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Abstract

This paper investigates the problem of designing an Intelligent Cruise Con-
trol (ICC) algorithm for automated vehicles. An ICC algorithm, if implemented
by every vehicle in the tra�c, must guarantee that the density disturbances
attenuate as they propagate upstream. Such a desirable property of the tra�c
is dependent on the spacing policy employed by automated vehicles and on
the availability of information required to synthesize a string stable control law
consistent with the employed spacing policy. The �rst part of the paper is con-
cerned with the design of a spacing policy and the latter part is concerned with
synthesizing an ICC algorithm for automated vehicles. Various other issues
relating to the design of an ICC algorithm are also discussed.

1 Introduction

Congestion is seriously hampering the mobility of vehicles on freeway segments
in urban areas. The toll of congestion is estimated at $100 billion dollars
annually due to productivity losses associated with increasing travel delays. In
addition, signi�cant costs are incurred due to environmental damage, human
fatalities and fuel wastage. Intelligent Transportation Systems (ITS) envisage
the use and integration of advances in sensing, communication, actuation and
information processing technologies to provide safe and e�ective solutions to
the current transportation problems [39, 34]. It is estimated that 90 % of the
accidents occur due to human errors. Automating human driving, therefore, is
expected to lead to increased capacity and safety of the existing highways.

An important aspect of automating human driving is the design of an au-
tomatic vehicle following control system and it is the focus of this paper. Au-
tomatic vehicle following requires:

1. the design of a spacing policy which dictates how an automatically con-
trolled vehicle's speed must be regulated as a function of the following
distance.

2. the design of an automatic control system to regulate the vehicle's speed
in response to any changes in the following distance.

1accepted for publication in the Special Issue on Intelligent Transportation Systems, Vehicle

System Dynamics Journal
2Assistant Professor
3Graduate Student
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In the literature, two types of spacing policies have been explored:

1. Constant spacing policy: In this spacing policy, the desired intervehic-
ular spacing (or following distance) in a string of automated vehicles is
constant and does not vary with the controlled vehicle's speed.

2. Variable spacing policy: In this spacing policy, the desired intervehicu-
lar spacing is a function of the controlled vehicle's speed. Two variable
spacing strategies have received considerable attention - Constant Time
headway policy and Constant Safety Factor Policy. In a Constant Time
Headway policy, the desired intervehicular spacing increases linearly with
the controlled vehicle's speed. In a constant safety factor policy, the
desired intervehicular spacing is proportional to the controlled vehicle's
stopping distance and hence, varies quadratically with the controlled ve-
hicle's speed.

String stability is an issue in the design of automatic vehicle following control
systems. Intuitively, string stability ensures that spacing errors in regulating
the following distance according to the speci�ed spacing policy do not amplify
upstream from one vehicle to another. In a constant spacing policy, reference
vehicle information is required to guarantee string stability [34, 33, 35]. If
every controlled vehicle has access to the information of its position relative to
a reference vehicle in the string, geometric attenuation of spacing errors can
also be guaranteed [35]. In contrast, some variable spacing control strategies
do not necessarily require external reference information and can be shown to
guarantee string stability with on-board information only [3, 5, 14].

The macroscopic behavior of tra�c is adequately described by the speed
and density (number of vehicles per unit length of a highway) of tra�c on a
section of a highway. The density of tra�c is inversely proportional to the
average distance between vehicles or simply the average following distance of
vehicles on a highway. Since the implementation of a constant spacing policy is
infrastructure intensive, it is imperative that near-term Intelligent Cruise Con-
trol (ICC) systems employ a variable spacing policy. In this paper, we will only
consider such spacing policies for automated vehicles. As a result, the spacing
policy used in ICC systems determines the equilibrium speed-following distance
or equivalently equilibrium speed-density or equilibrium tra�c volume-density
relationship for the tra�c. This relationship, also known as the fundamen-
tal tra�c characteristic, governs the tra�c capacity and ow behavior [7, 36].
Until recently [34], the design of a spacing policy for automated vehicles is
considered as much a philosophical issue as it is a technical issue. This paper
dispels such a myth and is concerned with designing an ICC algorithm for a
speci�ed tra�c performance speci�cation.

2 Background

The macroscopic dynamics of a tra�c ow is described by di�erential equations
that govern the evolution of tra�c density and tra�c speed. The conservation
of mass equation together with a constitutive equation similar to the conser-
vation of linear momentum describes the macroscopic dynamics of automated,
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partially automated and non-automated tra�c ows. By an automated tra�c
ow, we mean a tra�c ow consisting entirely of automated vehicles. By a
non-automated tra�c ow, we mean a tra�c ow consisting entirely of non-
automated vehicles and by a partially automated tra�c ow, we mean a tra�c
ow consisting of both automated and non-automated vehicles. The constitu-
tive equation is di�erent for the three kinds of tra�c ows. Researchers have
obtained the constitutive equation for non-automated tra�c ows by using
either car-following models of tra�c ow or continuum models of tra�c ow
[38].

Extensive experimentation has shown that human distance regulation on
existing highways leads to tra�c ow instability when the tra�c density exceeds
a critical value [7, 21]. Attempts to explain the tra�c ow behavior have
resulted in the development of several tra�c ow models. The �rst known car
following models are due to Reuschel [28] and Pipes [26]. In their work, it is
hypothesized that each driver maintains a separation distance proportional to
the speed of their vehicle plus a distance headway at standstill that includes
the length of lead vehicle. In other words, each driver adopts a constant time
headway spacing policy. Greenshields [12] hypothesized the following steady
state relationship between tra�c density, � and speed, v:

v = vf (1�
�

�max

)) q = vf�(1�
�

�max

):

Here �max is the jam density and vf is the free speed of the tra�c. Since
the tra�c volume, q, is a quadratic function of �, q increases with increasing
density upto a critical density, �peak = �max

2 and the corresponding tra�c
volume, qpeak =

vf�max

4 . It can be shown that the tra�c ow is stable upto the
critical density and is unstable thereafter.

Car following modeling is a microscopic approach to describing the aggre-
gate tra�c speed dynamics. Car following algorithms describe in detail how
one vehicle follows another. With such a description, the macroscopic behavior
of a single lane of tra�c can be approximated, if string stability is guaranteed
[36]. The steady state tra�c volume-density relationship is obtained by using
the conservation of mass equation in conjunction with the car following model.

Analytical and experimental studies detailing vehicle following performed
by humans can be found in [30, 13, 27, 9, 16]. Inherent to this approach is
the assumption [30] that each driver in a following vehicle is an active and
consistently predictable control element. The macroscopic approximation of
tra�c ow dynamics is seriously a�ected by this assumption. However, the
reduction/elimination of human role in automated vehicle following makes it
reliable to obtain the aggregate speed dynamics from car-following models.

In modeling tra�c as a continuum, tra�c ow is compared with uid
ow. The density evolution is governed by the conservation of mass princi-
ple. The simplest of continuum models for freeway tra�c is due to Lighthill
and Whitham, [18]. In their work, Lighthill and Whitham employ a static
constitutive tra�c volume - density relation, q = q(�) in the conservation of
mass equation. As a result,

@�

@t
+

@q(�)

@x
= 0: (1)
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Here, x is the spatial variable, t is the time. In this tra�c ow model, tra�c
velocity dynamics is neglected. Since the time scale for tra�c density evolution
is much slower than the time scale for aggregate tra�c speed dynamics, this is
a reasonable assumption.

Let ��(x) and q(��) denote a basic solution to the conservation of mass
equation with the constitutive relation, q = q(�). In order to study the stability
of the basic solution, consider a linearization about the basic solution:

@ ~�

@t
+

dq

d�
(��)

@ ~�

@x
= 0: (2)

Here, ~� = �� ��, is the deviation of the tra�c density from the basic solution.
Call dq

d�
(��) = c(��). c(��) is the characteristic speed of the tra�c wave and is

the slope of the equilibrium tra�c ow-density relationship. The solution of
this partial di�erential equation is ~�(x; t) = F (x�ct) around the vicinity of the
basic or equilibrium solution, where F is any di�erentiable function determined
from the value of disturbance at some initial time.

It is important to understand the desirable characteristics of tra�c ow at
this stage. If there are density disturbances to the tra�c ow, say due to a
burst of vehicles after a football game, it should not propagate downstream
unattenuated in space and time. Otherwise, for a tra�c headed towards point
B from point A, any density disturbances at point B will be felt at point A.

The sign of c [21] determines how density disturbances are propagated. If
c > 0, the density disturbance propagates as a forward traveling wave. This
is acceptable, and this implies that the density disturbances due to, say, a
burst of vehicles are actually traveling forward in space and contributing to
the throughput. If c < 0, the density disturbance propagates upstream and is
a backward traveling wave. Therefore, arbitrarily small density disturbances
in tra�c propagate upstream unattenuated and is undesirable of a tra�c on
a freeway. It should be pointed out that the both the forward and backward
traveling wave solutions are stable by the conventional stability de�nitions;
however, the backward traveling wave solution represents an undesirable traf-
�c ow behavior. If c < 0, inertial e�ects, i.e. cruise control system dynamics
aggravate this behavior further, and result in tra�c ow instability, see Swa-
roop and Rajagopal [36].

Payne [24] considered a non-automated tra�c ow and developed a macro-
scopic tra�c ow model incorporating the dynamics of aggregate velocity of
vehicles. The speed density relationship at equilibrium (or steady state) is
embedded in this model. This model is a basis for a considerable number of
freeway tra�c control algorithms [24, 21] and is given by:

@v

@t
+ v

@v

@x
=

1

�
[h(�)� v] +

1

2

@h

@�

@�

@x
: (3)

In the above equation, h(�) is the equilibrium velocity at an equilibrium density,
�.

A continuum approximation of tra�c ow behavior does away with human
element in non-automated vehicle following. As a result, the constitutive equa-
tion represents a crude approximation of the aggregate tra�c speed dynamics.
Parameters to this model are obtained empirically [21, 24].
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The problem of obtaining a constitutive equation, similar to the balance of
linear momentum in continua or Newton's second law for a system of particles,
for the automated tra�c is addressed in [36]. This model is used to study
the behavior of automated tra�c in this report. This is in contrast to the
model developed above in equation 3 and adopted for analysis in automated
highway systems by Karaslaan and Varaiya [15], and by Chien, Ioannou and
Stotsky [4]. The relationship between ICC systems and tra�c ow behavior
recently investigated by Swaroop and Rajagopal [36] is used in this paper to
demonstrate the e�ectiveness of proposed variable spacing control algorithm.

2.1 Automated Tra�c Flow Behavior with Variable

Spacing algorithms

At this stage, it is important to delineate the di�erence between string stability
and desired tra�c ow behavior in an automated tra�c. The behavior of an
automated tra�c ow is governed not only by the individual vehicle following
control laws, but also constrained by the conservation of mass principle. Thus
far, the conservation of mass principle has never been considered in the string
stability analyses performed for automated vehicle following in the literature.
Therefore, guaranteeing string stability is by no means su�cient to guarantee
that a desired tra�c ow behavior can be achieved. For a further discussion, the
reader is referred to Swaroop and Rajagopal [36]. For the sake of completeness,
analysis of automated (or non-automated) tra�c ow with variable spacing
policies in [36] is presented here.

An analysis of the tra�c ow behavior begins with the conservation of mass
equation:

@�

@t
+

@(�v)

@x
= 0: (4)

Here, v is the aggregate speed of the automated tra�c, and � is the aggregate
density.

In the derivation of aggregate speed dynamics, it is assumed that the ac-
celeration of every vehicle can be controlled, i.e., it can be assigned any value.
Let Lc be the length of a car, and � be the following distance, and let �h(�)
be the desired speed of a vehicle, vdes at the following distance, �. De�ne an
error, ev in the velocity as:

ev := v � �h(�) = v � h(�):

In the above equation, � = 1
�+Lc

and this equation holds if string stability is
guaranteed. The following control law:

ades = _v = _�h(�)�
1

�
ev

guarantees that the error in velocity, ev decays to zero exponentially with a
time constant, � .

Since

dv

dt
=

@v

@t
+ v

@v

@x
;
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and
d�

dt
=

@�

@t
+ v

@�

@x
;

it follows from the vehicle following control law, that

@v

@t
+ (v + �

@h(�)

@�
)
@v

@x
=

1

�
[h(�)� v]: (5)

A stationary solution admitted by the equations 4 and 5 is � = �0 and
v = h(�0). To study the linearized stability of such a stationary solution,
consider the following possible perturbed backward traveling wave solutions,

� = �0 + ~�eik(x+ct)e�t;

v = h(�0) + ~veik(x+ct)e�t:

In the above equations, k; c; � are real numbers. In fact, only if c > 0, does the
solution represent a backward traveling wave. In such a case, c is the speed of
the backward traveling wave. De�ne q

0

c(�) := �dh(�)
d�

+ h(�). � is indicative of
the attenuation or non-attenuation of the traveling wave.

If one ignores higher order terms in ~v; ~� when the above set of equations
is substituted into the equations 4 and 5, it follows that for a non-trivial
solution, the following conditions must hold:

k2(c+ h(�))(c+ q
0

c(�0)) = �(�+
1

�
);

�(c+ q
0

c(�0)) + (�+
1

�
)(c+ h(�0)) +

q
0

c(�0)� h(�0)

�
= 0:

Note that � = 0; c = �q
0

c(�) and k is any non-trivial real number satis�es
the above set of algebraic equations. In other words, the perturbed solutions
agree quite closely with the traveling wave solutions when the deviation of the
perturbed solution from the nominal solution is su�ciently small. Such an
observation is in concurrence with the simulation results and with the results
of Lighthill and Whitham [18].

With a constant spacing policy, the slope, c(�), of the fundamental tra�c
characteristic at a given density, �, is always constant and equals � Lc

hw
, where Lc

is the car length and hw is the value of the time headway employed by the ICC
system. Therefore, small density disturbances propagate upstream without any
attenuation and the constant time headway policy is unstable according to the
de�nition given in [36].

3 ICC Algorithm Design and Tra�c Flow

Stability

An ICC algorithm is constrained by the following [36]: Any spacing policy
chosen for cruise control applications must be such that the desired follow-
ing distance (and consequently the inverse of equilibrium density) is a non-
decreasing continuous function of velocity. As a result, the minimum value of
desired following distance (and hence, maximum equilibrium or jam density)
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occurs when the velocity is zero. Since the steady state tra�c volume is the
product of steady state tra�c density and velocity, it follows that the tra�c
volume is very small at very low densities and zero at the jam density. By an
application of Rolle's Theorem, it follows that the fundamental characteristic
obtained with any spacing policy must have a density regime where its slope is
negative. By the results from the above section, it follows that no ICC scheme
can guarantee tra�c ow stability through the entire density regime.

The spacing policy used in an ICC algorithm can be synthesized from the
speci�cation of the fundamental tra�c characteristic. A typical fundamental
characteristic of automated tra�c equipped with autonomous ICC is shown in
the �gure below.
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Figure 1: Typical Fundamental Tra�c Characteristic

The impossibility of obtaining a stable tra�c ow behavior over the entire
density regime suggests that a speci�cation on the peak tra�c capacity, Cmax

and on critical density, �cr is a reasonable one. Such a speci�cation is subject
to the following reality checks:

1. Vehicle capabilities: The spacing policy synthesized from the speci�ca-
tions dictates how a controlled vehicle must change its speed with re-
spect to the following distance. If the spacing policy requires a signi�cant
change in the speed corresponding to a small change in the following
distance, vehicle capabilities may not be adequate.

2. Speed of upstream propagation of tra�c waves: The slope of the unsta-
ble regime of the fundamental tra�c characteristic dictates the speed of
upstream propagation of tra�c waves. Hence, requiring a high critical
density and a high tra�c capacity, will result in a faster upstream, unde-
sirable propagation of tra�c waves in the unstable regime and this can
potentially result in collisions between vehicles.

It is appropriate to discuss the synthesis of ICC algorithms now. A feedback
linearized vehicle model is given by

�x = u;

where u is the synthetic control e�ort and can be translated into throttle and
brake commands, see [37].
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3.1 ICC algorithm based on tra�c ow speci�cation

Suppose that vf can be changed in accordance with the speci�cation on maxi-
mum tra�c capacity. With Greenshield's relation,

v = vf (1�
�

�max

);

and therefore, in equilibrium

q = vf�(1�
�

�max

) = vf�(1� �L0);

where L0 =
1

�max
is the distance headway at standstill plus the vehicle length.

c = dq
d�

is positive for all � < �cr = �max

2 . Therefore, in order to achieve a

maximum tra�c capacity, Cmax, vf =
4Cmax

�max
. In order to synthesize a control

law that produces Greenshield's tra�c characteristic, the following spacing
policy must be adopted:

�des =
L0

1� v
vf

� Lc;

where �des is the desired following distance of the controlled vehicle. A control
law which regulates spacing according to this policy is given by:

u = k1(� + Lc �
L0

1� v
vf

) + k2 _�:

Here � and _� are the range (following distance) and the range rate of the
controlled vehicle. The measurements of � and _� are obtained from on-board
sensors such as a sonar or a radar. In the above control law, k1; k2 are associ-
ated control gains. An obvious troublesome point is when vehicle velocity as
measured by sensors is vf . In order to overcome such a problem, let

vdes = vf (1� (
L0

�+ Lc

)):

Consider the following control law:

u = _vdes �K(v � vdes) = vf
L0

(�+ Lc)2
_��K(v � vf(1�

L0

�+ Lc

)):

In the above equation, K > 0 is the control gain. The disadvantage with the
above policy is that the critical density is always �xed at half the jam density.

A simple modi�cation of the above spacing policy, available in the literature
[7], can be used to overcome the above disadvantage. Consider the following
equilibrium tra�c speed-density characteristic:

v = vf (1� (
�

�max

)l)m

where vf ; l; m are design parameters for the spacing policy and can be chosen
to meet the speci�cations on peak tra�c volume and critical density. As a
result, equilibrium tra�c volume is given by

q = vf�(1� (
�

�max

)l)m
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The critical density for this characteristic is given by:

�cr = �max(
1

1 + lm
)
1

l

Given any �� as a speci�cation for critical density, there exist a choice of l;m
that satisfy this speci�cation. For example, a choice of l = 1; m = �max��

�

��

yield �cr = ��. Once the exponents l;m are chosen, a speci�cation on the peak
tra�c volume, Cmax can be met by the following choice of vf

vf =
Cmax(1 + lm)

1+lm

l

�max(lm)m

Corresponding to this speci�cation, the desired velocity, vdes must vary accord-
ing to the following relation:

vdes = vf (1� (
L0

�+ Lc

)l)m

An implementable ICC law that yields the speci�ed tra�c ow characteristic
is

u = _vdes �K(v � vdes)

3.2 String Stability in Variable Spacing algorithms

String stability can only be guaranteed for small deviations of the lead vehicle's
speed from the operating speed. However, simulations with an ICC algorithm
employing Greenshield's policy indicate the absence of any string instability for
any lead vehicle's maneuvers. Figures 2 and 3 indicate that string stability is
achieved. Figure 2 shows how the spacing between vehicles change and �gure
3 indicates the evolution of velocity of vehicles in a string.

3.3 Sensitivity Issues

The sensitivity of the desired velocity as a function of the actual following
distance is important in the design of Intelligent Cruise Control Systems. It
provides a measure of vehicle capabilities required to implement a cruise control
system. In this paper, S(�) represents the sensitivity and is de�ned as:

S(�) := vdes
dvdes
d�

:

This measure of sensitivity is indicative of the desired reduction in kinetic en-
ergy for a unit change in the following distance and directly relates to the
vehicle's braking capability. A higher value of sensitivity is required for higher
tra�c throughput and demands higher vehicle braking and acceleration capa-
bilities.

For the proposed spacing policy, the sensitivity is given by

S(�) = lmv2f(1� (
L0

�+ Lc

)l)2m�1(
L0

�+ Lc

)l
1

� + Lc

:
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Figure 2: Evolution of spacing between vehicles in a string with the proposed variable

spacing policy

A plot showing the sensitivity for the Greenshield's policy is shown in Figure
4. It is interesting to see that sensitivity has a maximum value, Smax, at a non-
zero following distance and tapers to zero for higher following distances. For
this spacing policy, maximum sensitivity occurs at

� = L0(
2lm+ 1

l + 1
)
1

l � Lc;

and the maximum value of sensitivity is given by:

Smax(�) =
v2f
L0

lm(
2lm� l

2lm+ 1
)2m�1(

l + 1

2lm+ 1
)
l+1
l :

To summarize the design, there are three design parameters, vf ; l and m.
There are two speci�cations - Cmax, the desired maximum throughput and �cr,
the critical tra�c density. The extra design parameter can be used to minimize
the maximum sensitivity so that this spacing policy does not demand high
acceleration/braking performance of vehicles.

4 Simulation Results

The following speci�cations on tra�c ow are chosen for simulation purposes:
Cmax = 3240vehicles=lane=hour; �cr =

�max

2 . An average vehicle length of 5m
and a distance between vehicles at standstill of 5m is chosen for this simula-
tion. One can verify that the following values of parameters, vf = 36m=s in
Greenshield's spacing policy (l = 1; m = 1) satisfy the tra�c ow speci�cation.
Correspondingly, the maximum sensitivity value is Smax(�) = 19:2m=s2 and
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Figure 3: Evolution of velocity of vehicles in a string with the proposed variable

spacing policy

the maximum sensitivity occurs when the following distance is twice the vehicle
length.

The simulations obtained with an ICC system based on Greenshield's spac-
ing policy will be compared with an AICC [14] system based on a constant
time headway policy. In a constant time headway spacing policy, the desired
velocity is linearly proportional to the following distance, i.e

vdes =
1

hw
[�+ Lc � L0]:

For simulations, hw is chosen as 1sec and L0 as 10m.
A section of length 1000m of a single lane of freeway is considered. An

on-ramp is located at 350m from the downstream end of this section, where
vehicles merge into the tra�c. The simulations are set up such that the
mainline tra�c volume and the merging tra�c volume is the same with both
spacing policies. The mainline tra�c volume considered in this simulation is
2700vehicles=lane=hour. In other words, three vehicles enter the upstream
end of the section every four seconds. Vehicles entering the upstream end of
the section are set up such that they do not have any velocity error (their
speed matches that of their immediate predecessor). However, they may have
a spacing error, i.e the actual following distance may not necessarily match the
desired following distance.

Tra�c from on-ramp starts only after t = 50 seconds in these simulation.
Vehicles merge in between vehicles that are closest to the ramp, with its position
and velocity as the mean position and velocity of the vehicles closest to the
ramp. Two types of merging tra�c are considered: bursty (or pulse) and
continuous stream. A bursty on-ramp tra�c may be thought of as a pulse
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Figure 4: Sensitivity plot of the proposed spacing policy

disturbance in the tra�c demand. In this simulation, a total of eight vehicles
from the on-ramp merge into the tra�c 20 seconds apart (i.e from t = 55sec
to t = 195sec). In the second scenario, a continuous stream of on-ramp tra�c
with a tra�c volume of 180vehicles=hour is considered.

There are four cases in all: Greenshield's policy with bursty on-ramp tra�c,
constant time headway policy with bursty on-ramp tra�c, Greenshield's policy
with continuous stream of on-ramp tra�c, constant time headway policy with
continous stream of on-ramp tra�c. Corresponding to each case, the following
statistics are collected every half second: the mean velocity of all the vehicles
in the section, the cumulative number of vehicles that have entered the section
either from the mainline or from the on-ramp, the total number of vehicles in
the section and the position of all vehicles in the section at the sampled time
instant.

There are four plots, one for each statistic: The �rst one depicts the evolu-
tion of tra�c density. The discrete nature of counting along with the fact that
the section length cannot always be an integral multiple of the intervehicular
distance leads to the spikes in the plot. Depending on the frequency of vehicle
count, there are either upward spikes or downward spikes in a given interval of
time. For example, in �gure 3, the frequency of a count of 31 vehicles is much
higher than the frequency of a count of 30 vehicles in the highway section in the
time interval from 75 to 200 seconds. Hence you see downward spikes during
that time interval.

The second plot depicts the aggregate tra�c speed evolution. Chattering
observed in this plot is also due to the discrete nature of counting vehicles and
averaging them. As a result of averaging, this plot is smoother than the density
evolution plot.
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The third plot shows how the input and output tra�c volumes of the section
vary as a function of time.

The fourth plot is the space-time plot. Every single dot in this plot is
described by two coordinates. The horizontal coordinate represents time and
the vertical coordinate represents the position of a vehicle at that given time.
A lower value of the vertical coordinate implies that the vehicle is close to the
upstream end of the section at that time. The number of vehicles in the section
at any time can be determined by counting the number of dots corresponding
to that time. A higher density of dots in a part of the section at any time
implies that the tra�c is congested in that part of the section at that time.
One can also infer the intervehicular spacing distribution at any given time
from this plot similarly.

Figures 5 to 8 describe the behavior of tra�c with a Greenshield's spac-
ing policy and with a burst of vehicles entering the highway section from the
on-ramp. Figures 9 to 12 describe the corresponding tra�c behavior with a
constant time headway policy. Figures 13 to 16 describe the tra�c behavior
with Greenshield's spacing policy and with a steady stream of vehicles en-
tering the highway section from the on-ramp. Figures 17 to 20 describe the
corresponding behavior with a constant time headway policy.

Clearly, one can see the backward propagation of tra�c density from the
space-time charts with a constant time headway policy and a forward propa-
gation of tra�c density with an ICC system based on Greenshield's spacing
policy. The results agree with the theory. From the �gures, it is clear that
an ICC system based on Greenshield's spacing policy is much superior to the
AICC system based on a constant time headway policy.
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Figure 5: Greenshields policy-Bursty on-ramp tra�c-Tra�c density evolution plot
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Figure 6: Greenshields policy-Bursty on-ramp tra�c-Tra�c speed evolution plot

5 Summary and Conclusions

In the presence of favorable density and velocity gradients, tra�c ow can be
locally stable past the critical density value. Conversely, in the presence of
unfavorable density and velocity gradients, tra�c ow can become unstable for
basic ow densities smaller than the critical density. This is consistent with
widely observed tra�c data. From the analysis, it has been demonstrated that
a well designed spacing policy for an ICC system must be such that the slope of
the corresponding fundamental tra�c characteristic must always be positive.
Numerical simulations verify this fact.

References

[1] Blinkin, M. Ya, \Problem of Optimal control of tra�c ow on high-
ways,"Automation and Remote control, vol.37, pp. 662-667, 1976.

[2] Broucke, Mireille., Varaiya, P., \A theory of tra�c ow for Automated
Highway Systems," Transportation Research, Vol. C, August, 1996.

[3] Caudill, R. J., and Garrard, W. L., \Vehicle Follower Longitudinal Control
for Automated Transit Vehicles," Journal of Dynamic Systems, Measure-

ments and Control, Vol. 99, No. 4, December 1977, pp. 241-248.

[4] Chien, C. C., Zhang, Y., Stotsky, A., Ioannou, P., \Roadway Tra�c Con-
troller design for automated highway systems," pp. 2425-30, Vol. 3, 1994.

[5] Chiu, A. Y., Stupp Jr., G. B., and Brown Jr., S. J., \Vehicle Follower
Control with Variable gains for short Headway automated guideway tran-

14



0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Time(sec)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 v

eh
ic

le
s

Inflow and Outflow with proposed strategy−burst

Figure 7: Greenshields policy-Bursty on-ramp tra�c-Input and Output tra�c vol-

umes

sit systems," Journal of Dynamic Systems, Measurements and Control,
September 1977, pp. 183-189.

[6] Cremer, M., Papageorgiou, M., \Parameter identi�cation for a tra�c ow
model," Automatica, vol. 17, pp. 837-843, 1981.

[7] Drew, D.R., \Tra�c Flow Theory and Control," McGraw-Hill, New York,
1968.

[8] Fancher, P., Bareket, Z., \Inuence of AICC on tra�c ow," In Proceed-
ings of the Advanced Vehicular Control, pp. 402-407, 1994.

[9] Gazis, D. C., Herman, R., Potts, R., \Car-following theory of steady state
tra�c ow," Operations Research, vol. 7, pp. 499-595, 1959.

[10] Golub, Gene, H., Van Loan, Charles, F., \Matrix Computations," The
Johns Hopkins University Press, 1989.

[11] Greenlee, T. L., Payne, H.J., \Freeway Ramp metering Strategies for Re-
sponding to Incidents," Proceedings of the 1977 IEEE Conference on De-
cision and Control, pp. 987-992, 1997.

[12] Greenshields, B. D., \A study in Highway capacity", Highway Research
Record, vol. 14, p. 468, 1934.

[13] Herman, R., E. W. Montroll, R. B. Potts, and R. W. Rothery, \Tra�c
Dynamics: Analysis of Stability in Car Following," Operations Research,
E. 17, 1958, pp. 86-106.

[14] Ioannou, P., Chien, C, \Autonomous Intelligent Cruise Control," IEEE
Transactions on Vehicular Technology, Vol.42, pp. 657-72, 1993.

15



0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

800

900

1000

Time(sec)

N
um

be
r 

of
 v

eh
ic

le
s 

in
 th

e 
se

ct
io

n

Density evolution with a burst of vehicles

Figure 8: Greenshields policy-Bursty on-ramp tra�c-Space-time chart

[15] Karaslaan, U., Varaiya, P., Walrand, J., \Two proposals to improve free-
way tra�c ow," In Proceedings of the American Control Conference, pp.
2539-44, 1991.

[16] Kometani, E., T. Suzaki, \On the stability of Tra�c Flow," J. Operations
Research, Japan 2, pp. 11-26, 1958.

[17] Leutzbach, W., \Introduction to the theory of tra�c ow," Springer Ver-
lag, 1988.

[18] Lighthill, M. J., Whitham, G. B., \On Kinematic Waves II. A Theory of
Tra�c Flow on Long Crowded Roads," Proceedings of the Royal Society
of London, Series A 229, pp. 317-345, 1955.

[19] Looze, D. P., Houpt, P. K., Sandell, N. R., Athans, M., \ On decentralized
Estimation and Control with Application to Freeway Ramp Metering,"
IEEE Transactions on Automatic Control, AC-23, pp. 268-275, 1978.

[20] Palmquist, U., \Intelligent Cruise Control and Roadside Information,"
IEEE Micro 13, 1, pp. 20-8, 1993.

[21] Papageorgiou, M., \Lecture Notes in Control and Information Sciences,"
Springer Verlag, Vol. 50, 1983

16



0 50 100 150 200 250 300 350 400 450 500
24

26

28

30

32

34

36

Time(sec)

N
um

be
r 

of
 v

eh
ic

le
s 

in
 th

e 
se

ct
io

n

Density evolution of AICC traffic with a burst of vehicles

Figure 9: AICC -Bursty on-ramp tra�c-Tra�c density evolution plot

[22] Papageorgiou, M., Mayr, R., \Optimal decompostion methods applied to
motorway tra�c control," International Journal of Control, Vol. 35, pp.
269-280, 1982.

[23] Papageorgiou, M., Blosseville and Hadj-Salem, H., \Macroscopic mod-
elling of tra�c ow on the boulevard peripherique in Paris," Transporta-
tion Research, A 24:345-359, 1990.

[24] Payne, H. J., \Models of Freeway Tra�c and Control," Simulation Council
Proceeding, vol.1, pp. 51-61, 1971.

[25] Payne, H. J., Thompson, W. A., Isaksen, L., \Design of a tra�c-responsive
control system for a Los Angeles Freeway," IEEE Transactions on Systems,
Man and Cybernatics, SMC-3, pp. 213-224, 1973.

[26] Pipes, L.A., \An operational analysis of tra�c dynamics", Journal of Ap-
plied Physics, vol. 24, pp. 274-281, 1953.

[27] Herman, R., and R. B. Potts, \Single Lane Tra�c Theory and Experi-
ment," In Proceedings of the Symposium on Tra�c Flow, Ed. R. Herman,
Elsevier Publications Company, pp. 120-46, 1959.

[28] Reuschel, A., \Fahrzeugbewegungen in der Kolonne", Zeitscrift d. Oesterr.
Ing. u. Arch. Vereins, vol. 95, pp. 59-62, 73-77, 1950.

[29] Richards, P.I., \Shock Waves on the Highway," Operations Research, pp.
42-51, 1956.

[30] Rothery, R. W., R. Silver, R. Herman, and C. Torner, \Analysis of Ex-
periments on Single Lane Bus Flow," Operations Research, 12, pp. 913,
1964.

17



0 50 100 150 200 250 300 350 400 450 500
21

22

23

24

25

26

27

28

29

30

31

Time(sec)

A
gg

re
ga

te
 tr

af
fic

 s
pe

ed

Traffic Behavior with AICC

Figure 10: AICC -Bursty on-ramp tra�c-Tra�c speed evolution plot

[31] Saxton, L., Schenck, C., \Diversion and Corridor Control Systems in West-
ern Europe", In \World Survey on Current Research and Development on
Roads and Road Transport," International Road Federation, Washington,
D.C., pp. 692-723, 1977

[32] Saridis, G.N., Lee, C.S.G., \On heirarchically intelligent Control and Man-
agement of Tra�c Systems," In Engineering Foundations Conference in
Computer control of Urban Tra�c", Levine, W. S., Lieberman, E., Fearn-
sides, J.J., Editors, pp. 209-218, 1981.

[33] Sheikholeslam, S., Desoer, C. A., \Longitudinal control of a platoon of
vehicles," In Proceedings of American Control Conference, pp. 291-296,
May 1990.

[34] Shladover, Steven, \An overview of the Automated Highway Systems Pro-
gram," Vehicle System Dynamics Journal, Vol. 24, 1995, pp. 551-595.

[35] Swaroop, D., \String Stability of Interconnected Systems: An application
to platooning in Automated Highway Systems," Ph. D Dissertation, De-
partment of Mechanical Engineering, University of California, Berkeley,
December, 1994.

[36] Swaroop, Darbha and K. R. Rajagopal, \Intelligent Cruise Control Sys-
tems and Tra�c Flow Stability," submitted to the Transportation Research
Journal, Vol. C.

[37] D. Swaroop, J. K. Hedrick, C. C. Chien, P. A. Ioannou, \ A Compari-
son of spacing and headway control strategy for automatically controlled
vehicles," Vehicle System Dynamics, Vol. 23, no. 8, pp. 597-625, 1994.

[38] TRB Monograph on Tra�c Flow Theory, edited by Nathan Gartner, Car-
rol Messer, and Ajay Rathi, 1998.

18



0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Time(sec)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 v

eh
ic

le
s

Traffic volumes in and out of the section

Inflow −−

−−Outflow

Figure 11: AICC -Bursty on-ramp tra�c-Input and Output tra�c volumes

[39] Varaiya, P., \Smart Cars on Smart Roads: Problems of Control ," IEEE
Transactions on Automatic Control, Vol. 38, No.2, pp. 195-207, 1990.

[40] Vidyasagar, M., \Nonlinear Systems Analysis," Prentice Hall, 1978

[41] Willsky, A. S., Chow, E.Y.,Gershwin, S.B., Greene, C.S., Houpt, P. K.,
Kurkjian, A. L., \Dynamic Model-Based Techniques for the Detection of
Incidents on Freeways," IEEE Transactions on Automatic Control, vol.
AC-25, no.3, June 1980.

19



0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

800

900

1000

Time(sec)

P
os

iti
on

 o
f v

eh
ic

le
s 

in
 th

e 
se

ct
io

n

Space−time chart with AICC and a burst of vehicles from on−ramp

Figure 12: AICC -Bursty on-ramp tra�c-Space-time chart
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Figure 13: Greenshields policy-Steady on-ramp tra�c-Tra�c density evolution plot

20



0 50 100 150 200 250 300 350 400 450 500
24.4

24.6

24.8

25

25.2

25.4

25.6

Time(sec)

A
gg

re
ga

te
 tr

af
fic

 s
pe

ed
(m

/s
)

Traffic Behavior with the proposed strategy

Figure 14: Greenshields policy-Steady on-ramp tra�c-Tra�c speed evolution plot

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

Time(sec)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 v

eh
ic

le
s

Inflow and Outflow with proposed strategy

Figure 15: Greenshields policy-Steady on-ramp tra�c-Input and Output tra�c vol-
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Figure 16: Greenshields policy-Steady on-ramp tra�c-Space-time chart
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Figure 17: AICC-Steady on-ramp tra�c-Tra�c density evolution plot
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Figure 18: AICC-Steady on-ramp tra�c-Tra�c speed evolution plot
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Figure 19: AICC-Steady on-ramp tra�c-Input and Output tra�c volumes
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Figure 20: AICC-Steady on-ramp tra�c-Space-time chart

24




