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Abstract
How to best and robustly detect human systemic cognitive
states like workload, sense of urgency, mind wandering, in-
terference, and others is still an open question as the answer
essentially depends both on the employed physiological mea-
surements as well as the trained computational classification
models. In this paper, we analyze data from a human driv-
ing experiment to explore the validity of eye gaze in assess-
ing different systemic cognitive states and relations among
them. Our statistical analyses and classification results indi-
cate that eye gaze, in particular the percentage change in pupil
size (PCPS), is a reliable physiological biomarker in assessing
multiple systemic human cognitive states including workload,
sense of urgency (SoU), and mind wandering (MW) while it
does not seem suitable to detect task interference (which can
be assessed based on participant’s response times).
Keywords: Cognitive workload, mind wandering, sense of ur-
gency, interference, pupillometry, computational models

1 Introduction
Answering the question of how to best detect systemic hu-
man cognitive states like workload, sense of urgency, mind
wandering, and interference is not only of interest to cogni-
tive psychology, but also to a wide range of application do-
mains where these states can impact and modulate human
task performance. Workload to a measure of cognitive ef-
fort based on the relationship between task requirements, cir-
cumstantial situations under which the task is accomplished,
and the abilities, the attitude, and the concentration of the in-
dividual who carries out the task (Hart & Staveland, 1988).
Sense of urgency refers to an individual’s response to ur-
gent task demands that usually have to be completed or at-
tended to within a short period of time. Mind wandering
refers to spontaneous thought that is less-intentionally re-
stricted than creative thinking and objective-directed thought
but more-intentionally restricted than dreaming (Christoff,
Irving, Fox, Spreng, & Andrews-Hanna, 2016). Interference
is another cognitive state which refers to a consequence of
accomplishing two or more concurrent tasks which relates to
concentration-based disadvantages of human nature (Pashler,
1994). Overly high workload can lead to errors and drop
in performance, and interference and sense of urgency can
worsen it. At the same time, mind wandering can lead to
oversight and missed deadlines. Especially, in high-stress do-
mains like air traffic control or disaster response, it would be
important to be able to track such systemic cognitive states
to be able to design interventions that prevent escalation and
thus task failure.

Yet, despite significant prior work on which physiological
measures to use and how to process the information, there
is currently still no consensus on the most reliable physio-
logical signals and computational methods for categorizing
them. In part the problem is due to the fact that many of the
prior studies and results did not aim at understanding a set of
systemic human cognitive states; rather, most studies attempt
to classify one systemic cognitive state (very often cognitive
workload). It is not only important to assess these individual
cognitive states but also it is significant to comprehend the
association between different pairs of systemic human cogni-
tive states given that systemic cognitive states do not happen
in isolation but can impact each other.

The goal of this paper is thus three-fold:
1. We examined the relationship between different pairs of

systemic human cognitive states and discussed how two
individual human cognitive states interact with each other.

2. We showed that percentage change in pupil size (PCPS) is
a reliable physiological marker in determining workload,
mind wandering, and sense of urgency.

3. We further investigated that interference between tasks
causes a significantly higher response, but without PCPS
reflecting it.

2 Related Works
Cognitive workload estimation studies. There have been mul-
tiple research efforts which examine eye gaze features as a
predictor of cognitive workload (Chen & Epps, 2013; Halver-
son, Estepp, Christensen, & Monnin, 2012; Wang, Li, Wang,
& Chen, 2013; Tokuda, Obinata, Palmer, & Chaparro, 2011;
Khedher, Jraidi, & Frasson, 2019). Tokuda et al. explored
the performance of both saccadic intrusion, which is a par-
ticular type of fixational eye movement, and pupil diameter
in assessing cognitive workload (Tokuda et al., 2011). Al-
though the authors indicated that pupil diameter has better
accuracy in determining workload compared to saccadic in-
trusion, they did not consider the subject-based variations of
pupil diameter, while we aimed to remove subject-based dis-
crepancy by using the PCPS rather than the pupil diameter
itself. Khedher et al. acquired eye gaze and EEG signals
from fifteen participant in a virtual learning environment to
classify two groups: the students who were capable of com-
pleting the tasks successfully and the students who were not
(Khedher et al., 2019). They found out that k-Nearest Neigh-
bor is the best predictor for assessing cognitive workload over
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other classification methods. In contrast, we utilized neural
network-based deep learning models in addition to common
classification methods to evaluate the efficiency of eye gaze
in estimating workload.

Sense of urgency estimation studies. There have been
relatively few studies which investigate the performance of
different physiological signals to determine sense of ur-
gency (Shalom, Dagnino, & Sigman, 2011; Šalkevicius,
Damaševičius, Maskeliunas, & Laukienė, 2019; Khalaf et al.,
2020). Salkevicius et al. studied to predict the anxiety levels
of individuals with blood volume pressure, galvanic skin re-
sponse, and skin temperature (Šalkevicius et al., 2019). An-
other study proposed a method to assess participants’ chal-
lenge and threat states while proceeding three mental arith-
metic tasks by leveraging multiple physiological signal types
(Khalaf et al., 2020). To the best of our knowledge, there is
no research which considers human gaze to determine sense
of urgency.

Mind wandering estimation studies. There are a few re-
search papers that explore the efficiency of human eye gaze
in assessing mind wandering (Klesel, Schlechtinger, Oschin-
sky, Conrad, & Niehaves, 2020; He, Becic, Lee, & McCarley,
2011; Bixler, Blanchard, Garrison, & D’Mello, 2015; Singha,
2021). One study proposed that the participants show few
deficits in manipulating vehicles during mind wandering oc-
currence (He et al., 2011). Although exploring different eye
gaze parameters in assessing mind wandering, their dataset
has insufficient number of participants which is a potential
cause for overfitting. Another study explored the fusion of
eye gaze and physiological features to estimate mind wan-
dering while the participants were reading instructional texts.
Even though this study investigated mind wandering during a
driving task, their simulation platform was too sophisticated
for evaluating mind wandering since the participants must
perform too many tasks simultaneously such as watching the
traffic lights, adjusting the speed, and paying attention to the
other vehicles and pedestrians (Bixler et al., 2015). While
several studies examine mind wandering using eye gaze in
different domains, there is a lack of studies focussing on as-
sessing mind wandering in the context of driving simulation
settings.

Interference estimation studies. There are also a few ef-
forts to predict cognitive interference using different physi-
ological indicators. One study used EEG and electrooculo-
gram (EOG) to explore the impact of EEG theta power for
assessing cognitive interference and demonstrated the perfor-
mance of the theta power in assessing interference circum-
stances (Nigbur, Ivanova, & Stürmer, 2011). Another study
investigated the relationship between social pertinence of eye
gaze direction and spatial interference, and found out an op-
posite congruency effect between fixation location and eye
gaze direction (Cañadas & Lupiáñez, 2012).

3 Experimental Setup
We used the data from a comprehensive interactive multi-
modal multi-task driving experiment. In particular, the partic-

Figure 1: The illustration of 1) the association between
different pairs of systemic human cognitive states, and 2) the

evaluation criteria of individual cognitive states.

ipants were instructed to drive accident-free while completing
multiple secondary tasks. During the first three minutes of the
simulation, the only task was driving which helped the partic-
ipants acclimate the rest of the simulation. Next, participants
were instructed to perform three additional tasks. First, par-
ticipants engaged in brief dialogue communications multiple
times during the simulation. There are 40 questions in total
(20 questions per session) which included a series of “yes/no”
and explanation dialogue occurred every 30-60 seconds dur-
ing each session. Second, participants completed braking
events happened ten times per session. Third, participants had
to perform DRT tasks. We attached a cylindrical vibrotactile
motor, which was 14 mm in diameter and 4.5 mm thick, to
the participants’ right collar bone/shoulder. Then, we fixed a
response button to their right index fingertip with hook and
loop tape. Finally, we instructed the participants to respond
to tactile stimuli that took place randomly every 6 to 10 sec-
onds. The experiment included two separate sessions: DRT
(included DRT occurrences) and non-DRT. While multiple
physiological signals including eye gaze, electroencephalog-
raphy (EEG), arterial blood pressure, respiration, functional
near-infrared spectroscopy (fNIRS), and skin conductance
were collected from the experiment, we here focus on eye
gaze to demonstrate its effectiveness in assessing different
systemic human cognitive states. The details of the driving
simulation can be found in (Scheutz et al., 2023).

4 Methods
We start by introducing definitions of the systemic human
cognitive states we investigated and how to assess their in-
stantiation and levels in a simulated driving environment:

Workload has been considered as a human-centered
paradigm that emerges from the association between task
specifications, the environmental circumstances under which
the task is completed, and the capabilities, the temperament,
and the attention of the individual who proceeds the task (Hart
& Staveland, 1988). Cain et al. linked the workload with the
reflection of mental demands imposed on human operators by
the task requirements (Cain, 2007). Specifically, workload
was interpreted as a multidimensional concept, encountered
by a human operator, which is controlled by the capabilities
and the efforts of the operator. Moreover, cognitive workload
was defined as a circumstance which must be diminished or
regulated at an engaging level to attain a user satisfaction in a
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Figure 2: The generation of three workload levels.

human-computer interaction (HCI) setup (Kosch et al., 2023).
A higher workload can be generated by integrating secondary
task assignments into the primary work (see Figure 1.

Sense of Urgency can be described as a perception that an
assigned task must be completed immediately, usually within
a specific period of time, which impacts decision-making
mechanisms in humans. Yau et al. interpreted time-varying
and evidence-free signals as a sense of urgency, and discov-
ered that it is likely to determine EEG signals which are as-
sociated with sense of urgency (Yau et al., 2021). Another
study examined the effects of warning signals, including au-
ditory and vibrotactile, in predicting sense of urgency in dif-
ferent cognitive workload conditions (Biondi, Leo, Gastaldi,
Rossi, & Mulatti, 2017). Different sense of urgency levels
can be generated by taking shorter time frames (compared to
workload case) in which the participants need to accomplish
secondary events quickly such as completing braking event
or responding dialogue interactions immediately.

Mind wandering was considered as a specific type of spon-
taneous thought, a cognitive state or a sequence of multiple
cognitive states that progress relatively freely due to a lack
of intense restrictions on the subject matter of any cogni-
tive state or on the shift between any of the two consecutive
cognitive states (Christoff et al., 2016). In particular, mind
wandering was described as a special type of spontaneous
thought that is less-purposely restricted than creative thought
and objective-directed thinking but more-purposely restricted
than dreaming. Another study ((Smallwood & Schooler,
2015)) linked mind wandering with the self-determination
of experiences from impressions and ongoing activities, and
emphasized the terms “task unrelated” (Giambra, 1989) and
“stimulus independent” (Antrobus, Singer, Greenberg, et al.,
1966) which represent the thoughts happen during mind-
wandering episodes.

Interference was considered as an outcome of perform-
ing two or more simultaneous tasks which associates the
concentration-based limitations of human nature (Pashler,
1994). In (Sarason, Pierce, & Sarason, 2014), authors con-
sidered interference as referring to unwanted and undesir-
able thoughts which eventually has detrimental impacts on
task performance. In this study, we generated higher interfer-
ence including secondary tasks in addition to the ongoing task
which should be responded timely manner (See Section 4.1).

Moreover, Figure 1 illustrates associations between differ-
ent pairs of systemic human cognitive states.

Workload vs. Mind Wandering: Zhang et al. claimed that
there is a negative correlation between cognitive load and
mind wandering during driving. In particular, the participants
who have decreased cognitive workload have extra mental

capacity which may be assigned to other tasks irrelevant to
the primary task and cause higher mind wandering (Zhang &
Kumada, 2017). Another study claimed that any individual
has limited mental capacity, and thus, raised perceptual load
would cause to decreased available mental capacity for task-
irrelevant activities (Lavie, 2010). This is consistent with our
hypothesis that higher mind wandering is likely to diminish
with increased cognitive workload.

Workload vs. Sense of Urgency: In contrast to the asso-
ciation between workload and mind wandering, the link be-
tween workload and sense of urgency is not entirely com-
prehensible. Even though there have been research studies
which explored the correlation between workload and sense
of urgency (Wei, Gong, & Wu, 2022; Keunecke et al., 2019),
those research efforts were mainly focused on subjective rat-
ings and did not provide moment-by-moment analyses of the
effect of sense of urgency happenings on overall workload.
In this study, we aimed to explore the impacts of consec-
utive immediate task occurrences on overall workload. In-
tuitively, we may consider three situations to examine how
workload is linked to sense of urgency. First, there may be
sporadic sense of urgency moments which might not impact
overall task-dependent workload. Second, we may consider
the circumstances where tasks trigger sense of urgency, e.g.,
such as braking events in a driving task, occur frequently and
would hence potentially lead to increased overall workload
as well. Third, even if we monitor higher workload after fre-
quent sense of urgency happenings, we cannot conclusively
claim that the increased overall workload is solely an outcome
of the task-dependent frequent sense of urgency occurrences
as other task-irrelevant activities might have contributed to
the overall workload as well.

Workload vs. Interference: Forsyth et al. examined how
consecutive interference occurrences impact overall work-
load and found out that both objective and subjective work-
load measurements are prone to increase with cognitive inter-
ference (Forsyth et al., 2018). Another study investigated the
effect of social media interference on mental workload while
performing six simulated computer tasks and indicated that
there is a positive correlation between interference, caused by
unpredictable interruption occurrences, and overall cognitive
load (Zahmat Doost & Zhang, 2023). These research efforts
are consistent with our hypothesis that increased interference
is prone to reinforce overall mental load.

Mind Wandering vs. Sense of Urgency: Latinjak et al. ex-
amined the link between mind wandering and goal-assisted,
spontaneous thinking (Latinjak, 2018). Specifically, the au-
thor(s) modeled a competition task performed by athletes, to
investigate the association between spontaneous thoughts and
task-unrelated mental activity, and found out that there is a
negative correlation between goal-assisted thinking and mind
wandering. Considering that, by nature, mind wandering de-
velops when individual’s attention instantly switches from the
ongoing task to inner thoughts (Girardeau et al., 2023), it is
acceptable to hypothesize that increased mind wandering is
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oppositely correlated with higher sense of urgency which is
compatible with what was proposed in (Latinjak, 2018).

Mind Wandering vs. Interference: Considering that in-
creased interference, caused by consecutive interruption hap-
penings, is likely to increase overall workload and mind wan-
dering is prone to decrease with increased workload, we can
hypothesize that higher mind wandering is negatively corre-
lated with increased interference. Our hypothesis is consis-
tent with the research study which indicated that increased
task-unrelated-thoughts (TUT) are linked to decreased corti-
cal processing of task-relevant events and interrupting stimu-
lation (Barron, Riby, Greer, & Smallwood, 2011).

Sense of Urgency vs. Interference: Considering that, in na-
ture, sense of urgency happenings, simultaneously occur with
the ongoing task, require the individuals to interfere multiple
tasks at the same time, we hypothesize that urgency moments,
which include secondary event happenings such as braking
tasks or dialogue communications, which are required to be
completed timely manner, are likely to reinforce interference.
Future efforts will include detailed examination of the associ-
ation between sense of urgency occurrences and interference.

4.1 Cognitive State Evaluation
Workload Evaluation: Figure 2 illustrates how we dis-
tinguished three potential cognitive state levels labelled
lw1 , lw2 , lw3 based on the simultaneous activities subjects had
to perform. lw1 and lw2 started with the 1st and the 5th braking
events, respectively, and included four braking and six con-
secutive communication events each. We hypothesized that
lw1 will be higher than lw2 given that the participants were re-
quired to acclimate with different types of secondary events
including braking tasks and dialogue communications during
lw1 timeline and they were used to proceed the secondary
tasks during lw2 timeline. lw3 was the initial period of the
driving simulation before the start of the first braking event.
We produced a balanced dataset having a total of 276 samples
(92 samples per cognitive workload level) taken from both of
the sessions of 46 participants.
Sense of Urgency Evaluation: We also considered two po-
tential sense of urgency levels: the first 2.5 seconds of the 1st

braking event labelled lsou2 , and the 2.5 seconds time frame
30 seconds before the 1st braking event labelled lsou1 (a period
that does not include any events other than the primary driv-
ing task). The intuition behind this is that there are circum-
stantial conditions or task demands which require the partic-
ipants to respond instantly and hence produce a higher sense
of urgency such as responding to a dialogue question in time
or suddenly braking during driving.
Mind Wandering Evaluation: Most studies on mind wan-
dering have been designed to assess mind wandering levels of
participants subjectively by asking them to press buttons and
indicate mind wandering during the experiment (E. Bixler &
K. D’Mello, 2021; Beninger, Hamilton-Wright, Walker, &
Trick, 2021; Mills, Gregg, Bixler, & D’Mello, 2021; Caruso
& D’Mello, 2023; Zhang & Kumada, 2017; Geden, Staicu, &
Feng, 2018) or after (Berthié et al., 2015). However, our aim

Table 1: Collection of different classification tasks including
task ID, classification type, and cognitive state levels.
Task ID: Classification Type: Levels to be Classified:

W1 Workload lw1 , lw2 , lw3

W2 Workload lw1 , lw3

SoU Sense of Urgency lsou1 , lsou2

MW Mind Wandering lmw1 , lmw2

INT Interference lint1 , lint2

was to design a scenario where we can assess participants’
mind wandering levels objectively to eliminate subject-based
misjudgments. To this end, we investigated the change in
mind wandering levels of the participants during the initial
course of driving. Specifically, we captured the first and next
1.5 minutes of driving to define potentially lower and higher
mind-wandering levels, respectively. The intuition here is
that during the first 1.5 minutes, the participants were at-
tempting to acclimate to the driving environment which re-
quires more concentration, resulting in a lower mind wander-
ing labelled lmw1 . During the next 1.5 minutes, the partic-
ipants were already familiar with the driving task and only
had to drive on a straight road with no task requirement (i.e.,
no communications, no braking demands) other than simply
driving on the right side of a straight highway. Thus, less
attention should be required which potentially evokes higher
level of mind wandering labelled lmw2 .
Interference Evaluation: To examine the potential change
in interference levels, we considered two cases: 1) braking
events which include DRT, and 2) braking events which do
not include DRT. Specifically, we took the braking occur-
rences in which the participants were and were not required
to push the DRT button to consider potentially higher (lint1 )
and lower (lint2 ) interference levels, respectively (in particu-
lar, we checked the time duration between the onset of the
braking event and the moment that the participant changes
the angle of the brake pedal to investigate DRT happenings).
We identified 66 braking events which included DRT and 314
braking events which did not include DRT collected from 64
participants. Then, we compared the response times for these
two cases to determine whether interfering DRT happenings
affect the speed of participants’ responding to the braking
events, or not. Here, response time represents the time du-
ration between the starting point of the braking event and the
moment that the participant brakes. Finally, we explored the
change in the average PCPS values between lint1 and lint2 by
performing t-test, and reported the results in Section 5.
4.2 Pupillometry
Data Processing: We applied a three-step pre-processing
technique to a 400 Hz pupillometry signal to remove any
out-of-band sensory noise and the blink artifact explained in
(Aygun et al., 2022). We used the left pupillometry signal
considering that the left and the right pupil diameters are syn-
chronous.
Percentage Change in Pupil Size (PCPS): Pupil diameter
varies across individuals based on different conditions includ-
ing gender, age, or other physiological reasons such as lens
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(a) Workload (b) Sense of Urgency (c) Mind Wandering
Figure 3: Boxplot of the mean APCPS for (a) three workload, (b) two sense of urgency, and (c) two mind wandering levels.

thickness (e.g., a smaller pupil diameter was related to higher
age and male gender besides A larger pupil diameter was
linked to female gender and larger white-to-white distance
(Kiel et al., 2022)). Hence, to eliminate the subject-based
fluctuations in pupil diameter, we chose to use the percentage
change in pupil size (PCPS) and calculated it with the follow-
ing equation (Zhao, Gao, Wang, Qu, & Chen, 2020): PCPS =
100·(CM-BM)/BM. where CM and BM represent the current
measure of pupil diameter and the baseline measure of diam-
eter, respectively. Here, BM is determined by calculating the
mean of a 10-second signal before the stimulus.

4.3 Performance Analyses
Statistical Tests: Firstly, we performed an ANOVA sta-
tistical test called Tukey’s “honestly significant difference”
(HSD) multiple pairwise comparison test (Jaccard, Becker, &
Wood, 1984) to examine the change in the PCPS for three
workload levels (lw1 , lw2 , and lw3 ), two sense of urgency lev-
els (lsou1 and lsou2 ) , and two mind wandering levels (lmw1

and lmw2 ). In addition, we performed Welch’s t-test to exam-
ine the differentiation of two interference levels in terms of
the average PCPS and participants’ responding times to brak-
ing events. We used the R programming language to perform
ANOVA’s Tukey’s HSD multiple pairwise and Welch’s t-tests
using RStudio.
Classification Tasks: Secondly, we aimed to quantify the
performance of common machine learning (ML) methodolo-
gies in assessing different human cognitive states with the
PCPS. In particular, we employed five ML methods: (1) k-
Nearest Neighbor (k-NN), (2) Naive-Bayes (NB), (3) Ran-
dom Forest (RF), (4) Support Vector Machines (SVM), and
(5) Multiple Layer Perceptron (MLP). We summarized the
classification tasks employed in this study in Table 1.

For the given classification task and the learning methodol-
ogy, we divided the data into training and test sets with a ratio
of 80% and 20%, i.e., 37 participants for the training set and
9 participants for the test set, respectively. Next, we applied
the cross-validation method (Stone, 1978) to the training set
to select the best-learned model to apply to the test set. To
mitigate the randomness in the training and test processes as
well as to stabilize the testing performance, for a given clas-
sification task and learning method, we repeated the whole
experiment 10 times and only reported the average accuracy
together with its standard deviation.

Figure 4: The boxplot of the responding times to braking
events for higher (lint1 ) and lower interference (lint2 ).

5 Results
Figure 3 shows the boxplots of the mean APCPS taken from
46 participants to assess different human cognitive states in-
cluding (a) workload, (b) sense of urgency, and (c) mind wan-
dering (Here, the APCPS represents the average PCPS across
time (Zhao et al., 2020) while the mean APCPS represents
the average APCPS across samples obtained from different
participants). The results demonstrated that the APCPS is
a reliable physiological marker to distinguish multiple levels
of different systemic human cognitive states. To investigate
the performance of the APCPS in assessing different cogni-
tive states, we further performed the Tukey’s HSD multiple
pairwise test. Table-3 indicate the results of the p-values cor-
responding to all pairs of workload, sense of urgency, and
mind-wandering levels obtained from Tukey’s HSD multiple
pairwise comparison test at a significance level of .95. The
results demonstrate that there is a statistically significant dif-
ference between all pairs of workload levels (p-value <.05).
Specifically, the p-values are very small in distinguishing lw1 -
lw3 (2.23 × 10−13) and lw2 -lw3 (2.23 × 10−13) compared to
lw1 -lw2 (7.47×10−3) which indicates that the workload is no-
tably lower during the initial period of driving when there is
no secondary event. In addition, the PCPS is a powerful phys-
iological indicator in separating two sense of urgency levels
(lsou1 -lsou2 ) and two mind wandering levels (lmw1 -lmw2 ) with
the p-values of 5.25×10−4 and 3.60×10−14, respectively.

In addition, we performed Welch’s t-test with a signifi-
cance level of .95 in distinguishing the responding times of
the participants for two interference levels with unequal vari-
ance condition given that the number of samples are differ-
ent for two interference levels. The results indicate that the
p-value and t-value are .063 (slightly higher than the signifi-
cance level) and 1.89), respectively, with a degree of freedom
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Table 2: Classification accuracies (in %) of the APCPS for different classification tasks using different ML methods.
Signal Modality Tasks k-NN NB RF SVM MLP

Workload W1 62.78 ∓ 5.47 63.35 ∓ 5.63 55.64 ∓ 4.15 63.35 ∓ 4.43 63.25 ∓ 5.22
W2 90.18 ∓ 3.42 87.91 ∓ 6.04 85.35 ∓ 5.97 88.76 ∓ 4.14 85.71 ∓ 4.41

Sense of Urgency SoU 57.04 ∓ 6.52 60.46 ∓ 9.29 54.05 ∓ 5.95 57.04 ∓ 8.41 55.75 ∓ 7.80
Mind Wandering MW 82.08 ∓ 7.35 80.51 ∓ 6.54 71.83 ∓ 7.61 77.24 ∓ 5.70 79.94 ∓ 6.98

Table 3: p-values of Tukey HSD multiple pairwise test for
the APCPS obtained from different cognitive state levels.

Cognitive State Levels p-value

Workload
lw1 - lw2 7.47×10−3

lw1 - lw3 2.23×10−13

lw2 - lw3 2.23×10−13

Sense of Urgency lsou1 - lsou2 5.25×10−4

Mind Wandering lmw1 - lmw2 3.60×10−14

of 78.03. Figure 4 shows the boxplot of the responding times
to braking events for DRT (higher interference) and non-DRT
(lower interference) cases are taken from 64 participants and
demonstrated that participants’ responding time is a reliable
indicator in assessing different interference levels. Moreover,
we performed Student’s t-test on the APCPS values to ana-
lyze the effect of the APCPS in classifying lint1 and lint2 , and
observed that the APCPS is not capable of identifying two
interference levels (p-value =.685).

We also run four classification tasks using the APCPS (see
Table 1). Table 2 shows the classification accuracies of five
algorithms related to four classification tasks W1, W2, SoU,
and MW. The results indicate that for the task W1, which
aims to distinguish three workload levels (lw1 , lw2 , and lw3 ),
APCPS has the accuracy of 63.35∓ 5.63 for both NB and
SVM models. Note that W1 is three-class classification task,
therefore, a random guess will likely provide an accuracy
of 33% which is far below the performance achieved by all
five tested algorithms on APCPS. On the other hand, for W2,
which aims to classify lw1 and lw3 , APCPS achieves the high-
est accuracy of 90.18∓3.42 using the k-NN algorithm which
outperforms other ML models. Similarly, we run the five ML
algorithms for the classification tasks SoU and MW, which
aim to distinguish two sense of urgency levels (lsou1 and lsou2 )
and two mind wandering levels (lmw1 and lmw2 ), respectively.
The results showed that APCPS achieves the highest accura-
cies of 60.46∓ 9.29 using NB and 82.08∓ 7.35 using k-NN
for the tasks SoU and MW, respectively. The results demon-
strate that the APCPS is a reliable indicator in separating mul-
tiple levels of different systemic human cognitive states.

6 Discussion
We have studied the utility of eye gaze, in particular the
PCPS, in determining different systemic human cognitive
states. Our statistical analyses indicated that the PCPS is a
reliable physiological biomarker in assessing workload, sense
of urgency, and mind wandering. We then validated the effi-
cacy of k-NN, NB, RF, SVM, and MLP in separating dif-
ferent workload, sense of urgency, and mind wandering lev-
els, and demonstrated that the PCPS is capable of achieving
three-class workload, two-class workload, two-class sense of

urgency, and two-class mind wandering classification.
In contrast to workload, sense of urgency, and mind-

wandering estimation, the PCPS is not capable of identify-
ing different interference levels. However, we showed that
the response times of the participants can be used to identify
two interference levels. Specifically, we observed that inter-
ference, which is generated by integrating secondary events
to the ongoing task, which must be completed on time, leads
to extended responding times. We did not apply ML models
to interference cases as we did to observe statistically signif-
icant differences (based on t-testw) between two interference
levels.

Additionally, we explored the association between differ-
ent pairs of systemic human cognitive states. To successfully
comprehend the impacts of them on human performance, it is
essential to understand the corporation of individual human
cognitive states considering that systemic cognitive states do
not take place in solitude but can affect each other. We further
investigate the link between different systemic human cogni-
tive state pairs in detail in our future work.

7 Conclusion
The goal of this study was to explore the association between
different pairs of systemic human cognitive states and vali-
date the efficiency of eye gaze, in particular the PCPS, in as-
sessing different human cognitive states including workload,
sense of urgency, mind wandering, and interference in a mul-
timodal driving simulation environment. Our statistical anal-
yses along with the classification results demonstrated that
the “percent change in pupil size” is a reliable physiological
marker for predicting different levels of workload, sense of
urgency, and mind wandering. However, we observed that the
PCPS is not an efficient physiological indicator in detecting
interference, instead, the responding times of the individuals
can be used to identify interference occurrences. While we
used data from the driving dataset, we believe that this dataset
has the potential to generalize to other tasks, and hence, to en-
hance human performance in many applications.
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