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Influence of assimilating rainfall derived from WSR-88D radar on the

rainstorm forecasts over the southwestern United States

Jianjun Xu,1,2 Qingnong Xiao,3 X. Gao,4 and S. Sorooshian4

Received 6 September 2005; revised 6 February 2006; accepted 24 March 2006; published 8 July 2006.

[1] In this study, the impact of rainfall assimilation on the forecasts of convective rainfall
over the mountainous areas in the southwestern United States is investigated. The rainfall
is derived from the U.S. Weather Surveillance Radar–1988 Doppler (WSR-88D) radar
network, and the fifth-generation Mesoscale Model (MM5) Four-Dimensional Variational
(4DVAR) system is employed in the study. We evaluate the rainfall assimilation skill
through two rainstorm events (5–6 August and 11–12 September 2002) that occurred
over the southwestern United States in 2002. A series of experiments for the two cases is
conducted. The results show that the minimization process in the 4DVAR is sensitive to
the length of assimilation window and error variance in the observation data. Assimilation
of rainfall can produce a better short-range precipitation forecast. However, the time
range of improved forecasts is limited to about 15 hours with the model resolution of
20 km. It is indicated that rainfall assimilation produces more realistic moisture divergence
and temperature fields in the initial conditions for the two cases. Therefore the forecast of
rainstorms is closer to observations in both quantity and pattern.

Citation: Xu, J., Q. Xiao, X. Gao, and S. Sorooshian (2006), Influence of assimilating rainfall derived from WSR-88D radar on the

rainstorm forecasts over the southwestern United States, J. Geophys. Res., 111, D13105, doi:10.1029/2005JD006650.

1. Introduction

[2] The southwestern United States receives over 50% of
its annual precipitation from June to September from the
North American monsoon system [Douglas et al., 1993;
Okabe, 1994; Stensrud et al., 1995; Adams and Comrie,
1997; Anderson and Roads, 2002; Zeng and Lu, 2004; Xu et
al., 2004a]. The high spatial variability of monsoon rainfall
viewed from high-resolution satellite remote sensing [Negri
and Adler, 1993; Negri et al., 1994] indicates that the great
complexity of the rainfall distribution is related to the
mountainous topography of the region. With the arrival of
the maritime tropical air mass associated with the North
American monsoon system (NAMS), extreme storms can
occur through the deep convection over the mountain slopes
and can result in hydrological disasters such as flash flood-
ing [Farfan et al., 1998]. Improving the forecasts of
monsoon rainfall in the southwestern United States there-
fore has received a great deal of attention in the hydrome-
teorological community.
[3] It has also been observed for a lengthy period in the

operational centers that the loss of skill in weather forecasts
does not occur at the same leading time every day [Toth and

Kalnay, 1993]. One reason for the failure of weather
forecasts can be attributed to the imperfection of numerical
modeling in representing the actual atmosphere. However,
as Lorenz [1963] pointed out, the most fundamental cause
of forecast failure is because the atmosphere is a chaotic
system. A chaotic system is defined as one in which
evolution is sensitive to initial conditions (ICs). It means
that an arbitrarily small error in the analysis of the initial
state of the atmosphere can have an overwhelming effect in
a finite amount of time. Therefore it is not surprising that
considerable effort has focused on improving the estimates
of the model initial states through advanced techniques. One
such technique is the Four-Dimensional Variational
(4DVAR) data assimilation method.
[4] The major advantage of 4DVAR is the use of full

model dynamics and physics to assimilate multiple-time-
level observation data (instead of assimilating observation
data only at the initial time). The important components of
the 4DVAR system are the tangent linear model (TLM),
derived from the original forecast model, and its
corresponding adjoint model (ADM). However, the useful-
ness of the TLM and ADM is only valid in a ‘‘short’’ time
period, that is, the linearity valid period. In the 4DVAR
procedure, a cost function is set to measure the difference
(distance) between the model-simulated and observed fields
of atmospheric variables. The minimization of the cost
function is achieved through iterative runs of the forecast
model with the model ICs according to the gradients
calculated from the ADM. Obviously, the resulting ICs
through the minimization procedure are not only fitting to
the observations, but also consistent with the dynamics and
physics of the forecast system [Lewis and Derber, 1985; Le
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Dimet and Talagrand, 1986; Talagrand and Courtier, 1987;
Zou and Kuo, 1996; Li et al., 2000].
[5] Many studies indicate that the divergence and mois-

ture in the initial conditions of numerical modeling are the
key ingredients affecting the intensification of precipitation
over the extratropical regions [Uccellini, 1991; Davidson
and Puri, 1992; Petty and Miller, 1995]. Rainfall assimila-
tion via 4DVAR has been used in several studies to improve
the moisture distributions in model ICs and has obtained
encouraging forecasting results [Zupanski and Mesinger,
1995; Zou and Kuo, 1996; Xiao et al., 2000; Xu et al.,
2004b]. Using 4DVAR to generate model ICs, the precip-
itation intensity and patterns can be improved over the
midlatitude plain regions [Zupanski and Mesinger, 1995;
Zou and Kuo, 1996; Alexander et al., 1999] as well as the
tropical regions [Tsuyuki, 1997]. However, it is a challenge
to improve rainfall forecasts over the mountainous south-
western United States. First, in contrast to the precipitation
over the plain areas, the cumulus convection plays a
dominant role in determining the local atmospheric flow
in the mountainous areas. Rising motion forced by moun-
tains may lead to torrential rainfall. Mountains may also
enhance rainfall by modulating the low-level convergence
associated with flow deflection around the topography [De
Pondeca and Zou, 2001; Colle and Mass, 1996] and by
triggering the instability of convection [Smith, 1979]. This
property makes it essential to include an appropriate cumu-
lus convection parameterization and a reasonable horizontal
resolution in the 4DVAR system in order to improve rainfall
forecasts in mountainous regions. Because the physical
processes depend strongly on the spatial resolution and
are far more nonlinear than the dynamics, the tangent-linear
approximation will make a big difference in different
physical parameterizations and spatial resolutions. These
nonlinear features will degrade the efficiency of commonly
used minimization algorithms. This is one of the problems
to be encountered when applying 4DVAR to mountainous
regions. Associated with the nonlinearity and discontinuity
in the 4DVAR system, the length of assimilation window is
an issue which needs to be taken into account. Because of
the lack of accurate estimation in the background error and
observation errors, the length of assimilation has an impact
on the iteration of the minimization process in 4DVAR
experiments [Zupanski and Mesinger, 1995]. Another prob-
lem in the mountainous region is the poor quality and
coverage of ground-based rainfall measurements. Most
existing rain gauge networks are located in accessible
low-elevation areas so that large gaps in information exist
for the mountainous areas where considerable precipitation
occurs. The NEXRAD (next general weather radar) radar
coverage is also limited by mountain blockage of the low-
radar beams, while the precipitation estimates derived from
high-radar beams are less correlated with surface rainfall
[Maddox et al., 2002].
[6] In addition to research to improve the dynamics and

physics of forecast models, the effectiveness of the data
assimilation technique should be studied. Two basic ques-
tions arise here: Will the rainfall assimilation affect the
rainfall forecasts in the mountainous southwestern United
States using the 4DVAR approach? How does the assimi-
lation time window and observation error in the 4DVAR
procedure affect the rainfall forecasts?

[7] In this paper, two typical strong rainfall events that
occurred in the southwestern United States on 5–6 August
and 11–12 September 2002 are studied. A series of numer-
ical experiments with alternative selections of assimilation
time windows in Case 1 and the weighting of observations
in Case 2 with the fifth-generation Mesoscale Model–
Four-Dimensional Variational (MM5-4DVAR) system are
conducted, and their influences on weather forecasts are
analyzed.
[8] A brief overview of the MM5 data assimilation and

forecasting system is given in the following section. The
major characteristics of the WSR-88D (Weather Surveil-
lance Radar–1988 Doppler) rainfall data are described
in section 3. The results from the rainfall events on 5–
6 August (Case 1, hereafter) and 11–12 September (Case 2,
hereafter) are presented in sections 4 and 5, respectively.
Further analysis and discussion of the results are presented in
section 6. Finally, a summary and discussion are given in
section 7.

2. MM5 4DVAR Assimilation and Forecasting
System

2.1. MM5 Forecast Model

[9] The Pennsylvania State University/National Center
for Atmospheric Research (PSU/NCAR) fifth-generation
Mesoscale Model MM5 [Dudhia, 1993; Grell et al.,
1994] is used in this study. MM5 is a limited area, non-
hydrostatic mesoscale atmospheric model with terrain-fol-
lowing vertical coordinates (s).
[10] The initial and boundary conditions are analyzed

from the NCEP operational Eta model analysis. The lateral
boundary conditions are time-dependent; they are changed
every six hours from the Eta analysis. The planetary
boundary layer (PBL) employs the high-resolution Black-
adar scheme. Land use at each grid point is defined among
24 categories (ranging from urban land to snow or ice), with
climatological values of associated physical properties (al-
bedo, moisture availability, emissivity, roughness length,
and thermal inertia) assigned according to the category and
time of the year [Grell et al., 1994].
[11] There are a wide variety of physical parameterization

schemes available in the MM5 modeling system. In the
previous work [Xu and Small, 2002], we compared results
from a different combination of two convection schemes
(Grell and Kain-Fritsch) and three radiation schemes (Com-
munity Climate Model, version 2 (CCM2), Cloud, and
Rapid Radiative Transfer Model (RRTM)). Differences in
simulated rainfall produced by the various combinations of
schemes are substantial. The Grell-RRTM simulation pro-
duces the most realistic patterns and magnitudes of rainfall,
including intraseasonal variations and the differences be-
tween the wet and dry year. Simulations using the Kain-
Fritsch scheme produce too much rainfall and fail to
represent the typical, observed decrease in precipitation
from June to July. The CCM2 radiation scheme produces
a simulated climate that is too cloudy, yielding little rainfall
in the North American monsoon system (NAMS) region,
regardless of the convection scheme used. Consequently,
the Grell cumulus convective parameterization and RRTM
radiation schemes were considered most appropriate when
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describing the precipitation over the southwestern United
States.

2.2. MM5-4DVAR

[12] The MM5-4DVAR system [Zou et al., 1998] is
employed in this study. To perform rainfall assimilation,
the Grell [1993] cumulus parameterization and the Dudhia
[1989] explicit moisture scheme with simple ice are included
in the forward model and backward adjoint during its
minimization procedure.
[13] The 4DVAR processing is carried out through min-

imization of the following cost function:

J x0ð Þ ¼ 1

2
x0 � xbð ÞTW x0 � xbð Þ þ 1

2

Xn

r¼0

Hr xrð Þ � yrð ÞT

�Wr Hr xrð Þ � yrð Þ þ Jc;

where the first term is the background partial cost function
that measures the distance between the model initial state
(x0) and all available information prior to the assimilation
period, summarized by the background field (xb). The model
initial condition (x0) is the control variable in the
4DVAR. They include eight three-dimensional fields: the
wind components u, v; temperature T; specific humidity q;
pressure perturbation p0; vertical velocity w; cloud water qc;
and rainwater qr. The background field (xb) has the same
components as x0. In this study, the background field (xb) is
interpolated from the operational Eta model analyses field.
W is the weighting from the background. Theoretically, the
value of W equals B�1, where B�1 inverses background
error covariance matrix B. On the basis of the National
Meteorological Center (NMC) method, W is calculated as
the inverse of the squared maximum difference between two
forecasts that are 6 hours apart.
[14] The second term in the cost function measures the

discrepancy between the model-predicted and radar-re-
trieved precipitation. r = 1, 2, . . ., n, n is the total number
of time levels on which the observed rainfall data are
available. Vector xr is the model state at time tr, Hr is the
observation operator that calculates rainfall at the observa-
tion sites, in which the Cressman-type objective analysis
scheme [Benjamin and Seaman, 1985] is used to interpolate
the sum of Dudhia [1989] microphysics precipitation and
Grell [1993] cumulus precipitation to the observation sites,
and yr is the observed precipitation. Wr in the cost function
represents the weighting from the rainfall observation at t =
tr, which is the inverse of observation error variance and is
treated here to be stationary and diagonal (i.e., no correla-
tions between the observations and the weightings do not
vary in time, Wr = constant).
[15] The Jc term is a dynamical constraint term included

in the procedure to increase the balance in the analysis. We
do not intend to study the dynamical constraint term in this
paper and, for clarity, we will eliminate it in the following
discussion.
[16] The minimization algorithm used in this study is the

limited-memory quasi-Newton method developed by Liu
and Nocedal [1989]. After obtaining the optimal initial
conditions, forward runs are started from the optimal initial

conditions using MM5 version 3.5. All forecast experiments
are integrated for a 12-hour period.

3. Precipitation Estimated From WSR-88D
Radar

[17] A prototype, real-time, hourly, multisensor National
Precipitation Analysis (NPA) has been developed at NCEP
(National Center for Environmental Prediction) in cooper-
ation with the Office of Hydrology (OH). Hourly digital
precipitation (HDP) radar estimates are created by the
WSR-88D Radar Product Generator on a 131 � 131 4-km
grid centered over each radar site. The first product with a
completed prototype was the national mosaic of radar
precipitation HDP estimates. This radar-only product con-
sists of nearly 100 WSR-88D radars which report to
NCEP in real time via the Advance Weather Interactive
Processing System (AWIPS). Each individual radar esti-
mate is merged together on the national Hydrologic
Rainfall Analysis Project (HRAP) grid, and the bins which
contain more than one radar estimate are averaged together
using a simple inverse distance weighted average. As a
part of the National Weather Service (NWS) conversion
from Automotion of Field Operational and Services
(AFOS) to AWIPS during September 1999 to August
2000, the radar precipitation products from the 137 radar
sites over the continental United States (CONUS) were
converted from the HDP to the Digital Precipitation Array
(DPA) format. There are currently two types of radar-only
estimates: biased and unbiased. The radar bias removal
algorithm follows Smith and Krajewski [1991]. The unbi-
ased radar estimates are available after a 	6-hour delay to
allow gauge data necessary to compute the biases to
arrive. For more information, please refer to Fulton et
al. [1998].

4. Case 1

4.1. Event

[18] From radar rainfall data and the operational Eta
model analysis, a strong rainstorm occurred over southern
Arizona with maximum rainfall of 35 mm/h in the
vicinity of Tucson during 0500–0600 UTC 6 August
2002. At 2100 UTC 5 August 2002, a strong trough at
500 hPa was located on the western coast of North
America, and the subtropical high with a 588-isobar line
covered the east-central portion of the United States (not
shown). In Figure 1a, the NCEP Eta analysis indicates
that southeastern Arizona was dominated by southeastern
winds with convergence at 700 hPa. In contrast, eastern
New Mexico was dominated by a divergence. As a result of
this circulation, the Gulf of Mexico was the primary mois-
ture source for this convective process. At 2100 UTC, the
radar data showed that a weak rainstorm occurred in
eastern Tucson (Figure 1d). Afterward, the deep convective
system moved westward. By 0300 UTC 6 August, the
strong convergence center shifted westward (Figure 1b).
Correspondingly, a well-defined rainband shifted westward
to the area around Tucson (Figure 1e). At 0900 UTC, the
convective system moved northeastward (Figure 1c), and a
weak rainfall center appeared over northeastern Tucson
(Figure 1f).
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[19] Obviously, the convective rainstorm intensified and
moved steadily westward during the first 6 hours (Figures 1d
and 1e). The convection center matched with the conver-
gence center of moisture flow (Figures 1a and 1b), and
the convective rainstorm was weakened during the second
6 hours. The atmospheric conditions indicate that an accu-

rate divergence field was crucial to the mesoscale convective
system.

4.2. Experimental Design

[20] Because the storms occurred largely during the period
of 0000–0300 UTC 6 August 2002 over both Arizona and

Figure 1. Divergence field (dashed lines, units 10�5/s) and moisture transport vector (u � q; v � q)
(units g/kg � m/s) at 700 hPa at (a) 2100 UTC 5 August, (b) 0300 UT 5 August, and (c) 0900 UTC 6
August 2002 (C, convergence; D, divergence). Rainfall (mm) at (d) 2100 UTC 5 August, (e) 0000 6
August, and (f) 0300 UTC 6 August 2002 (H, high center of rainfall).
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New Mexico (Figure 1), we selected 2100 UTC 5 August as
the initial time for simulation. An experiment with the MM5
forecast model represents a standard 12-hour model forecast
run starting at 2100 UTC 5 August without data assimilation
(NO4DVAR). This experiment is used as a benchmark to
compare with other 4DVAR experiments. Two 4DVAR
experiments were carried out with different assimilation
windows (3 hour or 6 hour). All of the experiments were
conducted at 20-km horizontal resolution. The two 4DVAR
experiments are as follows: for RAD3H, use radar-derived
rainfall data with a 3-hour assimilation window, and for
RAD6H, use radar-derived rainfall data with a 6-hour
assimilation window.

4.3. Performance of Rainfall Assimilation

4.3.1. Minimization Convergence
[21] The rate of gradient norm reduction is a measure for

the convergence of the 4DVAR minimization. In Figure 2,
the gradient norm is represented as a function of the number
of iterations and, with approximately 10 iterations, the
gradient norms in all experiments reduce by 80%. It
demonstrates that the minimization in the MM5-4DVAR
system converges well with the Doppler radar retrieved
rainfall assimilation.
4.3.2. Rainfall Forecast
[22] In this case, the rainfall was concentrated in the

Tucson area during the first 6 hours (from 2100 UTC
5 August to 0300 UTC 6 August). It then shifted northeast-
ward during the second 6 hours (from 0300 to 0900 UTC
6 August). In order to show the effectiveness of rainfall

assimilation, the rainfall forecasts from the 4DVAR experi-
ments are compared with the NO4DVAR forecasts in these
two successive 6-hour periods. In Figure 3, the forecasts of
accumulated rainfall for the first 6 hours from experiments
NO4DVAR and RAD3H are compared. The results show
that the forecast of NO4DVAR does not determine the
correct location of the storm: the rainfall center shifts
northeastward to the area close to the Arizona–New Mex-
ico border (compare Figure 3a with Figure 1e). In contrast,
the forecast from the 4DVAR experiments improves the
rainfall distribution over southeastern Arizona and reduces
the substantial overestimation of rainfall amount in the
NO4DVAR forecast (compare Figure 1e with Figure 3b).
The rainfall forecasts in the second 6-hour period are
illustrated in Figure 4. The NO4DVAR experiment pro-
duced three rainfall centers in southeast Arizona (Figure 4a)
compared with only one rainfall center in the observations
(Figure 1f). The rainfall forecasts from the 4DVAR experi-
ments (Figure 4b) show better patterns and reduce rainfall

Figure 2. (a) Cost function and (b) norm of the gradient
with respect to the number of iterations in the 4DVAR
experiments.

Figure 3. Six-hour accumulated precipitation of model
simulation during the first 6-hour rainfall (mm) (2100 UTC
5 August to 0300 UTC 6 August 2002): (a) NO4DVAR and
(b) RAD3H_4DVAR.
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amounts than the NO4DVAR does, although they are still
overestimated. In Figure 5, the curves for rainfall accumu-
lations within the heavy rainfall area (109�–111.5�W,
31.5�–33�N) during the 12-hour forecast are plotted, which
shows that all assimilation experiments produce more
precipitation than the observation, but the forecasts made
by the 4DVAR runs have smaller errors than the NO4DVAR
prediction.
4.3.3. Sensitivity to Assimilation Time Window
[23] In order to explore the forecast performance with

respect to the assimilation time window, the correlation
and RMSE of forecasted rainfall against observed rainfall
in the experiments with 3-hour assimilation window and
6-hour assimilation window are compared (Table 1). The
statistics show that, for 6-hour rainfall forecasts, using a
3-hour assimilation window resulted in a higher correlation
coefficient and a lower RMSE rather than using a 6-hour
assimilation window unanimously. For 12-hour forecasts,
however, opposite conclusions were displayed: using a

6-hour assimilation window provided better rainfall fore-
casts. Many previous studies have shown that the assimila-
tion window should not be too long because of the chaotic
nature of the atmosphere and the limited accuracy of the
first-order linearization approximation [Stensrud and Bao,
1992; Vukicevic and Bao, 1998]. The optimal length of an
assimilation window may depend on the model grid resolu-
tion, physical parameterization, and forecast duration. Our
results suggest that the 3-hour assimilation window worked
well for 6-hour forecasts using the MM5-4DVAR system
in this case study, while for 12-hour or longer forecasts, a
6-hour assimilation window should be used.

5. Case 2

5.1. Event and Experimental Design

5.1.1. Event
[24] From radar rainfall data, a strong rainstorm occurred

over the Mogollon Rim mountainous areas in the interface
of northeastern Arizona and New Mexico on 10–11 Sep-
tember 2002, with a 6-hour total rainfall amount of 90 mm.
Figure 6a shows that the location of the 6-hour rainfall
centers (shaded with the amount of rainfall greater than
20 mm) lies roughly over the mountains with an elevation
height of more than 1800 m. The time series of hourly
precipitation (Figure 6b) averaged over the grid mesh

Figure 4. Six-hour accumulated precipitation of model
simulation during the second 6- hour rainfall (mm)
(0300	0900 UTC 6 August 2002): (a) NO4DVAR and
(b) RAD6H_4DVAR.

Figure 5. Time series of accumulated rainfall (mm)
averaged over the rainstorm center (111.5�–109�W,
31.5�–33�N).

Table 1. RMSE and Correlation Coefficient Calculated Between

Simulated and Observed Precipitation Over the Whole Studied

Areas in the 6-Hour Forecast and 12-Hour Forecasta

No 4DVAR 3 Hour Rad 6 Hour Rad

First 6 Hours
CORR 0.42 0.48 0.24
RMSE 8.67 4.77 6.64

Second 6 Hours
CORR 0.35 0.10 0.51
RMSE 4.97 3.79 2.71

aRad is the radar precipitation data assimilation experiment and CORR is
correlation coefficient.
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(37 � 46 = 1702 points) of the top mountain region (subset
box in Figure 6a) indicates several peaks of hourly
precipitation over 0 mm/h in the northern part of the
Mogollon Rim.
[25] The NCEP Eta analysis is used as the first guess,

and the objective analysis is based on the Cressman-type
scheme. Figure 7 presents the analyzed upper level
(300 hPa), lower level (700 hPa) divergence, and moisture
transport vectors at 0000 UTC 11 September. During the
initial stage of development, the upper level southerly
flows with divergence across the mountainous area. The
lower level moist air in the mountainous area originated
from two directions: one from the Gulf of Mexico with
southwest flow, and another from the eastern Pacific
Ocean. Two branches of moist flows merge into the
mountainous area and form a strong convergent flow.

The vertical couplet structure (divergence at upper level
and convergence at lower level) enhances convective
instability that benefits the rainstorm occurrence in the
following period.
5.1.2. Basic Idea and Experimental Design
[26] In 4DVAR data assimilation, a model is used as a

strong constraint during minimization. The premise condi-
tion for the 4DVAR method is the perfect model assump-
tion. In this study, we use fixed background error statistics
(B) and conduct several experiments to examine the impact
of various observational errors on the 4DVAR analysis and
subsequent prediction.
[27] In fact, the weight of observation in the cost

function is a tunable parameter that depends on the
observational error variances [Desroziers and Ivanov,
2001]. The reported atmospheric observations used in data

Figure 6. (a) Rainfall (mm) at 0600 UTC 11 September 2002 and (b) time series of hourly rainfall over
the rainstorm central areas (heavy box in Figure 6a).
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assimilation are not perfect; they contain several kinds of
errors, including instrumental errors and errors of human
origin. The observations may contain errors which are so
large that the observations have no useful information
content and should be thrown out. Usually, the rough or
gross errors which are of human origin and which take
place during the computation or transmission of observa-
tion are difficult to evaluate. Experiments on multiple
options for the weight of observation error can give
statistical information on the observational error to be
assigned.
[28] On the basis of the above idea, a series of tuning

weights (W) of observational rainfall are assigned by the
value of 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25,
2.75, and 3.00 � 107 mm�2. The MM5 4DVAR analyses
and numerical predictions are carried out to assess the

impact of the assigned weightings on the results of the
analyses and predictions.

5.2. Minimization Performance

5.2.1. Cost Function
[29] The total cost function is contributed by terms of

both background and observed rainfall. The weight of
background error is a simple diagonal matrix, and the
contribution of the background error does not change with
the iteration of the minimization processes. In order to
measure the relative contributions of background and ob-
servation (rainfall) terms to the total cost function, the ratio
of observation to background in cost function value is used
here. Figure 8a shows that the ratio at the initial time is in
direct proportion to the weight of observation error. When
the observation term is larger than the background term, the

Figure 7. Divergence field (dashed lines, units 10�5/s) and moisture transport vector (u � q; v � q)
(units g/kg � m/s) at (a) 300 hPa and (b) 700 hPa.
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ratio is reduced more with the iteration of minimization
processes. The larger the observational weight, the faster the
ratio is reduced. On the other hand, by increasing the
observational weight, the reduction of cost function
becomes faster (Figure 8b). In other words, the higher the
precision of observation error, the faster the cost function
converges. It is worth noticing that the minimization process
stopped after 8 or 9 iterations with the small weight of
observational error (for instance, ratio <1). On the contrary,
the minimization process stopped with only 	40% reduc-

tion after 35 iterations, while the weight of observation error
was assigned by 0.5 � 107 mm�2. This demonstrates that
the minimization procedure of the MM5-4DVAR system
works well with the higher precision of observation error.
When we chose the small weight of observation error, the
minimization process stopped with a small amount of cost
function reduction. The deviation of the ‘‘optimal’’ initial
condition and its impact on the forecast results will be
discussed in the following section.
[30] Figure 8c shows that the reduction of the gradient

norm is quite different from the reduction of cost function.
The gradient norm shows large fluctuations with respect to
the iteration number. However, the reduction of gradient
norm in all of the experiments exceeds 80% of its initial
value in the different weight experiments after 25 iterations.
The reduction of gradient norm is not as sensitive to the
weight of observational error as the reduction of the cost
function is.
[31] During the minimization procedure for the different

weight of observation error, the major reductions of the cost
function occur in the first five iterations. After 25 iterations,
the reductions are minimal, which demonstrates that the
minimization procedure of the MM5 adjoint system works
well in all of the experiments. In the small weight of
observation (for instance, the weight of 0.5 � 107), the
reduction of cost function does not exceed 50% of the initial
value.
5.2.2. Rainfall Forecast
[32] In this case (Case 2), rainfall is concentrated over the

Mogollon Rim mountainous areas in northern Arizona. In
order to examine the effects of the observational rainfall
error specification in the assimilation processes and subse-
quent prediction, we conduct a sensitivity study of
the rainfall forecasts for the first 6 hours and the second
6 hours to the 4DVAR analyses with different observational
error weighting. For the first 6-hour forecast, NO4DVAR
does not pick up the two rainfall bands of the storm
(Figure 9a versus Figure 9b). In contrast, with the averaged
results of these different weighting 4DVAR experiments,
the forecasts greatly catch the rainfall bands over most of
northeastern Arizona (compared among Figures 9a, 9b,
and 9c). The rainfall forecasts in the second 6-hour period
indicate that the NO4DVAR experiment produces a strong
rainfall center in central Arizona (Figure 9e), which is totally
different from the observation with four rainfall bands over
the Arizona and New Mexico areas (Figure 9d). The rainfall
forecasts from the 4DVAR experiments (Figure 9f) possess
better patterns and much reduced rainfall amounts compared
to the NO4DVAR experiment over the central Arizona
areas, although they are not completely consistent with the
observation.
[33] It is clearly shown that the 4DVAR simulates the

improvement of the rainfall location with northward and
southward rainbands. The 4DVAR also produces less rain-
fall amounts over western Arizona; however, there is still a
northward shift in terms of the position of the rainband. The
4DVAR simulates relatively proper locations of the rain-
band but misses the rainfall maximum center. This suggests
that the assimilation of the rainfall plays an important role in
the simulation of the rainband. Observational rainfall can
correct the rainfall location in the 4DVAR experiment,
although it shifts the location of the maximum rain north-

Figure 8. (a) Ratio of weights of background and
observation error, (b) cost function, and (c) norm of the
gradient with respect to the number of iterations in the
4DVAR experiments.
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eastward. Considering the passage of mesoscale convective
systems over the mountainous areas, a large amount of
heavy rainfall could occur in the western slope of moun-
tainous regions. In this respect, the 4DVAR experiment
simulates a possible rainband extension toward the western
slope regions through the Mogollon Rim mountainous
areas.
5.2.3. Statistical Analysis
[34] To examine the effect of the 4DVAR analysis on the

rainfall prediction, five statistical variables—mean, root-
mean-square error (RMSE), correlation coefficient, bias,
and equitable threat score (ETS)—are calculated against
the observational rainfall data over the rainstorm central

areas (the heavy box in Figure 6a). The mean of forecast
precipitation (Figure 10a) either with or without 4DVAR is
less than the observation. The correlation coefficient retains
0.35 from the 6-hour to the 12-hour forecast in the 4DVAR
experiment (Figure 10b), which is higher than the value in the
NO4DVAR. The RMSE (Figure 10c) and bias (Figure 10d)
show that the forecast errors in the 4DVAR experiment are
smaller than the counterpart in the NO4DVAR experiment
before the 15-hour forecast.
[35] The equitable threat score (ETS) is calculated for all

of the experiments to verify against the observations. The
results for the precipitation thresholds of 4 mm are pre-
sented in Figure 10e. Without rainfall assimilation, the ETS

Figure 9. Six-hour accumulated precipitation (mm) at 0600 UTC 11 September 2002 from (a)
observation, (b) NO4DVAR, and (c) 4DVAR and at 1200 UTC 11 September 2002 from (d) observation,
(e) NO4DVAR, and (f) 4DVAR.
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is close to zero from the 6-hour to the 24-hour forecast. The
improvement on the rainfall prediction through 4DVAR
extends beyond the 12-hour forecast. The highest threat
score is obtained in the 12-hour forecast in the 4DVAR
experiment.
[36] From these statistical results (Figures 10a–10e), it is

suggested that assimilation of rainfall produces better short-
range precipitation forecasts. The improvement is mainly

limited to the forecast range of about 15 hours in this case
study.

6. Analyses

[37] In the 4DVAR assimilation experiments, sophisticated
moist physics are used, including the Grell [1993] cumulus
parameterization scheme and Dudhia’s [1993] explicit

Figure 10. Time series of statistical variables for precipitation (a) mean, (b) correlation coefficient, (c)
root-mean-square error (RMSE), (d) bias, and (e) equitable threat score (ETS).
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moisture (cloud and rainwater) scheme in the minimization
process. Because both schemes are suitable for small-scale
convection, the 4DVAR assimilation of rainfall results in
improved rainfall forecasts. How does the assimilation
process improve the rainfall forecast? The model results
from the 4DVAR experiment RAD6H are used to explore
the insight processes.

6.1. Initial Conditions

[38] The 4DVAR system seeks the optimal ICs for
numerical weather forecasts by adjusting the model ICs to
make the prediction match the observed rainfall (hourly)
data during the assimilation window. The MM5 model
dynamics and physics serve as a strong constraint for the
adjusted fields at the initial time (2100 UTC). The differ-
ences between the optimal ICs and original ICs are shown

in Figure 11. It is indicated that assimilation of the hourly
rainfall data results in low level (700 hPa) divergence
(Figure 11a) and upper level (200 hPa) convergence
(Figure 11b) over eastern Tucson, where storms are
observed (Figure 1b). The convergence of moisture flow
at the lower level in the 4DVAR analysis is reduced, and the
overestimated rainfall in the NO4DVAR experiment could
be corrected.

6.2. Moisture Transportation

[39] The perturbation fields of moisture transportation
and divergence at 700 mb are presented in Figure 12. Here,
the perturbation is defined as the difference between the
4DVAR and NO4DVAR values. Because of the hourly
rainfall data assimilation, the perturbation fields show a

Figure 11. Difference of initial field between the 4DVAR
results and original analysis (NO4DVAR): divergence field
(countours, units 10�5/s), moisture transport vector (u � q;
v � q) (units g/kg � m/s) at (a) 700 hPa and (b) 200 hPa.

Figure 12. Difference (4DVAR-NO4DVAR) of diver-
gence field (units 10�5/s), moisture transport vector (u �
q; v � q) (units g/kg � m/s) at 700 hPa at (a) 0000 UTC
and (b) 0300 UTC 6 August 2002.
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couplet structure of low level divergence and upper level
convergence (Figures 11a and 11b). The couplet structure
can reduce atmospheric moisture in the storm active region.
During the forecast afterward, the perturbation center of low
level divergence moves northward, and a convergence
perturbation is built up quickly near Tucson at 0000 UTC
6 August (Figure 12a). The convergence is intensified
during the next 3 hours and moves westward (Figure 12b).
Accompanying the low level convergence perturbation,
there is always a divergence perturbation in the upper level

(not shown). This variation of divergence guides the west-
ward moisture transportation to the area where storms are
observed.

6.3. Vertical Profile of Equivalent Potential
Temperature (Qe)

[40] The vertical profiles of average qe where the storm
took place (111.5�–109�W, 31.5�–33�N) are shown in
Figure 13. After hourly rainfall data assimilation, the
instability layer where the vertical profile of qe decreases

Figure 13. Vertical profile of equivalent potential temperature qe (K) over the region (111.5�–109�W,
31.5�–33�N) for (a) 2100 UTC 5 August, (b) 0000 UTC 6 August, (c) 0300 UTC 6 August, and (d) 0900
UTC 6 August 2002 (thin line indicates 4DVAR; thick line represents NO4DVAR).
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with height is from the surface up to 650 mb, much lower
than that of the NO4DVAR experiment in the original ICs
(Figure 13a). This difference of the qe profile persists for
several hours (Figure 13b). After six hours, the vertical
profiles of qe in 4DVAR and NO4DVAR forecasts become
almost identical (Figures 13c and 13d). A lower instability
layer reduces the convective available potential energy
(CAPE) and produces less rainfall in the convective event.

6.4. Vertical Motion

[41] Vertical motion is closely related to rainfall produc-
tion. To examine the change of the vertical motion after
rainfall assimilation, the wind component on the vertical
cross section that crossed through the rain center at 32�N
from 104�W to 114�W is examined. At the initial time of
the 4DVAR experiment, the upward motion has a maximum
speed of 30 cm/s at 109.5�W (Figure 14a), which is
consistent with the location where storms occurred
(Figure 1d). Three hours later, the upward motion is
intensified: the maximum speed increases to 160 cm/s and
moves westward to around 111�W (Figure 14b). Afterward,
the upward motion continues moving westward, but
becomes slightly weaker (Figure 14c). This is a strong
vertical wind (mean) for an atmosphere column with a 20-
km diameter (the horizontal resolution of the simulations).
Such strong vertical motion is from not only the dynamic
adjustments, but also the release of rainfall latent heat in the
atmospheric column through the rainfall assimilation. Mean-
while, a weak downward motion is found on the eastern side
of the upward motion, which indicates the asymmetric
secondary circulation feature of the convective storms.
[42] The differences of vertical velocity between the

4DVAR and NO4DVAR wind fields are represented in
Figures 14d–14f. Because of the rainfall assimilation, the
initial upward motion is reduced slightly over the region
where the storm began (Figure 14d). Three hours later, the
reduction increases to 100 cm/s over the same area, while an
increase of upward motion appears on the west side of the
reduction column (Figure 14e). The similar pattern persists
for several hours (Figure 14f). This result shows that the
upward motion is modified substantially after the rainfall
assimilation. The evolution of the upward motion matches
well with the observed storm activity in the area.

7. Summary and Discussion

7.1. Summary

[43] Two convective storm events that occurred over the
mountainous southwestern United States on 5–6 August
and 11–12 September 2002 are used for a series of rainfall
assimilation experiments with the full physics mesoscale
data assimilation system MM5-4DVAR. In order to under-
stand the effects of rainfall assimilation on the subsequent
forecasts over the mountainous region, both 3-hour and
6-hour assimilation windows are tested, and different
weightings of rainfall observation error are examined. The
minimization algorithm used in these studies is the limited-
memory quasi-Newton method developed by Liu and
Nocedal [1989]. The NCEP operational Eta analysis pro-
vides the first guess in the minimization procedure. After
obtaining the optimal initial conditions, numerical forecasts

using MM5 version 3.5 are carried out for 24 hours from
the initial time. The results are summarized as follows:
[44] The minimization procedure of the MM5-4DVAR

system works well in the rainstorm event over a mountain-
ous area of the southwestern United States. It indicates that
20 iterations are sufficient for convergence of the 4DVAR
process in rainfall assimilation. However, the specified
errors of the rainfall observation and the length of the
assimilation window have strong influences on the conver-
gence of the minimization procedure.
[45] The effective forecast duration is sensitive to the

length of the window. A 3-hour assimilation window works
well for 6-hour forecasts at 20-km model resolution. When
12-hour or longer forecasts are made, a 6-hour assimilation
window is needed. These results could be found in these
two cases studies.
[46] Rainfall assimilation in the MM5-4DVAR shows the

capability of modifying the initial conditions, and it gen-
erates more realistic moisture divergence, temperature
fields, instability, and vertical motion. Mesoscale weather
forecasts from the optimal initial conditions reproduce the
storm pattern and quantity closer to the observations than
the NO4DVAR results.
[47] The 4DVAR rainfall assimilation is sensitive to the

specified error of the observation data. The quality of
observed rainfall data in assimilation has significant impacts
on the improvement of the initial conditions and therefore
the forecasts.

7.2. Discussion

[48] In this study, the rainfall assimilation using the
MM5-4DVAR system is shown to improve the rainstorm
forecasts of the selected two cases over the mountainous
areas in the southwestern United States. However, because
of the complexity of the parameterization of rainfall pro-
cesses and the lack of knowledge in the estimation of
observational errors, the limitations of rainfall assimilation
should be given more attention.
[49] First of all, parameterization of rainfall processes

plays a significant role in simulating various large-scale
and mesoscale phenomena. They should be correctly incor-
porated into the adjoint model, which involves the ‘‘on-off’’
switches issue [Xu, 1996; Zou, 1997]. The concern in
4DVAR with the moist physics possessing ‘‘on-off’’
switches in the adjoint model is really related to whether
the adjoint technique can provide sufficient information for
minimization-finding descent directions. The switch on-
and-off timing and location of initial precipitation are
important to the final results. The difference between
forecast field and observed field shown in Figure 9 dem-
onstrates that the rainfall forecast is not completely consis-
tent with the observation, even when the rainfall is
assimilated. The on-and-off problem is probably the reason
for the inconsistency. To solve this problem, it is better to
add other moist data to rainfall observations during the
assimilation procedure to reduce the arbitrariness of 4DVAR
in adjusting the initial moisture field. Zou [1997] pointed
out that combining the rainfall observations with wind,
temperature, surface moisture, and PW results in better
rainfall prediction than the one assimilating only the rainfall
observations.
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[50] Second, meteorological observations are not perfect;
that is, observational errors cannot be neglected. Two types
of observational errors are common: random errors and
systematic errors, possibly caused by human or instrument
errors. Even if the observational instruments were in perfect
condition so that there were no systematic errors produced

by the instrumentation, representation would still contribute
systematic observational errors. The rainfall observation
from the WSR-88D radar involves errors from the Doppler
radar instrument to the algorithms of processing. In practice,
the assignment of the observation error is a very compli-
cated issue. In this paper, we tried a range of rainfall

Figure 14. Wind component on the vertical cross section at section 32�N in the 4DVAR experiment for
(a) 2100 UTC 5 August, (b) 0000 UTC 6 August, and (c) 0300 UTC 6 August and the difference
(4DVAR-NO4DVAR) of the wind component for (d) 2100 UTC 5 August, (e) 0000 UTC 6 August, and
(f) 0300 UTC 6 August 2002.
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observation errors in our assimilation experiments and
obtained an idea of how large the error should be. Statistical
estimation should be done and discussed in future work.
[51] Finally, this conclusion is just from these two cases

studies. There is still a great deal of work to be done to
improve rainfall data assimilation, although these results in
these two cases could be demonstrated to be consistent.
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