temperature – and its

application in these contexts – ‘natural’, to borrow Einstein’s words. After all, these procedures

clearly refer to some quantity which can be measured, manipulated, understood, compared,

and calculated across various contexts.

However, there is no such consilience when attempting to relativize temperature. Each

procedure establishes a different notion of relativistic temperature, and not without conceptual

difficulties.
See Fowler (n.d., “Einstein Sees a Gas of Photons”) for a preliminary exposition of the analogy.

23Einstein’s famous 1905 discussion of the quantization of thermal radiation drew upon analogies between
thermal radiation and the Maxwell-Boltzmann distribution: the energy density formula one extracts from the
former looks remarkably like the latter. This led Einstein to conclude that we can understand thermal radiation as
quantized, analogous to how an ideal gas can be understood as composed of a number of particles. See Norton
(2005) and Uffink (2006) for discussion. See Fowler (n.d., “Einstein Sees a Gas of Photons”) for a preliminary
exposition of the analogy.
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3.4.1 The Relativistic Carnot Cycle: Moving Temperature is
Lower/Higher

I begin with the relativistic Carnot cycle.24 Von Monsengeil, who devised the process,

explicitly appealed to the foundational role of the classical Carnot cycle in defining Tclassical,

and proposes an extension to that procedure. (von Mosengeil 1907, 160 – 161) Essentially we

demand that the same relations between heat and temperature hold when one heat bath is now

moving with respect to the other with some velocity v (see Figure 3.3). We are supposed to

adiabatically accelerate the engine (i.e. the piston and cylinder of gas) from one inertial frame

to another, and adiabatically decelerate it back to the original frame in completing this cycle.

Just as a classical Carnot cycle defined a relationship between the temperature and

heat exchange of two heat baths, a relativistic Carnot cycle is stipulated to do the same. For a

heat bath at rest with temperature T0 and another moving with respect to it with a ‘moving

temperature’ T ′, with the engine co-moving with the respective heat baths during the isothermal

processes:

T ′

T0
=
Q′

Q0

(3.11)

and hence:

T ′ =
Q′

Q0

T0 (3.12)

What remains is ‘simply’ to define the appropriate heat exchange relations. That turns out

precisely to be the problem: there are two ways to understand the heat exchange between the

engine and the moving heat bath, and there does not seem to be a fact of the matter which is

appropriate.25

Firstly, one may, like Planck and early Einstein, understand the heat transfer from the
24See Liu (1992), Liu (1994) for a detailed historical overview of the topic. See Farias et al (2017) for a physics-

oriented overview, and Haddad (2017, 39 – 42) for a concise overview of the disagreements on this procedure.
25See Liu (1992) for a much more detailed discussion of this disagreement.
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Figure 3.3. A relativistic Carnot cycle.

perspective of the rest frame of the stationary bath. Then the engine, in exchanging heat with

the moving bath, also exchanges energy. By relativistic mass-energy equivalence, this causes

the bath to lose or gain momentum by changing its mass. However, without further work, the

bath then cannot stay in inertial motion - it will decelerate or accelerate. Hence, to keep it

moving inertially, we need to perform extra work on it, which Einstein proposed to be:

dW = pdV − u · dG (3.13)

pdV is simply the usual compressional work done by the piston due to the gain or loss of heat

from the bath. However, there is a crucial inclusion of the u ·dG term, where u is the relativistic

velocity of the moving bath (more specifically, v
c
) and dG is the change of momentum due to

the exchange of heat. Einstein dubbed this the ‘translational work’. One can see that when u is

0, the work done reduces to the usual definition. In turn, we generalize the first law from:

dU = dQ− pdV (3.14)

to:
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dU = dQ− pdV + u · dG (3.15)

for a moving system. With this definition of work, and some results from continuum electrody-

namics, one can obtain a relationship between the quantities of heat exchanged:26

dQ′

dQ0

=
1

γ
(3.16)

and hence, from (11):

T ′ =
1

γ
T0 (3.17)

where γ is the Lorentz factor. We thus arrive at a Lorentz transformation for temperature,

according to which a moving system has a lower temperature and appears cooler than a system

at rest. This is the Planck-Einstein formulation of relativistic thermodynamics.

Secondly, one may, like later Einstein (in private correspondence to von Laue), Ott

(1963) and others, doubt the need for translational work. Later Einstein wrote:

When a heat exchange takes place between a reservoir and a ’machine’, both of
them are at rest with each other and acceleration-free, it does not require work
in this process. This holds independently whether both of them are at rest with
respect to the employed coordinate system or in a uniform motion relative to it.
(Einstein 1952, quoted in Liu 1994, 199)

In the rest frame of the moving heat bath, heat exchange is assumed to occur isothermally (as

with the usual Carnot cycle) when both the engine and the heat bath are at rest with respect to

each other. From this perspective, everything should be as they are classically. There should thus

be no additional work required other than that resulting from the heat exchange. Put another

way, what was thought of as work done to the system in the Planck-Einstein formulation should

instead understood as part of heat exchange in the Einstein-Ott-Arzeliés proposal. Without the

translational work term in the equation for work, the moving temperature transformation is
26See Liu (1994, 984 – 987) for a full derivation.
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instead given by:27

T ′ = γT0 (3.18)

and contra (16), the temperature of a moving body appears hotter.

I won’t pretend to resolve the debate here. However, note that this procedure is not

unequivocal on the concept of relativistic temperature: it either appears lower (on the Planck-

Einstein formulation) or higher (on the Einstein-Ott formulation) than the rest frame tempera-

ture. Importantly, the two proposals reduce to the same classical temperature concept in the

rest frame, since the translational work vanishes in this case on both proposals. Tclassical seems

safe, though the fate of its relativistic extension remains undecided.

I end by raising some skepticism about the very idea of a relativistic Carnot cycle, by

asking whether there can be a principled answer to whether energy flow is to be understood as

‘heat’ or ‘work’ in such a setting. As Haddad observes, this is problematic due to how energy

and momentum are interrelated quantities. A system’s energy cannot be uniquely decomposed

into heat exchange, internal energy and work:

In relativistic thermodynamics this decomposition is not covariant since heat
exchange is accompanied by momentum flow, and hence, there exist nonunique
ways in defining heat and work leading to an ambiguity in the Lorentz transfor-
mation of thermal energy and temperature. (Haddad 2017, 39)

Since heat flow is accompanied with momentum flow, heat exchange can always be reinterpreted

as work done (i.e. as the translational work term).28 This raises some initial doubts about the

very applicability of thermodynamics beyond the rest frame (i.e. CT in quotidian settings),

given the fundamentality of heat and work relations in thermodynamics.
27See Liu (1992, 197 – 198) for a detailed derivation.
28See also Dunkel et al (2009, 741).
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3.4.2 The Co-Moving Thermometer: ‘Moving’ Temperature Stays the
Same

The idea that relativistic thermodynamics is essentially ‘just’ quotidian CT is echoed

by Landsberg (1970), who builds on the classical concept of a thermometer (and the concept of

temperature it establishes) via a co-moving thermometer:

One has a box of electronics in both [the relatively moving frame] and [the rest
frame] and one arranges, by the operation of buttons and dials to note in [the
relatively moving frame] the rest temperature T0 of the system. This makes
temperature invariant. (259)

The co-moving temperature of any system is stipulated to be its relativistic temperature. But

this is no different than the rest frame temperature of that system. So the Lorentz transformation

according to this procedure is simply

T ′ = T0 (3.19)

This proposal can be seen as an extension of Tclassical, in the sense that there is some proposed

Lorentz transformation. In practice, though, nothing is different from the classical application

of a thermometer: we are just measuring the rest frame temperature of the system, as in CT.

Landsberg partly justifies this with the claim that “nobody in his senses will do a thermodynamic

calculation in anything but the rest frame of the system”. (Landsberg 1970, 260) On this view,

contrary to the relativistic Carnot cycle, relativistic temperature transforms as a scalar, something

found in many relativistic thermodynamics textbooks (e.g. Tolman 1934).

Landsberg (1970, 259) provides an argument for why we couldn’t also use this procedure

to trivially define alternative Lorentz transformations of other mechanical quantities, e.g.

position or time, in terms of their rest frame quantities. He claims that for these mechanical

quantities, there are measurement discrepancies for the same events in different frames, which

needed to be reconciled by Lorentz transformations for consistency. However, for temperature:

Measurements in a general [reference frame] can be made of mechanical quan-
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tities, but in my view not of temperature, [so] our prescription for T’ – namely
“measure T0” – is quite unsuitable for extension to mechanical quantities. (1970,
259)

Prima facie, Landsberg is proposing a novel Lorentz transformation for temperature. However,

in my view, this argument amounts to the claim that there is no relativistic temperature to speak

of ; we simply insist on the classical – rest frame – temperature concept. His comparison with

mechanical quantities makes this clear: the concept of temperature understood via Landsberg’s

proposal is not relativistic the way other quantities are.

If anything, the preceding discussion suggests that the concept of temperature and its

measurement cannot be extended past the rest frame, i.e. into the relativistic domain.29 As

Liu (1994, 992) notes: “The fact seems to be that temperature measurement requires genuine

thermal interaction and the state of equilibrium, but when relative macroscopic motion is

present, such interaction always disrupts the state of equilibrium and thus renders temperature

measurement impossible.” Anderson says the same:

“Thermodynamic quantities only have meaning in the rest frame of the system
being observed. […] This is not to say that an observer could not infer from
measurements on a moving system what its rest temperature is. The point is
that he must interpret these measurements in terms of the rest temperature of the
system, since this quantity alone depends on thermodynamic state of the system.”
(Anderson 1964, 179 – 180, emphasis mine)

Repeating Landsberg’s words in a different context: that “nobody in his senses will do a

thermodynamic calculation in anything but the rest frame of the system” suggests that the

thermodynamic concept of temperature involved here cannot be extended beyond the classical

regime.
29This is just what physicists do when they consider the temperature of distant astrophysical bodies. They

extrapolate and observe other properties of a body – like luminosity – associated with its rest frame temperature.
No consideration of moving temperature is involved.

98



3.4.3 Relativistic Kinetic Theory: No Fact of the Matter

An ideal gas can be understood in terms of particles whose velocities are distributed

according to the gas’s temperature (§3.3). How does that notion of temperature extend to

relativistic regimes?

Cubero et al (2007) analyzes the Maxwell-Jüttner distribution, a Maxwell-Boltzmann-

type distribution for ideal gases moving at relativistic speeds. They conclude that the tempera-

ture should transform as a scalar, i.e. Landsberg’s proposal. Interestingly, they explicitly choose

a reference frame in which the system is stationary and in equilibrium. But that’s just the rest

frame of the system! In that case it’s unsurprising that there is no transformation required at

all for the temperature concept.30

Elsewhere, Pathria (1966, 794) proposes yet another construction.31 They considered a

distribution F for an ideal gas in a moving frame with some relativistic velocity u = v
c
:

F (p) = [e(E−u·p−µ)/kT + a]−1 (3.20)

where p is a molecule’s momentum, E its energy, µ the chemical potential, k the Boltzmann

constant, T the system’s temperature in that moving frame, and a is 1 or -1 for bosonic and

fermionic gases respectively. The distribution then tells us, as with the classical case, how many

particles we expect to see with momentum p. F is shown to be Lorentz-invariant, and we can

compare them as such:

E − u · p − µ

kT
=
E0 − µ0

kT0
(3.21)

With the (known) Lorentz transformations for energy and momentum, we can then show that

T = 1
γ
T0, i.e. the Planck-Einstein formulation.

30Cubero et al (2007, 3) admits as much when they note that “Any (relativistic or nonrelativistic) Boltzmann-
type equation that gives rise to a universal stationary velocity PDF implicitly assumes the presence of a spatial
confinement, thus singling out a preferred frame of reference.”

31My presentation follows Liu (1994).
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One might think that this suggests some consilience between the kinetic theory and

the relativistic Carnot cycle for the Planck-Einstein formulation. However, one would be

disappointed. Balescu (1968) showed that Parthria’s proposed distrbution (20) can be generalized

as:

F ∗(p) = [eα(u)(E−u·p− µ
β(u) )/kT + a]−1 (3.22)

with the only constraint that α(0) and β(0) = 1 for arbitrary even functions α and β. F ∗ tells

us the particle number (or, in quantum mechanical terms, occupation number) associated with

some p or E over an interval of time. Balescu shows that any such distribution recovers the

usual Maxwell-Boltzmann-type statistics, in the sense that distributions with arbitrary choices

of these functions all agree on the internal energy and momenta in the rest frame when u = 0:

Tclassical is safe from these concerns.

Choosing these functions amounts to choosing some velocity-dependent scaling for

temperature via α and chemical potential via β. Importantly, the question of how temperature

scales when moving relativistically is precisely what we want to decide on, yet it is also the

quantity rendered arbitrary by this generalization! In particular, Balescu shows that:

1. The choice α = 1 amounts to choosing the Planck-Einstein formulation T = 1
γ
T0,

2. The choice α = γ2 amounts to choosing the Einstein-Ott-Arzeliés formulation T = γT0,

3. The choice α = γ amounts to choosing Landsberg’s formulation T = T0.

As Balescu notes: “Within strict equilibrium thermodynamics, there remains an arbitrariness in

comparing the systems of units used by different Lorentz observers in measuring free energy

and temperature” and that “equilibrium statistical mechanics cannot by itself give a unique

answer in the present state of development.” (1968, 331) Any such choice will be a postulate, not

something to be assured by the statistical considerations here. In other words, contrary to the
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classical Maxwell-Boltzmann case, there appears to be no fact of the matter how temperature

will behave relativistically, given the underlying particle mechanics.

Contrary to the classical kinetic theory of heat, which provided a unequivocal conceptual

picture (and putative reduction) of Tclassical, there’s again no such univocality here.

3.4.4 Black-Body Radiation: No Thermality for Moving Black-Bodies

Finally, when we consider moving black-bodies, there is again no clear verdict on the

Lorentz transformation for the relativistic temperature. The very concept of a black-body

appears to be restricted to the rest frame.

McDonald (2020) provides a simple example of why this is so: consider some observed

Planckian (thermal) spectrum of wavelengths from some distant astrophysical object with a

peak wavelength λpeak. We want to ascribe some temperature to that object directly. In our

rest frame, using Wien’s law (9):

λpeak =
b

T
(3.23)

where b is Wien’s displacement constant. Supposing we know the velocity v of the distant astro-

physical object, we can compare wavelengths over distances in relativity using the relativistic

Doppler effect to find the peak wavelength of the object λ′peak at the source:

λ′peak =
λpeak

γ(1 + vcosθ
c

)
(3.24)

where θ is the angle in the rest frame of the observer between the direction of v and the line of

sight between the observer and the object. Given this, we can compare temperatures:

T ′ =
λpeak
λ′peak

T = γ(1 +
vcosθ

c
)T (3.25)

The predicted temperature thus depends on the direction of the moving black-body to the
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inertial observer.

Landsberg & Matsas (1996) shows similar results and demonstrates how a relatively

moving black-body generally does not have a black-body spectrum from the perspective of

an inertial observer. Crucially, they emphasize just how problematic this is for the notion of

black-body radiation which is defined as isotropic:

[the equation for a moving black-body] cannot be associated with a legitimate
thermal bath (which is necessarily isotropic) […] the temperature concept of
a black body is unavoidably associated with the Planckian thermal spectrum,
and because a bath which is thermal in an inertial frame S is non-thermal in [a
relatively moving] inertial frame S ′, which moves with some velocity v ̸= 0 with
respect to S, a universal relativistic temperature transformation […] cannot
exist. (1996, 402–403)

In a follow-up article, they further emphasize that “a moving observer in a heat reservoir can

therefore not detect a black-body spectrum, and hence cannot find a parameter which can be

identified as temperature.” (2004, 93)

The general lesson is simple yet profound. A black-body was defined in the rest frame,

i.e. in the non-relativistic setting: we see isotropic radiation with a spectrum, which can be

understood to be in equilibrium with other objects and measured as such with thermometers.

However, there was no guarantee that a moving black-body would still be observed as possessing

some black-body spectrum with which to ascribe temperature. And it turns out that it generally

does not. Without this assurance, we cannot reliably use the classical theory of black-body

radiation to find a relativistic generalization of temperature.

3.5 Tclassical Falls Apart. What Then?

Examining four relativistic counterparts to classical procedures thus reveals a discordant

concept: a moving body may appear to be cooler, or hotter, the same, or may not even appear

to be thermal at all. Despite how well these procedures worked classically, they do not work

together to establish a unequivocal concept of relativistic temperature. Furthermore, within each

procedure, various conceptual difficulties suggests that the concept of relativistic temperature
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does not find firm footing either. Returning to Einstein’s quote, it appears that there is no

‘natural’ way to extend Tclassical.

Tclassical thus fails to be extended to relativity: well-understood procedures that un-

equivocally establish its physical meaning in classical settings fail to do so in relativistic settings.

These procedures appear to work just fine in classical settings, i.e. in the rest frame. However,

attempting to extend them to relativistic settings immediately led to conceptual difficulties.

This all suggests that the concept of temperature – and correspondingly, heat – is inherently a

concept restricted to the rest frame.

More generally, any relativistic extension of CT violates some classical intuitions and

will appear ‘unnatural’. No matter our choice of temperature transformation, something from

CT must go. Broadening Balescu’s point (§4.3), Landsberg (1970, 263–265) generalizes the

thermodynamic relations in terms of arbitrary functions θ(γ) and f(γ):

TdS = θdQ (3.26)

dQ = fdQ0 (3.27)

where f is the force function:

f =
1

γ
+ r(1− 1

γ2
) (3.28)

where r = 0 if we demand the Planck-Einstein translational work, or r = γ for the Einstein-Ott

view without such work. Again, we only require θ(1) = f(1) = 1 so that in the rest frame

everything reduces to CT. Different choices, again, entail different concepts of relativistic

temperature, but also other thermodynamic relations (and hence the thermodynamic laws).

(See Figure 3.4.)

Importantly, no choice preserves all intuitions about Tclassical and CT. Demanding that a
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lower (higher) moving temperature leads to non-classical behavior. Landsberg (1970, 260 – 262)

considers two thermally interacting bodies A and B moving relatively to one another. A (in its

rest frame) sees the other as cooler (warmer) and hence heat flows from (to) B. But the same

analysis occurs in B’s rest frame to opposite effect! So heat flow becomes frame-dependent

and indeterminate, contrary to our classical intuitions.

Moving temperature… dQ/TdS = θ dQ/dQ0 = f r T/T0 = θf
… is lower 1 1/γ 0 1/γ
… is higher 1 γ γ γ
… is invariant γ 1/γ 0 1

Figure 3.4. A list of some choices of θ, f , and r.

However, demanding temperature-invariance entails that the classical laws of thermo-

dynamics are no longer form-invariant in all inertial frames. Notably, we must revise their form

by including some variations of functions f , γ and θ.32 So we preserve some intuitions about

heat flow but give up the cherished form of classical thermodynamical laws. Interestingly, it

is precisely this classical form that Bekenstein (1973) appealed to, when making the formal

analogies between thermodynamics and black holes.

What then? I end with two possible interpretations of my analysis: an eliminativist

viewpoint, and a pluralist viewpoint.33 On the former, one might interpret temperature akin to

simultaneity: both concepts are well-defined within some rest frame, but there is no absolute

fact of the matter as to how they apply beyond for relatively moving observers. If one believes

that the only physically significant quantities are those which are frame-invariant or co-variant

(recall fn. 8), temperature’s frame-dependence might lead one to abandon talk of temperature

as physically significant, just as we have for simultaneity.34

On the latter, one might instead interpret temperature akin to relativistic rotation.

Analogously, Malament (2000) identifies two equally plausible criteria for defining rotation
32See Landsberg (1970, 264).
33See Taylor and Vickers (2017) for discussion of this dichotomy.
34For discussion of the status of simultaneity, see Janis (2018) and references therein.
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which agree in classical settings, yet disagree in general-relativistic settings. Importantly, both

violate some classical intuitions. Nevertheless:

There is no suggestion here that [this] poses a deep interpretive problem […]
nor that we have to give up talk about rotation in general relativity. The point
is just that […] we may have to disambiguate different criteria of rotation, and
[…] that they all leave our classical intuitions far behind. (2000, 28)

Likewise, on this view, we might accept that Tclassical breaks down, and that (relativistic

extensions of) classical procedures fail to unequivocally define a relativistic temperature.

However, we need not abandon temperature altogether; instead, we need only to work harder

to disambiguate and generalize the concept of temperature (and thermodynamical laws).

Depending on interpretation, questions arise. For instance, should formal analogies

between black holes and classical thermodynamical laws be taken seriously, if the form of the

classical thermodynamical laws doesn’t actually survive in relativistic domains? Could typical

black holes be treated as ‘at rest’, such that Tclassical might still apply? Should we, and how

should we, generalize Tclassical? I leave these questions to future work.

3.6 Conclusion

The conclusion that classical thermodynamical concepts fall apart in new regimes

should not be surprising to philosophers of science. For instance, Callender (2001) cautioned

against “taking thermodynamics too seriously” even in the statistical mechanical regime. He

argues that taking the laws and concepts of classical thermodynamics too literally when

attempting to formulate a reduction of classical thermodynamics to statistical mechanics

leads to error. Furthermore, Callender briefly notes how, similarly, “perhaps the principal

reason for the confusion [in relativizing temperature] is the fact that investigators simply

assumed that relativistic counterparts of some laws of thermodynamics would look just like

the phenomenological laws – they took (some) thermodynamics too seriously.” (2001, 551)

Earman (1978, 178) says essentially the same when he diagnoses the problem with
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relativistic thermodynamics: the pioneers of relativistic thermodynamics acted “as if thermo-

dynamics were a self- contained subject, existing independently of any statistical mechanical

interpretation. Within this setting, many different ’transformation laws’ for the thermodynam-

ical quantities are possible.” However, the problem is somewhat worse if what I’ve said in §4.3

is right: even the statistical mechanical determination of a relativistic temperature is up for

grabs.

In any case, I hope to have highlighted how messy the situation is in relativistic thermo-

dynamics. Yet, while physicists continue to chime in,35 not much has been said by contemporary

philosophers, despite “how rich a mine this area is for philosophy of science”. (Earman 1978,

157) Besides Earman, the only other philosopher to have discussed this topic in detail appears

to be his student, Liu. (1992 and 1994) Through this paper, I hope to have at least re-ignited

some interest in this topic.
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Chapter 4

Do Black Holes Evaporate? The Case of
Quasi-Stationarity

4.1 Introduction

It is often said that black holes are where our best theory of matter, quantum mechanics,

meet our best theory of spacetime, general relativity. One prominent way in which black

hole physics connects both quantum mechanics and general relativity is through the study

of black hole thermodynamics. In Curiel’s words, “almost everyone agrees that black hole

thermodynamics provides our best guide for clues to a successful theory of quantum gravity.”

(2019, 27) The hope is that a closer investigation of black holes will unearth a more fundamental

theory unifying both quantum mechanics and general relativity.1

Crucial to the study of black hole thermodynamics is the use of idealizations in order

to drastically simplify our calculations and render our models of black holes tractable. Here,

I want to focus particularly on the idealization of quasi-stationarity, an idealization that is

widely used by physicists including those studying black holes. As Page (2005, 10) points out,

for instance, proofs of the Generalized Second Law generally assume that the black hole in

question is assumed to be quasi-stationary, changing only slowly during its interaction with an

environment: it is almost unchanging, hence “quasi” and “stationary”. This allows us to model

the dynamically changing black hole with a temporal sequence of stationary black holes, each
1See e.g. Hawking 1977.
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differentiated by different values of some parameter (such as mass). Crucially, the stationarity

of the black hole at each point of the sequence allows us to ascribe a globally conserved energy

to the black hole at all times,2 something that is importantly generically not available in general

relativity.3 However, the use of this idealization is not always made explicit; it might be masked

by describing the black hole as ’slowly evolving’ (Zurek & Thorne 1985), or by discussing black

hole dynamics while using a static or stationary metric like the Schwarzschild or Kerr metrics.

(Abramovicz and Fragile 2013)

Prominently, Hawking made explicit use of quasi-stationarity in his 1975 argument

for black hole evaporation. By adopting a semiclassical approximation, Hawking studied the

effects of (classical) black hole horizons on a (quantum) vacuum field and argued that black

hole horizons radiate at a certain temperature to observers at infinity (i.e. Hawking radiation).

This led him to conclude that black holes must evaporate. At a conceptual level, his argument

goes something like this: since we observe black holes radiating energy via Hawking radiation,

this energy must be coming from somewhere due to the conservation of energy. Since the

spacetime in question is vacuum everywhere,4 the only object that could lose energy as a result

of the radiation is the object of study, the black hole. This led Hawking to conclude that black

holes must lose mass (‘evaporate’) as a result of Hawking radiation, just as ordinary matter

radiate and lose energy to their environment. This is one reason why many now treat black

holes as bona fide thermodynamic objects, just like ordinary matter.5 Crucially, his argument

relies on the idealization of quasi-stationarity: dynamical black holes are modeled as a sequence

of stationary time-independent black holes, so that black holes could dynamically change –

lose mass and hence energy – over time while having a conserved energy at every point in

time.
2Due to the myriad literature out there with differing terminologies, and the mass-energy equivalence in

general relativity, I will use ’mass’, ’energy’, and ‘mass-energy’ somewhat interchangeably in this paper.
3See Maudlin, Okon and Sudarsky (2020) for an excellent discussion.
4More precisely, the spacetime contains a quantum field in the vacuum state.
5For a general rejoinder to black hole thermodynamics as more than a ’formal analogy’, see Dougherty and

Callender (2016). For a brief defense, see Wallace (2018).
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Beyond its ubiquity in the study of black holes, what also interests me is the observation

that quasi-stationarity shares much in common with another widely used idealization elsewhere

in physics: the quasi-static (or thermodynamically reversible) process in thermodynamics. Just

like quasi-stationarity, a system undergoing a quasi-static process is described as evolving so

slowly that we can model the system as with some sequence of equilibrium (time-independent)

states, each with a different thermodynamic parameter such as temperature, pressure and so

on.

Importantly, Norton (2016) has recently pointed out that the quasi-static process, taken

literally, is impossible. It requires us to envision a system undergoing dynamical changes over

time, while being in a time-independent equilibrium state at all times. This being contradictory,

the quasi-static process cannot literally describe systems in the real world. Nevertheless, Norton

shows how we can justify the use of quasi-staticity by providing a de-idealization procedure:6

We can understand a quasi-static process as the limit of actual irreversible processes containing

non-equilibrium states. Real systems, in a very concrete sense, approximate the quasi-static

process. Because of the existence of such a story, we are justified in continuing our use of the

quasi-static process in thermodynamics despite its literally contradictory nature.

In my view, the quasi-stationary process, taken literally, is likewise impossible. I argue

that this gives us reason to revisit its ubiquitous use, by arguing that at least one prominent

case of its use remains unjustified. I claim that the justificatory strategy of de-idealization

does not apply to Hawking’s use of quasi-stationarity in his 1975 argument for black hole

evaporation. Hawking’s argument crucially relies on the limit property of quasi-stationary

processes: it requires the system to have a globally conserved energy as a result of being

time-independent at all times, while simultaneously requiring the system to undergo dynamical

changes. Since we expect the black hole in question to be dynamical, i.e. time-dependent,

global conservation of energy cannot literally obtain. For something like Hawking’s argument

to go through, we need something like an approximately globally conserved energy, just as
6See e.g. McMullin (1985) for a classic account of de-idealization.
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thermodynamic systems undergo approximately quasi-static processes without undergoing a

literally quasi-static process. In general relativity, the global conservation of energy depends

on the existence of time-like Killing fields, and a de-idealization of this property must thus

show how a real system can approximately possess a globally conserved energy by showing

the existence of approximately time-like Killing fields (as I will explain). However, crucially,

I argue that there is no suitable ‘de-idealization’ procedure available, contrary to the case

of quasi-staticity in thermodynamics. There is no clear and unproblematic account of what

approximately time-like Killing fields amount to. Until a clear ‘de-idealization’ procedure can

be produced, Hawking’s argument remains unjustified.

More generally, to my knowledge, these aspects of quasi-stationarity vis-a-vis its use in

black hole physics have not been studied in detail by either philosophers of physics working on

black hole thermodynamics or philosophers of science working on the use of idealizations.7 I

thus hope that this paper can fill both lacunae and provide a bridge between general philosophy

of science and philosophy of physics, by highlighting how discussions about idealizations in

philosophy of science might help us evaluate arguments in physics.

Astute readers might immediately worry that contemporary arguments for black hole

evaporation do not necessarily rely on quasi-stationarity. For instance, they might instead

rely on something like asymptotic flatness.8 In a follow-up paper I hope to scrutinize asymp-

totic flatness and argue that a similar problem obtains for that idealization as well. In short:

the problem for approximate Killing fields raised here becomes a problem for approximate

asymptotic Killing fields in that context of asymptotic flatness. Readers who are (rightfully)

concerned about such a worry are urged to read this paper not as a general critique of black

hole evaporation, but instead as a philosophical analysis of the idealization of quasi-stationarity

and one specific argument for black hole evaporation for which the use of quasi-stationarity

might be unjustified.
7One notable exception is Duerr (2019), who criticizes the use of the idealization of asymptotic flatness for

justifying the reality of energy in general relativity.
8This is Wallace’s (2018) presentation of the argument for black hole evaporation.
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4.2 Stationarity in General Relativity

I begin by specifying some key concepts which are required for us to more precisely

understand the sense of ‘stationarity’ (and hence ‘quasi-stationarity’) relevant for my argument

here, as well as the connection between stationarity and the global conservation of energy,

crucial for Hawking’s argument.

To begin with, since work on black hole thermodynamics typically takes place in

the semiclassical regime, gravity is understood classically. The arena of discourse is general

relativity. Our discussion thus begins from the metric tensor gαβ (henceforth simply the

‘metric’), which defines a spacetime of interest and constrains the behavior of matter on said

spacetime via the Einstein Field Equations:9

Rαβ −
1

2
Rgαβ + Λgαβ = 8πTαβ (4.1)

where Rαβ is the Ricci tensor, R is the Ricci scalar, Λ is the cosmological constant (which may

or may not vanish), and Tαβ is the stress-energy tensor encoding the behavior of matter in

spacetime.

In general, energy is always locally conserved in general relativity. Along any worldline

χ, the covariant derivative of Tαβ vanishes:

∇χTαβ = 0 (4.2)

In other words, momentum and energy are conserved given infinitesimal displacements along

any worldline, as one would expect from classical physics.

However, as is well-known, this does not generally entail global conservation of energy.10

The fact that energy is conserved along any observer’s worldline does not allow us to say that
9More precisely a spacetime is given by the pair (M, gαβ) where M is a manifold. Here I will speak of the

metric and spacetime interchangeably. Nothing turns on this difference. Furthermore, to simplify presentation, I
will use natural units such that c = G = ℏ = k = 1.

10See Maudlin, Okon and Sudarsky (2020) for an excellent discussion.
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energy is conserved for the entire spacetime.

Famously, Noether (1918) showed that every differentiable symmetry of the action of a

physical system is associated with some conserved current satisfying a continuity equation, and

thus a corresponding conservation law. In the context of general relativity, these symmetries

are represented by Killing vector fields (or simply Killing fields) which generate isometries

(trajectories along which the metric is constant). A Killing vector ξ represent an infinitesimal

displacement along which the Lie-derivative (£) of the metric vanishes:

£ξgαβ = 0 (4.3)

This demand leads naturally to the result that ξ satisfies Killing’s equation:

∇νξµ +∇µξν = 0 (4.4)

With Killing’s equation and the geodesic equation, where p is the tangent vector,

∇pp = 0 (4.5)

we can derive the following theorem.11 In any spacetime geometry endowed with a symmetry

described by a Killing field ξ, motion along any geodesic leaves the scalar product of the tangent

vector p with the Killing vector ξ constant:

p · ξ = constant (4.6)

This allows us to describe a globally conserved quantity on a spacetime.12 For example, space-

like translational symmetries are what allow us to make sense of the global conservation of

linear momentum, while the space-like rotational symmetries let us define the global conser-
11See Misner, Thorne and Wheeler (1973, 651) for discussion.
12See Hawking and Ellis (1973, 61 – 63), Misner, Thorne and Wheeler (1973, §25.2), Carroll (2019, 120), or

Maudlin, Okon and Sudarsky (2020, §2.4) for discussion.
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vation of angular momentum. Likewise, the time-like translational symmetry, represented

by the existence of Killing fields along the time-like coordinate, is associated with the global

conservation of energy. There is global conservation of energy only if there exists an isome-

try of the metric along the time-like direction.13 Without these symmetries, the notion of a

global conservation law simply loses its meaning. If a spacetime does not have the requisite

symmetries, there can be no such conservation laws for that spacetime.

Now we are in a position to consider the metrics of black holes, as well as their sym-

metries and associated conservation laws. The most common metrics associated with black

holes (and the ones used in the proof of Hawking radiation to be discussed later) do have some

degree of symmetry, allowing us to define global conservation laws on spacetimes describing

such black holes. As we will see, these laws are essentially tied to a key property of these black

hole metrics: notably, it requires their time-independence.

For instance, the Schwarzschild metric describing the vacuum asymptotically flat exte-

rior of a non-rotating uncharged spherically symmetric black hole in Schwarzschild coordinates

(t, r, θ, ϕ) is given by:

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2θdϕ2) (4.7)

where M is the mass parameter and 2M is the Schwarzschild radius which determines the

event horizon. Importantly, M is constant in time here, i.e. a time-independent parameter.

(Schwarzschild 1916, 2) The metric components are independent of t and ϕ, and coordinate

transformations reveal two more spatial rotational symmetries. Together the Schwarzschild

metric has 4 associated Killing fields – one time-like and three space-like – resulting in global

conservation of both energy and angular momentum in the usual spatial directions. Note,

however, that the independence of the metric from the time-like coordinate also entails that
13See, also, Brown (forthcoming) who details the equal footing of both Noether’s theorem and its converse.

This suggests a strict two-way relationship between conservation laws and symmetries, though some technical
caveats apply.
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the metric never changes in time – it is static.

The Kerr metric, which describes the vacuum asymptotically flat exterior of a rotating

uncharged axially symmetric black hole, is given in Boyer-Lindquist coordinates (t, r, θ, ϕ) by:

ds2 = − ∆− a2sin2θ

ρ2
dt2 − 2a

2Mrsin2θ

ρ2
dtdϕ

+
ρ2

∆
dr2 +

(r2 + a2)2 − a2∆sin2θ

ρ2
sin2θdϕ2 + ρ2dθ2

(4.8)

where ∆ ≡ r2 − 2Mr + a2, ρ2 ≡ r2 + a2cos2θ, J is the angular momentum parameter and M

is again the mass parameter. The event horizons occur where ∆ = 0. Once more, by inspection,

we can see that the Kerr metric is independent of the time-like t as well as the space-like ϕ.

However, since the black hole is rotating, there is a privileged axis of rotation which rules out

the two other Killing fields associated with the spherically symmetric Schwarzschild black hole.

So the Kerr metric only have two Killing fields, one time-like and one space-like.14 As a result,

we have global conservation laws for energy and angular momentum (in one direction). Since

the Kerr metric involves rotation, it is not static unlike the Schwarzschild black hole which

describes absolutely no motion. Yet, as with the Schwarzschild metric, the time-independence

means that the Kerr metric is likewise not changing in time - such a metric is not static, but

nevertheless stationary.15 In what follows, for simplicity, I will use ‘stationarity’ to refer to

both staticity and stationarity as discussed here.

4.3 From Hawking radiation to black hole evaporation

With a grasp on what stationarity amounts to in the general relativistic context, let

us now examine how the idealization of quasi-stationarity is required for Hawking’s 1975

argument from the existence of Hawking radiation to black hole evaporation.

The key idea for Hawking radiation is that we can consider how quantum matter fields
14There is also a Killing tensor field, though I will not discuss it in this context.
15A generalized family of stationary metrics is the Kerr-Newman family of metrics, which also allows one to

discuss charged black holes.
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behave near a collapsing star as the latter forms a black hole and event horizon, and how this

behavior appears to observers during ‘late times’ at infinity, i.e. after the black hole has settled

into a stationary or static state. Hawking (1975) found that the stationary black hole horizon

can be interpreted as emitting radiation – and hence having a temperature T – proportional to

its surface gravity κ:

T =
κ

2π
(4.9)

This has been derived in a variety of ways.16 Hawking’s original calculations considered only

spherically symmetric collapse, though, as Wald (2001, 12) notes, the effect obtains for any

arbitrary gravitational collapse into a black hole. Note, however, that a common assumption

remains despite the myriad of generalizations available nowadays: the radiating black hole is

assumed stationary. (Wald 2001, 12). We’ll return to this in §4 and §5.

Let us assume that Hawking’s derivations establish that black holes can be thought

as emitting some amount of energy via Hawking radiation, and that this radiation can be

interpreted as the temperature of the black hole. Even so, these derivations do not yet amount

to an conclusive argument that black holes really have a temperature. As Wallace notes,

these derivations in of themselves do not suffice to establish that Hawking
radiation is fully analogous to ordinary thermal radiation, because they imply
nothing about whether a radiating black hole ultimately decreases in mass and,
thus, surface area. (2018, 11)

Ordinary thermodynamic objects lose energy and/or mass when radiating or losing energy to

their surroundings. Even supposing that black holes do radiate energy to their surroundings,

do they lose energy or mass as a result? In other words, do they evaporate? To complicate

things, Wallace also observes:

given that there is no robust local definition of gravitational energy and, relatedly,
no robust way to understand total energy as a sum of local energies, we cannot
simply appeal to a local conservation law to conclude that radiating black holes

16See e.g. Hawking (1974 and 1975), Wald (2001) or Carroll (2019).
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evaporate. (2018, 11)

Because there is no robust local notion of gravitational energy,17 we cannot appeal to the

existence of a locally conserved energy to support the argument for black hole evaporation

since gravitational energy is precisely what black holes – purely gravitational objects on the

classical relativistic understanding – are made of.

Another more pristine way to think about the non-local – global – nature of black hole

evaporation and Hawking radiation – especially in Hawking’s original 1975 derivation – is

that his calculation was explicitly semiclassical: that is, black holes are classically relativistic

objects, against which quantum fields interact. In this context, black hole event horizons are

defined simply as “the boundary of the causal past of future null infinity”. As Curiel explains:

The definition thus states in effect that a spacetime has a black hole if one can
divide the spacetime into two mutually exclusive, exhaustive regions of the
following kinds. The first, the exterior of the black hole, is characterized by the
fact that it is causally connected to a region one can think of as being ‘infinitely
far away’ from the interior of the spacetime; anything in that exterior region
can, in principle, escape to infinity. The second region, the interior of the black
hole, is characterized by the fact that once anything enters it, it must remain
there and cannot, not even in principle, escape to infinity, nor even causally
interact in any way with anything in the other region. The boundary between
these two regions is the event horizon.

As Curiel then puts in plain terms:

This definition is global in a strong and straightforward sense: The idea that
nothing can escape the interior of a black hole once it enters makes implicit
reference to all future time—the thing can never escape no matter how long it
tries. Thus, in order to know the location of the event horizon in spacetime, one
must know the entire structure of the spacetime, from start to finish, so to speak,
and all the way out to infinity. As a consequence, no local measurements one
can make can ever determine the location of an event horizon. (2019, 29)

Given that Hawking radiation – in Hawking’s original argument – essentially depends on

global structures such as the event horizon, local notions of energy (and their conservation)
17The most prominent proposal is the pseudotensor approach. For a recent proponent of this approach, see

Read (2020). For (what I think are successful) rejoinders and partial rejoinders, see Duerr (2019) and De Haro
(2022) respectively.
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cannot be operative here.

To my knowledge, though, many physicists rely implicitly or explicitly on some notion

of energy conservation when discussing the back-reaction of Hawking radiation on black holes.

A generic answer is that black holes lose energy when Hawking radiation occurs, because

Hawking radiation carries energy away to infinity. The assumption here is that energy is

conserved somehow, so that any change in energy must be compensated by a corresponding

change elsewhere. Hawking (1975) himself phrases the reasoning as follows:

[Hawking radiation] will give positive energy flux out across the event horizon
or, equivalently, a negative energy flux in across the event horizon. […] This
negative energy flux corresponding to the outgoing positive energy flux will
cause the area of the event horizon to decrease and so the black hole will not, in
fact, be in a stationary state. (1975, 219, emphasis mine)

The ‘equivalence’ here amounts to some reasoning relying on conservation of energy. Hawking

(1976) uses this reasoning more explicitly:

Because this radiation carries away energy, the black holes must presumably
lose mass and eventually disappear. (Hawking 1976, 2461)

Wald (2001) says the same:

Conservation of energy requires that an isolated black hole must lose mass in
order to compensate for the energy radiated to infinity by the Hawking process.
(2001, 16)

Carlip (2014, 20) simply equates the change of mass of a black hole to the power radiated by

the black hole:

dM

dt
= −ϵσT 4A (4.10)

where ϵ is the emissivity parameter, σ is the Stefan-Boltzmann constant, A is the area of the

black hole, and T is its temperature. The right-hand side is simply the Stefan-Boltzmann law

for the total power radiated by a black body over some surface area, but the claim that this

equates to the change in mass requires conservation reasoning.
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More recently, Carroll states:

Nevertheless, even in quantum mechanics we have conservation of energy
(in the sense, for example, of a conserved ADM mass in an asymptotically
flat spacetime). Hence, when Hawking radiation escapes to infinity, we may
safely conclude that it will carry energy away from the black hole, which must
therefore shrink in mass. (2019, 417)

Note that ADM (Arnowitt-Deser-Misner) mass is conserved (indeed, can only be defined)

in asymptotically flat spacetimes because of the asymptotic symmetries of said spacetime.18

Asymptotically flat spacetimes can be considered to have the symmetries of Minkowski space-

time (and can be described by the flat Minkowski metric) at spatial infinity, and these symmetries

allow for the existence of a time-like Killing field. This then gives us a global conservation law

for energy, from which we can, again, motivate black hole evaporation.19

How are we to interpret all these claims about the use of conservation of energy to

infer that black hole evaporation occurs, in light of the inability to employ a local conservation

law of energy for such contexts? It seems that the next natural option is to appeal to some

global conservation law for energy, akin to the one we’ve discussed above in §2 using Noether’s

theorem and global symmetries of certain spacetimes. Indeed, this is precisely what Hawking

does. He proposes that:

Although it is probably not meaningful to talk about the local energy-momentum
of the created particles [at or near the event horizon], one may still be able to
define the total energy flux over a suitably large surface. (1975, 216)

Of course, in this context, the ‘suitably large surface’ is the event horizon, and so, what Hawking

proposes is essentially this: instead of considering the conservation of local notions of energy

(e.g. over some worldline/local region of spacetime), we might still be able to talk about

global notions of energy (and how they are conserved). However, a naı̈ve appeal to the global

conservation of energy leads quickly to contradiction.
18Roughly speaking, we can define ADM mass as the total deviation of the actual spacetime metric from the

flat Minkowski metric. See Arnowitt, Deser and Misner (1962) for more details.
19I won’t discuss asymptotic flatness in this paper, as that will take us too far afield; the focus here is on the

justified use of quasi-stationarity as an idealization. In a follow-up paper, I assess whether asymptotic flatness
might face similar issues to the problems raised here for quasi-stationarity.
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4.4 A naı̈ve dilemma for black hole evaporation

Since Hawking’s argument for black hole evaporation is made in the semiclassical

context, the operative assumption is that the classical rules of general relativity hold. This

include rules for when a global conservation law exists, i.e. when a spacetime is stationary. (see

§2.) From a naı̈ve perspective, there is an underlying tension in the above discussions. Simply

put, situations where evaporation is expected to occur are precisely those where there is no

global conservation law for energy. On the contrary, situations where we can take there to be

a global conservation law for energy are those where evaporation is impossible. So from this

naı̈ve perspective, the argument for black hole evaporation cannot take off.

Let me reformulate the worry in the form of a dilemma. For any spacetime in which we

want to argue for the occurrence of black hole evaporation, we begin by noting that any such

spacetime is either stationary, or not. In other words, the metric for that spacetime is either

time-independent or not.

On the one hand, if the spacetime is stationary, then it has the appropriate Killing field

structure as we have already seen from §4.2. For example, the Kerr and Schwarzschild metrics

are time-independent and are associated with global time-like Killing fields. Yet, we have also

seen that stationary metrics are precisely those that do not change over time. Since they do not

change over time, the black hole being described by said metric does not change over time either.

This entails that black holes described by a stationary metric does not evaporate: evaporation

entails a change of mass over time (as Carlip (2014) puts it explicitly above), rendering mass a

time-dependent parameter. Since mass features in the metric, its time-dependence entails the

time-dependence of the metric. Black hole evaporation cannot occur for a black hole described

by a stationary metric.

On the other hand, if a spacetime is not stationary, then parameters of this spacetime –

such as mass – are allowed to be time-dependent. They can change over time and therefore we

can describe the evaporation of a black hole with such a metric. For instance, mass can be a
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parameter that depends on the time-like coordinate. A simple example discussed by Wallace

(2018) is the Vaidya spacetime, where the (retarded time) metric is:

ds2 = −(1− 2m(u)

r
)du2 − 2dudr + r2(dθ2 + sin2θdϕ2) (4.11)

which looks a lot like the Schwarzschild metric with a time-dependent mass parameter. However,

in these cases we do not have a global time-like Killing field for the spacetime in question. The

actual metric is time-dependent.

Spacetimes which allow for evaporation are precisely spacetimes that do not have global

conservation of energy due to the lack of a global time-like Killing field. Since there is no global

conservation law to rely on, we cannot simply assume the black hole experiences a loss of mass

or energy as compensation for the positive energy flux due to Hawking radiation. Put another

way, spacetimes which can accommodate evaporation are precisely those where we have no

justification for thinking that evaporation occurs.

The naive use of global conservation of energy thus leads us to a dilemma. On both

horns of the dilemma, we lack justification for believing in black hole evaporation.

4.4.1 Quasi-stationarity

Hawking (1975) himself was aware of this problem. Evaporation can only occur for

a non-stationary black hole. However, the black hole was assumed to be stationary in the

derivation of Hawking radiation. How can we reconcile the two? In response, he argues that

we can resolve this problem by employing the idealization of quasi-stationarity:

This negative energy flux will cause the area of the event horizon to decrease and
so the black hole will not, in fact, be in a stationary state. However, as long as
the mass of the black hole is large compared to the Planck mass 105 g, the rate of
evolution of the black hole will be very slow compared to the characteristic time
for light to cross the Schwarzschild radius. Thus, it is a reasonable approximation
to describe the black hole by a sequence of stationary solutions and to calculate
the rate of particle emission in each solution. (Hawking 1975, 219, emphasis mine)
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While we think that actual black holes will not be in a stationary state, we might think that

they approximately undergo a quasi-stationary process. Quasi-stationarity is the idealization

that a black hole changing over time can be approximated with a sequence of stationary (or

static) solutions. Here’s how an explicit rendition of Hawking’s defense might look like. We

start by accepting that the black hole (and spacetime) in question is actually time-dependent

and non-stationary. However, because its mass is changing so slowly in time when it has a

large mass relative to the Planck scale, we can assume that this time-dependent black hole

approximates a certain idealization – a sequence of time-independent stationary black holes that

can be said to be quasi-stationary. For each such stationary metric, there is global conservation

of energy associated with that solution. So we can derive Hawking radiation in this stationary

regime, and using conservation reasoning here, conclude that the energy of the black hole must

decrease.20 This is where we calculate the aforementioned ‘negative energy flux’.

This decrease, of course, cannot happen within any of the states in the sequence of

stationary black hole solutions which form the quasi-stationary process. Instead, we say that

this decrease applies to the actual time-dependent black hole for which evaporation can happen.

We do this by perturbing the mass parameter of the Schwarzschild metric ‘by hand’, bringing

it from one stationary state to another in a temporal sequence of stationary states. This is

the quasi-stationary process representing black hole evaporation. In short, we perform the

conservation reasoning in the idealized stationary regime but apply the results of this reasoning

to the target black hole being modeled.

4.5 Norton’s Impossible Process: Quasi-Staticity

As mentioned in the beginning of the paper, this move is reminiscent of one commonly

found in equilibrium thermodynamics. There, as is well-known, equilibrium states are those
20More concretely, Hawking argues that despite the non-uniqueness of defining local energy-momentum

operators (in the so-called ‘pseudotensor’ approaches to energy in general relativity), we can restrict attention
to those operators which both obey local conservation of energy (i.e. eq. 2) and are stationary with respect to
time-like Killing vectors, i.e. obey global conservation of energy. But time-like Killing vector fields are only
well-defined for stationary spacetimes, as we already saw in §4.2.
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whose thermodynamic parameters (e.g. volume, pressure, temperature, etc.) do not change with

time. That is, equilibrium states are time-independent states. Yet, thermodynamics frequently

make use of quasi-static processes consisting of sequences of these equilibrium states.21 For

instance, the famous Carnot cycle describing a system interacting with two heat baths with

differing temperatures can be described on a pressure-volume diagram, where each point is a

state with unchanging pressure and volume. (see Figure 4.1)

Figure 4.1. The typical Carnot cycle. The points on this graph are equilibrium – time-
independent – states.

In these cases, we are interested in systems which are really time-dependent. Typical

thermodynamic objects change over time: our cup of coffee cools down – and our mug of

beer warms up – over time. Nevertheless, if changes to these systems are slow and small

enough, they can be modeled by quasi-static processes, such that we can treat them as ef-

fectively time-independent at any point (or short interval) of time. We can then perform all

thermodynamic calculations in terms of this quasi-static idealization, while keeping in mind

that these calculations should really apply to the actual time-dependent system. This appears

to vindicate Hawking’s argument for black hole evaporation – we assume quasi-stationarity
21See, for instance, Carathéodory (1909, 366).
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for conservation reasoning, and then apply the fruits of this reasoning to the actual system,

which is just what we already do in classical thermodynamics.

Unfortunately, quasi-static processes in classical thermodynamics are not conceptually

innocent. By inspecting why they work for classical thermodynamics, we can see why the anal-

ogous use of quasi-stationarity in the case of Hawking’s argument for black hole evaporation

does not.

As Norton (2016) recently argued, quasi-static processes, too, come with their own

internal tensions. Quasi-static processes are constituted by sequences of equilibrium states,

each of which is approximated by an actual physical system at some time. These sequences are

meant to be sequences of states in time – curves on thermodynamic state space (e.g. Figure 1)

are parametrized by a time-like parameter. Furthermore, typical quasi-static processes describe

variations in equilibrium states. Figure 1, for instance, includes curves with varying volume and

pressure, although each point on these curves represents an equilibrium state. In other words,

we are supposed to envision changes to these equilibrium states over time. Yet, equilibrium

states do not change with time by definition. So on the face of it, quasi-static processes change

over time, but also do not change over time – an outright contradiction.

The correct way to interpret quasi-static processes, of course, is not to take them to be

actual processes with exactly those properties discussed above. Rather, Norton shows how

actual systems can undergo processes which are approximately (but never literally) quasi-static

processes. The distinction between approximation and idealization is a subtle one, though one

distinction was recently introduced by Norton (2012). An approximation is characterized by

being “an inexact description of a target system” which is , while an idealization is “a real or

fictitious system, distinct from the target system, some of whose properties provide an inexact

description of some aspects of the target system.” (Norton 2012, 209) Norton gives one simple

example of this distinction: that of a body of unit mass falling in a weakly resisting medium.

Its velocity v at time t is:
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dv

dt
= g − kv (4.12)

where g is the acceleration due to gravity and k is a coefficient representing friction. When

falling from rest at v = t = 0, its velocity can be expanded as:

v(t) =
g

k
(1− e−kt) = gt− gkt2

2
− gk2t3

6
− ... (4.13)

When there is low friction (i.e. k is small), the fall of the ball is almost exactly described by:

v(t) = gt (4.14)

In terms of Norton’s distinction, we can say that (14) inexactly describes the ball’s descent.

However, we can, in Norton’s terms, ‘promote’ this approximation to an idealization by having

(14) directly refer to a fictitious system, that of a ball falling in a vacuum such that k = 0.

Hence, (14) exactly describes such a system though the system need not exist (i.e. (14) is here an

idealization), while it only provides an inexact description when the system is not in vacuum

(i.e. (14) is here an approximation).

Using this distinction, we may understand quasi-static processes, taken literally, as

idealizations – they can only be fictitious systems since they are contradictory in nature. They

may be approximated by actual systems, of course, but since we are typically more interested

in the dynamical properties of these systems, the processes being approximated by quasi-

static processes will be time-dependent ones. Sets of these time-dependent processes may

come arbitrarily close to quasi-static processes by having vanishingly small driving forces

– differences in temperature, pressure or other thermodynamic parameters – but no actual

process ever has all the exact properties of quasi-static processes. We cannot simply ‘take the

limit’ and let the driving forces actually go to zero, for we have already seen how that leads to

contradiction. As Norton puts it:
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We have a sequence of [non-equilibrium] processes, each of which is slowed by
diminishing the driving forces. Each process carries the property of completing
a change, while requiring ever more time to do it. The limit of this property is
the property of completing a change. The limit approached by the processes
themselves, however, is no process at all. It is merely a static set of states in
equilibrium that no longer carry the limit property of completing the change.
(2016, 46)

Why, then, is the use of quasi-staticity still so widespread, despite the issues we have discussed?

This is because quasi-static processes do approximate actual processes, even though actual

processes are never exactly quasi-static. For large systems, the time-dependent driving forces

are so minuscule relative to the dynamics of the system that we may neglect them for all

practical purposes and model them (inexactly!) with quasi-static processes, though we must

remember that these systems are not undergoing quasi-static processes.

Real systems are simply undergoing time-dependent processes which are approximated

by quasi-static processes in an inexact fashion. Importantly, Norton shows how we may

recover key thermodynamic results about the efficiency of reversible heat engines, absolute

temperature, and the Clausius inequality for thermodynamics, by working purely with time-

dependent processes, without getting led astray in pathological cases like processes at the

molecular scale.22 All this is to say that the exact properties of quasi-staticity – of a system

literally experiencing change and no-change – are never essential to doing thermodynamics.

This is good news, since a system bearing the exact properties of quasi-staticity never exists,

being contradictory in nature.

4.5.1 Idealization & de-idealization

The key lesson of the foregoing is simple but important: we must not confuse properties

of the idealization with properties of the system approximating said idealization. Quasi-static

processes contains properties of change and no-change, but only at the limit of zero driving

force. Thankfully, it turns out that actual thermodynamic systems never have exactly those
22Due to space constraints, I will not rehearse Norton’s derivations here. See Norton (2016, §4) for detailed

analysis.
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properties, and thermodynamics does not essentially require those properties of quasi-staticity.

That’s why we may continue using quasi-static processes qua approximation.

The broad spirit of this lesson is neither new nor unique to Norton’s works. As McMullin

(1985) already wrote, idealizations are typically justified by a clear de-idealization process

demonstrating how we may remove the simplifications and distortions introduced in the

idealization in order to describe realistic systems. For instance, consider Bohr’s model of the

hydrogen atom: an idealization assuming a stationary and infinitely massive proton, with an

electron orbiting in a perfect circle – both assumptions which were known or suspected to be

false. As McMullin discusses, a de-idealization in this case might require the provision of a

more realistic model in which the proton could undergo motion, or the electron followed a

more general elliptical orbit. If we can show how this more realistic model might approximate

the idealized one, we may then justifiably continue to use the idealized Bohr model despite its

false assumptions provided we know when those approximations are good (relative to some

standard).

A kindred idea is explored by Fletcher (2020a) who discusses Duhem’s principle of

stability as an plausible epistemological principle in scientific modeling. Roughly, the principle

states that we are justified in inferring, from a model of some phenomenon, conclusions

about said phenomenon only if these conclusions remain approximately true of the actual

phenomenon when the modelling assumptions only approximately hold.23

This assumes, of course, that there is some way of describing how these modelling

assumptions approximately hold. In turn, the principle of stability dovetails with McMullin’s

discussions of de-idealization: if we can show that there exists some de-idealization procedure

for a model in question, we can show how this model approximates some target system despite

its idealized and false assumptions. This then takes us some ways towards a justification for

using the model to make inferences about the world. Conversely, though, if we cannot show

how the model approximates a target system and relevant results from the model about the
23For more detailed discussion, see Fletcher (2020a).
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target system essentially turn on the model’s idealized assumptions, then we are not justified

in making conclusions about real-world phenomena from said model.

In the case discussed above, quasi-static processes are idealizations but they can also be

adequately de-idealized: Norton tells us how they approximate actual non-quasi-static processes

with non-vanishing driving forces. Hence, while quasi-static processes qua idealizations are

useful tools, they are not essential to the description of realistic systems – as Norton shows,

there is always a de-idealization procedure available in principle.

This consideration of whether a property of an idealized system is essential to the

description of actual systems approximating said idealization has already been much discussed

in the literature on the philosophy of thermodynamics. Concerning the physics of phase

transitions, Callender (2001), Butterfield (2011), Menon and Callender (2013) and Palacios

(2019) have all argued that the idealization of a system exactly at the thermodynamic limit

is not essential to the understanding of phase transitions, and so the phenomenon of phase

transitions does not require the actual existence of an idealized system (in this case, a system at

the thermodynamic limit with infinite number of particles). Again, a de-idealization procedure

is available. This is good news, because real systems undergoing phase transitions are finite and

never have the exact (infinite) properties of the idealization. Likewise, as we have seen for the

case of quasi-staticity and thermodynamics, quasi-staticity is not essential to thermodynamics.

Actual processes are never quasi-static, though they might approximate certain features of

quasi-static processes.

4.6 Quasi-stationarity and (the lack of) de-idealization

So how does the above discussion bear on quasi-stationarity? To start, the same issue

with quasi-static processes arises here for quasi-stationary processes: real black holes cannot

literally be undergoing quasi-stationary processes. Quasi-stationary processes do not refer

to actual processes since black holes (or any process) cannot be both time-independent and
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time-dependent. (See §4.4.) As such, quasi-stationarity is an idealization. At best, a system may

be inexactly described – approximated – by quasi-stationary processes.

We may then ask: is there a de-idealization procedure by which black holes are ap-

proximated by quasi-stationary processes, similar to what Norton has done? Furthermore, can

this procedure give us something like the global conservation of energy without essentially

requiring the limit property of quasi-stationarity – of change and no-change at once? This will

depend on what the idealization is being used for, so that we can know what properties of the

idealization are being employed.

In the remainder of this section, I argue that Hawking’s 1975 use of the quasi-stationary

idealization remains unjustified, because in this context there is no clear de-idealization pro-

cedure for the specific property of quasi-stationary processes being employed by Hawking’s

argument: the global conservation of energy. The idealization of quasi-stationarity, just like

the idealization of quasi-staticity, cannot always be assumed to be applicable but requires an

appropriate justification via de-idealization. In this context, the appropriate de-idealization

procedure will tell us how a real system approximates the property of possessing a globally

conserved energy. This will require us to show how a realistic spacetime approximates the

structure of global time-like Killing fields, with which one may justify the claim that energy is

‘approximately globally conserved’. If we can do so, then the argument for black hole evap-

oration from quasi-stationarity can begin to take off without essentially depending on the

idealization of quasi-stationarity.

It seems to me, however, that there is no clear de-idealization procedure for the property

of global conservation of energy in quasi-stationary processes. Specifically, I will argue that

there is a conceptual difficulty in understanding just in what sense a spacetime approximately

has a time-like Killing field (or Killing field in general), in stark contrast to the case of vanishing

driving forces approximating quasi-staticity. Yet this seems to be exactly what we need in

order to discuss approximate conservation, given the relationship between Killing fields and

conservation laws I’ve sketched in §2.
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To start off, there is a general worry against the very idea of approximate Killing fields,

simply because of the nature of general relativity: there is no fixed maximally symmetric back-

ground spacetime structure against which we have a canonical way of considering deviations

from symmetry, i.e. ‘how close’ a spacetime is to being symmetric.24 For example, there is

a natural way in which one can consider deviation from symmetry in Newtonian spacetime

(e.g. in terms of asphericity and almost rigid fields). Since Newtonian spacetime is maximally

symmetric, flat, and non-dynamical, it provides a fixed background – akin to a spacetime ruler

– against which we may measure deviations and closeness to symmetry. However, there is

generally no such fixed background in general relativity with which we can construct such a

canonical metric of closeness. Prima facie, this should warn us against hoping for too much

when it comes to seeking approximate Killing fields.

Building on this foundational conceptual worry, and related to this lack of a ‘spacetime

ruler’, are three prominent problems related to various attempts at constructing approximate

Killing fields.25

Problem 1: ‘closest’ does not mean ‘close’. These procedures typically provide no

clear way to understand how ‘close’ a given vector field is to a Killing field, only that said vector

field is, in fact, the closest. This means there is no clear way to understand the deviation from

symmetry, and hence evaluate the accuracy of any claims about approximate conservation

we might want to make. The fact that the closest In-N-Out burger place to me is in California

(as I write from Southeast Asia) is no comfort, for there is no reasonable scale in which it is,

in fact, close to me. The situation is worse here, since there isn’t even a way to appropriately

characterize the ‘closeness’ of a given vector field to a Killing field, unlike a ruler (or its ilk)

for the distance between me and the nearest In-N-Out. Without such a notion of ‘distance’,
24For a cognate discussion, see Fletcher (2014).
25Fletcher (2020b) has recently provided an account of how spacetimes might locally approximately possess

certain spacetime symmetries, though Fletcher acknowledges that this account does not extend yet to the global
case. Since we are concerned here precisely with what an approximately global symmetry and its associated
conserved quantity – time-independence and a globally conserved energy – would look like, that account does
not suffice quite yet. But I leave open – and welcome – the possibility of future developments.
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it’s not clear to me how one can understand the ‘approximation’ relation, since discussions of

approximate symmetry typically employ some such distance function or at least some similarity

relation.26

Many extant procedures seek to find the ‘next best thing’ to Killing fields by some

generalization of Killing’s equation, which, if we recall, is:

∇νξµ +∇µξν = 0 (4.15)

As mentioned in §4.2, a Killing field satisfies this equation. However, for spacetimes without

Killing fields, the equation generally has no nontrivial solutions. (Matzner 1968, 1657) Instead,

these procedures try to find generalized equations to which a Killing field is but one of many

solutions. This is supposed to justify the other solutions as suitable generalizations of Killing

fields, insofar as they belong to the same class of solutions. For instance, Beetle & Wilder (2014)

employs an Euler-Lagrange equation of the form

∆Ku
β = κuu

β (4.16)

where what they term the ”Killing Laplacian” operator ∆K is defined as:

∆Ku
β := −2δ(βγ g

λ)ν∇λ∇νu
γ (4.17)

Here, uβ are vector field solutions to the equation with corresponding eigenvalues κu. As

they note, Matzner (1968) employs a similar method (though in a slightly different form). This

procedure simply defines the ‘most’ approximate Killing field for any given metric to be the

vector field solution with the smallest κu greater than zero. (The solution with a vanishing

eigenvalue corresponds to an actual Killing field.)

However, the problem is that this procedure fails to provide physical meaning to ‘how
26See Rosen (2008) for discussion of this distance function understood as a pseudometric, and Fletcher (2021)

for more recent discussion.
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close’ these generalized fields are to Killing fields. As Matzner (1968, 1657) notes, ”we do not

have to assume the deviation from symmetry is small” when we are looking for the vector

field which best approximates a Killing field. In other words, the most approximate vector field

need not be close to being a Killing field at all. The approach simply finds a discrete spectrum

of eigenvalues (and associated vectors), each increasingly ‘further’ away from being a Killing

field. By stipulation, we pick the lowest non-zero eigenvalue and its associated vector field

as the most approximate Killing field. Yet, it is not exactly clear in what sense these vector

fields are ‘close’ to Killing fields, beyond the fact that these fields become Killing fields when

their associated eigenvalues vanish. Along what dimension are these fields becoming ‘closer’

to being Killing fields, and how are we to understand this sort of ‘distance’? In approximating

quasi-static processes with systems possessing small driving forces, we can see how the size of

the driving forces dictate the deviation from quasi-staticity. What does the ordering of these

generalized vector fields mean here?

As Chua & Callender observe (in the context of deriving time from no-time in quantum

gravity): “at the level of pure math, one can ‘derive’ virtually any equation from any other if

one is allowed to assume anything. It makes no sense to say that one equation or quantity

is “close” to another absent a metric.” (2021, 1176) I think the same is precisely going on here.

The approach in question does not provide a physical interpretation of this ordinal ordering of

eigenvalues and associated vector fields. The only anchor is the formal fact that the Killing

vector field appears as a solution of this more general class of equations, but what does this

generalization amount to? Without a convincing story, it remains unclear what it means for a

time-dependent physical system, like a black hole, to approximate a spacetime with a Killing

field. All we know is that this field is not Killing, and that we can define a vector field on it

which ‘best’ captures the properties of a Killing field. But is ‘best’ enough? Even if it does

generate some vector field that is ‘close’ to Killing, it is still not clear how this is supposed to

approximate a Killing field because we are not given a clear understanding of ‘closeness’.

A different approach by Cook & Whiting (2007), adopted in some form by Lovelace et
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al (2008), has the same problem. This approach compares general vector fields to Killing vector

fields on 2-spheres and identifies

SijS
ij = (∇µ∇νv)(∇µ∇νv)− 1

2
(∇α∇αv)

2 (4.18)

as a term which vanishes if said vector field satisfies the Killing equation (4.15).27 They then

represent how ‘far’ a vector field is from a Killing field by understanding SijS
ij as an ‘error’

term and attempting to extremize SijS
ij . However, again, their approach only guarantees that

SijS
ij is “as close to zero as possible” (Cook & Whiting 2007, 2), but does not provide a clear

sense of how close it actually is to a Killing field, and what the meaning of closeness in terms

of Sij amounts to physically. They admit that the usefulness of their results for an approximate

Killing vector depends on the extent to which a physically meaningful story can be provided for

them “since a Killing vector cannot be produced where one does not exist.” (2007, 4) However,

they crucially do not provide this story themselves. Yet, a physically meaningful sense in which

the Sij term represents ‘approximation to a Killing field’ seems to be exactly what we need

here in the present discussion.

Another popular approach discussed by Bona et al (2005) faces the same problem. There

is no clear metric for assessing how ‘close’ a given vector field is to being a Killing vector field.

Bona et al employs yet another generalization of Killing vector fields via what they call the

‘almost-Killing’ equation. This equation generalizes from the Killing equation by showing that

solutions to the Killing equation are also solutions to the almost-Killing equation. Bona et al

derives a “wave equation” of the following form:

□ξµ +Rµνξ
ν + (1− λ)∇µ(∇ · ξ) = 0 (4.19)

where □ denotes the d’Alembertian operator, Rµν is a Ricci term, and λ is a free parameter.
27Here, v is a scalar field constructed by Cook & Whiting from the decomposition of a general vector field on

2-spheres.
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They then show that, if ξα is a Killing vector, then it satisfies (4.19). This provides motivation to

take (4.19) as the generalization of Killing’s equation. However, essentially the same problem as

the earlier approaches arises here. As Feng et al (2019, 5) point out, vector fields which satisfies

the almost-Killing equation need not be in any meaningful sense ‘close’ to being Killing vector

fields. Notably, Feng et al observes that any transverse-traceless tensor Qµν of the following

form

Qµν :=
1

2
(∇µξν +∇νξµ) (4.20)

satisfies the almost-Killing equation. Of course, when Qµν = 0, that is equivalent to saying

that the vector field ξν satisfies the Killing equation since Qµν = 0 is equivalent to the Killing

equation (sans a factor of 1
2
). However, as they point out, Qµν need not vanish, and indeed “the

components of [Qµν] need not be small.” (Feng et al 2019, 5) Driving home the point I have

been making so far, Feng et al go on remark that “the term ‘almost Killing’ is somewhat of a

misnomer” because it’s not guaranteed to be almost Killing at all. As with the other approaches

I have examined so far, this approach, too, fails to provide a clear sense in which the solutions

to these ‘generalized’ Killing fields actually approximate Killing fields.

In short, the first problem is that these approaches fail to provide a physically compelling

story for what it means for this myriad of proposed vector fields to approximate a Killing field,

and hence how one might go about de-idealizing the notion of a globally conserved energy.

Given the lack of a ‘spacetime ruler’ with which to provide a canonical measure of ‘distance

from symmetry’, such a problem might be unsurprising: if there’s no canonical measure of

‘almost-symmetric’ in general, then it might be moot to hope for a clear meaning to the claim

that something is ‘almost-Killing’.

Problem 2: no guarantee of time-like Killing fields. Many of these procedures for

obtaining approximate Killing fields do not guarantee that we can obtain an approximately
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time-like Killing field, only that we can obtain some approximately Killing fields.28 This means

these procedures typically do not tell us how close a spacetime is to having a time-like Killing

field, but only how close a spacetime is to having some Killing field at all. Note, then, that on

these procedures a spacetime may not turn out to have anything approximating a time-like

Killing vector field at all! These procedures do not necessarily help us de-idealize away from

a spacetime with a time-like Killing field to a spacetime with some approximate time-like

Killing field, but only to a spacetime with some Killing field. This, however, is of no help when

our goal is to find a de-idealization procedure for the energy conservation of a realistic black

hole, in terms of an approximate time-like Killing field. What we seek here is a story for how

any spacetime approximates one with energy conservation, not just one with any conserved

quantity.

Problem 3: overly stringent assumptions. Many approximation procedures tend to

feature strong assumptions which may not be realistic. As mentioned, one can derive almost

anything from anything else if we assumed strong enough assumptions, but “approximations

require physical justification.” (Chua & Callender 2021, 1176) For instance, Matzner’s (and

Beetle & Wilder’s) procedure requires the assumption that spacetime be compact. This is a

very strong assumption. For one, an arbitrary spacetime can very well be unbounded and

infinite, instead of compact, and it is in fact unclear whether our universe is in fact one or the

other. Furthermore, a result due to Geroch (1967) suggests that any compact spacetime admits

closed timelike curves.29 It seems odd that one may only approximate Killing fields in compact

spacetimes and not otherwise, given that we may very well live in non-compact spacetimes.

As such, these procedures may be lacking in realism, and may not even be applicable to the

actual world, in terms of which de-idealization would take place.

Another assumption that frequently shows up is some variant of an assumption of

asymptotic flatness. For instance, Matzner’s procedure can do without the compactness assump-
28See, for instance, Matzner (1968), Cook & Whiting (2007), Lovelace et al (2008) and Beetle & Wilder (2014).
29See e.g. Manchak (2013) for discussion of compactness.
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tion, if one demands that certain terms of the class of vector fields in consideration vanish “at

infinity”, which amounts to some assumption of asymptotic flatness. (Matzner 1968, 1658) It also

shows up as an assumption in the almost-Killing equation approach as one way to avoid some

scathing problems with the approach. As Feng et al (2019) shows, a Hamiltonian analysis of the

almost-Killing equation reveals that the Hamiltonian for this equation is generally unbounded

from below. As they explain, “an unbounded Hamiltonian generally signals the presence of

runaway instabilities, which can potentially drive solutions far from the Killing condition.”

(2019, 2) This means that the almost-Killing equation approach may generate approximate

Killing fields which are not close to Killing at all. This returns us to the first problem.

Feng et al argues that we can avoid this problem for the almost-Killing approach if we

assume a vacuum spacetime (for which we can motivate a specific choice of initial conditions,

dynamical conditions, and λ parameter, hence obtaining a positive-definite Hamiltonian), or

if we impose asymptotic flatness as a condition on the spacetime in consideration. (Feng et

al 2019, 8) The former does not model any realistic spacetime and does not help us in our

de-idealizing. What of the latter? Contrary to the earlier-discussed assumption of compactness,

asymptotic flatness is not quite as controversial given its use in much of black hole physics. As

such, it seems like a fairly tame assumption. However, I think that any procedure that requires

the property of asymptotic flatness only passes the buck: we must then provide an account of

whether we can de-idealize that.30

To sum up, the extant procedures I have examined face three problems. Firstly, and

most problematically, there is generally no sense in which a proposed approximate vector

field is ‘close’ to a Killing field. Secondly, even modulo the first problem, we are not always

guaranteed a time-like Killing field. Finally, some of these procedures involve strong and

possibly unrealistic assumptions. This complicates the search for a de-idealization procedure

away from quasi-stationary spacetime, by preventing us from stating just how we are supposed
30For reasons to do with the above, I think that de-idealizing asymptotic flatness will be equally challenging.

Questions for approximate Killing fields become questions for approximate asymptotic Killing fields. However, as
mentioned in the beginning, I will not engage with asymptotic flatness here – I leave it for future work.
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to de-idealize the properties of a Killing field, found only in stationary spacetimes, for non-

stationary spacetimes. Granted, I have not proven a negative existential claim here: there

could very well be a satisfactory procedure in the future. Nevertheless, the above concerns

provide strong reasons to be concerned that Hawking’s argument for black hole evaporation

might be lacking justification, insofar as we cannot explicate what it means for there to be an

approximately globally conserved energy via approximate Killing fields.

Taken together with the general worry that there is not a canonical measure of ‘deviation

from symmetry’ above, these problems should pose a significant challenge to anyone looking

for an adequate de-idealization procedure by appealing to approximate global conservation of

energy via approximate Killing fields.

Barring such a de-idealization procedure, it seems that Hawking’s move (from §4.4.1),

which seeks to employ the global conservation of energy in a quasi-stationary process to argue

for black hole evaporation, essentially needs the idealization of quasi-stationarity, in which

a time-dependent system has time-independent properties, viz. that of having a conserved

energy. We don’t yet have a clear sense of what it means for realistic spacetimes to approximate

such a property. From the perspective of Duhem’s principle of stability, we lack justification

in employing such arguments when discussing realistic systems in our actual world, since

we have yet to find a way to understand what it means for a black hole to be approximated

by a quasi-stationary process such that vector fields in a non-idealized black hole spacetime

approximates Killing fields. Hence, we cannot yet make the argument for black hole evaporation

without relying on the existence of a time-like Killing field and associated global conservation

of energy. However, since this argument for black hole evaporation essentially requires both

time-dependence and time-independence, it can only be described by a process that has both

properties. In other words, it can only be described by an idealized quasi-stationary process,

but such processes do not exist on pains of contradiction.

As such, Hawking’s argument for black hole evaporation from quasi-stationarity cannot

take off yet sans an appropriate de-idealization procedure.
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4.7 Quasi-Stationarity for the Sun

So far, I have argued that quasi-stationarity isn’t always justified: at least for Hawk-

ing’s argument, its use is unjustified because the argument depends essentially on a specific

limit property of quasi-stationary processes for which no de-idealization is available: global

conservation of energy for a dynamical black hole.

However, this is not to say that quasi-stationarity is never justified. Consider one case:

using the quasi-stationary idealization for modeling the Sun despite its dynamical nature. This

is sometimes called the standard solar model (SSM), and is generally held to be one of our best

references in astrophysics. (Turck-Chièze 2016) On this picture, “the star is spherical, described

by a succession of hydrostatic equilibria, and without effects of rotation and magnetic field.”

(Turck-Chièze & Couvidat 2011, 8) In other words, the Sun (or stars in general) is idealized as

undergoing a quasi-stationary process – going through sequences of stationary states. The

ingredients in this model include the following:

1. The Sun is assumed to be in hydrostatic equilibrium: the ‘outward’ radiative and particle

pressures exactly counteracts the ‘inward’ pull of gravity.

2. Energy transport in and on the Sun is solely by photons or convective motions (and

hence ignoring gravitational effects).

3. Energy generation in the Sun is solely via nuclear reactions.

4. The abundance of elements in the interior of the Sun is due solely to nuclear reactions

(ignoring, again, gravitational effects because “they are estimated to be small over the

lifetime of the Sun”).

This model can then be used to predict neutrino fluxes from the Sun, the abundance of certain

elements on it, or estimate the age of the Sun by fitting the model with the current parameters

of the Sun (e.g. luminosity, radius).
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One might worry that the issues I have raised about quasi-stationarity – that it is a

literally impossible process – for Hawking’s argument for black hole evaporation might ‘infect’

other parts of astrophysics. After all, we know that the Sun is not stationary or actually in

equilibrium. So are we likewise unjustified in modelling the Sun with quasi-stationary processes

via the SSM, e.g. to assume the conservation of energy on the Sun? This would amount to a

reductio ad absurdum of my argument, since we do think we are justified in modelling the Sun

with quasi-stationary processes such as in the SSM.

However, I think my worries can be suitably quarantined to Hawking’s argument

for black hole evaporation and, hence, do not render standard usage of this quasi-stationary

idealization, e.g. for the Sun via the SSM, unjustified.

The crucial difference is this: in the case of the SSM and the Sun, typical arguments using

the model do not essentially depend on global conservation of energy. When the conservation

of energy is used in the model for making predictions about neutrino fluxes or the abundance

of certain elements, it is in local processes par excellence: process concerning nuclear reactions

or energy transport by photons or convective motion. Indeed, these are precisely the sort of

processes which are “determinable by local observations of phenomena of the sort that are the

bread and butter of astrophysics.” (Curiel 2019, 28) They do not appeal to global space-time

structures such as the event horizon. But conservation of energy for local processes always

holds in general relativity, even away from highly symmetric models of spacetime such as

stationary solutions. De-idealization away from the SSM, by treating the Sun as dynamical and

out of (but close to) equilibrium, adding in magnetic fields or rotation,31 for example, does not

require us to provide a de-idealization of the global conservation of energy, since standard uses

of these models do not require global conservation of energy. In other words, the de-idealization

of the SSM, for its standard uses, does not run into the problem with approximate Killing fields

contrary to the case of Hawking’s argument for black hole evaporation. The limit property of
31See Turck-Chièze & Couvidat 2011 and their ‘seismic solar model’ for a concrete examples of how such

de-idealizations might work out.
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quasi-stationary processes – global conservation of energy for a dynamical system – is not

required nor essential to discussing the Sun, since the SSM can be de-idealized without appeal

to global conservation of energy.

On the contrary, we’ve seen how Hawking’s argument for black hole evaporation

essentially relies on the global conservation of energy, since calculations about Hawking

radiation in the black hole context must rely on global structures such as the event horizon for

which there is no feasible local notion (and hence no local conservation law), as noted in §4.3.

The crucial – if obvious – point here is that the very same idealization can be justified in one

case and not in another, depending on the properties of the idealization we are using to make

inferences about the system being modeled.

4.8 Conclusion

Summing up, I have argued that a widely used idealization for black hole physics –

quasi-stationarity – shares much in common with quasi-static processes: both are literally

‘impossible processes’. To my knowledge, no one has made this connection between the two

idealizations. Crucially, this means that the justified use of these idealizations cannot be taken

for granted. A story for why we are allowed to use such idealizations to model realistic systems

must be provided, especially in the case of black hole physics and Hawking radiation where we

do not even have empirical evidence against which our models can be calibrated or evaluated. In

most other cases, this story can be available in principle, but in the case of Hawking’s argument

for black hole evaporation, no clear procedure is at hand yet for de-idealizing a property of

quasi-stationary processes required for the argument – a globally conserved energy – and so

the argument is not yet justified.

Importantly, this does not mean that the idealization of quasi-stationarity can never be

used in a justified manner. As I have attempted to show for the case of the Sun and the SSM, the

use of quasi-stationarity might still be justified if such usage does not rely on limit properties of
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the quasi-stationary idealization such as global conservation of energy for a dynamical system.

The main uses of the SSM depend on local processes within the Sun, and does not depend

essentially on global conservation of energy. Hence, my criticisms of Hawking’s argument

does not infect other uses of quasi-stationarity per se, and can be quarantined to uses of this

idealization which depend essentially on its limit properties.

More generally, the foregoing emphasizes the need to be careful in employing ide-

alizations in physics and elsewhere; the use of any idealization in making inferences about

the world must be ‘checked’ depending on what we want to use it for, and what properties

of the idealization are being utilized. At the very least, we should have a story for how this

idealization can approximate reality in some concrete sense – a de-idealization procedure. This

runs counter to recent proclamations by philosophers who argue that idealizations are and

should go ‘unchecked’: the risk of not ‘checking’ one’s use of idealizations is that one risks

being lost in the idealized model with no anchor to reality.32

32See e.g. Potochnik (2017).
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Chapter 5

The Time in Thermal Time

5.1 Preamble: the problem of time

In the Hamiltonian approach to quantum gravity, we formulate general relativity in

Hamiltonian form with appropriate constraints and quantize – just as we obtained quantum

mechanics from classical mechanics. However, dramatically, the resulting Wheeler-DeWitt

equation appears absent of dynamical evolution. Schematically:

Ĥ|Ψ⟩ = 0 (5.1)

where Ĥ is the Hamiltonian operator, and |Ψ⟩ is the quantum state associated with the wave-

function(-al) Ψ representing both matter content and geometry in the universe. Importantly,

the geometries here are not 4-dimensional objects, but 3-dimensional spatial slices.

While the usual Schrödinger equation

Ĥ|Ψ⟩ = iℏ
∂|Ψ⟩
∂t

(5.2)

describes time-evolution of |Ψ⟩, the Wheeler-DeWitt equation – its quantum gravity analogue

– does not. Time ‘disappears’. Assuming this equation describes the fundamental state of affairs,

the ontology of quantum gravity appears fundamentally timeless: the fundamental ontology –

what there ultimately is – contains no reference to time or concepts depending on time. Yet, it
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seems manifest that our familiar physical systems are – or at least appears to be – evolving

in time. We are therefore confronted with the problem of recovering time-evolution from

fundamentally timeless ontology: the problem of time.1

Decades of research have ensued, with many attempts to solve, resolve, or dissolve the

problem of time. Here, I assess one such proposal: the thermal time hypothesis, due originally

to Connes & Rovelli (1994). In their own words:

A radical solution to this problem […of this absence of a fundamental physical
time at the … generally covariant level…] is based on the idea that one can
extend the notion of time flow to generally covariant theories, but this flow
depends on the thermal state of the system … the notion of time flow extends
naturally to generally covariant theory, provided that:

1. we interpret the time flow as a one-parameter group of automorphisms of
the observable algebra (generalized Heisenberg picture);

2. we ascribe the temporal properties of the flow to thermodynamical causes,
and therefore we tie the definition of time to thermodynamics and

3. we take seriously the idea that in a generally covariant context the notion
of time is not state-independent, as in non-relativistic physics, but rather
depends on the state in which the system is in. (Connes & Rovelli 1994, 2901,
emphasis mine)

I take these to be core tenets of the thermal time hypothesis: despite the problem of time

and timeless context, time can emerge due to thermodynamic origins. In particular, if we can

find systems in special thermodynamic states within the fundamentally timeless ontology –

Kubo-Martin-Schwinger (KMS) thermal states – then the proposal comes in three parts: first, we

use these states to define a privileged one-parameter group of automorphisms given a certain

algebraic structure, second, we interpret this group dynamically as a bona fide time parameter,

and third, we explain this in terms of thermodynamic considerations. This seems to me to be

the natural reading of this hypothesis.2

1This is actually just one of many problems of time. See Kuchar (1991), Isham (1993), Kuchar (2011), Anderson
(2017), or Thébault (2021).

2Rovelli (personal correspondence) has since distanced himself from this stronger hypothesis, suggesting that
it merely provides analysis of ‘timely’ notions associated with thermodynamics, but doesn’t define time using
thermodynamics. Importantly, he claims that the hypothesis already assumes that some notion of time (perhaps
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Prima facie, the thermal time hypothesis is an elegant solution to the problem of time.

It’s commonly accepted that systems are in thermal equilibrium if certain thermodynamic

parameters are unchanging over time, but the hypothesis reverses this observation by proposing

instead that the time parameter defined by systems in states of thermal equilibrium (thermal

states) – specifically, states satisfying the KMS condition. Furthermore, every state of interest

uniquely picks out some such parameter. This offers an attractive solution to the problem of

time requiring only thermodynamic reasoning: if we can find systems in thermal states within

the fundamentally timeless ontology, we recover (thermal) time. This makes the hypothesis

worthy of investigation in itself.

To my knowledge, philosophers of physics have not dedicated much attention to the

hypothesis, beyond Swanson (2014 ch. 5, and 2021).3 Thus, I hope to fill this lacuna. While

Swanson (2021) focuses largely on technical issues with the thermal time hypothesis, I focus

on two major conceptual issues. As such, I hope my discussion can complement Swanson’s,

and generate more interest in the thermal time hypothesis as a solution to the problem of time.

In what follows, I argue that the thermal time hypothesis falls short of solving the

problem of time: it’s either circular or remains yet unjustified in its derivation of time from

no-time through thermodynamic considerations. I’ll press my concerns ‘from above’ and ‘from

below’: from thermodynamic considerations, and from fundamental considerations about the

algebraic structure itself.

From ‘above’, the parameter – specifically, the parameter featuring in the one-parameter

group of automorphisms – with respect to which statistical states satisfy the KMS condition

cannot always be justifiably interpreted as time because it need not align with the system’s

actual dynamics. Justifying the alignment requires already grasping and identifying systems

in thermal equilibrium. However, there appears to be no adequate definition for thermal

defined via relational clocks) is defined. This weaker thermal time hypothesis does avoid the conceptual problems
I’ll raise. However, it’s contrary to a natural reading of the above passage. I’ll set this weaker thermal time
hypothesis aside – it already assumes some (presently absent) resolution of the problem of time by assuming that
time can be defined.

3Earman (2011, fn. 6) notes that “a discussion of this fascinating proposal will be reserved for another occasion.”
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equilibrium that doesn’t depend on time.

From ‘below’, an appropriate physical interpretation of the algebraic structure – nec-

essary for understanding thermal states – requires time in at least two ways: First, the way

one typically interprets expectation values in statistical mechanics, in connecting fundamental

physics to thermodynamics, requires an understanding of fluctuation. Second, the property

of unitarity is baked into the algebraic structure used to justify the interpretation of some

parameter as thermal time. However, I argue that both notions of fluctuation and unitarity

require a background notion of time to acquire physical meaning.

In closing, I discuss a generalization of the thermal time proposal, the modular time

hypothesis: what if we jettison thermodynamics and appeal directly to the algebraic structure

of quantum physics? I argue that similar problems ‘from below’ persist, even if problems ‘from

above’ disappear. The thermal time hypothesis must address these formidable problems before

it can be a plausible solution to the problem of time.

5.2 The time from thermal time

To understand the thermal time hypothesis, I’ll first introduce the technical machinery

in terms of which the hypothesis is cast.

5.2.1 The Heisenberg picture

The thermal time hypothesis is cast in terms of the Heisenberg picture of quantum

mechanics. In standard physics, the Heisenberg picture takes states |Ψ⟩ in Hilbert space H to

be time-independent. What evolves unitarily over time are the time-dependent observables

O – representing measurement outcomes of physical quantities one might make on systems

– which are represented by self-adjoint linear operators A ∈ A acting on H. However, the

physical interpretation of A is similar to those in the Schrödinger picture: they are the possible
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(measurement outcomes for) physical quantities attributable to systems at a time.4

A evolves unitarily in accordance with the Heisenberg equation of motion:

∂A

∂t
=
i

ℏ
[H,A] (5.3)

and:

A(t) = U †(t)A(0)U(t) (5.4)

where U(t) = e−iHt/ℏ is the unitary operator, [·, ·] is the commutator defined as [A,B] =

AB −BA, and H is the Hamiltonian operator.

5.2.2 C∗ algebra: from abstract to concrete

The Heisenberg picture lends naturally to an algebraic interpretation of quantum me-

chanics. The structure of how A can act on H can be understood in terms of abstract algebra:

it’s a non-commutative C∗ algebra, specifically, a von Neumann algebra.5 Furthermore, this

abstract algebraic structure of C∗ algebras can be represented in terms of the familiar Hilbert

space structure as corresponding concrete C∗ algebras.

Given an abstract C∗ algebra C,6 one can define states ω over C: bounded, normalized,

positive linear functionals such that

ω : C → C (5.5)

Given that it’s normalized and positive, we may also understand ω(C) as assigning expectation

values to the elements of C, the physical quantities A. (I return to this point in §5.3.2.)
4In generally covariant contexts, Rovelli & Smerlak (2011, 6) suggests: “in quantum gravity the pure states can

be given by the solutions of the Wheeler-DeWitt equation, and observables by self-adjoint operators on a Hilbert
space defined by these solutions.” Of course, such a Hilbert space remains elusive.

5For technical exposition, see Bratteli & Robinson (1987 and 1997). For exposition targeted at philosophical
audiences, see Ruetsche (2011a, Ch. 4).

6An abstract C∗ algebra is a set C of elements – such as the observables we are interested in – which
satisfies various formal properties: it’s closed under addition, scalar multiplication, (non-commutative) operator
multiplication, involution operation ∗, and equipped with a norm || || satisfying ||A∗A|| = ||A||2 and ||AB|| ≤
||A|| ||B|| for all A,B ∈ C.
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Now we connect these abstract notions to concrete physics in terms of Hilbert space

structure: this means finding concrete counterparts to the algebraic structure and states via

what is called a representation. Notably, for each ω on C, the Gelfand-Naimark-Segal (GNS)

construction provides a representation πω(C) of C in some Hilbert space Hω.7 Within Hω, we

are provided with a cyclic and separating vector |Ψω⟩ ∈ Hω such that:8

ω(A) = ⟨Ψω|π(A)|Ψω⟩ (5.6)

In Ruetsche’s words, “the expectation value the state ω assigns the algebraic element A is

duplicated by the expectation value the vector |Ψω⟩ assigns to the Hilbert space operator π(A)”.

(2011a, 92) This shows that every abstract ω has concrete counterparts as operators on H.

Furthermore, one can always find states which guarantee a faithful representation; these are

faithful states.9 Roughly, faithful representations preserve the abstract algebraic structure in

the concrete setting.10

These results establish correspondence between the abstract states and algebraic struc-

ture of C and a concrete representation in terms of bounded linear operators A acting on H.

We’ll call (the norm-closed sub-algebra of) the algebra of bounded linear operators A acting

on H concrete C∗ algebras. We furthermore focus on concrete von Neumann algebras W per

Connes & Rovelli.11

7A representation is a ∗-homomorphism π : D → B(H) where D is some abstract algebra, and B(H) is the set
of bounded linear operators on H.

8A vector |Ψ⟩ ∈ H is cyclic for C just in case W|Ψ⟩ is dense in H. |Ψ⟩ ∈ H is said to be separating for C just
in case A|Ψ⟩ = 0 implies A = 0 for any A ∈ C.

9See Feintzeig (2023, §2.3). Swanson (2021, 286) notes that faithful states must be mixed states; nontrivial C∗

algebras have no pure, faithful states. Swanson worries that this might force upon the thermal time hypothesis
an ignorance interpretation. However, as he notes, Wallace (2012) argues that mixed states needn’t require an
ignorance interpretation. See also Chen (2021).

10Technically, faithful states ensure that π is a ∗−homomorphism to a subset of bounded operators on H. Such
states satisfy the condition that ω(A∗A) = 0 entails A = 0 for all A ∈ C.

11These are concrete C∗ algebras closed under the weak operator topology satisfying W = W ′′. For an algebra
D of bounded operators on H, its commutant D′ is the set of all bounded operators on H which commutes with
every element of D. If D is an algebra, so is D′. D′′ is the double commutant, the set of all bounded operators in
D′ commuting with D′.
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Relative to this concrete structure, Connes & Rovelli restricts their attention to states

ω over W which are represented in H as normal states: normed bounded positive linear

functionals satisfying countable additivity.12 Via the GNS construction, normal states are

represented as trace-class density operators ρ with Tr(ρ) = 1 in H:

ω(A) = Tr(ρA) (5.8)

for all A ∈ W , viz., states ω admit density operator representations in H. While Connes &

Rovelli don’t elaborate much on this restriction, this restriction is presumably motivated by a

demand that the algebraic formalism be given clear physical meaning.13 After all, (9) recovers

the standard way of deriving expectation values – observed statistics – of measurements

associated with observables A:

⟨A⟩ = Tr(ρA) (5.9)

Presumably, any representation should recover this relation. We’ll see a worry with this demand

for a physical interpretation of expectation values in §5.3.2.

5.2.3 From kinematics to possible dynamics

So far we’ve focused on algebraically representing the kinematics of standard quantum

theory – the structure ofA acting onH and their expectation values – at a time. But the algebraic

structure of W also provides us with something that could be understood as time-evolution.

Crucially, any faithful, normal ω defines a unique 1-parameter group of automorphisms of W :

αω
t : W → W (5.10)

12For any countable set of pairwise orthogonal projection operators {Ei} ∈ W :∑
i

ω(Ei) = ω(
∑
i

Ei) (5.7)

13Ruetsche (2011b) details why we should demand normal states.
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for real t. Given a concrete W defined by some faithful, normal ω via the GNS construction,

the Tomita-Takesaki theory provides a unique αt in terms of two modular invariants generated

from the adjoint conjugation operation ∗. The theory guarantees the existence of a well-defined

operator S:

SA|Ψ⟩ = A∗|Ψ⟩ (5.11)

and that S uniquely provides a polar decomposition:14

S = J∆1/2 (5.12)

where J is antiunitary and ∆ is a self-adjoint positive operator. αt, associated with the defining

state ω, is then defined by:

αω
t A = ∆itA∆−it (5.13)

and this uniquely defines a strongly continuous 1-parameter unitary group of automorphisms

on W , parametrized by t ∈ R, which is also called the modular group. Crucially, αω
t acquires

dynamical meaning because ∆−it can be interpreted as unitary operators. With this interpreta-

tion, (5.13) should look familiar: it’s equivalent to the Heisenberg equation (5.4). The crucial

step, in interpreting the modular group defined by any faithful, normal state dynamically, is to

interpret its parameter t as playing the same role as physical time in unitary evolution in the

usual Heisenberg equation. (More on this in §5.3.2.)

However, even if we can interpret αω
t dynamically, these are very special dynamics: any

faithful, normal state ω (or the associated ρ) is invariant under the ‘flow’ of αω
t :

ω(αω
t A) = ω(A) (5.14)

Interpreted dynamically, αω
t leaves ω unchanged over time. But, importantly, systems in an

14See Takesaki (1970).
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arbitrary state need not be in an unchanging state over time; in these cases, the dynamics

associated with αω
t doesn’t describe the dynamics of that system. Put simply: the two notions

of dynamics – the ‘dynamics’ of αω
t and the system’s actual dynamics – don’t always ‘line up’

and we are not always justified to interpret αω
t as the actual dynamics of that system. (More on

this in §5.3.1.)

5.2.4 Justifying a dynamical interpretation: from thermal states to
KMS states

Importantly, there is one clear case when we are physically justified in interpreting αω
t

dynamically. This is when a system is in thermal equilibrium, i.e. a thermal state. In such cases,

we are looking for a description of a state that is time-translation-invariant (i.e. stationary),

satisfying certain thermodynamic properties e.g. being at constant temperature. In standard

physics, this notion is defined in terms of some background time and dynamics. Then, given

the special kind of dynamics associated with such a state – dynamics which doesn’t change

the system’s thermodynamic state over time – the associated modular group automorphisms

αω
t can then be directly interpreted as the actual dynamics for systems in such a state. For this

special case, the dynamics associated with αω
t seems to ‘line up’ with the dynamics of a system

in thermal equilibrium.

When do we know that a state ω is thermal? It turns out that one can understand

thermal states (with inverse temperature β, 0 < β <∞) as states satisfying the KMS condition,

i.e. as KMS states.15 KMS states satisfy the following conditions: for anyA,B ∈ W , there exists

a complex function FA,B(z), analytic in the strip {z ∈ C | 0 < Im z < β} and continuous on

the boundary of the strip, such that for all t ∈ R:

FA,B(t) = ω(αω
t (A)B) (5.15)

15β = 1
kbT

, where T is the system’s temperature, and kb is Boltzmann’s constant.
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FA,B(t+ iβ) = ω(Bαω
t (A)) (5.16)

ω(αω
t (A)B) = ω(Bαω

t (A)) (5.17)

The KMS condition is seemingly arcane, but a crucial physical anchor for this condition – and

why we can interpret states satisfying this condition as states in thermal equilibrium – is the

fact that imposing this condition on a state is formally equivalent, in the finite-dimensional

case, to demanding the state is the Gibbs state ρβ . This is the quantum generalization of the

statistical state for systems describable with the grand canonical ensemble, one in thermal

equilibrium at constant inverse temperature β with Hamiltonian H :

ρβ =
e−βH

Tr(e−βH)
(5.18)

For any operator A ∈ A, the expectation value for that observable for this system is:

⟨A⟩ρ = Tr(ρβA) =
Tr(e−βHA)

Tr(e−βH)
(5.19)

ρβ satisfies the KMS condition. Interpreting ω in terms of ρβ via (5.19), and αω
t (A) as eiHtAe−iHt

per (5.4), we get, for operators A,B ∈ W :

Z−1Tr(e−βHeiHtAe−iHtB) = Z−1Tr(e−βHe−iH(t+iβ)BeiH(t+iβ)A) (5.20)

where Z = Tr(e−βH) is the partition function of ρβ .16 From (5.20) we can see that ρβ satisfies

the KMS condition (5.17). Note, again, that we must first justify interpreting αω
t dynamically as

the unitary operator of the Heisenberg equation!

For finite-dimensional quantum systems, ρβ uniquely describes systems satisfying the

KMS condition.17 This imbues the seemingly purely syntactic KMS condition (as Emch & Liu
16This uses the fact that the Hamiltonian commutes with itself, and that the trace is cyclic.
17See Emch & Liu (2002, 351–352). In infinite-dimensional quantum systems, the trace is ill-defined, and so

likewise for ρβ defined using the trace. Crucially, the KMS condition can still hold.
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(2002, 351) describes it) with physical meaning, motivating the physical equivalence of states

formally satisfying the KMS condition and thermal states. Furthermore, KMS states satisfy

stability and passivity conditions we typically associate with thermal states.18

Importantly, any ω satisfies the KMS condition relative to the modular group defined

by itself, i.e. αω
t ,19 for β = 1.20 On a naı̈ve reading, this seems to overgeneralize: any state is

a KMS state, even the state of my cup of coffee which is clearly cooling down. However, the

appropriate reading is that any state can be a KMS state: there are some possible dynamics for a

system which keeps it in thermal equilibrium. This is just to reiterate that αω
t can but needn’t

necessarily be interpreted dynamically. It needn’t align with a system’s actual dynamics. (I’ll

elaborate in §5.3.1.)

Returning to the question of when to interpret αω
t dynamically, it seems that we are

justified to do so when we are justified to interpret a system as being in thermal equilibrium. If

we know that the system’s dynamics – associated with being in thermal equilibrium – ‘lines

up’ with the sort of special dynamics described by αω
t , then we can interpret αω

t dynamically.

5.2.5 The thermal time hypothesis

So far I’ve introduced everything in a standard quantum mechanical context, where

there is assumed to be some background time. In the timeless context, there is no time with

which we may determine a system to be in thermal equilibrium, and hence no straightforward

way to understand the physical meaning of KMS states (and hence to understand its associated

modular group dynamically).

The thermal time hypothesis reverses this situation. Instead of defining thermal equi-
18We’ve already seen that ω is invariant under the flow of αω

t ; interpreted as a dynamical flow, it captures the
idea that an equilibrium state is stationary and doesn’t change over time. Some other examples: such a state
should not change in free energy over time (thermodynamic stability), remains (over time) in a stationary state
arbitrarily close to it under small perturbations (dynamical stability), and energy cannot be extracted from such a
state by applying for any finite amount of time any local perturbation of the dynamics α (passivity). See Emch &
Liu (2002, 355).

19See Bratteli & Robinson (1997).
20Ruetsche (2011a, Ch. 7, fn. 23) notes that a state satisfying the KMS condition for β = 1 also satisfies it for

arbitrary β > 0.
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librium, KMS states, and the modular group in terms of time, Connes & Rovelli hypothesizes

that we simply define the modular group to be time. Note that this implicitly assumes the

applicability of the C∗ algebraic structure even in the timeless context.

The motivation for the hypothesis stems from the aforementioned fact that any faithful,

normal, state ω defines a preferred one-parameter group of automorphisms αω
t . If we are

further justified in interpreting ω as describing the same physical situation described by the

Gibbs state ρβ (or its KMS generalization), i.e. as a thermal state, then we can interpret the

dynamics of αω
t as being generated by a ‘thermal’ Hamiltonian H = −lnρβ .21 Note that the

Hamiltonian is defined in terms of the Gibbs state. This is contrary to the usual understanding

where the Hamiltonian, interpreted prior to the Gibbs state, is used to define the Gibbs state.

In other words, given a thermal state, a Hamiltonian can be extracted from it in non-generally

covariant contexts. The further claim of the thermal time hypothesis is that we can do the same

thing in generally covariant contexts as well.

To sum up the hypothesis: in the generally covariant context of quantum gravity, where

the problem of time looms, we appeal to theC∗ algebraic structure and hypothesize that the flow

of time is defined by the unique 1-parameter state-dependent modular automorphism group αω
t ,

and dynamical equations can be defined in terms of this flow (e.g. in terms of the Hamiltonian

as seen above). Systems in thermal equilibrium thus define time in this fundamentally timeless

setting, providing a path forward to tackling the problem of time.

5.3 The time in thermal time

While the technical details of the previous subsection are daunting, the conceptual point

is a simple one: in the context of standard quantum mechanics and classical thermodynamics,

we always have a background time parameter t, with which we can define dynamical notions

such as the notion of equilibrium, time-evolution, stationarity, and so on. However, in the

generally covariant setting we don’t have access to such a time parameter. But, if we had
21For more details, see Paetz (2010, §4.2 and §5.2).
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access to the structure of W , then any faithful, normal, state ω over W defines a modular group

according to which the KMS condition is satisfied. Connes & Rovelli’s proposal is that we first

interpret these states ω as equilibrium states, then interpret their dynamics αω
t as equilibrium

dynamics independent of time. Time is defined in terms of the equilibrium dynamics via αω
t .

Swanson (2021) points out two technical challenges for this program.22 Firstly, it’s

unclear whether the thermal time defined here is capable of recovering proper time in general

relativity in more physically realistic settings: observers only observe thermal time matching

up to proper time in special cases such as when the observer is uniformly accelerating in

flat spacetime described by the vacuum state of a quantum field theory. It remains unclear

whether this correspondence generalizes. (I return to this in §5.4 when discussing the ‘modular

time hypothesis’.) Secondly, it’s unclear whether the notion of thermal time has a classical

counterpart in the classical limit, though as Swanson (2021, §4) argues, choosing the Poisson

algebra – rather than commutative von Neumann algebras – as the appropriate classical

counterpart to noncommutative von Neumann algebras allays that problem.

Here, beyond these technical challenges, I’ll emphasize two conceptual challenges for

the proposal. Essentially, the thermal time hypothesis tries to define time in terms of the

modular group of statistical states satisfying the KMS condition which can be interpreted as

states in thermal equilibrium, by working with the C∗ algebraic structure. To avoid circularity,

and to be a genuine solution to the problem of time, the thermal time hypothesis itself had better

not depend on time. If thermal equilibrium and the algebraic structure require interpretation

in terms of time in order to be justifiably applied and physically meaningful, they would only

serve to define time insofar as time has already been defined – a circularity par excellence.

Furthermore, it would not be a solution to the problem of time, for the problem is precisely

that we have no time to begin with.
22See also Paetz (2010, Ch. 7) for a more expansive discussion of these challenges.
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5.3.1 From above: the time in equilibrium

The first conceptual challenge, then, for the thermal time hypothesis is the provision of

a time-independent account of thermal equilibrium.

The time in standard accounts of equilibrium

For Connes & Rovelli, “an equilibrium state is a state whose modular automorphism

group is the time translation group” for the non-generally covariant context (1994, 2909), and

the hypothesis asserts that this carries over to the generally covariant context as well. However,

when are we allowed to interpret the modular automorphism group as the time translation

group? As I’ve already emphasized in the previous section, the modular group flow αω
t is a very

special sort of dynamics for the associated ω, and cannot be interpreted dynamically automati-

cally. Earman & Ruetsche echo this concern: “the modular group determined by an arbitrary

faithful normal state on a von Neumann algebra may lack a natural dynamical interpretation, in

which case scare quotes should be understood when referring to β as the inverse temperature.”

(2005, 570) That is, we are not entitled to interpret any (faithful normal) state satisfying the

KMS condition as being in equilibrium, or having (equilibrium) thermodynamic properties,

without further justification. As emphasized, even in the usual contexts, αω
t might not line up

with the actual dynamics of a system, and hence might not be interpretable dynamically. We

need some further physical argument for why a system in some arbitrary state ought to be

interpreted as having the dynamics associated with αω
t , for why this system’s dynamics ‘lines

up’ with that associated with αω
t .

This point – that αω
t doesn’t automatically mandate a dynamical interpretation and

prior determination of equilibrium is required – was already emphasized in Haag et al’s (1967)

landmark paper which first connected the KMS condition to the thermodynamic notion of

equilibrium:

We assumed the existence of an automorphism A → At for which ω(A) is
invariant. It then follows that there exists a unitary operator U(t) = e−iHt/ℏ on
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H, which implements this automorphism. This does not mean, however, that the
system actually moves according to this automorphism. It only means that it’s
possible to choose the dynamics, i.e. the interparticle forces and the external
forces, such that with these forces the system in the state ω(A) would be in
equilibrium. If the forces happen to be different, the automorphism A → At

is not a time translation, H is not the Hamiltonian of the system and the state
ω(A) is not stationary. (1967, 235, emphasis mine)

Put another way, we are justified in taking the automorphisms seriously as dynamics only when

we already have some prior determination that the system is already in thermal equilibrium,

for instance, if we already know the Hamiltonian of the system. Once we have done that, we

are justified in describing the system as being in a state satisfying the KMS condition, with its

dynamics described by the modular automorphisms. Likewise, Swanson (2021, 12) points out:

Any statistical state determines thermal dynamics according to which it is a KMS
state, however, if ρ is a non-equilibrium state, the resultant thermal time flow
does not align with our ordinary conception of time. By the lights of thermal
time, a cube of ice in a cup of hot coffee is an invariant equilibrium state! The
same problem arises in the quantum domain – only for states which are true
equilibrium states will the thermal time correspond to physical time.

In other words, for the thermal time hypothesis to take off, it must rule out the fact that any

arbitrary state can define some ‘thermal time’. It must restrict the hypothesis only to the

physically meaningful thermal times defined by a privileged class of states over W , which are

‘really’ equilibrium states. After all, as I’ve emphasized, genuinely thermal states are the only

states for which αω
t aligns with the actual dynamics of the system.

But which states are ‘really’ equilibrium states? The usual way (in standard quantum

mechanical contexts) of picking out equilibrium states refer to thermodynamic properties

such as the stationarity, stability, and passivity of systems (in particular, of their macroscopic

properties). Emch & Liu (2002, 355) observes that the various thermodynamic stability and

passivity conditions associated with some state satisfying the KMS condition typically requires

that the state “is assumed tacitly to be stationary with respect to a specified dynamics α”.23 In

other words, the judgment of whether a state is in a bona fide equilibrium state appears to all

23See fn. 20 for some of these conditions.
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be defined implicitly in terms of some background time parameter.

More generally, the meaning of ‘equilibrium’ appears intrinsically dependent on the

notion of time. As Callen puts it emphatically in his well-known textbook: “in all systems

there is a tendency to evolve toward states in which the properties are determined by intrinsic

factors and not by previously applied external influences.” These are the equilibrium states,

which are “by definition, time independent” (1985, 13) such that “the properties of the system

must be independent of the past history” (1985, 14).24 In other words, it appears almost a priori

that the notion of equilibrium is dependent on the notion of a background time, along which

processes evolve, properties cease to change, and states terminate in staticity and quiescence.

However, in the present context with its problem of time, we cannot simply claim that

these properties of equilibrium obtain. Furthermore, if equilibrium is defined in terms of these

properties, and thermal time requires the concept of equilibrium, then thermal time hasn’t

really solved the problem of time, since it requires time to take off! Any (faithful, normal) state

can be deemed to be an ‘equilibrium’ state with respect to the modular group automorphism’s

‘thermal time’, but this renders the meaning of equilibrium arbitrary. Instead, we would need to

provide some story for why a state is ‘really’ in thermal equilibrium. Such a story is typically

provided with respect to some background time, and so it remains unclear what a story might

look like, which doesn’t refer to time at all in defining notions fixing the concept of equilibrium,

such as stationarity or passivity.

We thus run into our first dilemma for the thermal time hypothesis: either thermal

time hypothesis is circular, since it implicitly requires a background time parameter. Or it’s

unjustified, since it has yet to justify why some states are privileged equilibrium states, with

which we can cash out the thermal time hypothesis. Without such a story the hypothesis is
24Other textbooks make similar claims about the temporal and dynamical nature of equilibrium. Buchdahl

(1966) defines equilibrium in terms of staticity – a lack of change over relevant timescales. Landau & Lifshitz
(1980) point out how equilibrium states are states which are necessarily arrived at after some relaxation time.
Caratheodory’s (1909) discussion of equilibrium also focuses on relaxation time. Similarly, Schroeder (2021, 2)
introduces thermal equilibrium as such: “After two objects have been in contact long enough, we say that they are
in thermal equilibrium.” Matolcsi (2004) conceptualizes equilibrium in terms of the standstill property, where a
process is standstill when they are not varying in time and have vanishing dynamical quantities.
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rendered arbitrary.

The time in timeless equilibrium

In response to this problem, Paetz (2010, §7.6) suggests that we would need some intrinsic

definition of equilibrium – one that doesn’t refer to time – if the thermal time hypothesis is to

take off. To my knowledge, timeless definitions of equilibrium are not readily available; the

only one of note is due to Rovelli (1993).

We can see how Rovelli’s ‘timeless’ definition of equilibrium is supposed to work

through classical statistical mechanics. Rovelli (1993, 1559) claims that this condition was

emphasized in Landau & Lifshitz’s (1980) textbook as a definition of equilibrium.25 For a system

S with coordinates p, q, such that we can separate a small but macroscopic region S ′ with

associated phase space coordinates p′, q′, from the (much larger) rest of the system S ′′ with

phase space coordinates p′′, q′′, assuming weak interactions between S ′ and S ′′, the interaction

Hamiltonian approximately vanishes. (See 5.1.) As a result, for such a choice of S ′ and S ′′, the

probability distribution for the system – its statistical state ρ – factorizes:

ρ(p, q) = ρ′(p′, q′)ρ′′(p′′, q′′) (5.21)

This condition essentially signals the statistical independence of one sub-system’s statistical

state from the other. One way to interpret this statistical independence is to understand it as

representing a system being in equilibrium with itself by representing its parts (i.e. subsystems)

as being in relative equilibrium with each other. If these subsystems are in equilibrium with

each other, their thermodynamic properties will, of course, not change with respect to each

other, and so it might seem natural that the subsystem statistical states – which determine

macroscopic measurable (e.g. thermodynamic) quantities – are independent of each other and

will factorize. Rovelli then proposes that this condition alone can define equilibrium states: “we
25To my knowledge, Landau & Lifshitz does not use this condition as a definition of equilibrium, but as a

property which (more or less) holds for equilibrium systems.
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Figure 5.1. A partition of a system S into two subsystems S ′ and S ′′.

shall refer to equilibrium as a situation in which every small but still macroscopic component of

the system is in equilibrium, in the usual sense, with the rest of the system.” (1993, 1558–1559)

We can break down Rovelli’s proposed timeless definition into two parts. Firstly, a

system is in equilibrium if and only if every subsystem is in relative equilibrium with the rest

of the system, viz. S ′ and S ′′ are in relative equilibrium for all choices of S ′ and S ′′ such that

S ′ and S ′′ are still macroscopic regions and S ′ is significantly smaller than S ′′. Secondly, two

subsystems S ′ and S ′′ are in relative equilibrium if and only if (5.21) holds.26

Unfortunately, I don’t think that this defintion of equilibrium is adequate. To begin

with, the original physical justification for applying (5.21) appears to rely implicitly on time,

even if its form is explicitly timeless. We can see this by looking back to Landau & Lifshitz’s

(1980) introduction of the factorization condition. What Rovelli does not mention is Landau &

Lifshitz’s caveat which immediately precedes (5.21):

It should be emphasised once more that this property holds only over not too
long intervals of time. Over a sufficiently long interval of time, the effect of
interaction of subsystems, however weak, will ultimately appear. Moreover, it is
just this relatively weak interaction which leads finally to the establishment of
statistical equilibrium. (1980, 6, emphasis mine)

In other words, the application of this definition is manifestly justified in terms of a background
26Landau & Lifshitz (1980, 7) notes that groups of subsystems also factorize with respect to the rest of the

system in the same way, provided that these groups are still small enough relative to the rest of the system.
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dynamics, just like other definitions of equilibrium. (5.21) is clearly not intended to define

equilibrium states. Rather, the subsystems of systems in equilibrium can be justifiably charac-

terized in terms of (5.21) for suitable periods of time but not always. Relative to some timescales,

subsystem interactions may be taken to approximately vanish. Over long enough periods of

time, interactions between subsystems, however small, will render (5.21) false. Macroscopic

properties not changing for subsystems of a system in equilibrium does not mean that their

probability distributions, which depend on microphysical properties, are likewise independent

of each other. For all practical purposes, we may treat (5.21) as approximately true, since we

typically don’t deal with systems on those time-scales. As a conceptual point, though, (5.21)

only holds true relative to certain timescales, and should not be taken to be a definition of

equilibrium.

One possible response is that we can simply take Landau & Lifshitz’s definition but

reject their physical justification for this definition. After all, they are clearly not working in the

timeless generally covariant context, so, prima facie, we should not expect their justification

to apply in this new context.27 Instead, we should treat (5.21), the factorization of statistical

states, to define equilibrium for a generally covariant quantum system. Insofar as systems

(approximately) factorize this way, we can take them to be in equilibrium and to define thermal

time. We should therefore treat Landau & Lifshitz’s original physical justification – that systems

factorize because they are weakly interacting subsystems in relative thermal equilibrium

– as a consequence of this definition instead. Because of this definition – because systems

approximately factorize in this way – we can then treat its subsystems as weakly interacting in

relative equilibrium with each other.

Nevertheless, I think that both parts of Rovelli’s proposed definition face conceptual

worries. Firstly, defining equilibrium in terms of relative equilibrium for all choices of S ′ and

S ′′ is too strong. While it’s true that a system would be in equilibrium if each subsystem is in

such a relative equilibrium with the rest of the system, I don’t think that the latter is necessary,
27I thank an anonymous reviewer for suggesting this worry.
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Figure 5.2. A schematic demonic partition of a system S into two subsystems S ′ and S ′′, where
S ′ picks out a composite subsystem of higher mean kinetic energy, and S ′′ picks out a region
of lower mean kinetic energy.

and hence cannot be definitional, for equilibrium. Even in the standard non-generally covariant

context, any typical system, even those which we do know to be in equilibrium, will fail to

satisfy the criterion of relative equilibrium for all choices of subsystems. The only requirement

proposed by Rovelli is that S ′ and S ′′ are macroscopic subsystems, and that S ′ is much smaller

than S ′′. Landau & Lifshitz (1980, 7) notes that the same relation holds for groups of subsystems

so long as the group remains small relative to the rest of the system. However, without further

constraints, there is always a gerrymandered ‘Maxwell’s demon’ partition of the system into

two subsystems:28 a small (possibly disconnected) collection of subsystems containing all and

only the faster particles with higher momentum, Sfast, and a much larger region of the system

containing all and only the slower particles with lower momentum Sslow.29 (See 5.2.) It seems

to me that nothing rules out the possibility of partitioning the system this way. It then follows

that Sfast is at a much higher temperature than Sslow since the former has higher mean kinetic

energy. So it seems that relative equilibrium doesn’t obtain for such a partition of subsystems,

even though we know that the system is in equilibrium overall.
28Note that this need not be an actual partition (using walls, membranes, etc.), and so sidesteps the question of

whether Maxwell’s demon is physically realizable.
29See e.g. Hemmo & Shenker (2010). Many thanks to Craig Callender and Eddy Keming Chen for suggesting

this example in personal correspondence.
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Figure 5.3. A system S containing two (approximately) non-interacting boxes B1 and B2, such
that the temperature of B1 is not equal to the temperature of B2. Their states factorize since
they are non-interacting, but they are not in relative thermal equilibrium.

Secondly, there’s a worry about whether (5.21) – the factorization condition – suffices

to track whether two subsystems are in relative equilibrium. Consider the simple case of a

system of two boxes, B1 and B2. (See 5.3.) B2 can be much larger than B1. The boxes are

thermally insulated, electromagnetically shielded, and contains air at different temperatures. It

seems to me that we can ascribe a statistical state ρB to the joint system of B1 and B2, and that,

at least for some regimes,30 ρB is factorizable into two subsystem statistical states ρB1 and ρB2 ,

each describing the statistical state of the respective boxes. Taken as is, the proposed ‘timeless’

definition of relative equilibrium appears to hold. However, it does not suffice to characterize

these two boxes as actually being in relative equilibrium: the two boxes are, ex hypothesi, at

different temperatures.

Note that the above problems would not be troubling if we took the proposed condition

to hold over time and allowed the subsystems to interact, viz. if the definition were justified by

appeal to a background time. Then Sfast would quickly lose energy to Sslow and equilibrate

over time. But this would require some notion of time, as with Landau & Lifshitz’s original
30ρB might be factorizable into ρB1 and ρB2 simpliciter if we have perfect thermal insulation and perfect

mirrors preventing the transmission of radiation. Otherwise, there’ll be some regimes for which we can ignore
thermal radiation especially if the two boxes are far apart, and hence regimes for which we might plausibly assume
factorizability. The point is that, for whatever regime in which the factorizability condition holds, there is no clear
physical sense in which the two systems are in relative equilibrium because they are not at the same temperature.
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physical justification. For Landau & Lifshitz, (5.21) is justified when we are allowed to take a

system to be comprised of quasi-closed systems – when these subsystems interact weakly with

each other. (1980, Ch. 1, §2) In the original context, the statistical independence encapsulated

in (5.21) seems to be justified in terms of (approximate) lack of interaction. But interaction

appears to be something steeped in dynamics and thus time. It doesn’t seem to be something

we have without time. Since we are not allowed this justificatory resource, we are not allowed

this natural solution to the problem raised in the previous paragraph.

Furthermore, the problem is exacerbated in the timeless context. Note that Rovelli’s

definition was proposed against the background of classical mechanics, where the relevant

states of the system in terms of p, q are defined at a time. In the timeless context, the problem

of time precludes a similar restriction of states to those at the same time, since time is exactly

what’s missing. As a result, the insufficiency of factorization to define equilibrium is readily

amplified. Even without going into the timeless state space of quantum gravity (something

that remains out of reach), we can see how the insufficiency of factorization is magnified

when we don’t restrict attention to states at a time. Consider the application of the proposed

factorization condition to a system S undergoing a probabilistic process such that at each time

step τ , the state of the system at τ is either 1 or 0 with some probability. Furthermore, the state

is probabilistically independent of future and past outcomes. Then, for any arbitrary partition of

the entire sequence across time into sub-sequences, the two ‘subsystems’ factorize and so satisfy

the timeless definition of relative equilibrium. (See 5.4.) But it’s clear that these subsystems

are not in relative thermal equilibrium – they are simply probabilistically independent of each

other.

To sum up, Rovelli’s ‘intrinsic’ definition of equilibrium was originally justified by

Landau & Lifshitz with respect to some background time and dynamics. In the timeless context,

we can of course reject Landau & Lifshitz’s justification on account of irrelevance. But now

we have no clear justification for the definition. Furthermore, the definition appears to be

inadequate for defining equilibrium states: relative equilibrium for all choices of partitions is
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Figure 5.4. A probabilistic process with outcomes {0, 1} each with some probability of
occurring every time step τ . Outcomes at each time step are probabilistically independent of
future and past outcomes. The probability distribution for the sequence S clearly factorizes for
any choice of sub-sequences S ′, S ′′.

unnecessary for characterizing equilibrium, and factorization is insufficient for characterizing

relative equilibrium.

Without an unproblematic ‘timeless’ definition of equilibrium, though, we remain

unable to pick out privileged ω over W that we can use to define thermal time, without

circularity. Thus, the dilemma – surrounding how to appropriately define equilibrium in the

context of quantum gravity – remains for the thermal time hypothesis.

5.3.2 From below: the time in algebraic structure

However, even if we settled the prior conceptual challenge related to understanding

equilibrium, I argue that the thermal time hypothesis still has a formidable challenge ‘from

below’: justifying the physical interpretation of the algebraic structure without appealing to

time.31

This second conceptual challenge is related to whether two core concepts – expectation

values and unitarity – employed by the algebraic structure can be interpreted in a physically

meaningful way without a background time to begin with. Without time, it seems that we
31See Unruh (1997) for similar, though more general, considerations.
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cannot justify a physical interpretation of the formal expectation values assigned by ω, nor can

we interpret αω
t dynamically without already interpreting the unitary group in terms of time.

And without these concepts, we cannot connect ω to thermal states. Hence the challenge ‘from

below’.

The time in physical expectation values

Recall that statistical states of interest – density operators corresponding to faithful

normal states ω over W – are defined as mappings of elements in W to complex numbers.

From §5.2 we saw that they can be interpreted as representing the expectation value of an

observable A via:

ω(A) = Tr(ρA) (5.22)

due to its properties of being real, positive and normalized, thus lending itself to a probabilistic

interpretation. This then, I claimed, connects these statistical states to the physical quantities

of actual physical processes. But how does it do so in ordinary, non-generally covariant cases?

In classical statistical mechanics, statistical states are given physical meaning in terms

of their expectation values which are given by:

⟨f⟩ =
∫
f(p, q)ρcg(p, q)dpdq (5.23)

where f is any physical quantity dependent on canonical momenta and positions p and q, and

ρC is the classical probability density function.

Interpreting ⟨f⟩ rests on what Frigg & Werndl (2021) call the ‘averaging principle’:

“what we observe in an experiment on a system is the ensemble average of a phase function

representing a relevant physical quantity.” But how do we physically interpret a probabilistic,

averaged quantity? Furthermore, in the standard Gibbs framework, this average is a property

of ensembles of systems, rather than of any single system in particular. However, as Landau

& Lifshitz (1980, 4) point out, an expectation value – a “statistical averaging” over ensembles
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of systems in their words – “is exactly equivalent to a time averaging”, specifically, averaged

over time as time approaches infinity. One imagines a trajectory that traverses all of available

phase phase such that “during a sufficiently long time” the system will “be in many times in

every possible state”. (Landau & Lifshitz 1980, 3) Over long enough times, the probability of a

system being found in some state (i.e. some region of phase space) is equivalent to the volume

of said region. As Frigg & Werndl (2021) point out, this is the ‘standard’ textbook justification

of the averaging principle. An alternative interpretation is to interpret the expectation values

as a value around which measurements at a time might vary, i.e. fluctuate, such that we might

expect such fluctuations to vanish over time.32 For both cases, we seem to already presuppose

some sort of dynamics, in order for us to interpret the expectation values physically and ascribe

properties to the system in question.

In ordinary quantum mechanics, the situation is not too different. As Isham (1993, 246)

puts it, one typically interprets a density matrix ρ as “an ensemble of systems in which every

element possesses a value for [observable] A, and the fraction having the value ai is |ψi|2; i.e.,

an essentially classical probabilistic interpretation of the results of measuring A”, such that:

ρ = |ψi|2|ai⟩⟨ai| = |ψi|2Ai (5.24)

where Ai is the projection operator associated with state ai and |ψi|2 is the probability given

by the wave-function ψ that a system has property ai at a time, in accordance with the Born

rule. The probability for observing a system in state ai, as seen before, is Tr(ρAi). Again,

though, this expectation value is a property of an ensemble of systems. How are we supposed

to interpret it for single systems?

As with the classical case before, Landau & Lifshitz (1980) propose an interpretation of

the expectation value (“mean value” in their terms) for single systems in terms of fluctuations

over time: for any physical quantity of interest for a single system, “in the course of time

32See Frigg & Werndl (2021).
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this quantity varies, fluctuating about its mean value.” (1980, 7, emphasis mine) For large

macroscopic thermodynamic systems, fluctuation terms approximately vanish, and hence “the

quantity itself may be regarded as practically constant in time and equal to its mean value.”

(1980, 9) They emphasize in particular that the fact that “the relative·fluctuations of additive

physical quantities tend to zero as the number of particles increases made no use of any specific

properties of classical mechanics, and so remains entirely valid in the quantum case.” (1980,

19) Again, the connection between the statistical state and physical systems, through the

expectation values, appears to require some theory of fluctuations, i.e. change over time.

Returning to the thermal time hypothesis, recall that it postulates the applicability of

the structure of von Neumann algebras W even in the timeless context. Then, states ω defined

on W are interpreted as thermal states in virtue of satisfying the KMS condition with respect to

αω
t . αω

t is then interpreted as thermal time. But to interpret ω as picking out genuine physical

states in our world means to interpret their associated expectation values as physical quantities.

But without a background time to begin with, how are we to interpret these expectation values

as fluctuations? With respect to what are they fluctuating? Without such a story, it seems

to me that we cannot have a physical interpretation of ω in the timeless context, and so the

program doesn’t appear to take off to begin with.

One possible response might be to assume that they are not fluctuating with respect

to time, but with respect to ‘modal space’ (e.g. the as-of-yet-unknown Hilbert space of the

Wheeler-DeWitt equation). But that just takes us back to the old question in classical statistical

mechanics, of how phase averages – fluctuations of quantities in ‘modal space’ i.e. ensembles

of systems – could tell us anything about the actual physical quantities of the actual world.

The time in unitarity

The second and perhaps more concerning problem with applying the C∗ algebraic

structure in the timeless context concerns the fact that the thermal time hypothesis’s use of this

structure appears to depend on some physically meaningful notion of unitarity. Formally, it’s
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an operator that conserves the inner product of Hilbert space, quantities of the form ⟨ψ1|A|ψ2⟩

for states ψ1, ψ2, and operators A. Unitarity, in my view, is the glue that connects the abstract

algebraic structure to a dynamical interpretation, which is required for interpreting αω
t as a

genuine dynamical object. This, in turn, is required to interpret αω
t as thermal time. However,

in the timeless context, this property is not guaranteed to obtain at all.

Recall my comment from the end of §5.2.3: the Tomita-Takesaki theory guarantees the

existence of a unique strongly continuous 1-parameter unitary group of automorphisms on W ,

the modular group, parametrized by t ∈ R such that:

αω
t A = ∆−itA∆it (5.25)

But what is the physical meaning of the modular group? The crucial point was to interpret

∆it as a unitary operator. It was this step that conceptually connected (5.25) to physics via the

Heisenberg equations of motion, which allowed us to interpret αω
t as a bona fide dynamical

object. Furthermore, the connection between states satisfying the KMS condition and the more

familiar Gibbs states, discussed in §5.2.4, also required us to interpret αω
t as unitary evolution.

In the ordinary quantum context and even in quantum field theory, this is of course not a

problem, since we have some background (space-)time with which one may define unitary

operators.

However, in the context of the problem of time and a fundamentally timeless ontology,

it’s not at all given that there is a way to implement unitarity, and hence a way to interpret

αω
t dynamically in terms of unitarity. If there’s no such interpretation available, we no longer

appear to have a justification for interpreting αω
t as a dynamical object. Indeed, we’ve so

far discussed the thermal time hypothesis as though there already is a physically meaningful

background Hilbert space with a conserved inner product. As a matter of mathematics, of

course, once we start with an abstract algebra of observables, we automatically get these

structures for free via the GNS representation and so on. However, the question is whether
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the mathematics has any physical meaning. While we can readily interpret the formal unitary

operators physically in ordinary quantum mechanical cases, with respect to some background

time, it’s not clear at all that a fundamentally timeless context immediately supports such

an interpretation. In that case, it’s not clear that these formal structures have any physical

meaning at all. It then becomes unclear whether the algebraic structure is the right kind of

structure to apply in the timeless context.

In the specific case of the Wheeler-DeWitt equation, Kuchar (2011, 9) notes that “nothing

similar is granted by the Wheeler-DeWitt equation”. More generally, beyond that context per

se, this is the well-known and yet-unresolved Hilbert space problem, the problem of defining

an conserved positive-definite inner product on Hilbert space without time.33 The task is to

endow on the space of solutions to the Wheeler-DeWitt equation a conserved inner product

along some parameter and complete it into a Hilbert space. This task is what Kuchar (2011)

calls the Hilbert space problem. However, as Kuchar (40-42) explains, the inner product one

naturally defines on this space of solutions is not positive-definite. One can avoid this problem

only if the Hamiltonian of the Wheeler-DeWitt equation satisfies certain conditions. But these

conditions are generically not met, and formidable technical challenges await: the Hamiltonian

is not stationary, the potential term in the Hamiltonian needn’t be positive, and we cannot

rule out states with negative energy as unphysical. So we can’t find a parameter along which

unitarity holds. Furthermore, even if we could find a conserved inner product in this space

of solutions, the connection between this inner product and the usual inner product and its

conservation in spacetime is still opaque (Kuchar (2011, 42) calls this the ‘spacetime problem’).

In short, technical challenges prevent the implementation of unitarity in the timeless context

of the Wheeler-DeWitt equation. Without unitarity, though, it’s not clear why we are allowed

to apply the C∗ algebraic structure and interpret it physically, e.g. interpret αω
t as a dynamical

object.

So the second challenge for the thermal time hypothesis is this: find a notion of unitarity
33See Kuchar (2011) or Anderson (2017).
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that doesn’t depend on time, with which we may then interpret αω
t , from which time can finally

be defined.

One might object that I am demanding too much.34 Given our limited state of under-

standing of quantum gravity, perhaps it seems fair for theorists to postulate what sorts of

structures might be present at the fundamental level in quantum gravity, and then try to see

whether time shows up given the existence of such structures. I agree that this is generically an

acceptable strategy, but I have two reservations in the context of the thermal time hypothesis.

Firstly, we can of course postulate the existence of whatever structures we want, but I

maintain that we need reason to expect such structures to obtain. In the timeless context of the

Wheeler-DeWitt equation, there is yet no clear notion of unitarity, nor a time along which we

can understand expectation values. Since these are core concepts employed by the C∗ algebraic

structure (in order to give the abstract mathematics a physical interpretation), it seems fair for

me to question how the proponent of thermal time might justify the existence of such algebraic

structure.

Secondly, it seems to me that the obtaining of this structure, in requiring unitarity (or

at least something like it), renders the thermal time hypothesis inert: the thermal part might

be rendered irrelevant. After all, if we could find some notion of unitarity even at the most

basic level of the algebraic structure – define some inner product which is conserved over some

parameter – and we accept that this parameter is time in standard quantum mechanics, then it

seems to me that there would already be some notion of time present, prior to thermodynamic

considerations: it’s the notion of time along which probability currents are conserved. So if we

could interpret αω
t dynamically in terms of unitarity, we already have time and the thermal

part of the thermal time hypothesis is irrelevant. If we couldn’t, then time doesn’t exist ‘all the

way up’, and the thermal time hypothesis doesn’t take off. Either way, it spells trouble for the

thermal time hypothesis.
34I thank an anonymous reviewer for suggesting this worry.
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5.4 The modular time hypothesis: away with thermody-
namics?

The last discussion suggests an interesting alternative. In response to my second

reservation, one might reply: so much the worse for the thermal time hypothesis! If we could

solve the problem of time by demanding the existence of such an algebraic structure at the

fundamental timeless level, we have no need for the thermal time hypothesis anyway.

Instead, we could postulate something like the ‘modular time hypothesis’.35 On this

hypothesis, we forsake the dependence on thermodynamics and define time directly in terms

of the modular group. Stated more precisely, for any system in a faithful, normal state ω, the

associated αω
t is time.

There are at least two reasons to consider this hypothesis in lieu of the thermal time

hypothesis. Firstly, the worry ‘from above’ raised in §5.3.1 suggests that interpreting the

modular group dynamics as equilibrium dynamics requires an antecedent notion of thermal

equilibrium, which is conceptually challenging. Jettisoning the requirement that time emerges

‘from thermodynamical considerations’, might be the more felicitous thing to do.

Secondly, there are well-known results due to Bisognano & Wichmann (1975, 1976)

which suggest a direct connection between the modular group and spacetime geometry outside

the quantum gravity context, without the need for thermodynamic considerations. Rather,

the thermodynamic interpretation becomes a downstream effect of this connection between

the modular group and spacetime geometry. More specifically, given a Minkowski vacuum

state over the Weyl algebra A(R4) of the Klein-Gordon field and the associated von Neumann

algebra W(O) associated with an open region of spacetime O, the restriction of the algebra to

the right Rindler wedge R (see 5.5.) leads to a geometrical interpretation for the associated

modular group for the Minkowski vacuum state: its generators are the Lorentz boosts on R.36

35I borrow this from Earman’s (2011) discussion of the ‘modular temperature hypothesis’. I thank an anonymous
reviewer for suggesting this line of thought.

36See Earman (2011) and Swanson (2021).
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Figure 5.5. Schematic representation of the right Rindler wedge R in Minkowski spacetime.
The Rindler coordinates {ζ, y, z, ρ} are related to the Minkowski coordinates {x, y, z, t} by
x = ζcoshρ and t = ζsinhρ and the Minkowski metric in Rindler coordinates becomes
ds2 = dζ2 + dy2 + dz2 − ζ2dρ2. Surfaces of constant ρ and ζ are labeled, where ρ is ‘Rindler
time’ and the timelike surfaces of constant ζ can be interpreted as the worldlines of constantly
accelerating observers. Dashed lines indicate null directions.

As Swanson (2014, 143) explains, given the Bisognano-Wichmann theorem, we can interpret

∆it in terms of boosts U(t) = e2πitK1 whereK1 is the representation of the generator of a boost

in the ζ-direction.37 In the right Rindler wedge, it’s already known that Lorentz boosts Λ(aτ)

implement a proper time translation along the orbit of observers with constant acceleration a,

and soU(τ) = eaiτK1 . Simply put, in this specific context, we can see how αω
t can be interpreted

as a dynamical object without thermodynamics; it lines up naturally with the proper time

of constantly accelerating observers. Furthermore, this connection between modular time

and proper time justifies the connection between the modular group and thermal states: the

restriction of the vacuum state to R is a KMS-state relative to the modular group with an Unruh

temperature a
2π

.38 Importantly, here, the alignment of the modular group and proper time is

justified not by thermodynamics but by considerations about spacetime geometry. As such,
37Symmetries can be represented as unitary operators given Wigner’s theorem.
38I set c, k and ℏ to 1. See Earman (2011).
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this avoids the worry ‘from above’ I raised. Proponents of modular time might then use this

connection in the relativistic context to justify extending this connection even to the timeless

context, using the modular group to define time there.

For these two reasons, proponents of the the thermal time hypothesis, faced with

the challenge ‘from above’ with defining thermal equilibrium in a timeless fashion, might

be tempted to give up the thermal time hypothesis and simply appeal to the modular time

hypothesis instead.

A preliminary note: observe that this proposal is not like the thermal time hypothesis, in

that time is not emergent. After all, the algebraic structure of the modular group exists ‘all the

way down’, if it exists at all in the timeless context. Once we can find a set of (diffeomorphism-

invariant) observables of interest, the algebraic structure – and hence the modular group – can

be defined as a matter of mathematics. Contrast this with the thermal time hypothesis, where

thermodynamics is almost always understood as an emergent theory, and hence likewise for

the associated thermal time.

This is unlikely to be a worry for proponents of modular time. After all, the worry is not

about emergence, but about finding time in the timeless context. However, I have two further

reservations about this proposal as well.

Firstly, this connection between modular time and proper time exists only for a very

specific class of models, and even then for a very specific class of observers in said model:

immortally and constantly accelerating observers in Minkowski vacuum. Generally, thermal

time and proper time will not line up. Swanson (2021) discusses the technical challenges that

arise once we relax these assumptions.39 If we consider finite observers who has causal access

not to the entire right Rindler wedge but a finite causal diamond (the intersection of their

future light cone at ‘birth’ and past light cone at ‘death’), the two quantities don’t generally

converge and hence modular time doesn’t have the neat geometrical interpretation we desire.

Likewise when we consider nonuniform acceleration and nonvacuum states. Yet the modular
39See Swanson (2021, §3).
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time hypothesis in the timeless context is intended to recover physical time in general, rather

than physical time in the special context of Rindler observers. Proponents of modular time

must justify why modular time should play the role of physical time outside of these contexts,

where there is little evidence to suggest that they play the role of physical time. Furthermore,

the same worries that motivated us earlier to search for timeless notions of equilibrium return:

generally, the modular group dynamics will not align with the actual dynamics of a given

system. Why should we treat it as a dynamical object even in standard cases, let alone the

timeless context?

Secondly, the above connection between modular time and proper time is established

in the standard relativistic context, where there is a background time given to us via the metric.

Even if we resolved my first reservation, a further question is whether this connection is

expected to hold in the timeless context. Given my earlier worries ‘from below’, we have

reasons to be concerned. Why are we justified to treat αω
t as dynamical at all? Even for the

modular time hypothesis, we seem to need to first be able to interpret αω
t in terms of unitary

operators e2πitK1 . But why are we justified in allowing ourselves the property of unitarity in

the timeless context? And if we could specify unitarity in the timeless context, why won’t the

time featuring in that, rather than the modular group per se, be time? Furthermore, what do

the expectation values of states over the algebraic structure mean, in the timeless context?

These all lead us back to the worries ‘from below’ from the previous section.

As such, even though the modular time hypothesis avoids the worry ‘from above’ by

jettisoning thermodynamics, it still runs into the same worries ‘from below’. Furthermore,

without the physical meaning provided by thermodynamics, the modular time hypothesis also

appears to struggle to justify why modular time lines up with proper time outside of a very

special class of models.
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5.5 Conclusion

Overall, given the conceptual problems surrounding thermodynamic considerations

and the algebraic structure itself in the timeless context, the thermal time hypothesis appears

to me to be either circular, or yet unjustified.

Importantly, note that I am not committed to the impossibility of there being a sat-

isfactory justification period. Rather, I simply want to emphasize that there has yet to be a

satisfactory justification for applying certain thermodynamic concepts, as well as dynamical

concepts in the algebraic structure, in the fundamentally timeless setting. The thermal time

hypothesis’s appeal to thermodynamic reasoning in the quantum gravity regime is a delicate

issue, since the conceptual foundations of thermodynamics beyond classical domains is not

entirely secure: even in special relativity, temperature ‘falls apart’ in the sense that there is no

single coherent concept of relativistic temperature to be found.40 More conceptual groundwork

needs to be laid. That is to say, I leave open the possibility that the challenges raised here for

the thermal time hypothesis may be met.

In any case, this should make clear just how conceptually challenging the problem of

time is for quantum gravity researchers. A similar problem also arises in the semiclassical

approach to the problem of time, where time is assumed to emerge from semiclassical approxi-

mations. Chua & Callender (2021) argues that these approximations, too, implicitly assume

time, and are yet unjustified otherwise. There is “no time for time from no-time”, in their words.

Likewise, it seems that there’s ‘no time for thermal time from no-time’ for now.
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