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ABSTRACT
Primordial black holesmay encode the conditions of the early universe, andmay even constitute
a significant fraction of cosmological dark matter. Their existence has yet to be established.
However, black holes with masses below ∼ 1 M� cannot form as an endpoint of stellar
evolution, so the detection of even one such object would be a smoking gun for new physics,
and would constitute evidence that at least a fraction of the dark matter consists of primordial
black holes. Gravitational wave detectors are capable of making a definitive discovery of this
kind by detecting mergers of light black holes. But since the merger rate depends strongly on
the shape of the black hole mass function, it is difficult to determine the potential for discovery
or constraint as a function of the overall abundance of black holes. Here, we directly maximize
and minimize the merger rate to connect observational results to the actual abundance of
observable objects. We show that LIGO can discover mergers of light primordial black holes
within the next decade even if such black holes constitute only a very small fraction of dark
matter. A single merger event involving such an object would (i) provide conclusive evidence
of new physics, (ii) establish the nature of some fraction of dark matter, and (iii) probe
cosmological history at scales far beyond those observable today.

Key words: black hole mergers — gravitational waves — dark matter — methods: analytical
— methods: numerical

1 INTRODUCTION

The detection of black hole binaries with LIGO (Abbott et al.
2016b,d, 2017b,c,g, 2019a, 2020b,a) has heralded a new era in
probing the nature and behavior of compact objects in our uni-
verse. In the past several years, gravitational wave detectors have
directly confirmed the existence of black holes (Abbott et al. 2016a),
provided powerful tests of general relativity (Abbott et al. 2016c),
and ushered in the era of multi-messenger astronomy (Abbott et al.
2017e,f). But as gravitational wave observatories continue to probe
the black hole population, they are poised to make yet another
significant discovery: mergers may provide direct evidence for the
existence of primordial black holes.

Primordial black holes (PBH) may form in the early universe
without stellar progenitors, and they have been intensely studied as
potential probes of cosmology and high-energy physics (see e.g.
Carr 2003; Khlopov 2010; Calmet et al. 2014). In the simplest sce-
nario, PBH are formed by the gravitational collapse of large density
perturbations on small scales (Zel’dovich & Novikov 1967; Hawk-
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ing 1971). Other formation channels, such as gravitational collapse
in a dark sector (Shandera et al. 2018), or the collapse of another
compact object due to new physics (see e.g. de Lavallaz & Fairbairn
2010), can also result in observable black holes of non-stellar origin.
Since the interactions of massive PBH are dominated by gravitation,
and since a collection of black holes is fluid-like on sufficiently large
scales, PBH are a natural candidate for cosmological dark matter,
a possibility that was recognized shortly after their existence was
postulated (Chapline 1975).

In the decades since, the PBH population has been constrained
by various astrophysical and cosmological means, but never fully
ruled out as a dark matter candidate (Carr et al. 2010, 2016;
Lehmann et al. 2018; Carr et al. 2020; Carr & Kuhnel 2020). Soon
after the first observation of a binary black hole merger, Bird et al.
(2016) and Sasaki et al. (2016) pointed out that the merger rate im-
plied byLIGO’s discovery is potentially consistentwith a population
of PBH accounting for all of dark matter, advancing the possibil-
ity that the two black holes involved had a primordial origin—and,
indeed, that LIGO had detected dark matter.

Regardless of the relation to cosmological darkmatter, the con-
firmation of a primordial origin for any black hole would carry great
implications. Such a populationmight probe primordial fluctuations
at scales well beyond the reach of other experiments, providing a
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unique window into early cosmology, and an unprecedented test of
physics at extremely high energies. The primordial-origin scenario
for the black holes observed at LIGO has thus been discussed heav-
ily in the literature. Several authors have proposed that stellar- and
primordial-origin models might be distinguished statistically in the
coming years by the distributions of binary masses, spins, and ec-
centricities (see e.g. Cholis et al. 2016; Fernandez & Profumo 2019;
De Luca et al. 2020a,b; Dolgov et al. 2020). However, an extensive
literature shows that the binaries observed to date are compatible
with a stellar origin (Belczynski et al. 2010, 2020), and efforts to
attribute any future discrepancies to a primordial originwill be com-
plicated by uncertainties in stellar evolution models (see e.g. Gerosa
& Berti 2017; Farr et al. 2018). Thus, even in the most optimistic
case, it will be difficult to positively establish a non-stellar origin
for the LIGO black holes, especially if such a history applies only
to a subcomponent of the merging population.

But there is one clean signal which could clearly indicate
the primordial origin of a specific black hole: a low mass. Stellar
evolution models predict that black holes form only when a star’s
mass is sufficient for the gravitational force to overcome degeneracy
pressure. Thus, black holes with a stellar origin must have a mass
no lower than the Chandrasekhar limit of 1.4 M� (Chandrasekhar
1931). A black hole with a mass below ∼ 1 M� must have a non-
stellar origin, and the detection of even one such object would be
a clear smoking gun of new physics, as was already pointed out by
Chapline (1975). In principle, LIGO may be sensitive to mergers of
black holes well below this scale, so LIGO and other gravitational
wave observatories are uniquely capable of directly establishing the
existence of primordial black holes.

Indeed, some gravitational wave detections have already come
tantalizingly close to furnishing such a discovery. The latest hint
comes from the recently-announced GW190814 (Abbott et al.
2020c), apparently involving a compact object at 2.6 M� , in what
was expected to be a mass gap in the population of neutron stars
and stellar-origin black holes (Bailyn et al. 1998; Ozel et al. 2010;
Farr et al. 2011; Ozel et al. 2012). Additionally, the nature of the
compact objects involved in GW170817 (Abbott et al. 2017d) is un-
certain: while the identification of an associated kilonova (Soares-
Santos et al. 2017) strongly indicates that one of the merging ob-
jects was a neutron star, the second compact object might also be a
light O(1 M�) black hole, with likelihood as large as 40% (see e.g.
Coughlin & Dietrich 2019).

Given the potential for discovery, the LIGO Collaboration has
conducted initial searches for mergers of light PBH (Abbott et al.
2005, 2019b), with null results thus far. But interpreting these null
results as constraints on the PBH population requires a model to
connect the abundance and mass distribution of PBH to the rate of
observed mergers. Theoretical uncertainties in the merger rate com-
plicate such an analysis, with notable recent progress by Vaskonen
& Veermäe (2020). Even so, most previous work has assumed that
the PBH mass function is monochromatic, i.e., that all PBH have
a single mass. This greatly simplifies the problem, but is likely un-
realistic: in most formation models, PBH have an extended mass
distribution with a lognormal or power-law shape (Carr et al. 2016).
In some scenarios, the mass distribution can even be multimodal
(Carr & Kuhnel 2019).

A bias-free interpretation of LIGO results requires that we
allow for some freedom in the shape of the mass function. This mo-
tivates the approach taken by Chen & Huang (2019), who analyze
prospects for the detection of light black holes under the assump-
tion that the mergers observed thus far have a primordial origin.
To further complicate matters, the mass distribution is subject to

various observational constraints across the mass spectrum, which
impose additional restrictions on the space of mass functions. The
uncertainty in the merger rate arising from the shape of the mass
function means that it is difficult to describe prospects for either
constraints on or discovery of a PBH population at gravitational
wave observatories in a model-independent fashion.

In this work, we use numerical methods to translate null
searches at gravitational wave observatories into constraints on the
properties of the PBH population and discovery prospects for light
black holes. In particular, we show that if only a small fraction of
the PBH population lies in the mass window of interest, then free-
dom in the mass function translates to a significant gap between
the constraint potential and the discovery potential, corresponding
to the most pessimistic and optimistic calculations of the merger
rate, respectively. We show that LIGO can establish the existence
of primordial black holes even if the abundance of such objects in
the mass range of interest is far below the level of the prospective
constraint. Our results provide the first model-independent gravita-
tional wave constraints on the light black hole population, and show
that there is considerable opportunity for their discovery at LIGO.

This paper is organized as follows. In section 2, we review the
calculation of the merger rate and establish analytical expectations
for the shapes of mass functions which maximize and minimize the
merger rate. In section 3, we introduce our numerical procedure and
detail the inclusion of other observational constraints. We present
our numerical results in section 4, and we discuss the implications
and conclude in section 5.

Notationally, we will say that a black hole is “light” if it has a
mass below 1 M� , and we will say that a black hole is “detectable”
if it has a mass large enough to be observable by LIGO, a condition
we will detail in subsequent sections. We will refer to light black
holes as “primordial”, although, as we have mentioned, there are
other new physics scenarios which may also result in the formation
of observable black holes without stellar progenitors. Our interest
is in light black holes which are “detectable and primordial”, which
we will abbreviate as “DPBH”. We will say that such black holes
lie in the “DP” mass range.

2 THE MERGER RATE OF DPBH

To establish the most optimistic discovery prospects, and the most
pessimistic constraint potential, it is necessary to consider, respec-
tively, the maximum and minimum merger rates that can be pro-
duced with a fixed abundance of PBH. We will perform this opti-
mization numerically in the following sections, but first, we discuss
the calculation of the merger rate and explore a few benchmark
cases analytically.

The merger rate of primordial black holes has been studied by
many authors (Bird et al. 2016; Mandic et al. 2016; Sasaki et al.
2016; Clesse & García-Bellido 2017; Raidal et al. 2017; Chen &
Huang 2018; Vaskonen & Veermäe 2020), and while predictions of
the rate are still subject to some uncertainties, the theoretical formal-
ism has improved considerably in recent years. In particular, Raidal
et al. (2017) and Chen & Huang (2018) have studied the merger
rate for extended mass functions, and established predictions for the
merger rate as a function of the component masses. The formation
of merging primordial black hole binaries is quite different from the
stellar case, so we will shortly review the derivation of the merger
rate and the attendant physics.

Throughout the following sections, we will denote the mass
function by ψ. Denoting the PBH number density for masses up to

MNRAS 000, 1–13 (2020)
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m by n(m), the mass function is defined by ψ(m) ∝ m dn/dm with
the normalization condition∫

dmψ(m) = ΩPBH
ΩDM

≡ fPBH. (1)

2.1 The detectable mass range

A key component of estimating the DPBH merger rate is defin-
ing exactly what is meant by detectability. In previous studies of
DPBH mergers, a threshold is generally set at a mass of order
∼ 0.1 M� , and mergers of black holes below the threshold mass are
assumed to be undetectable. We must do the same in this work, for
reasons we will explain shortly. For the moment, note that this is
a reasonable approximation, especially because gravitational wave
detectors trigger on the basis of a bank of template waveforms.
Thus, even if LIGO is potentially sensitive to mergers of lighter
objects, a detection will not be made if no matching template has
been computed. In typical operation, LIGO uses no templates with
combined binary masses below 2 M� (Magee et al. 2018), and even
past searches for light black hole mergers have used a minimum
template mass of 0.4 M� (Abbott et al. 2005, 2019b).

Neglecting templates, LIGO is potentially sensitive to mergers
of very light black holes, with one important caveat: the lighter the
binary, the closer it must be in order for the merger to be detectable.
Thus, LIGO probes a different effective volume Veff(m1,m2) for
each pair of component masses (m1,m2). Given a particular mass
function ψ, the total DPBH merger rate RDP must then be written
in the form

RDP(ψ) =
∫

DP2
dm1 dm2 R(m1,m2)Veff(m1,m2), (2)

where R(m1,m2) is the differential merger rate per unit volume
for binaries with component masses (m1,m2), and

∫
DP2 denotes

an integral only over pairs of masses in the DP regime. We make
the simplifying approximation that the sensitive volume depends
only on the chirp mass of the binary, Mc , and not on the individ-
ual component masses, so that Veff(m1,m2) = Veff(Mc(m1,m2)).
This approximation has been explicitly validated by Abbott et al.
(2019b).We take the sensitive volume at fixed Mc fromMagee et al.
(2018). As noted in that work, there are potentially significant com-
putational costs to give LIGO sensitivity to very low-mass binaries.
Still, we optimistically adopt the largest possible sensitive volume
derived therein. Note that we neglect any impact of binary spin on
detectability.

We still need to define the domain of the integral in eq. (2). To
meaningfully probe the abundance of light PBH, we will ultimately
be interested in speaking of the abundance in a narrow mass range,
neither too massive to be clearly primordial, nor too light to be typ-
ically detectable, but just right (see e.g. Hassall 1904). To that end,
we will define two thresholds mmin

DP and mmax
DP . For single masses,

we will say m ∈ DP if mmin
DP ≤ m ≤ mmax

DP . For pairs of masses, we
will say that (m1,m2) ∈ DP2 if mmin

DP ≤ min{m1,m2} ≤ mmax
DP , i.e.,

if

(i) both m1 and m2 are above mmin
DP , and

(ii) at least one of m1 and m2 is below mmax
DP .

We will fix mmax
DP = 1 M� and mmin

DP = 0.1 M� throughout
our analysis. We have investigated the consequences of choosing
mmin

DP = 0.01 M� , and found that there is very little impact on the
qualitative outcomes of our analysis: while choosing a lower thresh-
old threshold extends the opportunity for discovery if PBHonly exist

at lower masses, extant gravitational wave detectors are relatively
poorly suited to probe such a population.

In order to meaningfully discuss constraints on the DPBH pop-
ulation, we define the DP ratio by

rDP =
1

fPBH

∫ mmax
DP

mmin
DP

dmψ(m). (3)

This is the mass fraction of PBH with masses between mmin
DP and

mmax
DP . Note the use of r (“ratio”) rather than f to avoid confusion

with ΩDP/ΩDM, as with fPBH. We instead define fDP ≡ rDP fPBH.
Ultimately, we will evaluate maximum and minimum merger

rates as a function of both fPBH and rDP simultaneously. This is a
convenient parametrization for discussing constraints on the mass
function, since despite the very simple form of the two parameters,
they encode key information about the abundance of PBH in general
and the abundance of light black holes in particular. This is also one
of the reasons for imposing a strict cutoff at low masses: one might
contend that lighter black holes, with masses below our mmin

DP , are
also detectable, albeit in a smaller volume. This may indeed be the
case, but including such mergers would make the parametrization
discussed here difficult to interpret in relation to the merger rate:
black holes just below mmin

DP would contribute to the DPmerger rate,
but not to rDP.

We note that LIGO is not equipped with templates for our
entire DP window during its regular operation, and a search with
black hole masses below 0.2 M� has not been conducted to date.
Moreover, previous searches have targeted mergers between two
light black holes, with templates only below 4 M� in total binary
mass. Thus, the constraints we draw in this work are prospective,
assuming that an extended search is conducted on archival or future
data. As we will show, such searches are well-motivated both for
pairs of light black holes and for mergers of light black holes with
heavy partners. There is ample opportunity to discover primordial
black holes even at abundances that cannot be fully constrained.

2.2 Estimating the merger rate

We now review the derivation of the merger rate in Raidal et al.
(2017) and Chen & Huang (2018). First, we note that PBH binaries
can form in two epochs: in the early universe, during radiation
domination, and in the late universe, where close approaches can
produce enough gravitational radiation to bind two black holes. The
latter contribution is generally small, since typical relative velocities
are large, meaning that the energy loss to gravitational radiation
must be quite significant. There is a possible exception to this rule
if the density contrast in the late universe is exceptionally large,
δ0 & 1010, but this is much larger thanmost estimates, so we neglect
that possibility. Thus, we consider only binaries formed in the early
universe. Note that our calculation may not accurately describe new
physics scenarios in which light black holes themselves form in the
late universe.

We first review the merger rate as estimated by Raidal et al.
(2017). Consider a PBH pair with masses m1 and m2. First, in order
for the pair to decouple from the Hubble flow and have interactions
dominated by their mutual gravitation, the average mass of the black
holes should exceed the background mass in the volume between
them, i.e., we require 1

2 (m1 +m2) > 4π
3 ρbgr3. Translating this into

a condition on the separation of the two black holes, one finds that
the comoving distance between them must fall below the scale

x̃(m1,m2)3 =
3

4π
m1 + m2

a3
eqρeq

, (4)

MNRAS 000, 1–13 (2020)
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where aeq and ρeq are the scale factor and density atmatter-radiation
equality. A binary with comoving separation x < x̃ thus decouples
from the Hubble flow when the scale factor is

adc = aeq
( x

x̃

)3
. (5)

After this point, the black holes’ gravity dominates the evolution
of the system. Barring a close approach, gravitational interactions
between these two black holes and some third body of comparable
mass are necessary to move the pair into a bound configuration.
Thus,we suppose that there is third PBHwithmassm3 at a comoving
distance y from the first two. In this scenario, we form a binary with
semi-major and semi-minor axes given by

ra = αxadc, rb = β
2m3

m1 + m2

(
x
y

)3
ra, (6)

for twoO(1) constantsα and β.We takeα = β = 1 for the remainder
of this discussion. Assuming that there is no mechanism for hard-
ening the binary apart from gravitational radiation, the coalescence
time can then be estimated as

τ̃(m1,m2,m3)
(

x
x̃(m1,m2)

)37 (
y

x̃(m1,m2)

)−21
, (7)

where τ̃ is the maximal coalescence time, given by

τ̃(m1,m2,m3) =
348
85

α4β7a4
eqm7

3 x̃(m1,m2)4

G3m1m2(m1 + m2)8
. (8)

Herewe have established the coalescence time for a single binary as-
suming a set of masses and initial separations. Distributions of these
parameters can be derived from themass function, leading to a distri-
bution of coalescence times as a function of the component masses.
Differentiating this distribution at the present time leads to the cur-
rent merger rate. For brevity, we define m̃(ψ) = 1/

∫
dmψ(m)/m.

The number density of PBH at the mass of interest is accounted
for through the factor Ñ(ψ; m1,m2) = δdcΩDM,eq(m1 +m2)/m̃(ψ),
where δdc is the density contrast at the time of decoupling. We then
define

G(ψ; m1,m2,m3) = Γ
(

58
37
,

Ñ(ψ; m1,m2) t3/16

τ̃(m1,m2,m3)3/16

)
− Γ

(
58
37
,

Ñ(ψ; m1,m2) t−1/7

τ̃(m1,m2,m3)−1/7

)
, (9)

and the present-day differential merger rate between black holes
with masses m1 and m2 is given by

R(m1,m2) =
9m̄(ψ)3Ñ(ψ; m1,m2)

53
37

296πδdc x̃(m1,m2)3t34/37

× ψ(m1)ψ(m2)
m1m2

∫
dm3
G(ψ; m1,m2,m3)
τ̃(m1,m2,m3)3/37

ψ(m3)
m3

. (10)

Notably, this estimate of the merger rate considers only the
tidal torque due to one additional PBH external to the binary. This
may present a problem when dealing with mass functions that span
many decades, for which lighter black holes have relatively high
number densities. Chen & Huang (2018) follow a similar line of
argument, but the authors estimate the torque by integrating over
the entire PBH population. It might be expected that this form of
the merger rate is more reliable for extremely broad or multimodal
mass functions, which we may well encounter in the course of
our analysis. Thus, we use their merger rate in the course of our

calculation, and we now briefly summarize their result. We define

µ =
2m1m2 (ψ(m1) + ψ(m2))

(m1 + m2)
(
m1ψ(m1) + m2ψ(m2)

) (11)

and nT = ρcΩDM,eq
∫

dmψ(m)/m, where the lower limit of inte-
gration is min{m1,m2}. We additionally take 〈x〉 to be the average
separation between black holes of mass m1 and m2, and define γX
by

γX =
©«

85
3

tm1m2(m1 + m2)
(
ψ(m1) + ψ(m2)

)4

10−4
(

3
8π

m1+m2
ρeq(ψ(m1)+ψ(m2)

)4/3
X16/3

ª®®®¬
1/7

× 2(ψ(m1) + ψ(m2))ΩM
ΩDMX

. (12)

Then the probability distribution for the coalescence time is given
by

dP
dt
=

1
7µt

∫
dX exp

(
− X
µ

4π
3
〈x〉3nT

)
γ2
X(

1 + γ2
X

)3/2 , (13)

and the present-day merger rate per unit volume is given differen-
tially in the component masses by

R (m1,m2) = ρcΩM min
(
ψ(m1)

m1
,
ψ(m2)

m2

)
dP
dt
. (14)

We note that predicting the PBH merger rate from first prin-
ciples is extremely challenging, and it is likely that these estimates
will be refined in the coming years. In particular, Jedamzik (2020)
recently showed that the inclusion of all three-body encounters in
PBH clusters can dramatically reduce the merger rate in the late
universe. We will return to this possibility in section 5.

2.3 Analytical behavior of the merger rate

To establish constraint and discovery prospects, we will need to
minimize and maximize the merger rate over the possible mass
function shapes with some characteristic abundances held fixed. In
particular, we will optimize the merger rate with rDP and fPBH held
constant. For fixed fPBH, if the maximum merger rate falls below
the LIGO sensitivity for a given value of rDP, this means that values
of rDP this low cannot be probed by LIGO, regardless of the form
of the mass function. Alternately, if the minimum merger rate is
detectable by LIGO, then this and higher values of rDP can be ruled
out by LIGO.

In general, the merger rate must be maximized or minimized
numerically. However, to understand the dependence of the merger
rate on the shape of the mass function, it is useful to consider a
few simple benchmark cases in the absence of any observational
constraints. For the moment, we neglect the mass dependence of
the detector’s sensitive volume.

First, consider a monochromatic mass function, ψ(m) =
f1δ(m − m1). Formally, the quantities entering eq. (14) are not
independently well-defined in this case, but we can take a mass
function of the form

ψ1(m) = f1∆
−1
Θ(m − m1)Θ(m1 + ∆ − m) (15)

and work in the limit ∆→ 0. In this case, the total DP rate is simply
the overall rate, as long as m1 lies within the DP window. If m1 is
sufficiently small, the integrand of eq. (13) is dominated by values
of X where the exponential is very nearly 1. As pointed out by Chen
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Figure 1. Merger rate for a dichromatic mass function, ψ(m) = f1δ(m −
m1) + f2δ(m − m2), relative to the monochromatic mass function ( f1 +
f2)δ(m −m1). We fix m1 = 10−1/2M� , indicated by the black vertical line.
This lies in the middle of the DP window, indicated by the shaded region.
Dashed curves show themerger rate for pairs of allmasses, while solid curves
include only mergers in DP2. The blue curve shows the case f2 = 10 f1, i.e.,
where mergers of black holes of mass m2 naively dominate. The orange
curve shows the case f2 = 0.1 f1, where the reverse is true. Depending on
the relative amplitudes and positions of the two peaks, separating them can
either enhance or suppress the merger rate (see text).
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Figure 2. Relative merger rate as σ is increased for a lognormal mass
function with two different central masses. Dashed lines include all mergers,
while solid lines include only DP2 mergers. Curves are normalized relative
to the all-inclusive merger rate at the lowest value ofσ, i.e., the dashed lines
are fixed to 1 at the left edge of the figure. For much of the range ofσ shown
here, a large fraction of mergers lie in DP2, so the solid and dashed lines lie
very close. They begin to diverge at large σ in both subplots, since much
of the mass lies outside the DP window in this case. For the blue curve, the
central mass lies outside the DP window, so the DP merger rate vanishes at
small σ. In the limit σ → 0, the lognormal mass function reduces to the
monochromatic case.

& Huang (2018), the integral can then be evaluated approximately,
which gives a rate R ∝ m−32/37

1 . A similar result can be derived for
large m1 by splitting the X integral into two regimes, one in which
the constant term in the denominator is dominant, and one in which
it is subdominant. The integral can be evaluated analytically in each

of the two regimes, and it can then be shown that R ∝ m−26/21
1 at

large m1.
In particular, for a monochromatic mass function, decreasing

m1 increases the merger rate. Physically, this is simply because
decreasing m1 while holding f1 constant increases the number den-
sity of black holes. In the absence of observational constraints, we
therefore expect that the merger rate will be maximized when the
mass function is peaked near the bottom of the DP window, and
minimized when it is peaked near the top.

This is the simplest way in which the mass function can in-
fluence the merger rate. However, monochromatic mass functions
are tightly constrained by observational bounds, so it is useful to
understand the behavior of the merger rate for mass functions with
non-negligible width. We first consider the simplest extension of
the previous case: a bimodal mass function constructed as the sum
of two monochromatic mass functions. We define

ψ2(m) = f1δ(m − m1) + f2δ(m − m2), (16)

where the Dirac delta is understood to be defined as in eq. (15).
For such a “dichromatic” mass function, there are three contri-

butions to the merger rate, corresponding to mergers of black holes
with masses {m1,m1}, {m2,m2}, and {m1,m2}. This gives rise to
complicated behavior as the peaks are separated. Two benchmark
cases are shown in fig. 1, with one peak fixed in the middle of the
DP range and the other varying freely. In each panel, the merger rate
is enhanced if the second peak is positioned at a lowmass within the
DP window, due to the enhanced number density. The DP merger
rate (solid line) drops sharply as the mass of the second peak falls
below the DP window, while the all-inclusive merger rate (dotted
line) continues to increase.

Notice that as the second peak rises above the DP window,
the drop in the DP merger rate is much less significant. This is
because the presence of these more massive black holes still affects
the DP merger rate in two ways: first, more massive black holes can
still participate in the formation of light PBH binaries, and second,
mergers of binaries with masses {m1,m2} themselves contribute to
the DP merger rate. These effects lead to non-trivial behavior of
the dichromatic merger rate as a function of the two masses. For
our purposes, we note that separating peaks in a dichromatic mass
function can either increase or decrease the merger rate.

Finally, we consider a lognormal mass function, which is uni-
modal, but has a non-vanishing width. The lognormal mass function
has the form

ψL(m) =
fPBH√
2πσm

exp

(
−1

2

[
log (m/m0)

σ

]2
)
, (17)

where m0 corresponds to the central mass and σ is the width of
the distribution. Holding σ fixed, the merger rate is increased by
reducing m0, as in the monochromatic case. If m0 is fixed, and σ
is varied, then the merger rate is enhanced by increasing σ, i.e.,
broadening a sharp distribution locally increases the merger rate.
This behavior is shown in fig. 2.

These benchmark scenarios indicate that a fairly broad mass
function favoring lower masses will generally produce a higher
merger rate, but in general, observational constraints will impose
severe restrictions on the allowed shape of the mass function. Thus,
the mass function which minimizes or maximizes the merger rate
might indeed be a complicated multimodal function. In particu-
lar, the analysis of Lehmann et al. (2018) demonstrates that the
maximum value of fPBH consistent with observational constraints
is attained by a multimodal mass function, corresponding to a su-
perposition of monochromatic mass functions. Thus, it would not
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be surprising to find a similar behavior for mass functions which
maximize the merger rate, particularly if fPBH is fixed at a value
where observational bounds strongly constrain the mass function.
The benchmark scenarios in this section suggest that the merger rate
will be minimized with sharply peaked and potentially multimodal
mass functions.

To go further and to incorporate observational constraints will
require numerical methods, which we take up in the following sec-
tions. Again, note that the discussion above has not accounted for
any characteristics of the detector. In particular, we have neglected
themass dependence in the effective volume that an instrument such
as LIGO can probe. Mergers of more massive black holes are ob-
servable in a larger effective volume, and this enhances the effective
merger rate at higher PBHmasses, competingwith the enhancement
in number density at lower masses. We will include this effect in
our numerical treatment.

3 CONSTRAINTS AND OPTIMIZATION

In this section, we detail the numerical procedure that we use to
optimize the merger rate. First, we discuss the constraints that we
impose on the black hole mass function.

Since the allowed values of the merger rate depend on the al-
lowed forms of the PBH mass function, observational constraints
which restrict the form of the mass function correspondingly re-
strict the merger rate. Thus, the minimum or maximum merger rate
is dependent not only on fPBH and rDP, but also on the chosen set of
observational constraints. The full set of observational constraints
we use in this work is shown in figs. 4 and 5, with descriptions in the
captions. We demonstrate the behavior of the maximum and min-
imum merger rates both with and without the constraints imposed
on the mass function by these observational bounds.

Note that there are many other observables that may place
constraints on the PBH population, such as supernova lensing
(Zumalacarregui & Seljak 2018), dynamical effects (Monroy-
Rodríguez &Allen 2014; Brandt 2016; Koushiappas & Loeb 2017),
and destruction of white dwarf stars (Graham et al. 2015) and neu-
tron stars (Capela et al. 2013). (See Carr et al. (2016, 2020); Carr &
Kuhnel (2020) for reviews.) These constraints are subject to addi-
tional uncertainties, and including them does not change our qualita-
tive conclusions. The qualitatively important features are the relative
strength of the constraints at masses above and below the DP win-
dow, and the fact that there is a gap in the constraints at low masses.
The latter allows for large values of fPBH when rDP is small. This
gap has attracted considerable attention since lensing constraints at
low masses were shown to be ineffective (Inomata et al. 2018; Katz
et al. 2018; Montero-Camacho et al. 2019; Sugiyama et al. 2020;
Smyth et al. 2020), and it is possible that new constraints developed
in this region will influence our results.

We introduce one important observable beyond the constraints
plotted in figs. 4 and 5: the stochastic gravitational wave background
(SGWB, Abbott et al. 2009, 2017a). A population of black holes
merging over cosmic time produces an accumulated background
of gravitational radiation that can be detected by LIGO. Since the
SGWB depends in detail on the shape of the mass function, it
must be treated differently from the other constraints. However, it is
essential that we include this constraint, since it has been shown that
merging DPBH in particular can make a significant contribution to
the SGWB (see e.g. Wang et al. 2019). Further, when we maximize
the merger rate, we also maximize the contribution to the SGWB,

so our optimal mass functions might run afoul of SGWB constraints
at PBH abundances well below those excluded in other analyses.

3.1 Applying constraints to the mass function

In order to translate gravitational wave observables to discovery
prospects and constraints on the population of DP black holes, we
must alternately minimize and maximize the merger rate subject to
particular constraints. This is similar to the problem of maximizing
the overall abundance of black holes subject to observational con-
straints, as discussed by Lehmann et al. (2018). In that reference,
the general form of the optimal mass function is derived analyti-
cally, and it is shown that the exact global optimum can be found
semi-analytically with arbitrary precision. Since we will use some
of the same methods and terminology, we briefly review this result.
However, as we will explain, this formalism cannot be adapted to
optimize the merger rate semi-analytically.

We treat observational constraints on the black hole population
following Carr et al. (2017). In general, observational constraints on
the black hole population are derived from some measured quantity
Aobs. The value of Aobs is predicted to be A0 in the absence of any
primordial black holes, whereas in the presence of PBH, one has
Aobs = A0+ A1. For most observables, black holes at different mass
scales contribute independently, so we can write

A1 =

∫
dmψ(m)K1(m) (18)

for some kernel K1(m). Provided that the constraining observable
has this form, the constraint condition can be written in the form
C(ψ) ≤ 1, where C(ψ) is the functional

C(ψ) ≡
∫

dm
ψ(m)

fmax(m)
. (19)

Here fmax(m) is the maximum allowed fraction of dark matter in the
form of PBH assuming a monochromatic mass function at mass m.
For the case of N independent constraints fmax, j (m), corresponding
to a vector Cj (ψ), this generalizes to ®C(ψ)2 ≡

N∑
j=1

(∫
dm

ψ(m)
fmax, j (m)

)2
≤ 1. (20)

Note, in particular, that ψ(m) > fmax(m) is perfectly admissible for
a subset of masses—i.e., the mass function can cross through the
curves on constraint plots—as long as the condition above is still
met. This is simply because constraint curves, as typically drawn,
are only applicable to monochromatic mass functions.

Since the total density in PBH scales linearly with the normal-
ization of the mass function, any mass function can be normalized
to saturate observational constraints, yielding the normalized mass,
M(ψ) = ‖ ®C(ψ)‖−1 ∫

dmψ(m). Finding the mass function which
maximizes the PBH density subject to observational constraints is
thus equivalent to maximizing the functionalM, which can be done
semi-analytically.

One might hope that a similar method might apply to the opti-
mization of the merger rate. But even if the merger rate functional
were as simple as the normalized mass, it would still not be possi-
ble to apply the preceding formalism. As we have discussed, it is
essential to consider constraints from non-detection of a stochastic
gravitational wave background (SGWB) signal, but this constraint
cannot be cast in the form of eq. (20). We now briefly review the
nature and calculation of the SGWB constraint.

A population of primordial black holes produces a stochastic
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gravitational wave background from mergers at higher redshifts
(Rosado 2011; Regimbau 2011; Zhu et al. 2011; Wang et al. 2018,
2019).While such backgrounds do not furnish a smoking-gun signal
of a primordial origin for a particular black hole, they do constrain
the PBH mass function. A differential merger rate R produces a
stochastic background at frequency ν with density

ΩGW(ν) =
ν

ρc

∫
dz dm1 dm2

R(z; m1,m2)
(1 + z)H(z)

× dEGW
dνs

(νs ; m1,m2), (21)

where ρc is the critical density and dEGW/dνs denotes the spec-
trum of the radiation emitted during a merger, with νs = (1 + z)ν
denoting the frequency at the source. We follow the computation
of the spectrum and the resulting ΩGW(ν) in Zhu et al. (2011)
and Wang et al. (2019). LIGO is most sensitive to the SGWB at
a frequency of νp ∼ 20 Hz, and the sensitivity is sharply peaked
around νp . Thus, we determine whether a mass function is ruled out
by SGWB production by simply comparing ΩGW(νp) with LIGO
constraints at that frequency, translating to the requirement that
ΩGW(νp) . 2 × 10−9 (Wang et al. 2019).

Since the calculation of the SGWB is dependent on the shape
of the entiremass function, this constraint cannot be expressed in the
form of eq. (18). In particular, note that the strength of the constraint
is not linear in the normalization of the mass function, since the
merger rate itself depends on the normalization in a highly non-
linear fashion. There is no simple closed-form rescaling of the mass
function that will saturate SGWB constraints. Practically, this is not
an issue, since the optimal mass functions and the corresponding
constraints on the black hole population must ultimately be derived
numerically rather than analytically. In our numerical procedure, we
can incorporate SGWB constraints on a nearly equal footing with
other observational constraints, as we will explain in the following
section.

3.2 Numerical procedure

We now detail the numerical procedure that we use to optimize
the merger rate. We minimize and maximize the merger rate using
simulated annealing (Kirkpatrick et al. 1983). In simulated anneal-
ing, at each step of the algorithm, a random modification to the
state of the system is generated. Each modification is probabilisti-
cally accepted or rejected, and steps that decrease the cost function
are preferrentially accepted—i.e., simulated annealing is a Monte
Carlo Markov chain (MCMC) optimization algorithm. Simulated
annealing is structurally similar to the Metropolis–Hastings algo-
rithm (Metropolis et al. 1953; Hastings 1970) for drawing samples
from a distribution, but the probability of accepting a given step
changes over time.

Heuristically, simulated annealing is based on an analogy to the
physical process of annealing, in which amaterial is heated and then
cooled slowly to relieve internal stresses.Heating allows thematerial
to return to an equilibrium configuration, and since the cooling is
slow, the material is likely to be in or near its equilibrium state once
frozen. In simulated annealing, the system is first “heated” in the
sense that random steps are accepted with a high probability. Then
the temperature is slowly reduced, so that the system increasingly
disfavors departure from equilibrium. This procedure locates global
optima relatively efficiently: at first, while the system is “hot”, the
algorithm can generate a chain which explores the parameter space
broadly, with little chance of being stuck at a local optimum. As the

system cools, the chain is less likely to depart from a local optimum,
so it tends to locate that optimum more precisely with subsequent
steps.

3.2.1 The annealing algorithm

The simulated annealing procedure is outlined in algorithm 1. The
mass function ψ(m) is binned into a set of values ψi with bin widths
∆mi , so that fPBH =

∑N
i ψi ∆mi .

The number of mass bins, N , must be large enough to allow for
sufficient flexibility in the mass function, but must not be so large as
to make the calculation intractable. The computational cost of the
merger rate calculation scales asymptotically as a power law in N ,
but more importantly, each additional mass bin constitutes an ad-
ditional dimension for the optimization problem. Naively, since the
size of a discretized search space scales exponentially with the num-
ber of dimensions, one expects a similar behavior for the number of
steps to convergence of the optimization algorithm, i.e., nsteps ∼ bN .
If the exponential base b were large, the numerical optimization we
attempt here would be extremely challenging. Pragmatically, since
values of the mass function in adjacent bins are highly correlated, b
is manageably small: in direct numerical experiments, by subdivid-
ing mass bins, we find that b ∼ 1.5. We choose N = 21, dividing
the bins into three regions. We use 13 bins for m < mmin

DP , 5 bins
for mmin

DP < m < mmax
DP , and 3 bins for m > mmax

DP , subdividing each
region into equally-sized logarithmic bins. This makes it feasible
for us to generate the numerical results in this work with O(104)
CPU hours.

The probability of accepting (“jumping” to) the candidate step,
Pjump, is defined by

Pjump =
[
cost(ψ′)/cost(ψ)

]−1/T
, (22)

where cost represents the functional to be minimized, and T is
the “temperature”. In the simplest case, cost is the DP merger rate
(for minimization) or its negative (for maximization). In our case,
where the optimization problem is constrained, it is convenient to
implement these constraints by adding terms to the cost function.
Constraints appear in the cost function with a factor of 1/T so that,
as the temperature drops, constraints becomemore important. Thus,
our cost function is defined by

cost (ψ) = ±RDP(ψ) +
β

T
max{0,P(ψ)}, (23)

where the penalty functional P is defined by

P(ψ) = exp
(
max

{ ®C(ψ), ΩGW/Ωmax
GW

}
− 1

)
− 1, (24)

with ®C(ψ) defined as in eq. (20). We choose β = 103 yr−1 so that
even when the merger rate is at its maximum, the penalty functional
still dominates the cost at the lowest temperatures we consider.

In addition, there are three components of the simulated an-
nealing algorithm which must be implemented in a manner specific
to each application: the selection of the initial point, the generation
of new steps, and the cooling rate (annealing schedule).

To start new chains, we determine the initial mass function
ψ0 by choosing a random value in each mass bin from the log-
uniform distribution on [1, 103]. The resulting mass function is then
rescaled to match the input values of rDP and fPBH. The generation
of new steps is represented by the neighbor function, which mu-
tates the current state of ψ to obtain a candidate ψ′. The behavior
of neighbor is specified in algorithm 2. Schematically, a step is
generated by modifying the value of ψ in a randomly-selected bin
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Algorithm 1 Annealing procedure
1: k ← 0, ψ ← ψ0
2: while k < kmax do
3: ψ′ ← neighbor(ψ) . Generate modification
4: if Pjump(ψ′,T(k)) > random((0, 1)) then
5: ψ ← ψ′ . Accept modification
6: k = k + 1
7: end if
8: end while

Algorithm 2 Neighbor generation
1: procedure neighbor(ψ)
2: ψ′ ← ψ

3: i ← random({1, 2, . . . , Nbins}) . Choose bin
4: ψ′i ← ψi × normal(ψi, σψi/∆mi) .Modify bin
5: I ← ∑

i ψi∆mi . Fix rDP
6: IDP ←

∑
i∈DP ψi∆mi

7: for i ∈ DP do
8: ψ′i ← ψ′i × rDP(I − IDP)/[IDP(1 − rDP)]
9: end for
10: I ← ∑

i ψi∆mi . Fix fPBH
11: for i = 1, . . . , Nbins do
12: ψ′i ← ψ′i × fPBH/I
13: end for
14: return ψ′
15: end procedure

i. The modification is drawn from a normal distribution with mean
ψi and standard deviation σψi/∆mi . Appropriate sections of the
resulting mass function are then rescaled to match the input rDP and
fPBH.

We use a modified exponential cooling schedule, with a lower
limit of T = 1. The temperature at the kth step is thus

T(k) = 1 + (T0 − 1)(1 − α)k, (25)

where we set α = 10−2, and T0 is the initial temperature. In general,
T0 must be chosen empirically to allow the algorithm to explore a
wide parameter space initially. We choose the initial temperature
so that 80% of steps from the initial position which increase the
cost are accepted. Such a temperature is high enough to “melt” the
system, allowing almost any step to proceed, while still being low
enough that steps will be constrained as the temperature is lowered.

To verify convergence, we optimize the mass function five
times, i.e., with five independent chains, at each parameter point.
We evolve each chain for 107 steps. Each of these chains begins
with its own random mass function and with a high temperature, so
convergence to the same optimum merger rate and mass function
provides reassuring evidence that the algorithm is not stochastically
settling into local optima. We find empirically that the merger rate
typically converges across the chains within O(105) steps.

3.2.2 Two-parameter optimization

Our goal is to determine themaximumandminimummerger rates as
a function of the total abundance of PBH, fPBH, and the fraction of
those PBH which lie in the DP mass range, rDP. Thus, in principle,

rDP

f P
B

H

Figure 3. Illustration of the refinement procedure. Orange points represent a
subset of the initial grid. Blue points are those added during the refinement
step. An arrow from an orange point to a blue point denotes that a chain is
initialized at the blue point using the optimal mass function across all chains
previously evaluated at the orange point.

we must perform the optimization described in the previous section
at every point in this parameter space, independently. However, the
optimization process is computationally expensive, so it cannot be
applied directly to a fine grid in (rDP, fPBH). Instead, we use the
simulated annealing algorithm on a coarse grid, and then use an
alternative technique to interpolate between the resulting optima.

First, we note that this interpolation process is not simply
an aesthetic matter. In principle, a small displacement in the
(rDP, fPBH) plane can produce a sharp discontinuity in the shape
of the optimal mass function, leading to discrete regions in which
the optimal mass function evolves very differently with rDP and
fPBH. This is especially difficult to forecast when observational
constraints are included. The situation is analogous to the behavior
of the order parameter in a first-order phase transition: in this case, a
small displacement in temperature discontinuously changes the lo-
cation of the minimum of the free energy. In our case, rather than a
sharp transition between two minima of the free energy, there could
be a sharp transition between two shapes of the mass function. A
naive interpolation of a coarse grid of points risks missing any such
structure.

Therefore, we extend our coarse grid to a finer subgrid using
the following procedure. First, each interval in the grid is halved to
produce a refined grid. The initial mass functions for each new point
on the grid are borrowed from its nearest neighbors: that is, for each
neighbor, we run an independent chain at the new parameter point
starting from the neighbor’s optimal mass function across all of the
neighbor’s chains. One step of the process is illustrated in fig. 3.
Even if there is a transition of the kind described above between
the new point and some of its neighbors, it is still likely that the
optimum at the new point is close in shape to that of at least one
neighbor. Thus, one expects that only mild adjustment of these mass
functions is needed to converge to the optimum at the new point.

Since we assume that at least one of the optimal mass functions
drawn from the neighboring points is close to the global optimum
of the new point, there is no need for the variable temperature of
simulated annealing: we need only locate the nearby optimummore
precisely. We perform this adjustment by producing a chain of 105

steps with the Metropolis–Hastings algorithm, which is structurally
similar to simulated annealing, but with a fixed temperature. We
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perform the entire grid refinement procedure twice to obtain a suf-
ficiently fine grid.

Finally, the optima from all points are “mixed” as follows.
For each point on the refined grid, we generate another set of 105-
step Metropolis–Hastings chains, each with a different initial mass
function. One chain begins with the optimal mass function from
the point itself. Another chain is initialized from the optimal mass
function of each nearest neighbor. The mixing process is performed
four times, so an optimal mass function shape found at any point in
a block between initial grid points can propagate to other points in
the same block.

After the refinement and mixing processes are performed, the
result is a non-trivial interpolation of the initial grid, which forms
the basis for our results in the following sections.

4 RESULTS

We now examine the results of our numerical optimization. First
we show results for individual parameter points, and compare the
shapes of optimal mass functions to our analytical expectations.
Then we show minimal and maximal merger rates with and without
observational constraints.

4.1 Shape of the mass function

To understand the shapes of the mass functions which optimize
the merger rate, we first neglect observational constraints to facili-
tate comparison with the analysis in section 2.3. Figure 4 shows
mass functions which minimize and maximize the merger rate
without regard to observational constraints for the parameter point
(rDP, fPBH) = (0.1, 0.5) (i.e., 50% of DM is in PBH of any mass,
and 10% of the PBH density is accounted for by the DP window).
The two mass functions are mostly distinguished by two features.
First, they have clearly different behavior outside the DP window:
the DP merger rate is enhanced when the remainder of the PBH
are placed at a higher mass, above the top of the window, and it
is reduced when they are placed at lower mass, below the bottom
of the window. Second, as expected from our simplified analysis in
section 2.3, the maximizer is broad within the DP window, while
the minimizer is sharply peaked and multimodal.

Contrary to our naive expectation, themaximizer prefers higher
masses within the DP window, while the minimizer prefers lower
masses. This is because the full numerical calculation accounts for
detectability, and the mergers of heavier black holes are detectable
in a larger volume. This also accounts for the behavior of the mass
function outside theDPwindow. Recall that themergers of DP black
holes with heavier black holes are generally observable, and we
assume that the lighter black hole is identifiably primordial in such
a merger. However, the merger of a DP black hole with a lighter
black hole may not be observable, or may be observable only in
such a small effective volume that our assumptions for calculating
the merger rate are not valid. Thus, if the 90% of PBH which
lie outside the DP window are positioned at higher masses, the
observable merger rate is enhanced.

Having noted the behavior of the optimal mass functions in
the absence of observational constraints, we now turn to the re-
sults of constrained optimization in fig. 5. The general features of
these optima are similar to their unconstrained counterparts, and
observational constraints modify the shapes of the optimal mass
functions in a comprehensible manner. The maximal merger rate

is still obtained with additional PBH positioned above the DP win-
dow, but observational bounds now strictly constrain the position
of this peak. The mass function which minimizes the merger rate
is not subject to strong constraints within the DP window, but the
additional PBH at lower masses must now be repositioned to the
mass range where constraints are weaker.

4.2 Constraints and discovery prospects

Minimum and maximum merger rates with all constraints applied
are shown as a function of rDP and fPBH in figs. 6 and 7. The
minimum merger rate corresponds to LIGO’s constraint potential:
even given complete freedom in the mass function, there is no way
to obtain a lower observable merger rate. The maximum merger
rate corresponds to the discovery potential, i.e., the most optimistic
scenario given any mass function.

The light gray region in the top-right corner of each panel
indicates parameter points where the numerical procedure was un-
able to locate any mass function consistent with constraints. This
is the portion of parameter space which is already ruled out by
other observables, including the stochastic gravitational wave back-
ground (SGWB). The extent of this region can be estimated using
the semi-analytical procedure of Lehmann et al. (2018), which can
give the maximum allowed value of fPBH for fixed rDP if SGWB
is neglected. This bound is the triangular dark gray region. Since
the SGWB depends non-linearly on the mass function, it cannot
be treated within the same semi-analytical framework. Thus, one
expects the light gray region to extend slightly further than the dark
gray region, which is exactly the behavior shown in figs. 6 and 7.

Observe that there is a small gap between the minimum and
maximum merger rates when rDP is near 1. This is simply because
there is very limited freedom in the mass function under these
conditions. On the other hand, when rDP � 1, the minimum and
maximum merger rates are radically different. In particular, while
LIGO can only rule out mass functions with rDP & 0.1, it can
potentially discover PBH with only rDP & 10−4 with O(1 yr) of
data. The effect of observational constraints is evident from fig. 8:
in the absence of constraints, LIGO would potentially be sensitive
to mergers of a subcomponent as small as rDP ∼ 10−6.

4.3 Convergence

For an optimization problem of this kind, which is not generally
convex, there is no reliable test of algorithmic convergence. In prin-
ciple, it is always possible that the loss landscape has not been
fully explored, and that in some corner, there is a point which out-
performs the optima that we have discovered numerically. The best
defense against this issue is to compare the numerical results against
simplified analytical benchmarks, as we have carried out above.

However,we also perform twomore direct tests of convergence.
First, we have verified that we locate the global optimum in a low-
dimensional example, where the features of the loss function can be
analyzed by inspection; and second, we perform a purely numerical
test of convergence by comparing the results of manyMCMCchains
initialized in random configurations. We thus check directly that at
benchmark points, all of our chains converge to the same merger
rate within our fixed step count.

Numerical convergence is also supported qualitatively by com-
parison of nearby parameter points. Since we perform the optimiza-
tion procedure on a grid of points in the (rDP, fPBH) plane, nearest
neighbors in this plane should converge to similar optima. Since the
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Figure 4. Optimal maximizing (top) and minimizing (bottom) mass functions with fPBH = 0.5 and rDP = 0.1 in the absence of observational constraints. Each
mass function is shown as a set of discrete bars with height ΩPBH(mi )/ΩDM ≡ ψ(mi )∆mi , i.e., the height of each bar indicates the total mass in the bin. The
maximum merger rate corresponds to the most optimistic discovery potential, and the minimum merger rate to the most pessimistic constraint potential. The
constraint curves are not used to constrain the mass function, and are shown here only for reference and comparison with fig. 5. The DP window is indicated
by the shaded gray region, and the mass function is colored orange therein. The labeled constraints are from BH evaporation (evap, Carr et al. (2010)), Hyper
Suprime-Cam (HSC, Niikura et al. (2019); Smyth et al. (2020)), Kepler (K, Griest et al. (2014)), OGLE (Ogle, Wyrzykowski et al. (2011)), EROS-II (EROS,
Tisserand et al. (2007)), MACHO (M, Allsman et al. (2001)), and CMB observables (CMB, Ali-Haïmoud & Kamionkowski (2017); Carr et al. (2017)). Other
constraints may also apply, but their inclusion does not influence our qualitative conclusions (see section 3).

contours in figs. 6 and 7 are smooth, one might conclude that this
constitutes evidence of convergence. However, note that in figs. 6
and 7, optima from an initial run have been mixed between param-
eter points, as described in section 3.2.2. In particular, if a global
optimum is discovered at only one point, it will subsequently prop-
agate to the rest of the parameter space, even if chains originally
produced elsewhere located very different optima. Thus, smooth-
ness of the contours is only meaningful before mixing. Since the
initial grid with random priors is relatively sparse, smoothness is
difficult to assess quantitatively. However, we have verified that the
qualitative features of the contours in figs. 6 and 7 are not affected
by the mixing procedure, suggesting that each of the points in the
initial grid is locating nearly the same optimum as that produced af-
ter mixing. Note that the sharp behavior at the top of fig. 7 is entirely
due to observational constraints, and disappears in their absence.

5 DISCUSSION AND CONCLUSIONS

The discovery of primordial black holes would be a tremendous
step forward in our understanding of cosmology. If PBH exist, they
encode information about cosmic history in an epoch that we have
yet to probe observationally. They also provide an empirical test of
physics at extremely high scales and early times. Moreover, despite
all observational constraints, PBH remain a viable and extremely
simple candidate for cosmological dark matter.

Conveniently, any black hole with a mass below ∼ 1 M� can-

not have an astrophysical origin. Gravitational wave observatories
are well-suited to identify black holes and to measure their masses
precisely, so these instruments can detect a smoking-gun signature
of the existence of PBH. Even one detection event involving a light
black hole would provide unambiguous evidence for new physics.
Subsequent exploration of the abundance and distribution of such
black holes would test the possible formation scenarios, and poten-
tially provide a direct handle on physics at very early times.

The problem lies in the interpretation of a null observational
result. In principle, experimental results at LIGO constrain the pop-
ulation of light PBH, and in principle, again, LIGOmay be sensitive
to a very small abundance of such objects. However, both of these
statements have a non-trivial dependence on the shape of the PBH
mass function. Since the merger rate has a complicated non-linear
dependence on the mass function, it is difficult to directly assess the
significance of this uncertainty. In particular, the semi-analytical
analysis of Lehmann et al. (2018) cannot accommodate the merger
rate as a constraint on the PBH abundance.

In this work, we have quantified the uncertainty in the PBH
merger rate that arises from freedom in the mass function, while
accounting for observational constraints that restrict its shape. This
uncertainty is reflected in the gap between the minimum-rate and
maximum-rate contours in fig. 8. While the two bands are not far
apart for rDP ∼ 1, they are significantly different when rDP � 1.
Thus, it is necessary to consider the two contours as reflecting
different notions of experimental sensitivity at LIGO. The minimal
merger rate determines the extent of constraints that LIGO can set, if
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Figure 5. Optimal maximizing (top) and minimizing (bottom) mass functions with fPBH = 0.5 and rDP = 0.1. Each mass function is shown as a set of discrete
bars with height ΩPBH(mi )/ΩDM ≡ ψ(mi )∆mi , i.e., the height of each bar indicates the total mass in the bin. All observational constraints are applied. The
maximum merger rate corresponds to the most optimistic discovery potential, and the minimum merger rate to the most pessimistic constraint potential. The
DP window is indicated by the shaded gray region, and the mass function is colored orange therein. The labeled constraints are from BH evaporation (evap,
Carr et al. (2010)), Hyper Suprime-Cam (HSC, Niikura et al. (2019); Smyth et al. (2020)), Kepler (K, Griest et al. (2014)), OGLE (Ogle, Wyrzykowski et al.
(2011)), EROS-II (EROS, Tisserand et al. (2007)), MACHO (M, Allsman et al. (2001)), and CMB observables (CMB, Ali-Haïmoud & Kamionkowski (2017);
Carr et al. (2017)). Other constraints may also apply, but their inclusion does not influence our qualitative conclusions (see section 3).
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Figure 6. Minimum DP merger rate for mass functions constrained by all
observables, including SGWB. The triangular region at the top-right is ruled
out by non-GWobservables. The light region is ruled out by the combination
of all observables. The solid, dashed, and dotted curves show contours with
an observed DP merger rate of 10 yr−1, 1 yr−1, and 0.1 yr−1, respectively.
The star (?) indicates the point shown in the bottom panel of fig. 5.
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Figure 7. Maximum DP merger rate for mass functions constrained by all
observables, including SGWB. The triangular region at the top-right is ruled
out by non-GWobservables. The light region is ruled out by the combination
of all observables. The solid, dashed, and dotted curves show contours with
an observed DP merger rate of 10 yr−1, 1 yr−1, and 0.1 yr−1, respectively.
The star (?) indicates the point shown in the top panel of fig. 5.
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Figure 8.Contours with DPmerger rate fixed to 1 yr−1 (dashed) and 0.1 yr−1

(dotted), with and without observational constraints. The bottom of each
band shows the sensitivity with complete freedom in the mass function, and
the top shows the sensitivity when observational constraints are included.
Blue curves show the minimummerger rate, corresponding to the constraint
potential.Note that the 10-yearminimumcurveswith andwithout constraints
are essentially identical.

the mass function is allowed to vary freely. Conversely, the maximal
merger rate determines the extent of the parameter space that can
be probed by LIGO in the most optimistic scenario.

Our numerical results indicate that LIGO’s constraint potential
is limited to parameter space with rDP & 0.1, and the prospects for
improving this bound with binary black hole mergers are limited.
On the other hand, LIGO’s discovery potential extends as low as
rDP ∼ 10−4, meaning that even a very small subcomponent of the
PBH population that lies in our DP window can potentially yield a
detection. This also establishes the relevance of constraints provided
by other observables: in the absence of observational constraints,
LIGO would be sensitive to rDP ∼ 10−6. Our results highlight
the importance of evaluating detection prospects for specific PBH
models using the full apparatus of the merger rate for extended mass
functions—a small subcomponent of DPBH cannot be neglected.

Onemight wonder whether the optimal mass functions we con-
sider in this work are realistic. Generally, there is good motivation
to consider only specific forms of the mass function, particularly
monochromatic, lognormal, or power-law shapes. However, most
of the behavior that characterizes our optimal mass functions is
captured by doubly- or triply-peaked mass functions, and note that
a population of PBH with a multimodal mass function can easily
be generated after inflation (Carr & Kuhnel 2019). Thus, while the
exact form of our optimal mass functions might require fine tuning
of initial conditions, approximate forms which retain a high or low
merger rate are much more generic. The non-trivial requirement is
that a peak should fall near the DP window to maximize discovery
prospects. As yet, there is no direct evidence for such placement,
but only circumstantial evidence from the distribution of mergers
observed thus far.

Our results are inherently subject to theoretical uncertainties
in the computation of the merger rate. While the form of the merger
rate employed here reflects the current state of the art, such formulae
are best suited only to computations at the order of magnitude level.
For instance, one potential issue in the rate calculation is the effect

of other black holes in disrupting the formation of a binary. In
our calculation, as discussed by Chen & Huang (2018), we assume
that two black holes of mass mi and mj do not form a binary if
another black hole of mass mk ≥ min{mi,mj } is present in the
volume between them. However, even if this were always the case,
it is also possible that somewhat lighter black holes would have a
similar effect. This would provide a mechanism for suppression of
the merger rate, reducing the discovery potential and weakening the
constraint we draw in this work.

Along similar lines, Jedamzik (2020) recently showed numer-
ically that including all subsequent three-body encounters can sig-
nificantly reduce the merger rate. The suppression described in that
work can be as small as a O(2–20) factor, or as large as a O(103)
factor, depending on the clustering properties of PBH.We thus con-
sider a reduction of our calculated merger rate by at least a factor
of O(10) to be physically well-motivated, and we therefore include
contours with a merger rate of 10 yr−1 in figs. 6 and 7. In this case,
LIGO’s discovery potential is reduced to rDP & 10−3, and constraint
potential is lost completely: the 10 yr−1 contour in fig. 6 is covered
almost entirely by the existing non-merger constraints. Note, how-
ever, that if mergers of binaries formed in the early universe are
suppressed, binaries formed in the late universe may make an im-
portant contribution to the rate, particularly if the density contrast
in the late universe is larger than expected. Ultimately, barring ex-
treme modifications to the merger rate, our qualitative results stand.
In particular, the gap between the maximal and minimal merger
rates is very large at small rDP, and is robust to adjustments in the
calculation of the merger rate. However, further refinement in the
prediction of the merger rate is certainly motivated.

In this work, we have focused on the direct observation of
DP black holes as a smoking gun of the primordial-origin scenario.
In the absence of such a direct signature, the stochastic gravitational
wave background (SGWB) associated with mergers over cosmic
time may provide an additional probe of the PBH abundance. We
do not evaluate SGWB as a discovery mechanism simply because
such a detection would not constitute unambiguous evidence of new
physics. It is possible that features of the SGWB may be connected
to the features of the PBH population with enough precision to em-
pirically test specific models, but since other physical mechanisms
might also contribute to the SGWB, significant additional work
would be required to confirm the existence of a population of PBH.
However, we emphasize that the SGWB is still a sensitive probe of
black holes in the DP window. In particular, mass function shapes
which greatly enhance the merger rate can be ruled out by SGWB
limits. In our framework, while we do not examine the SGWB as
a tool for discovery, we do consistently include this observable as
one of our constraints on the mass function: all of the constrained
optima we consider, including those with maximal merger rates, are
compatible with existing SGWB constraints. Significant improve-
ment of observational bounds on the SGWBmight limit freedom in
the mass function, and might thus limit the discovery potential we
infer in this work.

Our results show that while LIGO has limited power to con-
strain the abundance of light PBH, it nonetheless has significant
discovery potential. The major obstruction to such sensitivity is not
the sensitivity of the LIGO instrument, but the analysis pipeline.
There are significant computational costs to conducting searches
for mergers of light black holes, as discussed extensively by Magee
et al. (2018), and these costs increase further if one searches for
mergers of light black holes with heavier black holes. However,
the freedom in the mass function and the associated uncertainty
in the merger rate provides ample motivation for the refinement of
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methods for such searches, and even for the dedication of additional
computational resources. A single observation of this type would
have immense value, and gravitational wave observatories are in a
unique position to make such a discovery.
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