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OPEN

Pharmacologic inhibition of reactive gliosis blocks
TNF-α-mediated neuronal apoptosis

Izhar Livne-Bar1,2, Susy Lam1, Darren Chan1, Xiaoxin Guo1, Idil Askar1, Adrian Nahirnyj1, John G Flanagan2 and Jeremy M Sivak*,1,3

Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain
poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid
parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs),
particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear,
and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to
study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and
others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling,
antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons.
Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo.
WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of
debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial
reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly
reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics
in reactive glia protects neurons in vivo.
Cell Death and Disease (2016) 7, e2386; doi:10.1038/cddis.2016.277; published online 29 September 2016

Astrocyte reactivity (reactive gliosis) is an early pathological
feature common to most neurodegenerative diseases, yet its
regulation and impact remains poorly understood. In the
healthy central nervous system (CNS), astrocytes coordinate
homeostatic vascular perfusion, free radical detoxification
and neurotransmitter recycling.1,2 Injury or stress induces a
phenotypic switch, whose cardinal features are cellular
hypertrophy and increased expression and polymerization of
type III intermediate filaments (IFs), particularly glial fibrillary
acidic protein (GFAP).3–5 The role of intermediate filaments in
reactive gliosis remains unclear.3,6–9 Genetic deletion of IFs
GFAP and vimentin have been shown to promote axonal
outgrowth and regeneration in developing neurons and
models of CNS injury,10–12 yet result in developmental defects
to inner retinal function13 and increased damage in models of
Alzheimer’s disease.14 Genetically, GFAP gain of function
mutations associated with Alexander’s disease induce a p38
mitogen-activated protein kinase (MAPK)-dependent
pathology.15 However, no pharmacologic tools have been
available to specifically modulate and explore this reactive
switch in the context of pathological CNS injury. Consequently,
strategies to therapeutically target the reactive switch have
remain challenging to explore.
Withaferin A (WFA) is a small molecule withanolide that is a

potent and specific inhibitor of type III intermediate filament

dynamics.16–18 Its activity has been most closely studied with
respect to vimentin rearrangement and phosphorylation in
the context of angiogenesis, fibrosis and cancer, through
downstream effects on inflammatory signaling and cell
proliferation.19–24 Interestingly, WFA has been reported to
regulate vimentin-mediated activation of MAPKs in a context
dependent manner, as well as NFκB.25,26 Recently Bargagna-
Mohan et al.27 reported that, in addition to vimentin, WFA also
binds covalently to GFAP at cysteine 294. In these studies
WFA impaired GFAP filament assembly and polymerization in
cultured astrocytes, and in vivo in retinal astrocytes and
related Müller glia in a model of injury-induced gliosis.27

Therefore, WFA presents a novel tool to test the pharmaco-
logic blockade of intermediate filament remodeling during
gliosis. However, the consequences of WFA disruption of IFs
on neuronal damage has not been studied.
We have previously used the retina as a uniquely accessible

model to study the regulation of astrocyte stress responses, and
their influence on retinal neuronal survival.28–30 In the human
and rodent eye retinal ganglion cells (RGCs) and amacrine cells
of the inner retina maintain a delicate homeostatic balance and
are particularly vulnerable to excitotoxic andmetabolic damage,
mediated in part through non-cell autonomous interactions with
neighboring glia.31–34 In addition, our work and others has
implicated signaling through p38 MAPKs as key regulators of
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glutamate recycling, antioxidant activity, and cytokine secretion
in neighboring stress-activated retinal astrocytes and
Müller glia.29,35–37 Here we take advantage of a model of

induced retinal astrocyte reactivity to establish whether WFA,
and the selective p38 MAPK inhibitor SB203580 (SB), affect
neuronal apoptosis in a mouse model of excitotoxic injury.
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Results

WFA and SB treatment blocks glial reactivity and rescues
retinal neurons from apoptosis. For the present series of
experiments we utilized a well-established excitotoxic model
of inner retinal injury that is closely associated with reactivity
of resident astrocytes and Müller glia.33,38–42 Intraocular
injection of kainic acid (KA) consistently generated rapid
accumulation of GFAP in retinal astrocytes and Müller fibers
(Figure 1a and c), and apoptosis of RGCs and amacrine cells
in the ganglion cell layer (GCL) and inner nuclear layer (INL)
by 18 h (Figure 1b and d). This method facilitates rapid and
accurate quantification of markers for the resulting neuronal
apoptosis and glial reactivity.28 In order to study the influence
of IF dynamics on this model, we first tested the efficacy of
WFA and the selective p38α and β-MAPK inhibitor
SB203580 (SB).
Mice were administered either WFA (2 mg/kg), or vehicle

control. WFA strongly reduced GFAP levels in inner retinal
astrocytes and Müller fibers following KA challenge
(Figure 1e). WFA treatment also resulted in a corresponding
marked reduction in inner retinal apoptosis in the GCL and INL
compared with control mice (Figure 1f). As we have previously
determined that blocking p38 MAPK reduces activation of
retinal astrocytes in vitro,29 we also tested intravitreal
administration of SB (2 mM), which similarly strongly reduced
GFAP staining (Figure 1g), and markedly decreased neuronal
apoptosis compared with vehicle (Figure 1h).
To quantify the extent of retinal gliosis and neuronal

apoptosis in these studies, we followed established proce-
dures to count activated Müller glia and GCL death. However,
similar patterns were also observed in the INL (Figure 1a–h).
For gliosis quantification, the number of GFAP-positive
processes crossing the inner plexiform layer were counted
across the retina in multiple sections through the level of the
optic nerve head, and averaged for multiple animals.43 On
adjacent sections TUNEL-positive cells in the GCL were
similarly quantified across the retina and averaged by
established methods.28,44–46 These analyses confirmed a
highly significant 80% reduction in GFAP-positive processes
for both WFA and SB, and 60% and 80% reductions in GCL
apoptosis, respectively (Figure 1i and j). Therefore, adminis-
tration of WFA or SB effectively blocked KA-induced reactivity
and apoptosis in the retina.

WFA treatment compromises intermediate filament poly-
merization. In order to confirm the direct activity of WFA on
astrocyte IFs, we treated cultured retinal astrocytes with the
drug for subsequent analyses by fluorescent microscopy.
Highly enriched retinal astrocyte cultures were established
from adult rats according to our published methods.28–30 We
have previously shown that these cells present typical

astrocytic morphology, and a variety of specific markers,
including GFAP, vimentin, Pax-2, glutamine synthetase (GS)
and S100A.29 They also robustly respond to metabolic and
oxidative stress with p38 MAPK-dependent changes in
activation markers, secreted cytokines and antioxidants.29

In the present study, vimentin and GFAP filaments were
assessed in retinal astrocytes by fluorescent microscopy
following treatment with 2 μM WFA or vehicle. Both vimentin
and GFAP showed reduced filamentous signal and the
formation of short aggregates following WFA exposure
(Figure 2a–b and d–e). In comparison, staining for actin
showed no effect on filament assembly (Figure 2c and f).
These specific WFA effects on IF polymerization are
consistent with previous reports.16,27

To confirm these effects in vivo, retinas from control and
WFA-treated mice were also flatmounted and probed for GFAP
and vimentin, followed by imaging with confocal microscopy.
The intensity and extent of GFAP and vimentin filaments was
reduced in WFA-treated animals compared with vehicle,
consistent with our in vitro results (Figure 2g–h and j–k).
By comparison, staining for the astrocyte marker S100 was not
strongly affected and indicated similar numbers of cells in
treated and vehicle samples, but with apparent changes to
astrocyte morphology (Figure 2i and l). Likewise, there were no
WFA-induced changes in staining for GS in retinal sections
(Supplementary Figure 1). In general the treated astrocytes
appeared smaller with fewer processes (Figure 2j–l).

A non-invasive injury model of induced retinal glial
activation. Demonstrating IF-dependent effects in vivo is
challenging due to developmental and compensatory effects
of induced gene deletions, and the intimate assoc-
iations between glial reactivity and neurodegeneration. For
this purpose we took advantage of a recently described
model of induced retinal glial activation. Bargagna-Mohan
et al. reported that mechanical corneal debridement-induced
sensitive and robust retinal astrogliosis, but did not cause any
apparent changes in retinal morphology or pathology
compared with untreated eyes.27,47 This new model of
retinal astrocyte reactivity provides a unique opportunity
for investigating the influence of injury-induced glial
reactivity on neurovascular tissue. We decided to use
this assay to test the reactivity-dependent effects of WFA
and SB. In order to adapt the model for this purpose, we first
set out to reproduce and expand the previously reported
results.
According to well-established methods the corneal epithe-

lium was transiently removed by gentle mechanical debride-
ment, according to our published procedure.48 The epithelium
resurfaces within 1–2 days accompanied by transient corneal
inflammation and neovascularization. Bargagna-Mohan et al.

Figure 1 WFA and SB inhibit retinal gliosis and apoptosis. (a and b) Intraocular injection of vehicle alone leads to no increase in GFAP stained glial fibers or TUNEL stained
apoptotic cells. (c and d) Injection of KA induces increased GFAP staining of retinal astrocytes (arrowheads), and induced staining in Müller fibers (arrows) and apoptotic death of
cells in the GCL (arrows) and INL by 18 h. (e and f) Treatment with WFA blocks the increased GFAP and TUNEL staining. (g and h) Treatment with SB203580 (SB) similarly
blocks the increased GFAP and TUNEL staining. (i) Quantification of the GFAP and TUNEL results from multiple animals showing fold change compared with contralateral control
eyes (bars indicate S.E., **Po0.01, n⩾ 4). Scale bar indicates 50 μm. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. All of the following panels and
images are oriented in the same way
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reported that by 7 days post injury a robust increase in GFAP is
induced in astrocytes and Müller fibers.27,47 Following the
same procedure we also observed a strong increase in retinal
GFAP staining compared with non-debrided controls (Figure
3a and c). Also consistent with the previous reports, there was
no major change to retinal morphology or evidence of
apoptosis (Figure 3b and d). As a second confirmation of
increased gliosis, we performed western blotting for GFAP,
and also for GS; a key glutamate recycling enzyme that is

characteristically reduced in activated astrocytes.49,50 Con-
sistent with the immunofluorescence images, GFAP was
significantly increased and GS significantly decreased in
retinas isolated from debrided eyes, compared with non-
debrided controls (Figure 3e and f).
To control for possible inflammatory effects we probed

retinas from debrided eyes for CD68, GR-1 and F4/80, for
evidence of activated microglia, neutrophils and macro-
phages, respectively (Figure 3g–i). Little or no staining was

Figure 2 WFA treatment inhibits IF dynamics. (a–f) Treatment of cultured retinal astrocytes with 2.0 μm WFA resulted in reduced staining for GFAP (a and d), and vimentin
(vim; b and e), compared with control treated cells after 8 h. At higher magnifications (insets), filamentous staining for GFAP and vimentin was disrupted, resulting in formation of
IF aggregates (arrows). In comparison, filamentous actin remained unaffected (c and f). (n= 3, scale bars indicate 100 μm. Identical exposures were used for all treatments).
(g–l) WFA treatment in vivo similarly disrupts GFAP and vimentin in retinal flatmounts, but not S100A. (n= 3, scale bars indicate 100 μm. Identical exposures were used for all
treatments)
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found, compared with positive controls (Figure 3j–l). We also
stained retinas from debrided eyes for vascular changes with
CD31 and observed no differences from non-debrided

controls, as previously reported27 (Figure 3m and n). There-
fore, we confirmed that this model does induce robust and
consistent astrocyte and Müller glial reactivity in the inner
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retina with no evidence of accompanying damage or
inflammatory response.

Activation of retinal astrocytes increases neuronal
vulnerability in an IF and p38 MAPK-dependent manner.
Our initial experiment treatment with WFA or SB potently
blocked KA-induced astrocyte activation and neuronal
apoptosis, but each inhibitor could also act through additional
mechanisms to directly affect neurons. In particular, SB has
been proposed to directly inhibit p38-dependent RGC
apoptosis.51 Therefore, we designed a combined experiment
in which KA challenge was combined with, or without,
induced astrocyte activation in order to isolate the influence
of the IF-mediated reactivity response.
In this combined design retinal astrogliosis was induced by

debridement injury one week before KA challenge, along with
each drug treatment or vehicle (Figure 4a). In naive, non-
debrided eyes, KA treatment-induced moderate glial activa-
tion and GCL apoptosis as previously described (Figure 4b
and c). In comparison, corneal debridement-induced massive
reactivity in combination with KA challenge (Figure 4d). This
combination also produced a marked increase in GCL
apoptosis compared with KA alone (Figure 4e). Quantification
of these results demonstrated a highly significant 16-fold
increase in glial reactivity in debrided eyes compared with KA
alone, and a 7-fold increase in apoptosis (Figure 4j and k).
However, these increases were completely rescued by
administration of either WFA or SB (Figure 4f–k). This
experiment therefore provides evidence that induced glial
reactivity increases the vulnerability of retinal neurons to
excitotoxic injury, and that WFA and SB mediate their
protective effects through blocking this switch.

WFA inhibits p38 MAPK-dependent TNF-α secretion.
Neuronal apoptosis in the inner retina following disease and
excitotoxic injury has been previously shown to be dependent
on cytokine signals secreted by adjacent astrocytes.33,34,50,52

Therefore we investigated WFA- and SB-regulated cytokines
that might explain the IF-dependent effects in our models.
Starting with cultured astrocytes, conditioned media was
collected from treated cells and subjected to multiplex
cytokine analyses. In this case the cells were stressed by
serum deprivation to facilitate collection and analyses of
conditioned media. Surprisingly, out of a panel of 27
cytokines and growth factors assessed, only TNF-α levels
were significantly altered by WFA, although, negative trends
were also identified for IL-1α and β, and EGF, and a positive
trend for IL-10 (Table 1). TNF-α concentrations were strongly
reduced by WFA treatment, in a dose-dependent manner to
2 μM (Figure 5a). To test whether this TNF-α signal was also
dependent on downstream p38 MAPK signaling, cells were

alternatively treated with SB, which we have previously
reported to effectively block reactivity markers.29 SB treat-
ment reduced TNF-α levels to below detection (Figure 5b).
Western blotting demonstrated that increasing concentra-
tions of WFA reduced GFAP in cultured retinal astrocytes, but
not the intermediate filament β-tubulin (β-tub) (Figure 5c).
Furthermore, phospho-p38 MAPK signal (p-p38) was
reduced compared with total p38 (Figure 5c), consistent with
previous reports.25,26 In comparison, levels of IκBα were
unaffected up to 2 μM (Figure 5c). Therefore, the WFA-
induced effect on TNF-α may be mediated through p38
MAPK in retinal astrocytes.
Glial derived TNF-α has been closely linked to the induction

of neuronal apoptosis in a variety of acute and degenerative
models, including following excitotoxic injury,33,53–55 and
during progression of glaucoma.34,56,57 To confirm the effects
of WFA on secretion of TNF-α, we probed retinal sections from
KA challenged and control eyes with antibodies to TNF-α to
observe the effect of IF inhibition in vivo.
In KA challenged eyes TNF-α staining was prominently

localized in the inner retina, matching the observed pattern of
apoptosis in the GCL and INL, but was not present in the outer
retinal layers (Figure 5d and e; Supplementary Figure 2).
Correspondingly, TNF receptor 1 (TNFR1) staining primarily
localized to GCL neurons (Supplementary Figure 2), consis-
tent with previous reports.33,34 In comparison, sections from
KA challenged eyes treated with WFA or SB showed strongly
reduced TNF-α signal (Figure 5f–i). This TNF-α signal was
quantified by measuring the average staining intensity across
theGCL frommultiple sections per animal, for multiple animals
in each treatment group. Results indicated a significant
reduction of TNF-α inWFA- and SB-treated animals compared
with control (Figure 5j). Reduced TNF-α signal in retinal
lysates was further confirmed by western blot (Figure 5k).
Thus, treatment with WFA or SB reduced TNF-α signal in the
inner retina following injury in vivo.

Discussion

Astrocyte reactivity is associated with many neurodegenera-
tive and neurotoxic processes, including Alzheimer’s disease,
Parkinson’s disease, stroke, diabetic retinopathy and
glaucoma.3,32,58–60 This parainflammatory switch contributes
to progression of non-cell autonomous disease
mechanisms.4,61 However, the pathogenic cascades under-
lying reactivity have proven difficult to study in vivo due to a
lack of pharmacologic tools to modulate this process. Genetic
deletion of vimentin or GFAP results in compensatory changes
in remaining IF’s. Although double knockouts of GFAP and
vimentin promote axonal outgrowth and regeneration in
developing neurons and after CNS injury,10–12 and use of glial

Figure 3 Rapid retinal glial reactivity is induced by corneal injury in the absence of cell death or inflammation. (a and b) Non-debrided control eyes show no evidence of gliosis
or cell death. (c and d) Mechanical debridement of the corneal epithelium in the contralateral eye results in strongly increased GFAP staining in retinal astrocytes and Müller glia
by 7 days (c), but no evidence of cell death or disrupted morphology (d). (e) Western blots from whole retina lysates show increased GFAP and decreased GS. (f) Densitometry
and statistical analyses from multiple blots confirming the changes in e (bars represent SE, *Po0.05, n= 3 animals). (g–i) Staining of debrided retinas for activated microglia,
neutrophils and macrophages, was largely negative with CD68, GR-1 and F4/80 antibodies, respectively. (j–l) Corresponding antibody-positive controls from eyes treated with
150 mM NaOH. (m and n) There was no change in retinal blood vessel staining with the endothelial marker CD31 between control (m) or debrided eyes (n). (Scale bar indicates
50 μm, Con; control, Deb; debrided.)

Neuroprotective targeting of reactive gliosis
Izhar Livne-Bar et al

6

Cell Death and Disease



toxins is similarly protective.42 Yet, these deletions also result
in developmental and pathologic defects in CNS patterning
and function that can alter baseline tissue homeostasis.13–15

In order to fully test the role of IF dynamics during glial
reactivity and disease, pharmacological tools are necessary to
block increased activity on a normal background. Here we
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have presented data demonstrating that pharmacologic
inhibition of glial IF dynamics blocks p38 MAPK-dependent
secretion of TNF-α, and dramatically reduces apoptosis in a
non-cell autonomous model of excitotoxic neuronal death.
WFA is the cardinal member of a family of bioactive steroidal

lactones termed ‘withanolides’, derived from the Withania
somnifera plant.62 It is a potent inhibitor of vimentin polymer-
ization, and has been primarily investigated for anti-angio-
genic, cytostatic, and anti-inflammatory effects, particularly
through modulation of NFκB and MAPK signaling. Recent
studies have clarified the mechanism of WFA to specifically
target type III intermediate filaments, including vimentin and
GFAP.16,27 Additionally, multiple labs have demonstrated that
its downstream kinase and transcriptional effects, as well
cytostatic effect at high concentration, are dependent on IF
blocking activity.16,20,25,27,63,64 Therefore, WFA provides a
potent tool for probing the efficacy of IF disruption in the
context of neuronal injury. Interestingly, Swarup et al.65

reported improved CNS outcomes following WFA administra-
tion in a model of amyotrophic lateral sclerosis, but did not
explore these results in the context of IF inhibition.
In our experiments pharmacologic blockade of IF dynamics

in reactive glia with WFA-protected retinal neurons from

excitotoxic metabolic stress. In the inner retina astrocyte
processes and Müller glia endfeet interact closely with RGC
bodies and axons to regulate inner retinal homeostasis.8,31,58

Reactive gliosis is rapidly induced following insult to the inner
retina,7,66 and is associated with cytokine secretion, remodel-
ing of the optic nerve head, loss of glutamate buffering and
increased production of detoxifying enzymes.8,58,67–69 Our
results suggest that the anti-apoptotic activity of WFA is
mediated by inhibiting a p38 MAPK-dependent production of
TNF-α by reactive astrocytes and Müller glia. Inhibition of IFs
or p38 MAPK-reduced glial reactivity, and inhibited neuronal
cell death. In contrast, a new model of induced glial reactivity
markedly increased susceptibility to excitotoxic death. WFA or
SB might act through additional mechanisms to directly affect
neurons, as previously reported for SB.51 Therefore, we
performed a combined experiment of KA challenge with
induced glial activation to demonstrate a rescue of the
reactivity-mediated injury by treatment with WFA or SB.
To explain these results we show that IF inhibition blocked

p38 MAPK phosphorylation, and p38-dependent secretion of
TNF-α. In comparison, IκBα levels were unchanged, suggest-
ing that NFκB signaling was not strongly affected. Increased
p38 phosphorylation and signaling has been closely asso-
ciated with astrocyte and microglia reactivity in the context of
oxidative and metabolic stress through regulation of antiox-
idant defense, mitochondrial function and cytokine secretion,
particularly TNF-α.29,70,71 In addition, gain of function accu-
mulations of mutant GFAP protein causes Alexander’s
disease via a p38 MAPK-dependent pathology.15 Accordingly,
inhibition of p38 signaling is protective in models of metabolic
and oxidative neuronal injury.51,72,73

A cytokine screen identified that WFA significantly reduced
TNF-α release, although a trend for negative regulation was
also identified for IL-1α and β, and EGF, and a positive trend for
IL-10. IL-10 has been reported to play a role in astrocyte
mediated neuroprotection, through direct and indirect
mechanisms.74–77 Therefore, these additional factors may
also contribute to the observed efficacy. TNF-α is a key
proinflammatory cytokine that binds to two major death
receptors (TNFR1 and TNFR2) to induce the extrinsic
apoptosis cascade.55 Non-cell autonomous neuronal cell
death due to glial derived TNF-α signaling has been implicated
in a diverse range of neurodegenerative and neurotoxic
conditions,55 including excitotoxicity.33,53 In the eye, TNF-α
secretion by reactive astrocytes and Müller glia has been well
established to induce RGC apoptosis in experimental
models,52,54 and during degenerative disease.34,56 Subse-
quently, pharmacologic inhibition or genetic deletion of TNF-α
signaling is protective to RGCs.33,54 The present results
suggest that type III IF dynamics initiate a p38—TNF-α
signaling cascade in reactive glia that exacerbates inner
retinal injury. In addition, the inhibition of p38 MAPK

Figure 4 Induced glial reactivity promotes inner retinal apoptosis and is rescued by IF and p38 MAPK inhibition. (a) Schematic for induction of retinal gliosis by corneal
debridement, followed by drug or vehicle treatments and KA challenge. (b and c) KA challenge induced rapid gliosis and GCL death as previously. (d and e) Prior corneal
debridement-induced increased GFAP accumulation and increased GCL apoptosis following KA insult (arrows). Treatment with WFA (f and g) or SB (h and i) rescued the
debridement-induced gliosis and cell death. (j and k) Quantification of the results showing that gliosis induced GCL death in WFA and SB-treated animals is significantly reduced
(bars are S.E., **Po0.01, n⩾ 6 animals). Scale bar indicates 50 μm

Table 1 Media cytokines after WFA treatment

Analyte Normalized concentrations

Vehicle 2 μM WFA

TNF-αa 1.00 0.38
IL-1α 1.00 0.50
EGF 1.00 0.55
IL-1β 1.00 0.62
LIX 1.00 0.90
IL-6 1.00 0.91
RANTES 1.00 0.95
MIP-2 1.00 0.98
VEGF 1.00 1.01
IP-10 1.00 1.08
Leptin 1.00 1.16
IL-13 1.00 1.18
GRO/KC 1.00 1.20
IL-2 1.00 1.21
IL-12(p70) 1.00 1.22
IL-5 1.00 1.28
MCP-1 1.00 1.29
Fractalkine 1.00 1.45
IL-4 1.00 1.52
IFNy 1.00 1.59
IL-18 1.00 1.70
MIP-1α 1.00 1.74
GM-CSF 1.00 1.86
Eotaxin 1.00 2.24
IL-17A 1.00 2.39
IL-10 1.00 4.36
G-CSF — —

Abbreviation: WFA, withaferin A.
aPo0.05, n= 3 isolates from eight animals each
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conversely decreased IF accumulation. As both p38 and TNF-
α have roles in the induction of astrocyte reactivity,29,71,78 it
seems likely that an autocrine loop is at play that may include
additional mediators, such as IL-10. Future experimentswill be
required to fully elucidate this signaling cascade.
Excitotoxic damage due to elevated glutamate has been

associated with many acute and chronic neurodegenerative

diseases of the retina and brain, including stroke, Alzheimer’s
disease and glaucoma.31,32,79 The inner retina is particularly
vulnerable to excitotoxic and metabolic stress, which is
exacerbated through the release of TNF-α by neighboring
astrocytes and Müller glia.28,33 However, the astrocyte
reactivity cascade is a complex process that has both positive
and negative aspects. For example, ischemic preconditioning

Figure 5 WFA treatment inhibits p38 MAPK-dependent TNF-α secretion in the inner retina. (a) Conditioned media from astrocytes treated with WFA showed a dose-
dependent decrease in TNF-α concentrations (*Po0.05, n= 3 cultures). (b) Conditioned media from astrocytes treated with 15 μm SB showed a complete loss of detectable
TNF-α (n= 3 cultures). (c) Western blot showing increasing concentrations of WFA resulted in reduced GFAP protein and phospho-p38 MAPK (p-p38), compared with pan-p38
MAPK. In comparison there was no change in β-tub, IκBα, or a GAPDH loading control. (d and e) Staining for TNF-α (red) appears strongly in the inner retina in KA challenged
eyes (arrow). (f and g) Treatment with WFA, or (h and i) SB, reduced TNF-α staining. Cell nuclei are indicated by Dapi staining in all images (blue). (j) Quantification of TNF-α
intensity across the GCL confirms a reduced signal in WFA- or SB-treated eyes following KA challenge (*Po0.05, n= 3 animals per group). Scale bar represents 50 μm.
(k) Western blot of retinal lysates similarly shows increased TNF-α signal following KA challenge that is blocked by WFA treatment, compared with GAPDH loading control
(n= 4 animals per lane)
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has been reported to have protective effects that are partially
attributed to activated glia.80–82 The mechanism underlying
this protection remains unclear, and is likely influenced by
signaling through additional metabolic response pathways
that may differ from the p38 driven mechanism we have
described here. A key goal for the present work is the targeted
inhibition of IFs, rather than complete ablation of the reactive
cascade. Here we have demonstrated that pharmacologic
targeting of IF dynamics modulates cytokine release and
dramatically reduces neuronal cell death following acute
retinal injury. It will be important for future studies to expand
these findings by using WFA as a probe to further investigate
the roles and mechanisms of glial IF dynamics in other
neurotoxic and neurodegenerative processes.

Materials and Methods
Retinal injury model. All animal experiments were approved by the UHN
Animal Care Committee in accordance with applicable regulations. Male C57BL/6
mice were anesthetized by i.p. injection of ketamine/xylazine. Intravitreal injections
with 10 mM kainic acid (KA) were performed as previously described.28 Briefly, a
30 g needle was inserted tangentially into the vitreous and replaced with a Hamilton
syringe to inject a volume of 2 μl, followed by application of ophthalmic antibiotic
ointment (BNP, Vetoquinol). For drug experiments, mice received two injections of
either vehicle, 2 mg/kg WFA i.p., or 2 mM SB203580 (Selleckchem, Burlington, ON,
Canada) intravitreally, the day before, and 1 h before KA challenge. Eighteen hours
after KA challenge mice were euthanized by CO2 asphyxiation and eyes processed
for histopathology. In all experiments n refers to the number of animals tested.

Induced glial reactivity model. Corneal epithelial debridement was
performed to induce retinal glial reactivity as previously described.27,48 Briefly,
anesthetized mice received topical proparacaine to the eyes (Bausch and Lomb,
Vaughan, ON, Canada). Eyes were proptosed with forceps, and the corneal
epithelium was gently removed with a sterile disposable scalpel, followed by
application of antibiotic ointment. For some experiments, at 6 and 7 days post
debridement, mice received injection of either vehicle, 2 mg/kg WFA i.p., or 2 mM
SB203580 intravitreally, followed by KA challenge, as described above. The retinas
were processed on day eight as described above. In all experiments n refers to the
number of animals tested.

Astrocyte cultures. Primary mature retinal astrocytes were isolated and
cultured as previously described.30 Briefly, retinas were dissected out of adult Wistar
rat eyes and placed in ice-cold MEM-H17 culture medium. Retinas were digested by
shaking in MEM-H17 containing trypsin and DNAse, followed by trituration to
disperse cell aggregates. When cultures reached confluence, the cells were placed
on a rotating shaker for 6–8 h and re-plated. A glial-specific expression profile was
confirmed by probing the resulting cells with a marker panel. For staining and
biochemistry experiments media was replaced with serum-free media and cultured
for an additional 8 h with treatment of 0.5 or 2.0 μM WFA, 15 μM SB or the
equivalent DMSO vehicle as a control. Conditioned media was collected after 8 h
and immediately frozen for multiplex cytokine analyses.

Western blotting and cytokine profiling. Cells were lysed in RIPA buffer
containing Complete Mini EDTA-free protease inhibitor (Roche) and PhosSTOP
phosphatase inhibitor (Roche, Mississauga, ON, Canada). Total protein was
quantified and equal concentrations were submitted to SDS-PAGE by standard
methods. Proteins were transferred to PVDF membrane and probed with antibodies
raised against GFAP (Sigma, St. Louis, MO, USA), GS (Abcam, Cambridge, MA,
USA), phospho-p38 and pan-p38 MAPK (Cell Signaling, Danvers, MA, USA), IκBα
(Santa Cruz, Dallas, TX, USA), TNF-α (R&D Systems, Minneapolis, MN, USA), and
GAPDH (Calbiochem, San Diego, CA, USA), and detected with appropriate IRDye
secondary antibody (Li-Cor Biosciences, Lincoln, NE, USA). Blots were imaged with
an Odyssey infrared imaging system (Li-Cor Biosciences). For TNF-α and multiplex
cytokine profiling, conditioned media was snap frozen and submitted for laser bead
analyses on a Bioplex 200 to detect sensitive and quantitative target protein
concentrations against a standard curve (Eve Technologies).

Immunofluorescence microscopy. Enucleated eyes were fixed in 4%
PFA overnight. Eyes were then equilibrated in 30% sucrose for 12 h, embedded in
OCT, and cryosectioned at 16 μM. Sections were blocked and probed with primary
antibodies to GFAP (Sigma), GS (Sigma), CD68 (Biolegend, San Diego, CA, USA),
GR-1 (Biolegend), F4/80 (Biolegend), TNF-α (R&D Systems), RBPMS (Phospho-
solutions, Aurora, CO, USA), and CD31 (BD Biosciences, Mississuaga, ON,
Canada) according to standard protocols. Following PBS-t washes, sections were
incubated with fluorescent-conjugated 2° abs (Molecular Probes, Eugene, OR,
USA) and mounted with DAPI. TUNEL staining was performed according to the
manufacturer’s instructions (DeadEnd; Promega, Fitchburg, WI, USA). Briefly,
sections were fixed with 4% PFA for 5 min and washed in PBS. Equilibration buffer
was added, and rTdT reaction mix was applied to each slide and incubated at 37 °C
for 60 min. Slides were immersed in 2 × SSC and then washed with PBS, followed
by blocking with 5% goat serum and incubation with 1° abs at 4 °C. Images were
acquired with a Zeiss AxioImager fluorescence microscope. For in vitro staining,
cells were washed, fixed in 4% PFA for 15 min, rinsed and permeabilized in 0.2%
Triton X-100 for 15 min, and blocked with 5% BSA for 1 h. Cells were probed
with 1° abs to: GFAP (Abcam), Vimentin (Sigma), or rhodamine phalloidin (Life
Technologies, Burlington, ON, Canada), O/N at 4 °C, followed by washing and the
appropriate Alexa Fluor 2° abs antibodies (Life Technologies) for 1 h. Cells were
mounted with Vecta-Shield anti-fade medium with DAPI (Vector Labs, Burlingame,
CA, USA), and imaged on an inverted Nikon TIE-E fluorescent microscope.

Image analyses. To quantifying glial reactivity, retinal sections were imaged at
the level of the optic nerve. The proportion of increased GFAP immunostaining in
Müller cell processes was used as an established approach to quantify retinal glial
reactivity.43 Briefly, for each animal GFAP-immunopositive processes were counted
in the inner plexiform layer for at least five retinal sections at the level of the optic
nerve. GFAP-positive processes were counted for each eye and expressed as the
average number of positive processes per 100 μm.60 To quantify the extent of
apoptosis, we counted the number of TUNEL-positive nuclei in the GCL and
expressed it as a fraction of the total GCL nuclei. In treated eyes the TUNEL signal
was more difficult to find, so we conservatively counted any suspected labeling in
our analyses. For each eye, at least five central retinal sections were analyzed at
the level of the optic nerve stretching to each ora serrata, and the results averaged,
as previously described.28,44–46,83 For TNF-α staining the mean intensity of antibody
signal was measured in the GCL and normalized to the slide background for each
section. Intensity readings were averaged for at least three sections at the level of
the optic nerve for each eye, and then averaged across each treatment group as
indicated. For all experiments eyes from at least three animals were assessed with
specific numbers described in each figure legend. Statistical analyses were
performed by one-way ANOVA with TUKEY post hoc analyses.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. Funding was provided by the Canadian Institutes for
Health Research (CIHR), the Glaucoma Research Society of Canada (GRSC), and
the National Science and Engineering Research Council (NSERC). J Sivak is the
Toronto General and Western Hospital Foundation Glaucoma Research Chair. I
Livne-Bar was supported by the David and Sandra Smith Postdoctoral Fellowship.
This work was supported by CIHR, NSERC, and the Glaucoma Research Society of
Canada.

1. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and
neuronal control of brain blood flow. Nature 2010; 468: 232–243.

2. Barreto GE, Gonzalez J, Torres Y, Morales L. Astrocytic-neuronal crosstalk: implications for
neuroprotection from brain injury. Neurosci Res 2011; 71: 107–113.

3. Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease.
Neuron 2008; 60: 430–440.

4. Garden GA, La Spada AR. Intercellular (mis)communication in neurodegenerative disease.
Neuron 2012; 73: 886–901.

5. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005; 50: 427–434.
6. Bahr M, Przyrembel C, Bastmeyer M. Astrocytes from adult rat optic nerves are

nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol 1995; 131: 211–220.
7. Johnson EC, Morrison JC. Friend or foe? Resolving the impact of glial responses in

glaucoma. J Glaucoma 2009; 18: 341–353.

Neuroprotective targeting of reactive gliosis
Izhar Livne-Bar et al

10

Cell Death and Disease



8. Tezel G. The role of glia, mitochondria, and the immune system in glaucoma. Invest
Ophthalmol Vis Sci 2009; 50: 1001–1012.

9. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number
by glia. Science 2001; 291: 657–661.

10. Menet V, Gimenez y Ribotta M, Chauvet N, Drian MJ, Lannoy J, Colucci-Guyon E et al.
Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves
neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci
2001; 21: 6147–6158.

11. Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C et al. Absence of glial
fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and
improves post-traumatic regeneration. J Neurosci 2004; 24: 5016–5021.

12. Menet V, Gimenez YRM, Sandillon F, Privat A. GFAP null astrocytes are a favorable
substrate for neuronal survival and neurite growth. Glia 2000; 31: 267–272.

13. Wunderlich KA, Tanimoto N, Grosche A, Zrenner E, Pekny M, Reichenbach A et al. Retinal
functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic
protein and vimentin. FASEB J 2015; 29: 4815–4828.

14. Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y et al. Attenuating astrocyte
activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 2013; 27:
187–198.

15. Tang G, Yue Z, Talloczy Z, Hagemann T, Cho W, Messing A et al. Autophagy induced by
Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR
signaling pathways. Hum Mol Genet 2008; 17: 1540–1555.

16. Grin B, Mahammad S, Wedig T, Cleland MM, Tsai L, Herrmann H et al. Withaferin a
alters intermediate filament organization, cell shape and behavior. PLoS One 2012; 7:
e39065.

17. Trendowski M. Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel
therapeutic approach. Biochim Biophys Acta 2014; 1846: 599–616.

18. Lavie D, Glotter E, Shvo Y. Constituents of Withania somnifera Dun. III. The side hain of
Withaferin A. J Org Chem 1965; 30: 1774–1778.

19. Liu T, Ghamloush MM, Aldawood A, Warburton R, Toksoz D, Hill NS et al. Modulating
endothelial barrier function by targeting vimentin phosphorylation. J Cell Physiol 2014; 229:
1484–1493.

20. Stevens C, Henderson P, Nimmo ER, Soares DC, Dogan B, Simpson KW et al. The
intermediate filament protein, vimentin, is a regulator of NOD2 activity. Gut 2013; 62:
695–707.

21. Bargagna-Mohan P, Paranthan RR, Hamza A, Zhan CG, Lee DM, Kim KB et al. Corneal
antifibrotic switch identified in genetic and pharmacological deficiency of vimentin.
J Biol Chem 2012; 287: 989–1006.

22. Menko AS, Bleaken BM, Libowitz AA, Zhang L, Stepp MA, Walker JL. A central role for
vimentin in regulating repair function during healing of the lens epithelium.Mol Biol Cell 2014;
25: 776–790.

23. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A et al.Withaferin
A is a potent inhibitor of angiogenesis. Angiogenesis 2004; 7: 115–122.

24. Hahm ER, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is
associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett
2013; 334: 101–108.

25. Bargagna-Mohan P, Lei L, Thompson A, Shaw C, Kasahara K, Inagaki M et al. Vimentin
phosphorylation underlies myofibroblast sensitivity to withaferin A in vitro and during corneal
fibrosis. PLoS One 2015; 10: e0133399.

26. Min KJ, Choi K, Kwon TK. Withaferin A down-regulates lipopolysaccharide-induced
cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3
activation in microglial cells. Int Immunopharmacol 2011; 11: 1137–1142.

27. Bargagna-Mohan P, Paranthan RR, Hamza A, Dimova N, Trucchi B, Srinivasan C et al.
Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a
model of retinal gliosis. J Biol Chem 2010; 285: 7657–7669.

28. Guo X, Dason ES, Zanon-Moreno V, Jiang Q, Nahirnyj A, Chan D et al. PGC-1alpha
signaling coordinates susceptibility to metabolic and oxidative injury in the inner retina.
Am J Pathol 2014; 184: 1017–1029.

29. Nahirnyj A, Livne-Bar I, Guo X, Sivak JM. ROS detoxification and proinflammatory cytokines
are Linked by p38 MAPK signaling in a model of mature astrocyte activation. PLoS One
2013; 8: e83049.

30. Rogers RS, Dharsee M, Ackloo S, Sivak JM, Flanagan JG. Proteomics analyses of human
optic nerve head astrocytes following biomechanical strain. Mol Cell Proteomics 2012; 11:
M111 012302.

31. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of
retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31: 152–181.

32. Sivak JM. The aging eye: common degenerative mechanisms between the Alzheimer's brain
and retinal disease. Invest Ophthalmol Vis Sci 2013; 54: 871–880.

33. Lebrun-Julien F, Duplan L, Pernet V, Osswald I, Sapieha P, Bourgeois P et al. Excitotoxic
death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci
2009; 29: 5536–5545.

34. Tezel G, Li LY, Patil RV, Wax MB. TNF-alpha and TNF-alpha receptor-1 in
the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2001; 42:
1787–1794.

35. Paintlia MK, Paintlia AS, Singh AK, Singh I. S-nitrosoglutathione induces ciliary neurotrophic
factor expression in astrocytes that has implication to protect CNS under pathological
conditions. J Biol Chem 2013; 16: 11507.

36. Shin JH, Jeong JY, Jin Y, Kim ID, Lee JK. p38beta MAPK affords cytoprotection against
oxidative stress-induced astrocyte apoptosis via induction of alphaB-crystallin and its
anti-apoptotic function. Neurosci Lett 2011; 501: 132–137.

37. Soliman ML, Combs CK, Rosenberger TA. Modulation of inflammatory cytokines and
mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune
Pharmacol 2012; 8: 287–300.

38. Mali RS, Cheng M, Chintala SK. Plasminogen activators promote excitotoxicity-induced
retinal damage. FASEB J 2005; 19: 1280–1289.

39. Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY, Wen CY. Reactive changes of retinal
astrocytes and Muller glial cells in kainate-induced neuroexcitotoxicity. J Anat 2007; 210:
54–65.

40. Gomez-Ramos P, Reinoso-Suarez F. Kainic acid prevents peroxidase labeling of retinal
ganglion cell bodies in the rat: a possible gate in retrograde axonal transport. Neurosci Lett
1983; 35: 1–6.

41. Wang Q, Yu S, Simonyi A, Sun GY, Sun AY. Kainic acid-mediated excitotoxicity as a model
for neurodegeneration. Mol Neurobiol 2005; 31: 3–16.

42. Ganesh BS, Chintala SK. Inhibition of reactive gliosis attenuates excitotoxicity-mediated
death of retinal ganglion cells. PLoS One 2011; 6: e18305.

43. Nickerson PE, McLeod MC, Myers T, Clarke DB. Effects of epidermal growth factor and
erythropoietin on Muller glial activation and phenotypic plasticity in the adult
mammalian retina. J Neurosci Res 2011; 89: 1018–1030.

44. Chen L, Sham CW, Chan AM, Francisco LM, Wu Y, Mareninov S et al. Role of the immune
modulator programmed cell death-1 during development and apoptosis of mouse retinal
ganglion cells. Invest Ophthalmol Vis Sci 2009; 50: 4941–4948.

45. Harada C, Namekata K, Guo X, Yoshida H, Mitamura Y, Matsumoto Y et al. ASK1 deficiency
attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma.
Cell Death Differ 2010; 17: 1751–1759.

46. Riesenberg AN, Liu Z, Kopan R, Brown NL. Rbpj cell autonomous regulation of retinal
ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 2009; 29:
12865–12877.

47. Paranthan RR, Bargagna-Mohan P, Lau DL, Mohan R. A robust model for simultaneously
inducing corneal neovascularization and retinal gliosis in the mouse eye. Mol Vis 2011; 17:
1901–1908.

48. Sivak JM, Ostriker AC, Woolfenden A, Demirs J, Cepeda R, Long D et al. Pharmacologic
uncoupling of angiogenesis and inflammation during initiation of pathological corneal
neovascularization. J Biol Chem 2011; 286: 44965–44975.

49. Krajnc D, Neff NH, Hadjiconstantinou M. Glutamate, glutamine and glutamine synthetase in
the neonatal rat brain following hypoxia. Brain Res 1996; 707: 134–137.

50. Reinhardt CA, Schein CH. Glutamine synthetase activity as a marker of toxicity in cultures of
embryonic chick brain and retina cells. Toxicol In Vitro 1995; 9: 369–374.

51. Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-
induced apoptosis of rat retinal ganglion cells. J Neurosci 2000; 20: 5037–5044.

52. Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed
to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured
retinal ganglion cells. J Neurosci 2000; 20: 8693–8700.

53. de Bock F, Dornand J, Rondouin G. Release of TNF alpha in the rat hippocampus following
epileptic seizures and excitotoxic neuronal damage. Neuroreport 1996; 7: 1125–1129.

54. Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A et al.
ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a
p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci USA 2010; 107:
3817–3822.

55. Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain.
J Neuroimmune Pharmacol 2007; 2: 140–153.

56. Yuan L, Neufeld AH. Tumor necrosis factor-alpha: a potentially neurodestructive cytokine
produced by glia in the human glaucomatous optic nerve head. Glia 2000; 32: 42–50.

57. Bai Y, Shi Z, Zhuo Y, Liu J, Malakhov A, Ko E et al. In glaucoma the upregulated truncated
TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal
ganglion cell death. Invest Ophthalmol Vis Sci 2010; 51: 6639–6651.

58. Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. Prog Brain
Res 2008; 173: 353–373.

59. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG et al. Glial cells in
(patho)physiology. J Neurochem 2012; 121: 4–27.

60. Curtis TM, Hamilton R, Yong PH, McVicar CM, Berner A, Pringle R et al.
Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of
advanced glycation end-products and advanced lipoxidation end-products. Diabetologia
2011; 54: 690–698.

61. Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative
disorders: ALS and beyond. J Cell Biol 2009; 187: 761–772.

62. Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular
insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 2012; 84:
1282–1291.

63. Bargagna-Mohan P, Hamza A, Kim YE, Khuan Abby Ho Y, Mor-Vaknin N, Wendschlag N et al.
The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament
protein vimentin. Chem Biol 2007; 14: 623–634.

64. Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J et al. Vimentin is a novel anti-
cancer therapeutic target; insights from in vitro and in vivomice xenograft studies. PLoS One
2010; 5: e10105.

Neuroprotective targeting of reactive gliosis
Izhar Livne-Bar et al

11

Cell Death and Disease



65. Swarup V, Phaneuf D, Dupre N, Petri S, Strong M, Kriz J et al. Deregulation of TDP-43 in
amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways.
J Exp Med 2011; 208: 2429–2447.

66. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN et al. Muller
cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25: 397–424.

67. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and
consequences. Prog Retin Eye Res 2006; 25: 490–513.

68. Tezel G, Wax MB. Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic
nerve head. Arch Ophthalmol 2004; 122: 1348–1356.

69. Liu B, Neufeld AH. Activation of epidermal growth factor receptors in astrocytes: from
development to neural injury. J Neurosci Res 2007; 85: 3523–3529.

70. Bachstetter AD, Van Eldik LJ. The p38 MAP kinase family as regulators of proinflammatory
cytokine production in degenerative diseases of the CNS. Aging Dis 2010; 1: 199–211.

71. Shrestha R, Millington O, Brewer J, Dev KK, Bushell TJ. Lymphocyte-mediated
neuroprotection in in vitro models of excitotoxicity involves astrocytic activation and the
inhibition of MAP kinase signalling pathways. Neuropharmacology 2014; 76: 184–193.

72. Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury.
J Cereb Blood Flow Metab 2002; 22: 631–647.

73. Rivera-Cervantes MC, Castaneda-Arellano R, Castro-Torres RD, Gudino-Cabrera G,
Feria y Velasco AI, Camins A et al. P38 MAPK inhibition protects against glutamate
neurotoxicity and modifies NMDA and AMPA receptor subunit expression. J Mol Neurosci
2015; 55: 596–608.

74. Bachis A, Colangelo AM, Vicini S, Doe PP, De Bernardi MA, Brooker G et al. Interleukin-10
prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like
activity. J Neurosci 2001; 21: 3104–3112.

75. Balasingam V, Yong VW. Attenuation of astroglial reactivity by interleukin-10. J Neurosci
1996; 16: 2945–2955.

76. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of
interleukin-10 in neuroimmune diseases. Neuropharmacology 2015; 96: 55–69.

77. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI. IL-10 directly protects cortical
neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 2011; 1373: 189–194.

78. Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW. Reactive astrogliosis
in the neonatal mouse brain and its modulation by cytokines. J Neurosci 1994; 14:
846–856.

79. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead.
Lancet Neurol 2008; 7: 742–755.

80. Dreixler JC, Poston JN, Shaikh AR, Alexander M, Tupper KY, Marcet MM et al. Delayed post-
ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res
2011; 92: 521–527.

81. Liu X, Sha O, Cho EY. Remote ischemic postconditioning promotes the survival of retinal
ganglion cells after optic nerve injury. J Mol Neurosci 2013; 51: 639–646.

82. Lorber B, Guidi A, Fawcett JW, Martin KR. Activated retinal glia mediated axon regeneration
in experimental glaucoma. Neurobiol Dis 2012; 45: 243–252.

83. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N et al. Vascular endothelial growth
factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the
adaptive response to ischemic injury. Am J Pathol 2007; 171: 53–67.

Cell Death and Disease is an open-access journal
published by Nature Publishing Group. This work is

licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from
the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)

Neuroprotective targeting of reactive gliosis
Izhar Livne-Bar et al

12

Cell Death and Disease

http://creativecommons.org/licenses/by/4.0/

	title_link
	Results
	WFA and SB treatment blocks glial reactivity and rescues retinal neurons from apoptosis
	WFA treatment compromises intermediate filament polymerization
	A non-invasive injury model of induced retinal glial activation

	Figure 1 WFA and SB inhibit retinal gliosis and apoptosis.
	Figure 2 WFA treatment inhibits IF dynamics.
	Activation of retinal astrocytes increases neuronal vulnerability in an IF and p38 MAPK-dependent manner
	WFA inhibits p38 MAPK-dependent TNF-&#x003B1; secretion

	Discussion
	Figure 3 Rapid retinal glial reactivity is induced by corneal injury in the absence of cell death or inflammation.
	Figure 4 Induced glial reactivity promotes inner retinal apoptosis and is rescued by IF and p38 MAPK inhibition.
	Table 1 Media cytokines after WFA treatment
	Figure 5 WFA treatment inhibits p38 MAPK-dependent TNF-&#x003B1; secretion in the inner retina.
	Materials and Methods
	Retinal injury model
	Induced glial reactivity model
	Astrocyte cultures
	Western blotting and cytokine profiling
	Immunofluorescence microscopy
	Image analyses
	Funding was provided by the Canadian Institutes for Health Research (CIHR), the Glaucoma Research Society of Canada (GRSC), and the National Science and Engineering Research Council (NSERC). J Sivak is the Toronto General and Western Hospital Foundation G

	ACKNOWLEDGEMENTS



 
    
       
          application/pdf
          
             
                Pharmacologic inhibition of reactive gliosis blocks TNF-α-mediated neuronal apoptosis
            
         
          
             
                Cell Death and Disease ,  (2016). doi:10.1038/cddis.2016.277
            
         
          
             
                Izhar Livne-Bar
                Susy Lam
                Darren Chan
                Xiaoxin Guo
                Idil Askar
                Adrian Nahirnyj
                John G Flanagan
                Jeremy M Sivak
            
         
          doi:10.1038/cddis.2016.277
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Official journal of the Cell Death Differentiation Association
          10.1038/cddis.2016.277
          2041-4889
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/cddis.2016.277
            
         
      
       
          
          
          
             
                doi:10.1038/cddis.2016.277
            
         
          
             
                cddis ,  (2016). doi:10.1038/cddis.2016.277
            
         
          
          
      
       
       
          True
      
   




