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Development of Bioinformatics Methods to Interrogate Complex Immune Related Genomic Regions 

from Next Generation Sequencing Data 

Wesley M. Marin 

Abstract 

The killer-cell immunoglobulin-like receptor (KIR) gene complex, located in human chromosomal region 

19q13.42, and the complement component 4 (C4) gene complex, located in human chromosomal region 

6p21.33, encode for proteins that have vital roles in immune system function. Component genes of 

these complexes exhibit copy number variation (CNV), extensive nucleotide polymorphisms, and high 

sequence similarity with other genes of their complex. Next generation sequencing (NGS) has 

transformed the world of genomics, offering a high-throughput, high-fidelity and cost-effective 

sequencing method, however, NGS analysis of the KIR and C4 regions has been thwarted due to the 

bioinformatics challenges imposed by their complex variation. In this work, the researcher presents the 

bioinformatics pipelines, PING, developed for KIR sequence analysis, and C4Investigator, developed for 

C4 sequence analysis. These bioinformatics pipelines provide comprehensive, high-throughput 

characterization of human KIR and C4 sequence variation from NGS data. These pipelines take in paired-

end short-read sequencing data and output gene copy number for both genomic regions, high-

resolution genotypes for the KIR complex, and high-resolution mapping of single nucleotide variants 

(SNVs) for the C4 region. The performance of PING was evaluated by real-world and synthetic datasets, 

while the performance of C4Investigator was evaluated by real-world datasets and comparison to 

existing methods. Both PING and C4Investigator showed high performance for copy number 

determination and SNV characterization. To demonstrate the utility of the C4Investigator pipeline, the 

researcher applied C4Investigator to whole genome sequencing (WGS) data from the 1000 Genomes 

Project (1KGP) cohort (N=3199), characterizing C4 copy number and sequence variation for the first time 
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in this dataset. To demonstrate the utility of the PING pipeline, the researched applied PING to targeted 

sequencing datasets from divergent populations (European N=363, Khoesan N=104), in addition to WGS 

data from the 1KGP cohort (N=215). To the best of our knowledge, PING and C4Investigator are the only 

bioinformatics workflows currently available for assessment of KIR and C4 full genomic sequence 

variation from NGS data.  
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Chapter 1: Introduction 

The killer-cell immunoglobulin-like receptor (KIR) gene complex, located in human chromosomal region 

19q13.42, and the complement component 4 (C4) gene complex, located in human chromosomal region 

6p21.33, encode for proteins that have vital roles in immune system function. Natural killer (NK) cells 

express KIR proteins which interact with human leukocyte antigen (HLA) ligands, in addition to non-HLA 

molecules, to modulate NK cell activity(1–3). C4 proteins, C4A and C4B, are central components of the 

complement system, which has many roles in immune system function(4). 

Next generation sequencing (NGS) has transformed the world of genomics(5), offering a high-

throughput, high-fidelity and cost-effective sequencing method. However, NGS analysis of the KIR and 

C4 regions has been thwarted due to the bioinformatics challenges imposed by their complex variation. 

Component genes of these complexes exhibit copy number variation (CNV)(6,7), extensive nucleotide 

polymorphisms, and high sequence similarity with other genes of their complex(8). These characteristics 

complicate and confound analysis of NGS data from these regions.  

In a typical NGS alignment and interpretation workflow, sequence data are aligned to a reference and 

the resultant read mappings are transformed into variant calls for each mapped position. Standard tools 

used during this process do not account for CNVs during single nucleotide variant (SNV) calling(9). 

However, CNVs can have a major impact on the determination of heterozygous SNVs in mapped read 

processing workflows, because these workflows rely on examination of the ratios of mapped reads 

containing each variant. For example, if you have a standard copy two gene where one of the genes has 

an alternate allele, the ratio of reads mapped to that position containing the alternate allele will be 

around 50%; however, if you have a copy four gene where one of the genes has an alternate allele, the 

ratio of reads containing the alternate allele will now be around 25%. This alternate allele could then be 

missed by the variant calling workflow due to being below the read ratio threshold, which is assuming a 
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50% ratio. Another characteristic of the KIR and C4 regions that confounds standard alignment 

processing workflows are the combination of extensive nucleotide polymorphisms with high sequence 

similarity between genes. These characteristics increase the potential for read misalignments, which is 

when a read originating from a specific location in the genome is mapped to a different location on the 

reference(10). Read misalignments can occur quite readily between regions with highly similar 

sequences, especially if there are nucleotide polymorphisms. Misaligned reads can lead to spurious 

variant calls which can be quite difficult to detect and correct. 

In this dissertation, I outline the development of a bioinformatics pipeline for the interpretation of KIR 

sequence from NGS data in chapter 2. This work entailed the development of dynamic alignment 

strategies and custom mapped read processing workflows to overcome the challenges imposed by the 

region. Then, in chapter 3, I expand the KIR bioinformatics pipeline to extend functionality to whole 

genome sequence (WGS) data, in addition to evaluating performance on various synthetic sequence 

datasets to characterize the strengths and flaws of the workflow. Finally, in chapter 4, I outline the 

development of a bioinformatics pipeline for the interpretation of C4 sequence from NGS data, which 

was built from the same custom mapped read processing workflows utilized for KIR sequence. 
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Chapter 2: High-throughput Interpretation of Killer-cell Immunoglobulin-

like Receptor Short-read Sequencing Data with PING 

Abstract 

The killer-cell immunoglobulin-like receptor (KIR) complex on chromosome 19 encodes receptors that 

modulate the activity of natural killer cells, and variation in these genes has been linked to infectious 

and autoimmune disease, as well as having bearing on pregnancy and transplant outcomes. The medical 

relevance and high variability of KIR genes makes short-read sequencing an attractive technology for 

interrogating the region, providing a high-throughput, high-fidelity sequencing method that is cost-

effective. However, because this gene complex is characterized by extensive nucleotide polymorphism, 

structural variation including gene fusions and deletions, and a high level of homology between genes, 

its interrogation at high resolution has been thwarted by bioinformatic challenges, with most studies 

limited to examining presence or absence of specific genes. Here, we present the PING (Pushing 

Immunogenetics to the Next Generation) pipeline, which incorporates empirical data, novel alignment 

strategies and a custom alignment processing workflow to enable high-throughput KIR sequence 

analysis from short-read data. PING provides KIR gene copy number classification functionality for all KIR 

genes through use of a comprehensive alignment reference. The gene copy number determined per 

individual enables an innovative genotype determination workflow using genotype-matched references. 

Together, these methods address the challenges imposed by the structural complexity and overall 

homology of the KIR complex. To determine copy number and genotype determination accuracy, we 

applied PING to European and African validation cohorts and a synthetic dataset. PING demonstrated 

exceptional copy number determination performance across all datasets and robust genotype 

determination performance. Finally, an investigation into discordant genotypes for the synthetic dataset 

provides insight into misaligned reads, advancing our understanding in interpretation of short-read 
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sequencing data in complex genomic regions. PING promises to support a new era of studies of KIR 

polymorphism, delivering high-resolution KIR genotypes that are highly accurate, enabling high-quality, 

high-throughput KIR genotyping for disease and population studies. 

Introduction 

The killer cell immunoglobulin-like receptor (KIR) complex, located in human chromosomal region 

19q13.42, encodes receptors expressed on the surface of natural killer (NK) cells (1) and a subtype of T-

cells (2). KIRs interact with their cognate HLA class I ligands to educate NK cells and modulate their 

cytotoxicity (3–5). KIR genes exhibit presence and absence polymorphism and gene content variation 

that has been implicated in numerous immune-mediated and infectious diseases (6–11). In addition, 

careful consideration of KIR gene content haplotypes for allogeneic transplantation has been shown to 

improve outcomes for acute myelogenous leukemia patients (12–17). Whereas evidence for the 

relevance of KIR variation in health and disease is mounting, analysis of the KIR family at allelic 

resolution has been thwarted by the complexity of the region. 

The KIR complex evolved rapidly through recombination and gene duplication events, and in humans 

this has resulted in a gene-content variable cluster of 13 genes and 2 pseudogenes (18–20). Variation in 

KIR genes is characterized by extensive nucleotide polymorphisms, with 1110 alleles described to date 

(21). The KIR complex is also characterized by large-scale structural variation, including gene fusions, 

duplications and deletions (22,23). KIR haplotypes exhibit gene content variation at extraordinary levels, 

generating hundreds of observed haplotype structures (20,24–26). 

The high variability of KIR makes short-read sequencing an attractive technology for interrogating the 

region, providing a high-throughput, high-fidelity and cost-effective sequencing method (27). Whereas 

the KIR region is relatively small, between 70-270Kbp (28), the overall sequence similarity among genes, 

structural variability of the region, and sequence polymorphism present major obstacles to 
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bioinformatics workflows. The high potential for read misalignments significantly confounds 

interpretation of the region in modern large-scale sequencing studies. 

Previously, we introduced a laboratory method for targeted sequencing of the KIR gene complex (27), 

but the associated prototype bioinformatic pipeline for sequence interpretation presented significant 

workload barriers for high-throughput studies. For example, the copy number determination workflow 

was unable to differentiate KIR2DL2 from KIR2DL3, which are sets of highly similar allelic groups of the 

KIR2DL23 gene (29), and the resolution of KIR2DS1 and KIR2DL1 was less precise than desired due to 

read misalignments caused by the similarity of these two genes. Additionally, a high frequency of 

unresolved genotypes (not matching any described allele sequence) necessitated subsequent 

interpretation by a user with domain expertise. In spite of these challenges, the prototype pipeline has 

provided insight into KIR genotyping methods development (30,31), the role of KIR sequence variants in 

immune dysfunction (17,32), and KIR evolutionary analyses (33). To the best of our knowledge there are 

two other existing tools for interrogating KIR short-read sequencing data, KIR*IMP (34) and KPI (35,36). 

KIR*IMP imputes KIR copy number from carefully selected SNPs while KPI interprets KIR gene content 

and predicts haplotype-pairs using in silico probes. Neither of these methods support allele level 

genotyping or direct copy number assessment. 

Here, we present a comprehensive KIR sequence interpretation workflow, termed PING (Pushing 

Immunogenetics to the Next Generation), which builds on our early work by incorporating empirical 

optimizations derived from sequencing thousands of samples, in addition to novel alignment strategies 

to address issues with read misalignments, to provide a comprehensive KIR sequence analysis tool, 

offering allele-level genotypes, copy number, and novel sequence analysis. This work improves on the 

pipeline described in Norman et al. (27) in the following ways: the copy number determination workflow 

was adjusted from a single-sequence per gene alignment to a comprehensive multiple-sequence per 

gene alignment; virtual probes used for gene content determination were refined and expanded; the 
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genotype determination workflow was adjusted from static single-gene filtration alignments to dynamic 

holistic alignments, which incorporate the so-established gene content and preliminary genotype 

determinations; a custom alignment processing workflow was developed to handle multiple-sequence 

per gene alignments; and finally, a KIR sequence imputation workflow was developed to enable 

alignment to any described KIR allele sequence. These innovations enable for the first time highly-

automated, high-throughput KIR sequence analysis from short-read sequencing data, and importantly, 

largely obviate the need for user expertise in the KIR system. 

Materials and methods 

The major innovations in PING, detailed below, include the use of multiple-sequence per gene alignment 

references that incorporate the allelic diversity of KIR, and genotype-matched alignment references 

(Figure 2.1). The use of a diverse reference set in the copy number module substantially improves copy 

number determination for KIR2DL2, KIR2DL3, KIR2DS1 and KIR2DL1 compared to our prototype 

approach. The improved performance enables an innovative alignment workflow that dynamically 

constructs genotype-matched alignment references based on the so-established gene content and a 

preliminary genotype determination. The genotypes determined by this novel genotype-aware 

alignment workflow are highly accurate, with few unresolved calls. 
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Figure 2.1. Overview of the PING pipeline.  
The PING pipeline processes KIR targeted sequencing data to determine KIR gene copy number and 
allele genotypes through a series of modules. First, KIR aligned reads are filtered through an alignment 
to a set of KIR haplotypes in PING extractor. Second, copy number of KIR genes are determined through 
an exhaustive alignment to a diverse set of KIR sequences in PING copy. Finally, PING allele performs a 
series of alignments to determine the most congruent KIR genotype, which informs a final round of 
alignment and genotype determination. Additionally, PING reports any identified novel SNPs and new 
alleles (SNP combinations not found in any described KIR allele sequence). 
 

Preprocessing the database 

Imputation of uncharacterized regions and extension of untranslated regions to generate 

comprehensive alignment reference sequence 

KIR allele sequences used throughout this workflow are provided by the Immuno Polymorphism 

Database - KIR (IPD-KIR), release 2.7.1 (37). However, many KIR allele sequences in IPD-KIR have only 

been characterized for exons, indeed, 65% of named alleles have less than 20% of their full-length 

sequence characterized (Figure 2.2A). Additionally, IPD-KIR allele sequences only include ~250bp of 5’ 

untranslated region (UTR) sequence and ~500bp of 3’ UTR sequence, reducing alignment depths across 

the first exon and potential regulatory regions. Thus, to maximize the utility of reference KIR sequences, 

we designed and implemented a protocol to impute the sequence of the intronic regions, followed by a 

protocol to extend UTRs to 1000bp each. 
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Figure 2.2. KIR sequence characterization before and after imputation. 
(A) Histogram of IPD-KIR allele sequence lengths, shown as percentage of longest sequence for each 
gene and major allele group. (B) Histogram of IPD-KIR allele sequence lengths after imputation, shown 
as percentage of longest sequence for each gene and major allelic group. 
 

As reference sequences, we used all KIR alleles described in the IPD - KIR (21), release 2.7.1. A subset of 

these sequences is not completely characterized through all exons and introns. We therefore used gene-

specific alignments of known sequences, provided by IPD-KIR as multiple sequence format (MSF) files, 

and completed each allele sequence to comprise the invariant nucleotides together with each variable 

position represented by an ‘N’.  Using this imputation method, we generated a new set of reference 

alleles in which ~90% of the 905 alleles were >98% complete (Figure 2.2B).  

To extend UTR sequence, donor sequences, sourced from the full KIR haplotype sequences used in PING 

extractor, were appended to the ends of each reference sequence to generate 1000bp long UTRs. A 

single 3’UTR and 5’UTR donor sequence was used for each gene and major allelic group. 
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Designing a minimized reference allele set 

While performing a comprehensive alignment to the full KIR allele set reduces misalignments caused by 

reference sequence bias, it demands substantial resource utilization, as well as a large alignment and 

processing time cost which can prove untenable for processing large datasets. For example, copy 

determination processing for 10 paired-end sequences using 36 threads took 4.95 hours with a 

maximum Binary Alignment Map (BAM) (38) file size of 338.2MB.  

To address this issue, we constructed a minimized set of reference alleles to improve resource utilization 

and processing time while still reducing misalignments caused by reference sequence bias. The 

minimized reference set consists of five alleles for each KIR gene and major allelic group (Table in S2.1 

table). The use of five alleles per gene was empirically determined to be sufficient for reducing 

reference sequence bias, while still considerably reducing the computational burden of multiple-

sequence per gene alignments. Designing this reference set was guided by selecting alleles which had 

fully-characterized or nearly fully-characterized sequence, the secondary criteria was maximizing SNP 

diversity between the reference alleles of each gene, and third was selecting reference alleles to 

sequester reads susceptible to off-gene mapping. For example, reference sequences to represent 

KIR2DS1*002 as well as KIR2DL1*004 were selected to sequester reads that perfectly align to both. 

Notable characteristics of the reference set are the separation of KIR2DL2 from KIR2DL3, the separation 

of KIR3DL1 from KIR3DS1, and the merging of KIR2DL5A and KIR2DL5B. 

PING workflow methods 

Copy number determination – PING copy 

The high sequence similarity between KIR genes coupled with extensive structural variation and 

nucleotide diversity makes copy number determination a non-trivial task. Our copy determination 

method is largely identical to that described in Norman et al. (27), in which copy number is determined 
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by comparing the number of reads that align uniquely to each KIR gene across a batch of samples using 

KIR3DL3 as a normalizer. The improvement made by our method is the use of a comprehensive KIR 

reference composed of 905 distinct sequences from the imputed and extended allele set, instead of a 

single-sequence per gene reference. The use of a comprehensive reference provides a more accurate 

comparison of the number of reads that align uniquely to any KIR gene. 

KIR virtual probes – PING allele 

To determine the presence of target alleles or allelic groups that are prone to misidentification due to 

read misalignments, we have developed a set of virtual, or text-based, probes. The probe set includes 

those described in Norman et al. (27), as well as additional, custom probes (Table in S2.2 Table). Probes 

are designed to match sequence that is unique to the target allele or allelic group, and sequence 

uniqueness is determined by a grep search over the imputed and extended IPD-KIR sequence set. 

Application of the probe set is performed using grep over the sequencing data, counting the number of 

unique reads that contain sequence perfectly matching the probe. A probe hit is determined using a 

threshold of 10 matching reads. 

Genotype matched alignment workflow – PING allele 

The overall alignment strategy of PING is to reduce reference sequence bias through using multiple-

sequence per gene references, and the use of references that reflect the gene content makeup or 

genotype makeup of a sample (Figure 2.3). Additionally, PING utilizes multiple rounds of alignment and 

genotype determination with varied processing parameters to reduce bias introduced by assumptions 

made during the processing workflow. The intermediate and final alignment and genotyping rounds are 

referred to as ‘initial’ and ‘final’, respectively, when differentiating processing parameters. 
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Figure 2.3. Overview of the genotype aware alignment workflow. 
Sequence gene content, determined by PING copy, informs the selection of reference sequence from a 

predefined set of diverse allele sequences. An exhaustive alignment is performed to the selected allele 

set, from which an initial genotype determination is made. The determined genotype informs selection 

of reference alleles for a genotype aware alignment, followed by another round of genotype 

determination. The genotype aware alignment and subsequent genotype determination is repeated, 

and the most congruent genotypings across all alignment rounds inform reference selection for a final 

round of alignment. A non-exhaustive alignment is performed to the selected allele set, from which all 

aligned reads are processed and used for the final genotype determination. 

The first step is an alignment to a multiple-sequence per gene, gene content matched reference. This 

gene-content aware alignment workflow constructs individualized alignment references based on the 

presence of certain KIR genes: KIR3DP1, KIR2DS2, KIR2DL23, KIR2DL5A, KIR2DL5B, KIR2DS3, KIR2DS5, 

KIR2DP1, KIR2DL1, KIR2DL5, KIR3DL1S1, KIR2DS4, KIR3DL2, KIR2DS1 and KIR3DL3 (assumed always 

present (39)). Reference sequences are selected from the diverse, minimized reference sequence set 

described above. We have included an option to align to the full comprehensive allele set, but this is not 

default behavior as these alignments are time and resource intensive. 

An exhaustive alignment, an alignment in which all qualified read mappings are recorded, is performed 

and aligned reads are processed and formatted according to the alignment processing workflow, 

detailed in S2.1 text, selecting for reads that uniquely map to a gene or major allelic group. The 
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formatted uniquely-mapped read set is processed according to the genotype determination workflow, 

detailed below, to obtain an initial full-resolution genotype.  

Second is a series of two alignments to genotype-matched references with varied processing parameters 

to identify the most congruent KIR genotype. Genotype congruence is determined by the least number 

of SNP mismatches between the determined allele typing(s) of a gene, and the aligned SNPs. For each 

genotype-matched alignment in this series, the determined allele typing(s), including any ambiguity, are 

used as reference sequence for the following alignment. For each alignment, genotypes are first 

determined at seven-digit (non-coding mutation level), then five-digit resolution (synonymous mutation 

level). This approach reduces the impact of uncharacterized regions of IPD-KIR allele sequences on 

genotype determination, as most sequences are fully characterized across exons. Genotype 

determination can be biased towards or against IPD-KIR alleles with uncharacterized regions depending 

on whether uncharacterized SNPs count as mismatches or not. To reduce time spent on genotype 

determination, any unambiguous typing that is perfectly matched to the aligned SNPs is locked in across 

all subsequent intermediate rounds of genotype determination.  

The reference for the final alignment is built from the locked genotypings and the closest matched 

genotypings for genes without a locked genotyping. A non-exhaustive alignment is performed to the 

built reference, from which all aligned reads are processed and formatted according to the alignment 

processing workflow. The formatted read alignments are passed to the genotype determination 

workflow to obtain a final exonic (five-digit) resolution genotype.  

Additional methods utilized by the genotype matched alignment workflow – PING allele 

Genotype matched alignments and subsequent genotype determinations can get stuck on a mistyped 

allele due to persistent reference sequence bias. In other words, a false SNP call originating from 

misaligned reads can perpetuate itself in the genotype matched alignments due to the same allele 
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determination being made and the same alignment reference being used. To address this issue, we have 

included a method in the genotype matched alignments that will add the five allele sequences from the 

diverse, minimized reference set to the genotype-matched reference for any gene with an allele typing 

that does not perfectly match the aligned SNPs. The rationale behind this method is that mismatched 

allele typings are likely due to misaligned reads, and the use of the mismatched allele sequence as a 

reference will cause the read misalignments to be repeated in subsequent alignment and genotyping 

rounds. The addition of a diverse set of alignment sequences gives an avenue to break from this cycle by 

increasing the likelihood that a different allele typing will be made. 

In building genotype-matched references PING allows any allele to be used as reference sequence, 

however, some allele sequences are only partially characterized even after imputation. The use of allele 

sequences containing uncharacterized sequence as alignment references can introduce reference 

sequence bias and drive read misalignments even if the reference alleles perfectly match the true 

genotype of the sample. To address this issue, we have included a method to add fully-characterized 

sequence to the alignment reference for any gene represented by only partially-characterized 

sequence(s). Fully-characterized alleles are pulled from the diverse, minimized reference set. 

In the genotype-aware alignment workflow we found issues with false negative identifications of 

KIR2DL1*004/*007/*010 due to reads cross-mapping to other gene sequences. This issue was rectified 

using virtual sequence probes specific to each of these KIR2DL1 allele groups to identify 

*004/*007/*010 allele presence. If KIR2DL1*010 is present, then the KIR2DL1*010 allele sequence is 

added to the alignment reference. If KIR2DL1*004 is present, then the KIR2DL1*0040101 allele 

sequence is added to the alignment reference. If KIR2DL1*007 is present, then the KIR2DL1*007 allele 

sequence is added to the alignment reference. If multiple of these allele groups are present, then the 

KIR2DL1*0040101 allele sequence is added to the alignment reference. 
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We implemented additional probes to identify alleles and structural variants prone to misidentification 

across KIR2DL1, KIR2DL2, KIR2DL4, KIR2DS1, KIR3DP1 and KIR3DS1. For example, we implemented a 

probe to identify the KIR2DL4 poly-A stretch at the end of exon 7, as well as a probe to identify KIR3DP1 

exon 2 deletion variants. The full list of probes used for reference refinement can be found in S2.2 

Table. 

Genotype determination workflow – PING allele 

Indexed reads, detailed in S2.1 text, are processed to generate a depth table spanning -1000bp 5'UTR to 

1000bp 3'UTR for each KIR gene and major allelic group. Depths are marked independently for A, T, C, G, 

deletions and insertions. Depth tables are processed to generate SNP tables for positions passing a 

minimum depth threshold (default 8 for initial genotyping and 20 for final genotyping). To identify 

heterozygous positions the depth of each aligned variant is divided by the highest depth variant for that 

position, and up to three variants (A, T, C, G, deletions and insertions) passing the ratio threshold 

(default 0.25 for initial and final genotyping) are recorded. 

Genotypes for each gene and major allelic group are determined from the aligned SNPs using a 

mismatch scoring approach. First, aligned homozygous SNPs are compared to each IPD-KIR allele, with 

SNP mismatches counting as a score of 1 and matches as 0. The lowest scoring alleles and alleles within 

a set scoring buffer of the lowest score (default of 4 for the initial genotyping workflow and 1 for the 

final genotyping workflow), are carried over into heterozygous position scoring.  

For aligned heterozygous position scoring, all possible allele combinations are enumerated according to 

the determined copy of the gene under consideration, up to copy 3. For each aligned position, the 

variant(s) for each allele combination are compared to the aligned variants, with full matches counted as 

a score of 0 and mismatches scored according to the number of mismatched variants. For each allele 

combination, the homozygous score of each component allele is added to the heterozygous score, and 
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the lowest scoring combinations are returned as the determined genotype. For the final genotyping 

workflow, only perfectly scoring combinations are accepted, with any mismatches resulting in an 

unresolved genotype. 

The same workflow is applied to both initial and final genotyping with some important distinctions. In 

the initial genotyping workflow, the imputed and extended IPD-KIR allele sequences are used for SNP 

comparisons, uncharacterized variants within the comparison sequences are marked as full mismatches, 

and all aligned allele-differentiating SNP positions passing the depth threshold are compared and used 

for scoring. In the final genotyping workflow, the unimputed IPD-KIR allele sequences are used for SNP 

comparisons, uncharacterized variants within the comparison sequences are marked as matches, and 

only aligned exonic SNP positions passing the depth threshold are compared and used for scoring.  

The final exonic resolution genotypes are processed to add null alleles to the genotype string for genes 

with copy 0 or 1 and combine component allele typings for the major allelic groups KIR2DL2 and 

KIR2DL3, KIR3DL1 and KIR3DS1, and KIR2DS3 and KIR2DS5. 

Workflow validation 

KIR synthetic sequence dataset 

A KIR synthetic dataset consisting of 50 sequences was generated using the ART next-generation 

sequencing read simulator (40). ART parameters were set to simulate 150-bp paired-end reads at 50x 

coverage, with a median DNA fragment length of 200 using quality score profiles from the HiSeq 2500 

system. Eleven of the KIR haplotypes described in Jiang et al. (41) were used to simulate structural 

variation of the KIR region. Two of the eleven haplotypes were randomly selected with replacement to 

establish the copy number for each sample. Allele sequences were selected randomly without 

replacement from the imputed and extended set according to the copy number of each gene. Any 

uncharacterized regions in the selected allele sequences were replaced with sequence from a random 
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fully-characterized sequence from the same gene. Reads were named according to the source allele, 

enabling tracing of misaligned reads to their source allele and gene. The full synthetic dataset is 

available at: https://github.com/wesleymarin/KIR_synthetic_data. 

Discordant genotype results for the synthetic dataset were investigated by identifying the source gene 

for each read aligned to the incorrectly genotyped gene. The results were summarized to show the total 

number of reads from each source gene to each aligned gene, Table A in S2.3 Table, and a read sharing 

diagram was generated using the circlize (42) package in R (43). 

Characterization of KIR reference cohorts for PING development 

A significant barrier to the development of bioinformatic methods for high-resolution KIR sequence 

interpretation is the lack of a well-characterized reference cohort. Without such a resource it is 

extremely difficult to recognize and resolve issues with read misalignments, which can result in SNP calls 

that appear reasonable in many cases. To resolve this issue, we have characterized a KIR reference 

cohort of 379 healthy individuals of European ancestry that had been previously sequenced using our 

KIR target capture method (44), with the results meticulously curated by manual alignment and 

inspection of all sequences to provide a ground truth dataset to aid pipeline development (Table 2.4A in 

S2.4 Table).  Furthermore, the European samples were independently sequenced and genotyped for KIR 

by our collaborators at the DKMS registry for volunteer bone marrow donors (31). Any discordant typing 

or gene content results were resolved through direct examination of sequence alignments, and where 

necessary, confirmatory sequencing. 

In order to validate our method on a second, divergent population, we also examined a previously 

characterized cohort of African Khoesan individuals (45), for which KIR alignments and genotypes were 

manually inspected (Table 2.4B in S2.4 Table). 

 

https://github.com/wesleymarin/KIR_synthetic_data
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Copy number and genotype concordance calculations 

For the European cohort, any genotype containing an unresolved KIR3DL3 genotyping, a genotype for 

which the aligned SNPs do not perfectly match currently described alleles, in the truth dataset were 

excluded from copy number and genotype concordance comparisons. There were 16 full genotypes 

excluded by this criterion. Additionally, any individual gene with an unresolved genotype in the truth 

dataset were excluded from copy number and genotype concordance comparisons. For the synthetic 

dataset there were no simulated novel alleles, so the full dataset was used for copy number and 

genotype concordance comparisons. For the Khoesan dataset any individual gene with an unresolved 

genotype in the truth dataset were excluded from genotype concordance comparisons but were 

included for copy number comparisons. 

Copy concordance was calculated by directly comparing the determined copy values to the validation 

copy values (Tables in S2.5 Table and S2.6 Table). Genotype concordance was calculated on a per-gene 

basis by comparing each component allele of the determined typing to the truth genotype.  

Code availability 

The PING pipeline is available at https://github.com/wesleymarin/PING (46) with the following open 

source license: https://github.com/wesleymarin/PING/blob/master/LICENSE. Scripts and datasets used 

for data analysis are available at https://github.com/wesleymarin/ping_paper_scripts. PING was 

developed in the R programming language and tested on a Linux system. Additional requirements are: 

Samtools v1.7 or higher (38), Bcftools v1.7 or higher, and Bowtie2 v2.3.4.1 or higher (47). The synthetic 

KIR sequence dataset is available at https://github.com/wesleymarin/KIR_synthetic_data. 

 

https://github.com/wesleymarin/PING
https://github.com/wesleymarin/PING/blob/master/LICENSE
https://github.com/wesleymarin/ping_paper_scripts
https://github.com/wesleymarin/KIR_synthetic_data
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Results 

Extensive sequence identity among KIR genes is a major barrier for interpreting short-read sequencing 

data 

Read misalignments due to sequence identity across the KIR region are a persistent challenge in KIR 

bioinformatics and often lead to spurious genotyping results. To quantify the extent of sequence 

identity and inform our investigation of SNPs suspected to be originating from misaligned reads, we 

performed a shared k-mer analysis using all 905 described KIR allele sequences in the Immuno 

Polymorphism Database (IPD) - KIR (21), release 2.7.1. Here, we transformed allele sequences into all 

distinct subsequences of sizes 50, 150, and 250 to compare sequence identity between genes. Shared k-

mer proportions were calculated by dividing the number of shared k-mers by the total number of k-mers 

of that gene. K-mer sharing diagrams were generated using the circlize (42) package in R (43). 

Our analysis showed that many genes share significant sequence identity at sequencing lengths 

commonly used in next generation sequencing (NGS) technology (Figure 2.4A). For example, KIR2DL5A 

shares 12,591 of its 15,359 distinct 150-mers (82%) with KIR2DL5B (Figure 2.4B, Tables in S2.8 Table), 

making it extremely difficult to distinguish short reads originating from these genes. Likewise, over 90% 

of the distinct 50-mers, and over 50% of distinct 250-mers of KIR2DS1 are shared with other genes, the 

vast majority with KIR2DL1. This analysis allowed us to identify specific “hotspots” for read 

misalignments, informing post-alignment modifications (detailed previously) to minimize their impact. 
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Figure 2.4. K-mer analysis of KIR gene sequence similarity.  
(A) Ratio of distinct k-mers of size 50, 150 and 250 that are shared between the indicated KIR gene and 
others. The inverse of these bars (not shown) would indicate the proportion of k-mers that are distinct 
to that gene and not found in the alleles of other genes. (B) 150-mer connections between KIR genes, 
the size of the connecting line roughly indicates the total number of shared 150-mers. 
 

Development of a comprehensive KIR alignment reference enables accurate copy number 

determination of KIR2DL1, KIR2DS1, KIR2DL2 and KIR2DL3 

We compared single-sequence per gene vs. multiple-sequence per gene reference alignments using the 

synthetic dataset. The reads from this dataset are labeled according to their source gene, providing a 

straightforward approach to quantify off-target alignments. This comparison showed substantial 

reductions in the frequency of read misalignments (reads mapping to an off-target gene) across 

KIR2DL1, KIR2DL23, KIR2DL5A/B, KIR2DS1, KIR2DS35, and KIR3DL1S1, and small reductions for KIR3DL2, 

KIR3DL3, and KIR3DP1 for the multiple-sequence per gene reference (Figure 2.5A, Tables in S2.9 Table). 

Applying the comprehensive reference allele set to gene content and copy number determination, we 

achieved significant improvement over a single-sequence per gene reference for KIR2DL1, KIR2DS1 and 

the allelic groups KIR2DL2 and KIR2DL3 (S2.1 Figure, S2.2 Figure and S2.3 Figure). The copy number for 

KIR2DS1, per example, which is highly prone to read misalignments due to similarity to KIR2DL1 and 

KIR2DS4 (Figure 2.4B), was clearly determined (Figure 2.5B). 
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Figure 2.5. Use of comprehensive reference improves copy determinations. 
(A) Frequencies of off-target read mappings using a comprehensive reference vs. a single-sequence per 
gene reference for the synthetic dataset. (B) Single-sequence reference vs. comprehensive reference 
copy number plot of KIR2DS1 for the European cohort. The copy plot of the single-sequence reference 
alignment shows no differentiation between copy groupings while the comprehensive reference 
alignment shows a clear distinction between the copy 0, 1 and 2 groups. 
 

PING delivers accurate copy number and high-resolution allele calls 

The overall performance of PING was assessed using our European KIR reference cohort, a synthetic KIR 

dataset, and a Khoesan KIR reference cohort. Results for PING copy number determination are 

summarized in Table 2.1, showing at least 97% concordance for the European cohort for all compared 

genes, with most genes exhibiting more than 99% concordance. Performance for the synthetic dataset 

showed 100% copy concordance for all compared genes except for KIR2DL1, at 98%, and KIR2DS3, at 

92%. Finally, performance for the Khoesan cohort showed at least 95% concordance for all compared 

genes except for KIR2DL2, at 61%, KIR2DL5A/B, at 88%, KIR2DS5, at 89%, and KIR2DL1, at 94%. Across all 
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datasets KIR3DL3 was not compared due to its use as a reference gene, and for the European and 

Khoesan cohorts the pseudogene KIR3DP1 was not compared due to an absence of validation data. 

Table 2.1. Copy number determination performance. 
Concordance table comparing copy numbers determined by PING for the European reference cohort, a 
synthetic KIR dataset, and a Khoesan reference cohort. 

Gene European N Synthetic N Khoesan N 

KIR3DL3 - - - - - - 

KIR2DS2 0.988 343 1.00 50 0.97 100 

KIR2DL2 0.994 331 1.00 50 0.61 100 

KIR2DL3 0.994 331 1.00 50 1.00 100 

KIR2DL5A/B 0.997 343 1.00 50 0.88 100 

KIR2DS3 0.988 343 0.92 50 0.97 100 

KIR2DS5 0.985 342 1.00 50 0.89 100 

KIR2DP1 0.982 338 1.00 50 0.95 100 

KIR2DL1 0.970 334 0.98 50 0.94 100 

KIR3DP1 - - 1.00 50 - - 

KIR2DL4 0.994 341 1.00 50 1.00 100 

KIR3DL1 0.997 340 1.00 50 1.00 100 

KIR3DS1 0.997 339 1.00 50 0.99 100 

KIR2DS1 0.988 342 1.00 50 1.00 100 

KIR2DS4 0.991 343 1.00 50 0.99 100 

KIR3DL2 0.988 326 1.00 50 1.00 100 

 

Performance of genotype determination was assessed at three-digit resolution (protein level) for the 

European and Khoesan cohorts, and at five-digit resolution (synonymous mutation level) for the 

synthetic dataset (Table 2.2). The results were categorized as genotype matches, mismatches or 

unresolved genotypes, which were cases where PING could not make a genotype determination.  
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PING genotype determination for the European cohort showed low percentages of unresolved 

genotypes with few mismatches for all compared genes except for KIR2DP1, with 10.3% unresolved. 

Notable results for the European cohort were the low frequencies of unresolved genotypes across most 

genes, except KIR2DP1, and the extremely low frequencies of mismatched genotypes, below 1%, for 9 

out of the 12 genes compared. 

Table 2.2. Genotype determination performance. 
Genotype determination performance table comparing the genotypes determined by PING to the 
validation genotypes for each dataset. Possible outcomes are ‘Match’, where the determined 
component allele matches the validation allele, ‘Mismatch’, where the determined component allele 
does not match the validation allele, or ‘Unresolved’, where PING was unable to determine a genotype, 
but the validation allele was not marked as unresolved. The coloring signifies concordance level, where 
green is 0-10% discordant, yellow is 10-15% discordant, and red is over 15% discordant. 

Gene Dataset Match Mismatch Unresolved N 

KIR3DL3 

European 0.959 0.009 0.032 686 

Synthetic 0.960 0.000 0.040 100 

Khoesan 0.887 0.062 0.050 80 

KIR2DS2 

European 0.975 0.012 0.013 686 

Synthetic 0.940 0.040 0.020 100 

Khoesan 0.835 0.005 0.160 188 

KIR2DL23 

European 0.965 0.003 0.032 656 

Synthetic 0.850 0.020 0.130 100 

Khoesan 0.810 0.042 0.149 168 

KIR2DL5A/B 

European 0.927 0.044 0.029 687 

Synthetic 0.856 0.106 0.038 104 

Khoesan 0.857 0.071 0.071 126 

KIR2DS35 

European 0.982 0.006 0.012 683 

Synthetic 0.923 0.019 0.058 104 

Khoesan 0.871 0.052 0.078 116 

 KIR2DP1 

European 0.890 0.007 0.103 672 

Synthetic 0.971 0.000 0.029 103 

Khoesan 0.721 0.012 0.267 86 
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Gene Dataset Match Mismatch Unresolved N 

 KIR2DL1 

European 0.961 0.009 0.030 666 

Synthetic 0.883 0.019 0.097 103 

Khoesan 0.803 0.045 0.152 132 

KIR3DP1 

European - - - - 

Synthetic 0.773 0.055 0.173 110 

Khoesan - - - - 

 KIR2DL4 

European 0.980 0.007 0.013 685 

Synthetic 1.000 0.000 0.000 110 

Khoesan 0.961 0.006 0.032 154 

 KIR3DL1S1 

European 0.962 0.006 0.032 686 

Synthetic 0.955 0.000 0.045 110 

Khoesan 0.873 0.028 0.099 142 

 KIR2DS1 

European 0.985 0.003 0.012 682 

Synthetic 0.900 0.000 0.100 100 

Khoesan 0.995 0.000 0.005 198 

 KIR2DS4 

European 0.943 0.044 0.013 685 

Synthetic 0.940 0.020 0.040 100 

Khoesan 0.793 0.051 0.157 198 

 KIR3DL2 

European 0.965 0.008 0.028 648 

Synthetic 0.990 0.010 0.000 100 

Khoesan 0.819 0.011 0.170 188 

 

Determined genotypes for the synthetic dataset showed over 95% concordance for KIR3DL3, KIR2DP1, 

KIR2DL4, KIR3DL1S1, and KIR3DL2. However, the synthetic dataset showed high percentages of 

unresolved genotypes for KIR2DL23, KIR3DP1 and KIR2DS1, each over 10% unresolved, and KIR2DS35 

and KIR2DL1 showed 5.8% and 9.7% unresolved, respectively. KIR2DL5A/B and KIR3DP1 showed the 

highest mismatched genotype percentages, at 10.6% and 5.5%, respectively, while KIRDL3, KIR2DP1, 

KIR2DL4 and KIR2DS1 each showed 0.0% mismatched genotypes. 
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Determined genotypes for the Khoesan cohort showed highly concordant genotypes for KIR2DL4, at 

96.1%, and KIR2DS1, at 99.5%. Additionally, results for this dataset showed low mismatch frequencies 

for KIR2DS2, KIR2DL23, KIR2DP1, KIR2DL1, KIR3DL1S1 and KIR3DL2, each below 5.0% mismatched. 

However, the Khoesan cohort showed moderate mismatch frequencies for KIR3DL3, at 6.2%, 

KIR2DL5A/B, at 7.1%, KIR2DS35, at 5.2%, and KIR2DS4, at 5.1%, and higher unresolved rates for KIR2DS2, 

KIR2DL23, KIR2DP1, KIR2DL1, KIR2DS4 and KIR3DL2, each over 10.0% unresolved. 

For the European and Khoesan cohorts the pseudogene KIR3DP1 was not compared due to an absence 

of validation data. 

Looking specifically at the concordance of resolved genotypes, the European cohort showed greater 

than 98.0% concordance across all compared genes except for KIR2DL5A/B, at 95.5%, and KIR2DS4, at 

95.6% (Table 2.3). The synthetic dataset showed 100% concordance for KIR3DL3, KIR2DP1, KIR2DL4, 

KIR3DL1S1 and KIR2DS1, over 95% concordance for KIR2DS2, KIR2DL23, KIR2DS35, KIR2DL1, KIR2DS4 

and KIR3DL2. The lowest performing genes in the synthetic dataset were KIR2DL5A/B, at 89%, and 

KIR3DP1, at 93%. The Khoesan cohort showed 100% concordance for KIR2DS1, over 95% concordance 

for KIR2DS2, KIR2DL23, KIR2DP1, KIR2DL4, KIR3DL1S1 and KIR3DL2, and over 90% concordance for 

KIR3DL3, KIR2DL5A/B, KIR2DS35, KIR2DL1 and KIR2DS4.  

Table 2.3. Resolved genotype concordance. 
PING genotype determination performance for the European reference cohort, a synthetic KIR dataset, 
and the Khoesan reference cohort for each considered KIR gene. 

Gene European N Synthetic N Khoesan N 

 KIR3DL3 0.991 664 1.00 96 0.934 76 

 KIR2DS2 0.988 677 0.96 98 0.994 158 

 KIR2DL23 0.997 635 0.98 87 0.951 143 

 KIR2DL5A/B 0.955 667 0.89 100 0.923 117 

 KIR2DS35 0.994 675 0.98 98 0.944 107 

 KIR2DP1 0.992 603 1.00 100 0.984 63 
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Gene European N Synthetic N Khoesan N 

 KIR2DL1 0.991 646 0.98 93 0.946 112 

KIR3DP1 - - 0.93 91 - - 

 KIR2DL4 0.993 676 1.00 110 0.993 149 

 KIR3DL1S1 0.994 664 1.00 105 0.969 128 

 KIR2DS1 0.997 674 1.00 90 1.000 197 

 KIR2DS4 0.956 676 0.98 96 0.940 167 

 KIR3DL2 0.992 630 0.99 100 0.987 156 

 

Together, these results demonstrate that PING accurately provides KIR genotyping across distinct 

populations. 

Analysis of discordant determined copy number and genotype results 

The discordant copy results for KIR2DS3 in the synthetic dataset were the result of poor differentiation 

between copy groups (S2.3 Figure).  The highly discordant KIR2DL2 copy number result for the Khoesan 

cohort was due to non-differentiable copy number groupings (S2.2 Figure). Since the KIR2DL3 copy 

differentiation for this cohort was well defined, these results were used to set the KIR2DL2 copy number 

prior to genotype determination using the formula KIR2DL2_copy = 2 – KIR2DL3_copy. 

An investigation into the discordant genotypes for the synthetic dataset showed discordant genotype 

determination results for KIR2DS35 were largely due to source reads from KIR2DS3 aligning to KIR2DS5 

reference sequence, with a smaller number of reads from KIR2DS5 aligning to KIR2DS3 reference 

sequence (Figure 2.6, Table A in S2.3 Table). This differential read flow between the two allelic groups is 

reflected in the component allele typings, with six discordant KIR2DS5 genotypings and two discordant 

KIR2DS3 genotypings (Table C in S2.7 Table). Intragenic misalignments are a product of how the PING 

workflow is structured, as major allelic groups, such as KIR2DS3 and KIR2DS5, are treated as 

independent genes during alignment and genotyping. Intragenic misalignments were also a large 
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contributor to KIR3DL1S1 discordance, with reads supplied by KIR3DL1 mapping to KIR3DS1 reference 

sequence. 

 
Figure 2.6. Misaligned read sources in the synthetic dataset. 
Analysis of mismatched or unresolved genotype determination results for the synthetic sequence 
dataset where all misaligned reads are traced back to their source gene. The connections between 
genes represent the number of misaligned reads, and the color of the connection represents the source 
gene. 
 

The analysis showed KIR3DP1 as a major hub for receiving misaligned reads, with reads being 

contributed by each other KIR gene. In fact, KIR3DP1 was largely the only receiver for misaligned reads 

originating from KIR3DL3, KIR3DL2, KIR2DP1 and KIR2DL4. While the only genes receiving reads sourced 

from KIR3DP1 were KIR2DL5A and KIR2DL5B. 
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The analysis also showed several gene pairings, where two genes largely sent and received reads from 

one another. Once such pairing was between KIR2DL1 and KIR2DS1, where each gene were the largest 

contributor and receiver of reads for each other. Another pairing was between KIR2DL2 and KIR2DS2, 

although both genes sent and received reads from several other genes. 

This analysis illustrates the complex and highly interconnected nature of KIR and highlights the difficulty 

behind accurate interpretation of KIR short-read sequencing data. 

Performance 

The run time and resource utilization of the PING pipeline was measured on an Intel Xeon 2.20 GHz CPU 

using 36 threads. For ten sequences from the synthetic dataset, it took 1.92 mins for KIR read extraction, 

34.7 mins for copy determination aligning to the minimized reference set, and 2.10 hours for genotype 

determination aligning to the minimized reference set. The output directory size was 1.4GB. 

Discussion 

Our shared k-mer analysis of all documented KIR variation shows the high degree of sequence identity 

between KIR genes and illustrates the challenges imposed by the homology of KIR on short-read 

interpretation workflows. It demonstrates that some genes are more likely to exhibit read misalignment 

problems than others. KIR2DP1, KIR3DL3 and KIR2DL4 have relatively unique sequence, while KIR2DS1, 

KIR2DL5A and KIR2DL5B have considerable shared sequence. This type of analysis provides an 

informative tool for investigating irregularities in the processing of KIR sequence data, revealing which 

genes are likely to be erroneously interpreted due to read misalignments for common sequencing read 

lengths. While paired-end sequencing with longer reads can improve read alignment fidelity, in our own 

experience 290bp paired-end reads with a median insert length of approximately 600bp still exhibited 

considerable read misalignment problems. It is important to note that this analysis does not account for 
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unknown variation or intergenic sequence, two other sources of sequence variation that could 

potentially result in misaligned reads. 

An initial determination of KIR gene content and copy number provides an informative scaffold for 

minimizing misalignments through the exclusion of reference sequence representing absent genes, as 

well as a system for identifying misalignments by searching for erroneously-called heterozygous SNP 

alleles in hemizygous genes. Thus, accurate copy number determination is a vital first step in 

interpreting KIR sequencing data. To achieve this goal, we developed a copy number determination 

method in PING that uses all described KIR alleles as an alignment resource, increasing the total number 

of reference sequences from 15 to 905 compared to single-sequence per gene alignments. While many 

of these alleles were only defined across exonic regions, rendering them ineffective for short-read 

alignment, we developed and implemented a protocol for intronic region imputation. The imputation 

method cannot resolve all uncharacterized nucleotide sequence, yet it accounts for the majority of 

missing sequence, greatly increasing the number of useful reference alleles. The exhaustive alignment 

provides a comprehensive map of the alleles to which a read may align, facilitating copy number 

resolution of important KIR allelic groups and genes that share extensive sequence similarity, such as 

KIR2DL2, KIR2DL3, KIR2DL1 and KIR2DS1, which were inaccessible to previous bioinformatic methods 

(27,48). Additionally, the limited range of described UTR sequence, ~250bp 5’UTR and ~500bp 3’UTR, 

can reduce alignments over the first exon and potential regulatory regions (49,50). 

The improved copy determination performance of PING, in addition to the expanded useful reference 

sequence repertoire, enables a smart, genotype-aware alignment workflow, designed to minimize read 

misalignments by closely matching reference sequences to the gene sequences present in the 

sequencing data. This alignment strategy addresses a major weakness of the filtration alignments 

utilized in the prototype workflow, which apply filters to retain gene-specific reads and eliminate cross-

mapping reads regardless of the gene-content or sequence makeup, and thus often suffer from either 
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inadequate or patchy aligned read depths after filtration. There is a valid concern about carrying 

forward alignment biases in the genotype-aware alignment workflow, and the KIR system in particular is 

sensitive to reference bias because the combination of highly polymorphic genes and high sequence 

similarity between genes means that small changes in the reference sequence can have large impacts on 

read alignments. We have implemented several methods to counteract potential alignment biases that 

could be carried forward by the genotype-aware alignments. The first is the use of virtual probes to 

identify alleles and structural variants prone to misidentification. The second is the addition of a curated 

sequence set to the alignment reference for any gene with a determined genotype that does not 

perfectly match the aligned SNPs, these sequences were selected to cover a large amount of the allelic 

diversity of the corresponding gene. Even with these countermeasures we still encounter some 

improper novel genotype determinations, likely due to reference sequence bias. Since no novel 

genotypes were simulated for the synthetic dataset the Synthetic data in the Unresolved column of 

Table 2 represent improper novel genotype determinations. Despite these limitations, the genotype-

aware workflow achieves highly accurate genotype determinations for the European dataset (Table 2.2), 

and highly accurate resolved genotype determinations across all tested datasets (Table 2.3).  

Both the synthetic dataset and Khoesan cohort showed higher levels of unresolved genotypes compared 

to the European cohort (Table 2.2). These datasets represent challenging data to correctly interpret, 

with the Khoesan being an extremely divergent population with many unresolved genotypes in the 

validation data, and the synthetic dataset consisting of random alleles, some of which used imputed 

sequence. An analysis into the discordant results for the synthetic dataset (Figure 2.6, S2.3 Table) 

showed a complex web of cross-mapped reads. These cross-mapped reads can be extremely difficult to 

resolve because the high-degree of sequence shared among KIR genes (Figure 2.4) makes it almost 

impossible to determine correct mappings. Additionally, measures meant to prevent read 

misalignments, such as the use of virtual probes to refine reference sequence selection, can serve as a 
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double-edged sword, where the issue at hand is addressed but the changes create new sources for read 

misalignments.  

An analysis into the discordant copy results highlights a major outstanding problem with the PING 

workflow since accurate copy determination is a central component of effective genotype-aware 

alignments, and the need for manual thresholding between copy groups introduces the component of 

user error. Continued development of the pipeline will address methods for automating copy 

determination for targeted sequencing data that matches or surpasses the accuracy achieved by manual 

thresholding. To compare PING against an existing method, we benchmarked against KPI (35) for 

determining KIR gene content (Table S2.10), achieving 100% concordance for KIR3DP1, KIR2DL3, 

KIR2DL4, KIR3DL3 and KIR3DL2, over 97% concordance for KIR2DS5, KIR2DP1, KIR2DS3, KIR2DS2, 

KIR3DL1, KIR2DL2, KIR2DS4, KIR2DL1, and KIR2DL5A/B, and over 95% concordance for KIR3DS1, and 

KIR2DS1. 

We believe improved interpretation of KIR sequencing data will ultimately be achieved through longer-

range sequencing technologies that can extend past the range of the shared sequence motifs, and 

through better imputation approaches that can more fully characterize currently described KIR alleles to 

provide a more robust alignment reference. While long-read data from a platform with cost-effective 

methods might be difficult to interpret due to the high error rates (51), the combination of long-reads 

and short-reads would cover the weaknesses of the respective technologies and should provide a highly 

accurate KIR interrogation method, indeed, long-read methods have provided valuable insights into KIR 

haplotypes (28). We have not had the opportunity to test long-read technologies, but we anticipate a 

need for careful consideration of potential read misalignments when aligning the short and long reads 

together. Higher fidelity methods are currently under development, but currently the cost is prohibitive 

for the kind of high-throughput studies that PING was designed to address. Meanwhile, for samples for 
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which genotypes are not easily resolvable, we recommend direct visualization of sequence alignments 

potentially coupled with alternative laboratory methods to more precisely determine genotypes. 

While the PING workflow is specific to interpreting sequence originating from the KIR complex, the 

underlying strategies can be extended to other problematic genomic regions. For example, multiple-

sequence per gene alignment strategies provide information for discriminating between reads derived 

from genes with high sequence identity and extensive nucleotide polymorphisms. Additionally, 

genotype-aware alignment strategies reduce bias introduced by the reference sequence for reads 

derived from genomic regions with high structural variation. 

In conclusion, PING incorporates these innovations to provide accurate, high-throughput interpretation 

of the KIR region from short-read sequencing data. Together, these modifications provide a consistent 

KIR genotyping pipeline, creating a highly automated, robust workflow for interpreting KIR sequencing 

data. To the best of our knowledge, this is the only bioinformatic workflow currently available for high-

resolution KIR genotyping from short-read data. Given the importance of KIR variation in human health 

and disease, availability of a highly accurate method to assess KIR genotypic variation should promote 

important discoveries related to this complex genomic region. 

Supporting figures, tables, and text 
 
S2.1 Figure. European cohort copy determinations. (JPEG) 
Copy number determinations made for the European cohort. Sequences were aligned to the minimized 
reference set and copy thresholds were manually assigned. 
 
S2.2 Figure. Khoesan cohort copy determinations. (JPEG) 
Copy number determinations made for the Khoesan cohort. Sequences were aligned to the minimized 
reference set and copy thresholds were manually assigned. 
 
S2.3 Figure. Synthetic dataset copy determinations. (JPEG) 
Copy number determinations made for the Khoesan cohort. Sequences were aligned to the minimized 
reference set and copy thresholds were manually assigned. 
 

S2.1 Table. Diverse and minimized reference allele set. 
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S2.2 Table. Virtual probe table for reference modifications. 

S2.3 Table. Analysis of read mapping errors for the synthetic dataset. 
(A) Summary of source gene read counts for reads aligning to discordantly genotyped genes. (B) 
Summary of aligned gene counts for reads sourced from discordantly genotyped genes. 
 

S2.4 Table. Validation genotype table. (XLSX) 

S2.5 Table. PING determined copy number table. (XLSX) 

S2.6 Table. Validation copy number table. (XLSX) 

S2.7 Table. PING determined genotype table. (XLSX) 

S2.8 Table. K-mer gene match table. (XLSX) 

S2.9 Table. Synthetic dataset off-target read mappings. (XLSX) 

S2.10 Table. Benchmarking PING and KPI gene content performance. (XLSX) 

S2.1 Text. Genotype determination supporting methods. (DOCX) 
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Chapter 3: Software Update – Interpreting Killer-cell Immunoglobulin-

like Receptor from Whole Genome Sequence Data with PING 

Abstract 

Here, we demonstrate improvements to our bioinformatic pipeline, PING, which provides high-

resolution genotyping of killer-cell immunoglobulin-like receptor (KIR) sequencing data, that expand the 

method to provide KIR interpretation from whole genome sequencing (WGS) data. We evaluated 

performance using synthetic sequence datasets and real-world data from the 1000 Genomes Project 

(1KGP). PING demonstrated high exonic genotyping performance on the synthetic sequence dataset 

meant to approximate real-world data at 95% accuracy (N=1366). This result was mirrored in the 

analysis of 1KGP European data (N=215) with most genes showing near or below 5% frequency of 

unresolved exonic genotypes, which is an important indicator for genotyping errors in real-world data. 

An analysis into the distributions of genotyping errors for the synthetic sequence datasets gave insights 

into how to further improve genotype accuracy. Similarly, an analysis into ambiguous exonic genotype 

frequencies for the 1KGP European data, which showed high rates of unresolved genotypes, highlighted 

that an effective phasing method will be an impactful future additional to the PING workflow. Together, 

these results demonstrate that PING can effectively provide high-resolution KIR genotyping on WGS 

data. 

Introduction 

Previously, we introduced a bioinformatic pipeline, PING(1), for the high-throughput interpretation of 

targeted short-read sequencing data of the killer-cell immunoglobulin-like receptor (KIR) complex, 

located in human chromosomal region 19q13.42(2). Here, we expand that method to provide KIR 

interpretation from whole genome sequence (WGS) data. Our motivation for this work is to increase the 
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utility of WGS datasets, which has become a standard sequencing approach, and to open an avenue for 

advancing our understanding of KIR variation across diverse populations.  

To accomplish this, we have made alterations to the workflow to account for differences between 

targeted and WGS data, and we have constructed three distinct synthetic sequence datasets that 

approximate WGS data, each designed to test different aspects of the workflow performance. The 

synthetic sequence datasets incorporate copy number variation, based on commonly observed 

haplotypes(3), and allelic variation, sourced from the IPD-KIR allele database(4). One dataset, termed 

‘syn-known’, only incorporates alleles that represent those described in the allele database. The second 

data set, termed ‘syn-novel’, incorporates novel SNPs and recombinants to assess the workflow 

performance on novel sequence. The third data set, termed ‘syn-matched’, is built similarly to the syn-

known dataset, however, when these samples were run through PING their component alleles informed 

reference sequence selection in the genotype aware alignment workflow, providing a theoretical 

maximum performance value for the genotype aware alignments. Finally, as a proof-of-concept for real 

world WGS data, we processed 215 sequences from the 1000 Genome Project (1KGP) European (EUR) 

superpopulation(5,6). 

Materials and Methods 

PING workflow 

The PING workflow is described in detail in Marin et al.(1). Briefly, PING takes in paired-end sequencing 

data and undergoes a series of dynamic alignments to output gene copy number, high-resolution 

genotypes, and information about potential novel alleles. First, a filtration alignment isolates KIR specific 

reads, which are used as input sequence data for the rest of the workflow. Second, PING determines KIR 

gene content and copy number. The ascertained gene content informs a gene content matched 

alignment, which is an alignment to a reference that excludes sequences from genes determined to be 
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absent. An initial genotype determination informs a genotype matched alignment, which is an alignment 

to a reference that includes sequences that represent the determined genotype. Genotype 

determination and subsequent genotype matched alignments are repeated multiple times with varying 

parameters to identify the best fit genotype, which is used to inform a final genotype matched 

alignment which is processed to provide the final output. PING utilizes bowtie2(7) for alignments, and 

samtools(8) for alignment processing in addition to custom alignment processing methods. 

Alterations made for processing WGS data included decreasing the minimum alignment depth to 6 for 

both initial and final genotyping and the addition of more virtual probes for correcting commonly 

misidentified genotypes (Table S3.1). 

The PING WGS workflow is available at: https://github.com/wesleymarin/PING/tree/wgs_snakemake 

Synthetic sequence datasets 

Synthetic sequence datasets were generated using ART(9). The workflow for generating these datasets 

follows the outline described in Marin et al.(1), including the simulation of structural variation and 

missing sequence imputation. Adjustments made for simulating WGS data included lowering the 

coverage depth from 50x to 30x, and lowering read length from 150-bp to 140-bp.  

The syn-known synthetic sequence dataset (N=100) was generated with structural variation and allelic 

variation but no novel variation (Table 3.1). The goal of this dataset was to assess the performance of 

PING on known and described alleles, which is generally the most common use case.  

The syn-novel synthetic sequence dataset (N=100) was generated with structural variation and allelic 

variation with novel sequence variants. All generated allele sequences have novel variation, split evenly 

between novel SNPs and recombinations. Allele sequences were randomly assigned to have either a 

novel SNP or a recombination sequence between another allele from the same gene. The novel SNP or 

recombination point was introduced at a random position between 0.25-0.75 of the full allele sequence. 

https://github.com/wesleymarin/PING/tree/wgs_snakemake
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The syn-matched synthetic sequence dataset (N=100) was generated with structural variation and allelic 

variation but no novel variation. The goal of this dataset was to assess the maximum performance of 

PING by aligning the synthetic sequence data to their true genotypes. The PING workflow was run over 

this dataset with modifications to use the true genotypes as input to the genotype-aware alignment 

workflow.  

Table 3.1. Descriptions of the synthetic sequence datasets. 

Dataset Characteristics Application 

syn-known 
Structural variation and 
allelic variation 

Assess performance on 
characterized alleles 

syn-novel 
Structural variation, allelic 
variation, novel SNPs and 
novel recombinants 

Assess performance on 
novel sequence 

syn-matched 
Structural variation and 
allelic variation 

Genotypes inform 
genotype matched 
alignment as 
performance benchmark 

 

Each of these synthetic datasets are available at: https://github.com/wesleymarin/KIR_synthetic_data. 

Thousand Genome Project analysis 

1KGP project analysis was limited to 215 individuals from the European superpopulation (Table S3.2). 

Sequence files were 30x high-coverage WGS data(5,6). KIR aligned reads were extracted from CRAM files 

aligned to GRCh38 and converted to paired-end FASTQ format via samtools(8) and bazam(10) using 

coordinates described in Table S3.3. 

Performance assessment 

The performance of PING across the synthetic datasets was assessed using alignment coverage and 

number of genotype errors. Alignment coverage represents the number of bases in the final PING 

alignment that are above the minimum depth threshold (default of 6) compared to the total number of 

https://github.com/wesleymarin/KIR_synthetic_data
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bases in the synthetic FASTA sequence. This comparison is represented as a ratio between 0-1, where 0 

represents no alignment coverage and 1 represents complete alignment coverage. The genotype error 

score represents SNP mismatches between the final alignment determined by PING and the synthetic 

FASTA sequence. A genotype error score of 0 means there was no difference between the aligned SNPs 

and the original sequence. These metrics were measured independently for exons, introns and UTRs for 

each KIR gene and major allelic group for each sample in each of the datasets.  

Performance on real-world data was assessed by the frequency of unresolved exonic genotypes, which 

are genotypes that do not match any described allele sequence, the frequency of ambiguous exonic 

genotypes, which are genotypes with multiple possible allele typings that match the aligned SNPs, and 

average alignment coverage, represented as a ratio between 0-1. While we do expect unresolved 

genotypes that represent true novel sequence in real-world data, they are also a common outcome of 

read misalignments. Genotype ambiguity is both an outcome of incomplete alignment coverage, since 

positions with inadequate coverage are not considered during genotype determination, and a lack of an 

effective phasing method. For comparison, we also applied the unresolved genotype frequency and 

ambiguous genotype frequency metrics to the syn-known and syn-matched datasets. 

Results 

Table 3.2. Summary table of gene alignment coverage and genotype errors by gene feature for each 
synthetic sequence dataset. 
Coverage is calculated on a scale of 0-1, with 0 being no coverage and 1 being perfect coverage. 
Genotype error is calculated by summing the total number of SNP mismatches between the genotype 
determined through alignment and the original synthetic FASTA sequence, a genotype error score of 0 is 
perfect. The perfect column summarizes the ratio of genotypes with full alignment coverage or no 
genotype errors. 

 feature dataset mean median sd min max perfect N 

co
ve

ra
ge

 

exon syn-novel 0.999 1.000 0.009 0.798 1.000 0.99 1340 

exon syn-known 1.000 1.000 0.004 0.866 1.000 1.00 1366 

exon syn-matched 0.998 1.000 0.014 0.781 1.000 0.96 1366 

intron syn-novel 0.997 1.000 0.022 0.663 1.000 0.95 1340 

intron syn-known 0.998 1.000 0.018 0.597 1.000 0.97 1366 

intron syn-matched 0.982 1.000 0.076 0.539 1.000 0.88 1366 
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 feature dataset mean median sd min max perfect N 

UTR syn-novel 0.952 0.959 0.026 0.751 0.987 0.00 1340 

UTR syn-known 0.953 0.959 0.023 0.825 0.988 0.00 1366 

UTR syn-matched 0.951 0.958 0.033 0.483 0.988 0.00 1366 

ge
n

o
ty

p
e 

e
rr

o
rs

 

exon syn-novel 0.5 0 3.8 0 37 0.92 1340 

exon syn-known 0.5 0 3.7 0 37 0.95 1366 

exon syn-matched 0.3 0 3.3 0 37 0.98 1366 

intron syn-novel 27.0 2 197.3 0 3301 0.43 1340 

intron syn-known 28.9 0 258.8 0 4679 0.56 1366 

intron syn-matched 20.7 0 231.2 0 4616 0.61 1366 

UTR syn-novel 0.7 0 5.3 0 68 0.89 1340 

UTR syn-known 0.7 0 6.1 0 67 0.93 1366 

UTR syn-matched 0.5 0 5.1 0 61 0.95 1366 

 

PING displayed high alignment coverage performance across exons for the synthetic datasets, with 

100% of the syn-known dataset and 99% of the syn-novel dataset showing perfect coverage (Table 2.2), 

compared to 96% perfect coverage for the syn-matched dataset. Intron coverage was also high, with 

97% of the syn-known dataset and 95% of the syn-novel dataset showing perfect coverage, compared to 

88% perfect coverage for the syn-matched dataset. The UTR region coverage was very similar for all 

datasets at around 95% mean coverage.  

For genotype determination performance PING displayed high exon performance for the synthetic 

datasets, with 95% of the syn-known dataset and 92% of the syn-novel dataset showing perfect 

genotypings, compared to 98% for the syn-matched dataset. Intronic genotype determination 

performance was poor across the synthetic datasets, with only 56% of the syn-known dataset and 43% 

of the syn-novel dataset showing perfect genotypings, compared to 61% for the syn-matched dataset. 

Analysis of UTR genotype determination showed 93% of the syn-known dataset and 89% of the syn-

novel dataset were perfectly genotyped, compared to 95% for the syn-matched dataset. 
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Figure 3.1. Distributions of genotype errors by gene position for each KIR gene and major allelic group 
across the synthetic datasets. 
Positions of UTR, exon, and intron sequence were marked. The x-axis represents gene position and the 
y-axis represents total genotype errors. 
 

Examination of genotype errors by gene and base position for the synthetic datasets showed common 

error types that we grouped into three categories. The first was scattered errors, where the errors seem 

randomly distributed, for example KIR2DL1. The second was hotspot errors, which were singular 

locations that showed a high number of errors, for example KIR2DL2 and KIR2DL3. Finally, there were 
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structural variant errors, where large scale insertion or deletion sequence was misinterpreted, for 

example KIR3DP1 and KIR2DL5. 

KIR2DL1 alignments mainly displayed scattered errors across the entire sequence with a substantial 

hotspot error in intron 5 (Figure 3.1). KIR2DL2 and KIR2DL3 showed a substantial hotspot error in intron 

5 and scattered errors across introns 6 and 7. KIR2DL4 displayed a large hotspot error in intron 2, and 

smaller hotspot errors in introns 5 and 6. KIR2DL5 showed concentrated hotspot and scattered errors 

across the 5’UTR, exon 1, and intron 1, as well as structural variant errors and more hotspot errors 

across introns 5 and 6. KIR2DP1 showed some hotspot errors in intron 5 but was relatively error free. 

KIR2DS1 and KIR2DS2 showed scattered errors and some hotspot errors yet were largely error free. 

KIR2DS3 showed scattered errors across introns 1, 6 and 7, and the 3’UTR. KIR2DS4 showed structural 

variant errors and hotspot errors across intron 1 and scattered errors across introns 6 and 7. KIR2DS5 

was largely error free. KIR3DL1 showed scattered errors and hotspot errors across many introns. 

KIR3DL2 showed a handful of error prone hotspots, one in intron 1 and the second in intron 6; both 

hotspots had over 40 genotyping errors in each dataset. KIR3DL3 showed error prone hotspots in intron 

1 and intron 5/6. KIR3DS1 showed scattered genotyping errors predominately along intron 6. KIR3DP1 

showed genotyping errors over the long structural variant regions in intron 1 and 2 for the syn-known 

and syn-novel datasets, while the syn-matched dataset performed much better across this region.  

Further examination of KIR2DL5 structural variant errors across introns 5 and 6, which exhibited 

problems in all synthetic sequence datasets, were found to be due to low alignment depth of the 

structural variant (variant depth of 2 compared to non-variant depth ~80). This issue was traced back to 

the KIR read filtration step where reads originating from the structural variant were mistakenly filtered 

out.  
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Figure 3.2. Performance evaluation for 1KGP and synthetic datasets. 
(A) Summary of unresolved exonic genotype frequencies, a performance metric where lower values 
were generally better for real-world data and 0% was best for synthetic data, for the syn-matched and 
syn-known datasets as well as the 1KGP European dataset. (B) Summary of ambiguous exonic genotype 
frequencies, an outcome-based performance metric for alignment coverage where lower values were 
best, for the syn-matched and syn-known datasets as well as the 1KGP European dataset. EUR = 
European. 
 

Examination of unresolved exonic genotype frequencies, a performance metric where lower frequencies 

were generally better for real-world data and 0% was best for synthetic data, showed strong 

performance for KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS35, KIR2DS4, KIR3DL2 and KIR3DL3 across all 

examined datasets, with unresolved genotype frequencies near or below 5% (Figure 3.2A). Generally, 

PING exhibited the best unresolved genotype performance on the syn-matched dataset, followed by the 
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syn-known dataset and finally the 1KGP European dataset. An exception to this trend was KIR3DP1, 

where the 1KGP European data showed an unresolved genotype frequency of 3.5% yet both synthetic 

datasets showed frequencies above 10%. PING exhibited the worst real-world data performance on 

KIR2DP1 and KIR3DL1S1, with unresolved genotype frequencies around 11% for each. 

Examination of ambiguous exonic genotype frequencies, an outcome-based performance metric where 

lower frequencies were best across all datasets, showed large disparities between the synthetic datasets 

and the 1KGP European dataset (Figure 3.2B). PING performed very well on the synthetic datasets by 

this metric, with many genes having close to 0% ambiguous genotypes. However, performance on real-

world data was very different with almost all genes showing over 25% ambiguous genotypes except for 

KIR2DP1 and KIR2DS1, which were both over 20%. The worst real-world data performance was for 

KIR3DL2 at 65% ambiguous genotype frequency. 

Table 3.3. Summary of alignment coverage by gene feature for each KIR gene for the 1KGP European 
dataset.  
Coverage is represented by a ratio of 0-1. 

 exon intron UTR  

 mean median sd mean median sd mean median sd n 

KIR2DL1 0.90 0.97 0.15 0.90 0.96 0.13 0.86 0.92 0.14 210 

KIR2DL2 0.82 0.84 0.14 0.74 0.73 0.12 0.72 0.74 0.19 104 

KIR2DL3 0.87 0.92 0.16 0.82 0.89 0.15 0.80 0.88 0.19 200 

KIR2DL4 0.95 1.00 0.10 0.95 0.98 0.07 0.89 0.92 0.11 215 

KIR2DL5 0.86 0.91 0.15 0.74 0.70 0.15 0.68 0.70 0.17 106 

KIR2DP1 0.91 0.97 0.13 0.90 0.96 0.12 0.77 0.83 0.17 210 

KIR2DS1 0.80 0.83 0.16 0.73 0.74 0.14 0.54 0.54 0.17 85 

KIR2DS2 0.83 0.86 0.14 0.77 0.77 0.12 0.76 0.82 0.20 106 

KIR2DS3 0.86 0.90 0.15 0.76 0.75 0.13 0.66 0.68 0.15 60 

KIR2DS4 0.86 0.94 0.17 0.79 0.87 0.15 0.79 0.85 0.17 202 

KIR2DS5 0.81 0.85 0.14 0.72 0.71 0.09 0.62 0.63 0.14 71 

KIR3DL1 0.89 0.95 0.13 0.87 0.96 0.14 0.81 0.89 0.18 202 

KIR3DL2 0.95 0.98 0.08 0.94 0.96 0.05 0.90 0.93 0.07 215 

KIR3DL3 0.98 1.00 0.03 0.97 0.98 0.03 0.86 0.88 0.07 215 

KIR3DP1 0.96 1.00 0.08 0.96 0.99 0.09 0.92 0.94 0.07 215 

KIR3DS1 0.80 0.82 0.14 0.77 0.76 0.12 0.72 0.74 0.14 82 
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Examination of alignment coverage for the 1KGP European dataset showed exons generally have the 

best coverage, followed by introns and finally UTRs (Table 3.3). KIR2DL4, KIR3DL2, KIR3DL3 and KIR3DP1 

showed the best mean exonic coverage, each above 95%, while KIR3DS1, KIR2DS1, KIR2DS5 and KIR2DL2 

showed the worst exonic coverage, each around 80%.  Mean intronic alignment coverage was best for 

KIR2DL4, KIR3DL2, KIR3DL3 and KIR3DP1, each at 94% or above, while most other genes had between 

70-80% coverage. Mean UTR coverage was best for KIR3DL2, KIR3DP1 and KIR2DL4, each near 90%, and 

was the worst for KIR2DS1 at 54%. 

Discussion 

PING displayed consistently high exon interpretation performance across the synthetic sequence 

datasets based on the coverage and genotype error metrics (Table 3.2). This performance did not track 

across introns, where examination of genotype errors by position showed a high concentration of errors 

across intronic regions for many KIR genes (Figure 3.1). One cause of this discrepancy is the difference in 

completeness of exonic and intronic sequence in the IPD-KIR allele database(4), where many KIR 

sequences are only described across exons(1). While imputation has improved intronic alignments, this 

analysis shows there are still improvements to be made and highlights how missing data in the allele 

database can impact alignment fidelity. 

A peculiar outcome of the alignment coverage analysis of the synthetic datasets was the generally lower 

alignment coverage of the syn-matched dataset compared to the syn-known and syn-novel datasets 

(Table 3.2). This occurred because the PING workflow was modified for the syn-matched dataset to only 

align to the component alleles of each samples true genotype, which resulted in alignment to sequences 

that were not fully characterized and ultimately leading to regions of missing alignment coverage. This 

was different for the syn-known and syn-novel datasets, which were run normally through PING and had 

the possibility of aligning to more completely characterized sequences. 
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We were pleased to observe that many results of the syn-known dataset tracked closely with the results 

of the syn-matched dataset. The purpose of the syn-matched dataset was to benchmark perfect 

performance of the genotype aware alignment strategy, which was accomplished by using the true 

genotypes of the samples to inform the genotype aware alignments. It was promising to see similar 

performance for the syn-known dataset for exonic coverage and genotype errors (Table 3.2), as well as 

for unresolved genotype frequencies and ambiguous genotype frequencies (Figure 3.2). This result 

suggests that the rounds of genotype determination and subsequent genotype aware alignments PING 

utilizes are effective at approximating the true genotype of a sample. 

PING displayed high performance on real-world data from the 1KGP European dataset across most KIR 

genes based on the low frequencies of unresolved genotypes. While there are still improvements to be 

made for KIR2DP1 and KIR3DL1S1, both showing above 10% unresolved genotype frequencies, and to a 

lesser extent KIR2DL1 and KIR2DL23, it was very promising that most genes had frequencies near or 

below 5%. While we expected to observe some measure of unresolved genotypes in real-world data, 

which can represent novel sequence, we did not expect to find high frequencies in European data since 

this has been a highly studied superpopulation. A helpful comparator in this analysis were the syn-

known and syn-matched datasets, which did not have novel variation and should have had no 

unresolved genotypes. Results from these datasets gave an approximation of the frequency of 

unresolved genotypes that were caused by read misalignments and processing errors. However, since 

the allelic makeup of the synthetic datasets and the 1KGP European dataset were obviously different 

this comparison is just an estimate from which no concrete values can be derived. 

A major shortcoming of PINGs performance on real-world data was the frequency of ambiguous 

genotypes, which are genotypes that have multiple possible alleles that match the aligned SNPs. This 

was an area where there was a stark difference in PING’s performance between the synthetic and the 

real-world data. There are several possible explanations for this result. One is that the real-world data 
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does not have as robust of alignment coverage as the synthetic data, which would result in fewer SNPs 

being utilized for genotype determination. Indeed, an analysis of alignment coverage showed that the 

1KGP European dataset had worse alignment coverage than the synthetic datasets (Tables 3.1, 3.2). 

However, KIR3DL2, KIR3DL3 and KIR3DP1 had the highest exonic alignment coverage for the 1KGP data 

(Table 3.3) yet still displayed high frequencies of ambiguous genotypes (Figure 3.2B). Another 

explanation for the increase in ambiguous genotypes is that the random allele composition of the 

synthetic datasets led to fewer phasing problems then the real-world dataset that is composed of 

evolutionarily related alleles.  

While ambiguous genotypes can be addressed bioinformatically through haplotype estimation(11), 

these methods rely on observational data and can be difficult to properly apply to unobserved 

populations. Implementation of a read-backed phasing approach to help address ambiguity issues will 

be a vital step to improving the utility of PING. 

In conclusion, we have demonstrated PING can effectively interpret WGS data to provide high-resolution 

KIR genotypes using a mix of synthetic data and real-world data from the 1000 Genomes Project. To the 

best of our knowledge, PING is still the only published and proven bioinformatic pipeline for accurate 

high-resolution KIR genotyping from next generation sequencing data. We are confident that this work 

will greatly increase the utility of PING, which will continue to serve as a platform to advance our 

knowledge of KIR variation. 

Supplemental figures and tables 
S3.1 Table. Virtual probe data for reference modifications. (XLSX) 

S3.2 Table. Thousand Genomes sample identifications and locations. (TSV) 

S3.3 Table. KIR genomic coordinates. (BED)  
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Chapter 4: High-throughput complement component 4 genomic 

sequence analysis with C4Investigator 

Abstract 
The complement component 4 (C4) gene locus, composed of the C4A and C4B genes and located on 

chromosome 6, encodes for C4 protein, a key intermediate in the classical and lectin pathways of the 

complement system. The complement system is an important modulator of immune system activity and 

is also involved in the clearance of immune complexes and cellular debris. The C4 gene locus exhibits 

copy number variation (CNV), with each composite gene varying between 0-4 copies per haplotype, C4 

genes also vary in size depending on the presence of the HERV retrovirus in intron 9, denoted by C4(L) 

for long-form and C4(S) for short-form, which modulates expression and is found in both C4A and C4B. 

Additionally, human blood group antigens Rodgers (Rg) and Chido (Ch) are located on the C4 protein, 

with the Rg epitope generally found on C4A protein, and the Ch epitope generally found on C4B protein. 

C4 CNV has been implicated in numerous autoimmune and pathogenic diseases. Despite the central role 

of C4 in immune function and regulation, high-throughput genomic sequence analysis of C4 variants has 

been impeded by the high degree of sequence similarity and complex genetic variation exhibited by 

these genes. To investigate C4 variation using genomic sequencing data, we have developed a novel 

bioinformatic pipeline for comprehensive, high-throughput characterization of human C4 sequence from 

short-read sequencing data, named C4Investigator. Using paired-end targeted or whole genome 

sequence data as input, C4Investigator determines gene copy number for overall C4, C4A, C4B, C4(Rg), 

C4(Ch), C4(L), and C4(S), additionally, C4Ivestigator reports the full overall C4 aligned sequence, enabling 

nucleotide level analysis of C4. To demonstrate the utility of this workflow we have analyzed C4 

variation in the 1000 Genomes Project Dataset (1KGP), showing that the C4 genes are highly poly-allelic 

with many variants that have the potential to impact C4 protein function. 
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Introduction 

The C4 gene locus, composed of the C4A and C4B genes and located in human chromosomal region 

6p21.33, encodes for complement component 4 (C4) protein, a key intermediate in the classical and 

lectin pathways of the complement system(1). The complement system is an important modulator of 

immune system activity, can activate the innate and adaptive immune response systems(2–4) and is also 

involved in the clearance of immune complexes and cellular debris. The C4 gene locus exhibits copy 

number variation (CNV), with each composite gene varying between 0-4 copies per haplotype, and 

importantly, the gene copy number of C4A and C4B correlate to C4 protein levels(5). C4 genes also vary 

in size depending on the presence of the HERV-K(C4) retrovirus in intron 9 (Figure 3.1A), denoted by 

C4(L) for long-form and C4(S) for short-form, which modulates expression and is found in both C4A and 

C4B resulting in four distinct genomic forms of C4 (C4A(L), C4B(L), C4A(S), and C4B(S))(5).  

C4 is mainly expressed by liver cells, white blood cells, and intestinal epithelial cells(6), but also by 

central nervous system cells(7). C4 is expressed as two isotypes, C4A and C4B, encoded by the C4A and 

C4B genes, respectively. The isotypes have nearly identical sequence but are differentiated by a short 

peptide sequence motif at positions 1120-1125 (Figure 4.1B), which are PCPVLD for C4A and LSPVIH for 

C4B. Additionally, human blood group antigens Rodgers (Rg) and Chido (Ch) are located on the C4 

protein at positions 1207-1210(8–10). The Rg epitope is generally found on C4A protein, and the Ch 

epitope is generally found on C4B protein. The relative locations of the C4A/B specific single nucleotide 

polymorphisms (SNPs) and the Rg/Ch major epitope encoding SNPs are shown in Figure 4.1A. 
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Figure 4.1. Sequence features of C4 genes and C4 proteins. 
(A) Positions of C4A and C4B genomic sequence features shown for a long-form of C4. Exon positions are 
marked in black, the HERV retroviral sequence is marked in red, and select sequence variants are shown 
above the exons. Positions are based on the C4 alignment reference, which includes 5’UTR and 3’UTR 
sequence. The C-del variant and the CT-ins variant are frame-shift mutations that result in premature 
terminations. (B) Positions of C4A/C4B protein sequence features. The major chains, α, β, and γ, are 
shown in the bottom row, the cleavage products, C4a and C4d, are shown on the middle row, and 
important binding locations and sequence variants are shown in the top row. The amino acid positions 
include the leading 19 amino acid signal peptide. 
 

C4 CNV has been implicated in the neurological diseases schizophrenia(11,12) and Alzheimer’s(13), and 

there is a large body of evidence connecting C4A deficiency and the development of systemic lupus 

erythematosus (SLE)(14–16), an autoimmune disease. Additionally, while the role of C4 CNV has yet to 

be studied in the context of COVID-19 pathology, recent studies have implicated complement 

hyperactivation with severe SARS-CoV-2 complications(17–19). 

Currently, interrogation of C4 CNV is accomplished through digital droplet polymerase chain reaction 

(ddPCR)(11,20), which is capable of quantifying gene copy number for overall C4, C4A(L), C4A(S), C4B(L) 

and C4B(S). While this method produces accurate results for C4A and C4B gene copy number and 
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phasing with long and short form, it is intractable for identifying additional sequence variation at scale, 

including loss of function mutations(21,22) and recombinations(23,24), and is completely blind to novel 

sequence variation. High-throughput genomic sequence analysis of C4 variants has been impeded by the 

complex genetic variation exhibited by these genes. One recent tool for assessing C4 sequence variation 

is the C4A/B analysis workflow hosted on Terra (25), which was developed using the Genome STRiP 

software (26) to analyze C4 from WGS data. However, this tool is currently unpublished and is restricted 

to analysis of copy number variation of C4A/C4B specific SNPs and the HERV retrovirus. 

Most C4 analysis workflows are targeted at characterizing the region of C4A/C4B specific SNPs, which 

encode for an important active site that causes C4A and C4B to have unique biochemistries. However, 

there are many other vital locations along C4 sequence that when mutated have drastic functional 

consequences (Figure 4.1B). First are amino acid positions 477 and 478; mutations at these positions 

can disrupt C5 convertase activity (27,28), an important step in the classical and lectin complement 

cascade pathways that results in the formation of the membrane attack complex (MAC). Positions 756 

and 757 are the site of C1/MASP-2 cleavage(29) to produce C4a and C4b, which is the initial 

modification made to C4 to initiate the complement cascade. Positions 1405-1427 and 1716-1732 are 

binding sites for C1/MASP-2 (30,31). Positions 763-770 make up a binding site for C2a (32), an 

intermediary of the classical and lectin cascade pathways that binds with C4b to make a C3 convertase. 

Positions 1236 and 1238 are known binding positions for C3b (33), an intermediary that binds with the 

C4b·C2a complex to make a C5 convertase. Finally, there are known frame-shift mutations on exon 13 

and 29 that both result in premature terminations (Figure 4.1A) (22).  

Due to the importance of C4 in complement cascade activity, coupled with the high degree of allotypic 

variation (34,35), we believe that full genomic sequence characterization of C4 is of vital importance to 

advancing our understanding of its in human health. To investigate C4 variation using genomic 

sequencing data, we have developed a bioinformatic pipeline for comprehensive, high-throughput 
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characterization of human C4 copy number and sequence variation from short-read sequencing data, 

named C4Investigator. Using whole genome sequence data as input, C4Investigator determines gene 

copy number for overall C4, C4A, C4B, C4(Rg), C4(Ch), C4(L), and C4(S); additionally, C4Investigator 

reports full genomic sequence and highlights frame-shift mutations and potential recombinations.  

To demonstrate the utility of C4Investigator, we have applied the workflow to the Thousand Genomes 

Project high depth 30x WGS data(36,37), a dataset consisting of 3,199 samples, characterizing C4 copy 

number and sequence variation for the first time in this dataset to provide a snapshot of population-

level differentiation at this important genomic region. 

Materials and methods 

C4Investigator workflow overview 

Due to the high degree of sequence similarity between C4A and C4B, the C4Investigator workflow 

combines alignments of these two genes into an overall C4 alignment. A long-form C4A sequence and a 

short-form C4B sequence are used as a reference for this alignment. A custom alignment processing 

workflow, similar to that outlined in Marin et al.(38), was developed to integrate the C4A and C4B 

alignments into the overall C4 alignment. From the overall alignment, C4 copy number is determined by 

comparing the median alignment depth across C4 to the average depth of the Tenascin XB (TNXB) gene, 

a nearby copy-stable gene. Gene copy number of C4A, C4B, C4(Ch), C4(Rg), C4(L) and C4(S) are 

determined by multiplying the ratios of C4A/B specific SNPs, Rg/Ch specific SNPs and the HERV insertion 

region, to the overall C4 copy. C4A-Ch and C4B-Rg recombinants are identified using read-based 

phasing. A limitation of this approach is that because of the genomic distance between the C4A/B 

specific SNPs to the HERV region, this method is unable to phase C4A/B with long and short-form. 

In addition to gene copy number analysis, C4Investigator outputs the full overall C4 aligned sequence as 

a SNP table. 
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The pipeline is available at: https://github.com/wesleymarin/C4Investigator  

C4 alignment workflow 

The structural variation of the C4 gene locus and high-degree of sequence similarity between C4A and 

C4B necessitates a custom alignment and processing workflow. The first step of the workflow is a 

Bowtie2(39) alignment to a reference consisting of a short-form of C4B, the long-form of C4A, and TNXB, 

which is used as a close proximity normalizer gene. Subsequently, the reads aligned to both C4A and C4B 

are combined, formatted, and indexed according to the aligned read formatting procedure outlined in 

Marin et al. (2021) to generate an overall C4 alignment used for downstream analysis. The output of this 

workflow is a C4 depth table spanning from position -285 5’UTR to position 341 3’UTR with depths 

marked independently for A, T, C, G, deletions, and insertions. 

Copy number determination 

The median depth of the overall C4 alignment is normalized by the median depth of TNXB to determine 

the overall C4 gene copy number. The relative depth ratios of the C4A and C4B specific SNPs, at 

positions E26.129, E26.132, E26.140, E26.143, and E26.145, are multiplied by the overall C4 gene copy 

number to determine the C4A and C4B gene copy number. Similarly, the Rg and Ch major epitope 

specific SNPs, at positions E28.111, E28.116, E28.125, and E28.126, are processed to determine the 

C4(Rg) and C4(Ch) gene copy number. Finally, the depth ratio of the HERV insertion, across positions 

I9.276-I9.6642, is multiplied by the overall C4 gene copy number to determine the long-form and short-

form copy number.  

Exon 29 TC insertion sequence depth ratio is multiplied by the overall C4 copy to determine the copy of 

loss of function alleles, this value is subtracted from C4A gene copy number to give the functional C4A 

copy number. While it is possible for the TC insertion to exist in a C4B sequence, this variant is very 

https://github.com/wesleymarin/C4Investigator
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rare(40) and there is no solid evidence of it in the datasets we analyzed. A similar approach is utilized for 

the exon 13 C deletion in C4B to give the functional C4B copy number. 

Sequence analysis 

The overall C4 depth table is processed to generate a SNP table for positions passing a minimum depth 

threshold (6 for whole genome sequence data). Heterozygous positions are identified using a depth 

ratio of 0.5 normalized by the determined C4 gene copy number. The output of this step is an overall C4 

SNP table with combined sequence for C4A and C4B. 

Variant phasing 

One of the major challenges of interpreting C4 genomic sequencing data is phasing variants. The high 

sequence similarity between C4A and C4B, coupled with the high variability of copy number of C4 

overall, make phasing variants with C4A and C4B extremely challenging. In C4Investigator we have 

implemented a phasing algorithm utilizing paired-end reads to phase variants near the C4A and C4B 

specific SNPs. Importantly, this approach covers the Rg and Ch major epitope specific SNPs, which are 

440bp apart from the C4A/B specific SNPs, facilitating phasing between C4A/C4B and Rg/Ch and 

identification of the C4A-Ch and C4B-Rg recombinants. 

Targeted sequencing dataset generation 

To validate the C4Investigator workflow, we applied targeted-capture next-generation sequencing (NGS) 

in a cohort of 38 African Americans and 37 European Americans from the United States. These healthy 

individuals were unrelated and part of the INDIGO (The Immunogenetics for Neurological DIseases 

working GrOup) cohort. 

A total of 100 ng of high-quality DNA is fragmented using the Twist EF Kit 2.0 l (Twist Bioscience), 

incubating for 5 minutes at 37 °C. Subsequently, the fragmented DNA have their ends repaired, poly-A 

tail added, and are ligated through PCR to Illumina compatible dual index adapters uniquely barcoded. 
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After ligation, fragments are purified with 0.8X ratio Ampure XP magnetic beads (Beckman Coulter) 

followed by double size selection (0.42X and 0.15X ratios) to select libraries of approximately 800 bp. 

Finally, libraries are amplified and purified with magnetic beads. After quantification by quantitative 

PCR, 60 ng of each sample are precisely pooled using ultrasonic acoustic energy, and the enrichment 

targeted capture is performed with hybridization kits from Twist Bioscience. Briefly, the libraries are 

bound to 33,620 biotinylated 120 bp probes target the entire MHC (chr6:28525013-33457522, hg38). By 

using streptavidin magnetic beads, the targeted fragments are captured and then amplified and 

purified. Enriched libraries are analyzed in BioAnalyzer (Agilent) and quantified by digital-droplet PCR. 

Finally, enriched libraries are sequenced using NovaSeq6000 (Illumina) with paired-end 150bp 

sequencing protocol. 

C4Investigator was run over both targeted sequencing datasets using a minimum depth of 20 for variant 

calling and a ratio of 0.50, normalized by the total copy of C4, for heterozygous position identification. 

C4Investigator results were compared to ddPCR results to provide validation for C4 interpretation from 

targeted sequence data. 

ddPCR genotyping 

Gene copy number for C4A, C4B, C4(L) and C4(S) were determined by ddPCR as described previously(11) 

for 38 samples of African ancestry and 37 samples of European ancestry to provide a copy 

determination comparison. 

Gene copy number results determined by C4Investigator were compared to ddPCR determined results 

to quantify the copies of C4A, C4B, C4(L) and C4(S) that were identified by both methods. 

Thousand Genome Project analysis 

Reads aligned to C4 and the nearby region were extracted from GRCh38 aligned CRAM files using the 

coordinates outlined in Table S4.1 using Samtools(41). The extracted reads were converted to paired-
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end FASTQ files using Bazam(42). C4Investigator was run over the paired-end fastq files using a 

minimum depth of 6 for variant calling and a ratio of 0.50, normalized by the total copy of C4, for 

heterozygous position identification. C4 copy number results were stratified by superpopulation. 

Population totals and abbreviations are outlined in Table 4.1. 

Table 4.1. 1KGP population abbreviations and size. 
Superpopulations are written in bold and the total samples for superpopulations are the sums of the 
component populations. 

Population N 

European (EUR) 633 

British in England and Scotland (GBR) 91 

Finnish in Finland (FIN) 99 

Iberian population in Spain (IBS) 157 
Utah Residents with Northern and Western European ancestry 
(CEU) 179 

Toscani in Italia (TSI) 107 

  

East Asian (EAS) 582 

Southern Han Chinese (CHS) 161 

Chinese Dai in Xishuanagbanna, China (CDX) 92 

Kinh in Ho Chi Minh City, Vietnam (KHV) 122 

Han Chinese in Bejing, China (CHB) 103 

Japanese in Tokyo, Japan (JPT) 104 

  

Admixed American (AMR) 490 

Puerto Rican from Puerto Rica (PUR) 139 

Colombian from Medellian, Colombia (CLM) 132 

Peruvian from Lima, Peru (PEL) 122 

Mexican Ancestry from Los Angeles USA (MXL) 97 

  

South Asian (SAS) 601 

Punjabi from Lahore, Pakistan (PJL) 146 

Bengali from Bangladesh (BEB) 131 

Sri Lankan Tamil from the UK (STU) 114 

Indian Telugu from the UK (ITU) 107 

Gujarati Indian from Houston, Texas (GIH) 103 

  

African (AFR) 893 

African Carribean in Barbados (ACB) 116 

Mandinka in The Gambia (GWD) 178 

Esan in Nigera (ESN) 149 

Mende in Sierra Leone (MSL) 99 
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Population N 

Yoruba in Ibadan, Nigera (YRI) 178 

Luhya in Webuye, Kenya (LWK) 99 

American's of African Ancestry in SW USA (ASW) 74 
 
 

Validation  

C4Investigator performance was validated against ddPCR results for divergent populations. The first 

dataset consisted of 37 samples and was of European ancestry, the second dataset consisted of 38 

samples and was of African ancestry. Both datasets were generated using targeted sequencing. Copy 

number results were compared for C4A, C4B, C4(S), and C4(L) for each dataset. 

C4Investigator copy number results for the 1KGP dataset were compared to results from the C4A/B 

analysis workflow utilizing Genome STRiP(36) implemented in Terra (25). Results were compared across 

overall C4, C4A, C4B, C4(L) and C4(S) results. For overall C4 all results across both datasets were 

compared. For C4A and C4B comparison, samples marked as C4A1, C4A2, C4B1, or C4R1, which 

represented rare C4 sequence variants, by the Genome STRiP Terra workflow were excluded, this 

excluded a total of 55 samples from comparison. For C4(L) and C4(S) all results were compared. C4A1, 

C4A2, C4B1, and C4R1 results for C4Investigator were generated by confirming correct phase across 

positions E26.128 – E26.145, based on the k-mers provided for these variants by the Terra workflow, 

then determining the copy number of these variants based on the relative SNP depth. 

Results 

Performance evaluation – comparison to ddPCR 

Table 4.2. Evaluation of C4Investigator copy number determination performance compared to ddPCR 
for European and African datasets. 
C4(S) = C4 short-form, C4(L) = C4 long-form. 

Ancestry C4A C4B C4(S) C4(L) 

African 1.00 N=76 1.00 N=66 0.89 N=61 0.91 N=81 

European 1.00 N=82 1.00 N=70 0.94 N=34 0.98 N=118 
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Evaluation of C4Investigator copy number determination performance compared to ddPCR results for 

European and African datasets show perfect concordance between the two methods for C4A and C4B 

copy number determination (Table 4.2), 94% for C4(S) and 98% for C4(L) for the European dataset, and 

89% for C4(S) and 91% for C4(L) for the African dataset. 

Performance evaluation – comparison to C4A/B Terra 

To benchmark C4Investigator performance against another bioinformatic workflow, we compared 

results for the 1000 Genomes Project dataset (N=3199) against results from the unpublished C4A/B 

Terra workflow(25), a bioinformatic pipeline that utilizes Genome STRiP(36) to quantify C4 copy number. 

Overall C4 copy determination performance was highly concordant with the C4A/B Terra workflow, at 

99.95% (N=12977). C4A and C4B copy identification concordance was 99.12% (N=6942) for C4A and 

98.96% (N=5976) for C4B. C4(L) and C4(S) copy identification concordance was 99.60% (N=8700). 

Comparing the additional C4 variants quantified by C4A/B Terra workflow showed an overall 

concordance of 96.6% (N=59). 

Investigation into the discordant C4A and C4B samples showed the ratios of C4A were near the copy 

thresholds for both methods (Figure S4.1A), further examination into the C4A/B Terra k-mer quality 

scores showed the discordant samples had a median quality of 9, while concordant samples had a 

median quality of 62.7 (Figure S4.1B). A similar analysis was performed for the C4(L) and C4(S) 

discordant samples, which showed the C4Investigator ratios were near the copy thresholds, while the 

C4A/B Terra workflow ratios were clustered near the center of the copy intervals (Figure S4.2). 
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1000 Genomes Project – copy number analysis 

 
Figure 4.2. Superpopulation distributions of C4 copy number results for the 1KGP dataset. 
C4 overall copy represents the total copy number of C4A and C4B, C4S represents the total copy number 
for the short-forms of C4A and C4B, and C4L represents the total copy number for the long-forms of C4A 
and C4B. AFR = African, AMR = Admixed American, EAS = East Asian, EUR = European, SAS = South Asian. 
 

Analysis of C4 copy number variation across superpopulations showed most individuals across all 

superpopulations had 4 copies of C4 overall, 2 copies of C4A, and 2 copies of C4B, and there were very 

few individuals with 0 copies of C4A or C4B (Figure 4.2). Outside of these similarities there were stark 

differences observed between the superpopulations. The African (AFR) and European (EUR) 

superpopulations had much higher occurrences of 3 overall copies of C4, almost double that observed in 

the other superpopulations, and much lower occurrences of 5 and 6 overall copies of C4. In contract, the 

South Asian (SAS) superpopulation had the lowest occurrence of 3 overall copies of C4, but the highest 

of 5 and 6. One of the largest differences observed was with C4L copy 2 for the AFR superpopulation, 

which was observed at over double the rate of the other superpopulations; this superpopulation also 

had substantially lower C4L copy 3 occurrence and virtually no occurrence of 4 copies. The C4S copy 0 

occurrence for the AFR superpopulation was negligible, while other superpopulations were over 20%. 

1000 Genomes Project – SNP analysis 

The SNP tables output by C4Investigator, which represent combined C4A and C4B sequence, were 

parsed to identify sequence variation, and any identified exonic nucleotide variants are evaluated for 

amino acid coding change. From these results we have summarized non-synonymous mutations in Table 
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4.3, and SNP variation that is not represented in the main assembly of the GRCh38 reference in Figure 

4.3. 

Table 4.3. Population specific minor allele frequencies for C4A and C4B unphased, non-synonymous 
exonic sequence variants.  
For this analysis we did not distinguish between C4A and C4B. This table shows amino acid frequencies, 
the amino acid position and nucleotide position, the nucleotide frequencies, and population allele 
frequencies for the minor allele. Major amino acids and nucleotides represent the most frequent variant 
in most populations while minor amino acids and nucleotides represent the second most frequent 
variant. This data was filtered to only show variants with allele frequencies >= 2% for any population. 
Blank values represent absence of the variant. See Table 4.1 for population abbreviations.  

 
 

Analysis of allele frequencies for C4A and C4B non-synonymous exonic sequence variation showed large 

variations in frequencies across populations (Table 4.3). The variant p.H549P was very common in the 

EAS superpopulation, and was found in most populations, but very rare in the AFR superpopulation. The 

variant p.L141V was the major allele in the CDX population, was highly frequent across the EAS 

superpopulation, and was found at appreciable frequencies across all populations. The variants p.T229I, 

p.K325M, and p.M328I were only found in the EAS superpopulation. And the variants p.P478L, p.P726L, 

p.R791H, p.R916Q, p.A1413P, and p.P1530S were only found in the AFR superpopulation. 
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Figure 4.3. SNV variation across the 1KGP dataset.  
(A) Total copy of combined C4A and C4B non-reference variants, which are variants not represented in 
the main assembly of GRCh38, by C4 position for the 1KGP dataset. The copy number of all non-
reference variants for a position across the 1KGP dataset are summed to get the non-reference variant 
copy, which was then filtered to only show variant positions with total copy of at least 10. Positions of 
C4 exon and HERV regions are marked. (B) Global carrier frequencies for non-reference variants in the 
1KGP dataset for increasing global allele frequency thresholds from 0.00-0.05 for introns, exons, and the 
HERV region. The y-axis represents the total proportion of carriers that carry a non-reference allele that 
is at or below the global allele frequency threshold on the x-axis. For example, nearly 25% of the 1KGP 
dataset carried exonic variants with a global allele frequency of 1% or lower. 
 

An analysis into non-reference SNVs, which are variants not represented in the main assembly of 

GRCh38, for the 1KGP dataset across C4A and C4B showed 251 variant positions with total non-

reference variant copy of at least 10 (Figure 4.3A, Table S4.2). Examination of the positional distribution 

of these variants across C4A and C4B showed 50 exonic variant positions accounting for 0.955% of all 

exonic positions (N=5235), 138 intronic variant positions accounting for 1.56% of all intronic positions 

(N=8831, exclusive of HERV), and 59 HERV variant positions accounting for 0.927% of all HERV positions 

(N=6367).  
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An examination of the proportion of the 1KGP dataset that carry rare variants showed that almost 25% 

of the samples carried exonic variants with global allele frequencies at or below 1% (Figure 4.3B, Table 

S4.3), and about 50% carried intronic variants. Looking at the carrier distribution of more common 

variants showed that about 70% of the samples carried exonic variants with global allele frequencies 

below 5%, and about 85% carried intronic variants.  

1000 Genomes Project – recombinant analysis 

Table 4.4. C4A-Ch and C4B-Rg carrier frequencies by population.  
Carrier frequencies were calculated by the total C4A and C4B carrier count per population. C4A-Ch = 
C4A-Chido, C4B-Rg = C4B-Rodger. See Table 4.1 for population abbreviations. 

 

Analysis of carrier frequencies for C4A/C4B and Rodger/Chido recombinants, C4A-Ch and C4B-Rg, 

showed higher overall frequencies of the C4A-Ch recombinant compared to C4B-Rg (Table 4.4).  The 

C4A-Ch recombinant was highly prominent in the AFR superpopulation, with a 37.4% carrier frequency 

in the MSL population, 20% in GWD and YRI, 14.1% in LWK, 13.5% in ASW, 11.2% in ACB, and 8.1% in 

ESN. The AMR superpopulation also showed appreciable C4A-Ch carrier frequencies, the highest being 

the PEL population at 7.4%, followed by PUR at 5.8%, MXL at 5.2% and CLM at 4.5%. While carrier 

frequencies of the C4B-Rg recombinant were generally lower overall, with many populations showing no 

carriers, the frequencies of this recombinant were not negligible, with 8 of the populations displaying at 

least 4.5% carrier frequency. The AMR and SAS superpopulations showed the highest frequencies of the 

C4B-Rg recombinant, the highest being the STU population at 7.0%, followed by CLM at 6.8%. 

Performance evaluation – C4A/C4B and Rodger/Chido phasing 

Phasing completeness between the C4A/C4B specific SNP group and the Rg/Ch specific SNP group was 

estimated by comparing the number of samples with read-backed phasing for the non-recombinant 
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variants, C4A-Rg and C4B-Ch, to the total number of samples carrying C4A-Rg and C4B-Ch, respectively. 

Phasing completeness for C4A-Rg was 97.69% (N=3167) and C4B-Ch was 96.60% (N=3113). 

Discussion 

Comparison of C4Investigator C4 copy number determination to ddPCR results showed high 

concordance between the two methods for C4A and C4B copy number determination across divergent 

populations (Table 4.2). C4(L) and C4(S) copy determination performance was acceptable for the 

European dataset, but poor for the African dataset.  

Comparison of C4Investigator to the C4A/B Terra workflow, another bioinformatic pipeline, on the 1KGP 

WGS dataset showed high concordance between the two workflows, especially for overall C4 copy. An 

investigation into discordant C4A/B results showed that the discordant samples had lower base quality 

scores on average (Figure S4.1B), with neither method showing clear copy number results for the 

discordant samples (Figure S4.1A). In contrast, the investigation into discordant HERV results showed a 

marked difference between the two methods, with the C4A/B Terra workflow showing clear copy 

numbers for these samples while C4Investigator had unclear determinations (Figure S4.2). This is likely 

due to the additional structural variant processing of the C4A/B Terra workflow, which incorporates 

Genome STRiP (36), a workflow specifically developed for identifying copy number variation in WGS 

data. The C4A/B Terra is strictly focused on identifying copy number variation, a task that it appears to 

perform very well. In contrast, C4Investigator takes a different approach, focusing on identifying 

nucleotide variants in a copy variable system through the utilization of custom alignment processing 

algorithms, which has enabled the identification and quantification of SNP variation across the C4 genes.  

An analysis into C4 copy number variation between superpopulations (Figure 4.2) demonstrated some 

specific patterns, such as a median overall C4 copy number of 4, and a median copy number for C4A and 

C4B of 2 each, but also important distinctions between populations, such as the strikingly high number 
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of C4L copy 2 genotypes in the AFR superpopulation, and the general imbalance between overall C4 

copy of 3 and 5, which was unique for each superpopulation. Differences of this nature might suggest 

evolutionary pressure or unique genomic makeups that are specific to the different superpopulations 

and modulate the fitness of different C4 gene structures. 

An essential innovation of C4Investigator is demonstrated by its capacity to reveal important differences 

in sequence variation between populations, with likely important functional implications. An analysis of 

non-synonymous exonic sequence variants demonstrated that C4 sequence makeup can differ greatly 

between populations, with some variants with seemingly rare global allele frequencies showing high 

allele frequencies in specific populations. For example, the p.A1413P and the p.P1530S mutations were 

absent in most populations, but both had 10.2% allele frequency in the MSL population (Table 3.3). The 

fact that both mutations have the same allele frequency raises the question of if these mutations are in-

phase, unfortunately, there is a 2046bp gap between these variants which was outside the scope of our 

phasing approach. However, an examination of the individuals that carried each mutation showed a high 

overlap, where 28 individuals carried both mutations compared to total 33 individuals carrying the 

p.A1413P mutation and 31 individuals carrying the p.P1530S mutation.  A structural interrogation of 

C4·MASP-2 binding shows the p.A1413P mutation occurs in the middle of a MASP-2 exosite(31) (Figure 

4.1), while the change from alanine to proline would not likely change the electrostatic interactions 

between C4 and MASP-2, it could potentially alter the structure of the binding site. Another sequence 

variant with potential to impact function is the p.P478L mutation, which causes severe reduction of 

hemolytic activity by disruption of C5 binding(28). Similar analyses in the context of disease association 

studies are likely to reveal important insights into immune-mediated pathogenesis.  

An analysis into C4A and C4B non-reference variants demonstrated that the C4 genes are highly poly-

allelic across introns, exons and the HERV region (Figure 4.3A). Further examination into rare variant 

carrier frequencies demonstrated that exonic variants under 5% global allele frequency are carried by 



75 
 

around 70% of the 1KGP samples (Figure 4.3B). This analysis demonstrates the value of nucleotide level 

analysis of C4, which reveals important features of genomic variation not otherwise evident with 

existing methods.  

One important aspect of SNP variation identification is the ability to phase variants. However, phasing 

high-copy variants (gene copy number > 2) is very complex and it is difficult to be certain of phasing 

completeness due to the high potential for missing information. Due to the high sequence similarity 

between C4A and C4B, the alignments must be treated as a single gene, exacerbating the high-copy 

phasing problem. We have implemented read-backed phasing that enables us to determine whether 

two variants in proximity are in-phase, but the potential for missing information means in many cases 

we cannot make the determination that two variants are not in-phase; essentially, we can make more 

confident true positive phasing calls than true negative. Because of the distance between the C4A/C4B 

SNPs and the Rg/Ch SNPs, 440bp, we can determine presence of recombinants between the two SNP 

groups. An estimate of phasing completeness between C4A-Rg and C4B-Ch showed this phasing 

approach only missed a small percentage of samples. Utilization of this phasing approach to identify 

C4A-Ch and C4B-Rg recombinants showed high C4A-Ch carrier frequencies across the AFR 

superpopulation (Table 4.4), and appreciable carrier frequencies for the C4B-Rg recombinant and the 

AMR and SAS superpopulations. 

In conclusion, C4Investigator fills a critical role in the investigation of C4 variation, processing WGS data 

to provide C4 copy number variation and full genomic sequence information. Here, we have 

demonstrated the utility of this workflow on the Thousand Genomes Project dataset, revealing that C4 

copy number varies between superpopulations, that alleles with low global allele frequencies can have 

high population specific frequencies, the presence and distribution of C4 recombinant variants, and 

population specific carrier frequencies for rare alleles. Additionally, we have demonstrated that 

C4Investigator can identify C4 variation that is known to alter C4 function. To the best of our knowledge, 
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C4Investigator is the only bioinformatic workflow currently available for nucleotide level 

characterization of C4 from WGS data, and as such, promises to contribute to our understanding of the 

role of this genomic region in human health and disease. 

Supplemental figures and tables 

 
Figure S4.1. C4Investigator discordance analysis for C4A/B 
(A) Histogram of normalized ratios for C4A read/k-mer count for the C4investigator and Genome STRiP 
workflows for discordant samples from the 1000 Genomes Project dataset. (B) Histogram of quality 
scores for the concordant (match) and discordant (mismatch) samples when comparing results for the 
C4Investigator and Genome STRiP workflows for the 1000 Genomes Project dataset. 
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Figure S4.2. C4Investigator discordance analysis for C4(L)/(S). 
Histogram of normalized ratios for C4(L) read/k-mer counts for the C4Investigator and GenomeSTRiP 

workflows for discordant samples from the 1000 Genomes Project dataset. 

S4.1 Table. GRCh38 C4 coordinates. (CSV) 

S4.2 Table. Global allele count of non-reference C4 SNVs in the 1KGP dataset. (CSV) 

S4.3 Table. Global carrier frequencies for uncommon non-reference variants in the 1KGP dataset. 

(CSV)  
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Chapter 5: Conclusions 

Through this work I have shown that NGS data representing complex genomic regions, such as KIR and 

C4, necessitate custom bioinformatic processing. And that, through informed processing of alignments, 

analysis of NGS data from these gene complexes can be done accurately and in high-throughput. The 

CNV exhibited by these complexes complicated variant identification by breaking common assumptions 

of variant depth ratios, which I have addressed through the development of custom variant 

identification methods that are informed by the determined gene copy number. Additionally, the 

component genes of these complexes exhibit high sequence similarity and nucleotide polymorphisms, 

characteristics that increase read mapping errors and erroneous genotypes. I have decreased these 

errors and improved genotyping accuracy through comprehensive reference alignments combined with 

custom alignment processing workflows. Together, these methods unlock full genomic sequence 

analysis of the KIR and C4 regions for the first time, promoting research into these diverse and vital 

immune related complexes in addition to outlining strategies for improving alignments to other, 

similarly complex gene systems. 
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