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LOCAL WELL-POSEDNESS OF SKEW MEAN CURVATURE FLOW FOR
SMALL DATA IN d >4 DIMENSIONS

JIAXT HUANG AND DANIEL TATARU

ABSTRACT. The skew mean curvature flow is an evolution equation for d dimensional ma-
nifolds embedded in R%*2 (or more generally, in a Riemannian manifold). It can be viewed as
a Schrodinger analogue of the mean curvature flow, or alternatively as a quasilinear version
of the Schrodinger Map equation. In this article, we prove small data local well-posedness
in low-regularity Sobolev spaces for the skew mean curvature flow in dimension d > 4.
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1. INTRODUCTION

The skew mean curvature flow (SMCF) is a nonlinear Schrédinger type flow modeling
the evolution of a d dimensional oriented manifold embedded into a fixed oriented d + 2
dimensional manifold. It can be seen as a Schrodinger analogue of the well studied mean
curvature flow. In this article, we consider the small data local well-posedness for the skew
mean curvature flow in high dimensions d > 4, for low regularity initial data.

1.1. The (SMCF) equations. Let ¥¢ be a d-dimensional oriented manifold, and (N2, gx/)
be a d + 2-dimensional oriented Riemannian manifold. Let I = [0,7] be an interval and
F:Ix %% — N be a one parameter family of immersions. This induces a time dependent
Riemannian structure on $¢. For each t € I, we denote the submanifold by ; = F(¢,Y), its
tangent bundle by T7%;, and its normal bundle by N3, respectively. For an arbitrary vector
Z at F we denote by Z+ its orthogonal projection onto N¥;. The mean curvature H(F') of
Y can be identified naturally with a section of the normal bundle N;.

The normal bundle N¥; is a rank two vector bundle with a naturally induced complex
structure J(F') which simply rotates a vector in the normal space by 7/2 positively. Namely,
for any point y = F(t,z) € ¥; and any normal vector v € N,3;, we define J(F) € N,%; as
the unique vector with the same length so that

J(F)vly, w(Fi(e1), Fi(ea), - Fi(eq),v, J(F)v) > 0,

where w is the volume form of A" and {ey,--- , e4} is an oriented basis of ¥¢. The skew mean
curvature flow (SMCF) is defined by the initial value problem

{(@F)l = J(F)H(F),

(L) F(-.0) = R,

which evolves a codimension two submanifold along its binormal direction with a speed given
by its mean curvature.

The (SMCF) was derived both in physics and mathematics. The one-dimensional (SMCF)
in the Euclidean space R? is the well-known vortex filament equation (VFE)

Oy = Osy x O,

where v is a time-dependent space curve, s is its arc-length parameter and x denotes the
cross product in R?. The (VFE) was first discovered by Da Rios [7] in 1906 in the study of
the free motion of a vortex filament.

The (SMCF) also arises in the study of asymptotic dynamics of vortices in the context
of superfluidity and superconductivity. For the Gross-Pitaevskii equation, which models the
wave function associated with a Bose-Einstein condensate, physics evidence indicates that
the vortices would evolve along the (SMCF). An incomplete verification was attempted by
T. Lin [20] for the vortex filaments in three space dimensions. For higher dimensions, Jerrard
[15] proved this conjecture when the initial singular set is a codimension two sphere with
multiplicity one.

The other motivation is that the (SMCF) naturally arises in the study of the hydrody-
namical Euler equation. A singular vortex in a fluid is called a vortex membrane in higher
dimensions if it is supported on a codimension two subset. The law of locally induced motion
of a vortex membrane can be deduced from the FEuler equation by applying the Biot-Savart

formula. Shashikanth [24] first investigated the motion of a vortex membrane in R* and
1



showed that it is governed by the two dimensional (SMCF), while Khesin [19] then general-
ized this conclusion to any dimensional vortex membranes in Euclidean spaces.

From a mathematical standpoint, the (SMCF) equation is a canonical geometric flow for
codimension two submanifolds which can be viewed as the Schrodinger analogue of the well
studied mean curvature flow. In fact, the infinite-dimensional space of codimension two
immersions of a Riemannian manifold admits a generalized Marsden-Weinstein sympletic
structure, and hence the Hamiltonian flow of the volume functional on this space is verified
to be the (SMCF). Haller-Vizman [I3] noted this fact where they studied the nonlinear
Grassmannians. For a detailed mathematical derivation of these equations we refer the
reader to the article [28] Section 2.1].

The study of higher dimensional (SMCF) is still at its infancy compared with its one-
dimensional case. For the 1-d case, we refer the reader to the survey article of Vega [29].
For the higher dimensional case, Song-Sun [28] proved the local existence of (SMCF) with
a smooth, compact oriented surface as the initial data in two dimensions, then Song [27]
generalized this result to compact oriented manifolds for all d > 2 and also proved a corre-
sponding uniqueness result. Song [26] also proved that the Gauss map of a d dimensional
(SMCF) in R%*?2 satisfies a Schrodinger Map type equation but relative to the varying metric.
We remark that in one space dimension this is exactly the classical Schrodinger Map type
equation, provided that one chooses suitable coordinates, i.e. the arclength parametrization.

As written above, the (SMCF) equations are independent of the choice of coordinates in
I x ¥; here we include the time interval I to emphasize that coordinates may be chosen
in a time dependent fashion. The manifold ¢ simply serves to provide a parametrization
for the moving manifold ¥;; it determines the topology of ¥;, but nothing else. Thus, the
(SMCF) system written in the form (ILT]) should be seen as a geometric evolution, with a
large gauge group, namely the group of time dependent changes of coordinates in I x ¥. In
particular, interpreting the equations (ILI]) as a nonlinear Schrédinger equation will require
a good gauge choice. This is further discussed in Section 2

In this article we will restrict ourselves to the case when ¢ = R? ie. where ¥, has a
trivial topology. We will further restrict to the case when A%*? is the Euclidean space R%+2.

Thus, the reader should visualize ¥; as an asymptotically flat codimension two submanifold
of R¥+2,

1.2. Scaling and function spaces. To understand what are the natural thresholds for
local well-posedness, it is interesting to consider the scaling properties of the solutions. As
one might expect, a clean scaling law is obtained when ¢ = R? and N9*2 = R%*2. Then
we have the following

Proposition 1.1 (Scale invariance for (SMCF)). Assume that F' is a solution of (1.1) with
initial data F(0) = Fy. If A > 0 then F(t,z) := X\"'F(N*, A\x) is a solution of (L) with
initial data F(0) = A" Fy(\x).
Proof. Since (9,F)* = Jg** (925 F — T} ;0,F),
f]ag(t,l’) = <aaF’aaBF> = gaﬁ()‘zta )\l’),
and
I7,5(t x) = AT 5(A%t, Ax).
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Then
() =MOF)H(Nt, Ax) = AT g*P (N, Ax)[(025F — T050,F)(N°t, Ax)]
=J§* (025 F — T ,0,F)(t, x).
O

The above scaling would suggest the critical Sobolev space for our moving surfaces ¥; to
be H2+L, However, instead of working directly with the surfaces, it is far more convenient
to track the regularity at the level of the curvature H(X,), which scales at the level of H Ea

1.3. The main result. Our objective in this paper is to establish the local well-posedness of
skew mean curvature flow for small data at low regularity. A key observation is that providing
a rigorous description of fractional Sobolev spaces for functions (tensors) on a rough manifold
is a delicate matter, which a-priori requires both a good choice of coordinates on the manifold
and a good frame on the vector bundle (the normal bundle in our case). This is done in
the next section, where we fix the gauge and write the equation as a quasilinear Schrodinger
evolution in a good gauge. At this point, we content ourselves with a less precise formulation
of the main result:

Theorem 1.2 (Small data local well-posedness). Let s > g, d > 4. Then there exists g > 0
sufficiently small such that, for all initial data ¥y with metric ||0.(go — I)||gs+1 < € and
mean curvature |Ho|| gs(s,) < €0, the skew mean curvature flow (L)) for maps from R? to
the Buclidean space (R2, go) is locally well-posed on the time interval I = [0,1] in a suitable
gauge.

Remark 1.2.1. We remark on the necessity of having a smallness condition on both gy — I
and the mean curvature Hy. The combined efforts of E. De Giorgi [§], F. J. Almgren, Jr.
[1], and J. Simons [25] led to the following theorem (see Theorem 4,2, [4]):

“Ifu : R"! — R is an entire solution to the minimal surface equation and n < 8, then u
1s an affine function.”

However, in 1969 E. Bombieri, De Giorgi, and E. Giusti [3] constructed entire non-affine
solutions to the minimal surface equation in R”. Hence the bound |[Ho||gs(sy) < € on the
mean curvature does not necessarily imply that the sub-manifold is almost flat.

Here we only prove the small data local well-posedness, which means that the initial
submanifold ¥, should be a perturbation of Euclidean plane R?. Hence, the bound on
metric ||0,(g — I)||gs+1 < € is also necessary in our main result, at least in very high
dimension. This condition on metric will insure the existence of global harmonic coordinates
(see Proposition B.T]).

Unlike any of the prior results, which prove only existence and uniqueness for smooth
data, here we consider rough data and provide a full, Hadamard style well-posedness result
based on a more modern, frequency envelope approach and using a paradifferential form for
both the full and the linearized equations. For an overview of these ideas we refer the reader
to the expository paper [14]. While, for technical reasons, this result is limited to dimensions
d > 4, we expect the same strategy to also work in lower dimension; the lower dimensional
case will be considered in forthcoming work.

The favourable gauge mentioned in the theorem, defined in the next section, will have two

components:
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e The harmonic coordinates on the manifolds ;.
e The Coulomb gauge for the orthonormal frame on the normal bundle.

In the next section we reformulate the (SMCF) equations as a quasilinear Schrodinger evo-
lution for a good scalar complex variable v, which is exactly the mean curvature but repre-
sented in the good gauge. There we provide an alternate formulation of the above result, as
a well-posedness result for the 1) equation. In the final section of the paper we close the circle
and show that one can reconstruct the full (SMCF) flow starting from the good variable .

One may compare our gauge choices with the prior work in [28] and [27]. There the
tangential component of 0, F in (1)) is omitted, and the coordinates on the manifold 3J; are
simply those transported from the initial time. The difficulty with such a choice is that the
regularity of the map F'is no longer determined by the regularity of the second fundamental
form, and instead there is a loss of derivatives which may only be avoided if the initial data
is assumed to have extra regularity. This loss is what prevents a complete low regularity
theory in that approach.

Once our problem is rephrased as a nonlinear Schrodinger evolution, one may compare its
study with earlier results on general quasilinear Schrodinger evolutions. This story begins
with the classical work of Kenig-Ponce-Vega [16], 17 [18], where local well-posedness is estab-
lished for more regular and localized data. Lower regularity results in translation invariant
Sobolev spaces were later established by Marzuola-Metcalfe-Tataru [211, 22, 23]. The local
energy decay properties of the Schrédinger equation, as developed earlier in [5] [6] 9, [10] play
a key role in these results. While here we are using some of the ideas in the above papers,
the present problem is both more complex and exhibits additional structure. Because of
this, new ideas and more work are required in order to close the estimates required for both
the full problem and for its linearization.

1.4. An overview of the paper. Our first objective in this article will be to provide a self-
contained formulation of the (SMCF) flow, interpreted as a nonlinear Schrodinger equation
for a single independent variable. This independent variable, denoted by 1), represents
the trace of the second fundamental form on ¥;, in complex notation. In addition to the
independent variables, we will use several dependent variables, as follows:

e The Riemannian metric g on ;.

e The (complex) second fundamental form A for ¥;.

e The magnetic potential A, associated to the natural connection on the normal bundle
N3, and the corresponding temporal component B.

e The advection vector field V', associated to the time dependence of our choice of
coordinates.

These additional variables will be viewed as uniquely determined by our independent
variable v, provided that a suitable gauge choice was made. The gauge choice involves two
steps:

(i) The choice of coordinates on Y;; here we use harmonic coordinates, with suitable
boundary conditions at infinity.

(ii) The choice of the orthonormal frame on N¥;; here we use the Coulomb gauge, again
assuming flatness at infinity.

To begin this analysis, in the next section we describe the gauge choices, so that by the

end we obtain
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(a) a nonlinear Schrodinger equation for v, see (2.35]).
(b) An elliptic fixed time system (2.36) for the dependent variables S = (g, A\, V, A, B),
together with suitable compatibility conditions (constraints).

Setting the stage to solve these equations, in Section [3] we describe the function spaces
for both v and §. This is done at two levels, first at fixed time, which is useful in solving
the elliptic system (2.30), and then using in the space-time setting, which is needed in order
to solve the Schrodinger evolution. The fixed time spaces are classical Sobolev spaces, with
matched regularities for all the components. The space-time norms are the so called local
energy spaces, as developed in [21], 22 23].

Using these spaces, in Section [ we consider the solvability of the elliptic system (2.30]).
This is first considered and solved without reference to the constraint equations, but then
we prove that the constraints are indeed satisfied.

Finally, we turn our attention to the Schrodinger system (235]), in several stages. In
Section [5] we establish several multilinear and nonlinear estimates in our space-time function
spaces. These are then used in Section [6] in order to prove local energy decay bounds first
for the linear paradifferential Schrodinger flow, and then for a full linear Schrodinger flow
associated to the linearization of our main evolution. The analysis is completed in Section [7,
where we use the linear Schrédinger bounds in order to (i) construct solutions for the full
nonlinear Schrédinger flow, and (ii) to prove the uniqueness and continuous dependence of
the solutions. The analysis here broadly follows the ideas introduced in [21], 22l 23], but a
number of improvements are needed which allow us to take better advantage of the structure
of the (SMCF) equations.

Last but not least, in the last section we prove that the full set of variables (g, A, V, A, B)
sufﬁce in order to uniquely reconstruct the defining function F' for the evolving surfaces ¥,

s H:t? manifolds. More precisely, with respect to the parametrization provided by our

loc
Chosen gauge, F' has regularity

OF, O°F € C[0,1; H"].

2. THE DIFFERENTIATED EQUATIONS AND THE GAUGE CHOICE

The goal of this section is to introduce our main independent variable ¢, which represents
the trace of the second fundamental form in complex notation, as well as the following
auxiliary variables: the metric g, the second fundamental form A, the connection coefficients
A, B for the normal bundle as well as the advection vector field V. For 1 we start with
(LI) and derive a nonlinear Schédinger type system (2.35), with coefficients depending on
S = (\h,V, A, B), where h = g—I;. Under suitable gauge conditions, the auxiliary variables
S are shown to satisfy an elliptic system (2.36]), as well as a natural set of constraints. We
conclude the section with a gauge formulation of our main result, see Theorem 2.71

We remark that H. Gomez ([12, Chapter 4]) introduced the language of gauge fields
as an appropriate framework for presenting the structural properties of the surface and the
evolution equations of its geometric quantities, and showed that the complex mean curvature
of the evolving surface satisfies a nonlinear Schrodinger-type equation. Here we will further
derive the self-contained modified Schrodinger system under harmonic coordinate conditions

and Coulomb gauge.
5



2.1. The Riemannian metric g. Let (X% g) be a d-dimensional oriented manifold and
let (R%*2 gq) be (d + 2)-dimensional Euclidean space. Let «, 3,7, - € {1,2,---,d} and
ke {1,2,---,d+2}. Considering the immersion F': ¥ — (R%*2, g4), we obtain the induced
metric g in X,

(2.1) Gop = Opo F' - Oy, F.
We denote the inverse of the matrix g5 by g%, i.e.
gaﬁ = (gaﬁ)_la ga'ygﬁfﬁ — 55

Let V be the cannonical Levi-Civita connection in 3 associated with the induced metric g.
A direct computation shows that on the Riemannian manifold (¥, g) we have the Christoffel
symbols

1
F’yﬁ = 5970(8690«7 + aozgﬁa - aagaﬁ) = gﬂyaaiﬁF . aO'F'

e}

Hence, the Laplace-Beltrami operator A, can be written in the form
Agf =tV f =g (02 f —T00,f)
= 9*10asf — 977 (02sF - 0, )0, f],

for any twice differentiable function f : 3 — R. The curvature tensor R on the Riemannian
manifold (X, g) is given by

R(Oa; 05)0y = (0a1'G, + Tg T0,, — 0517, — T T'5,,,) 05
Hence, we have
(2.2) s = 0al'G, — Oy, + TR L0, — TR TG .
By R(X,Y,Z, W)= (R(Z,W)Y,X) and Rugys = R(0u, 03,0, 0,), we get

Rapye = (R(0y,05)03, 0a) = <ngaw Oa) = guaRZw
We will also use the Ricci curvature
Ricas = Ropp5 = 977 Ryaop-

2.2. The second fundamental form. Let V be the Levi-Civita connection in (R%2, go)
and let h be the second fundamental form for ¥ as an embedded manifold. For any vector
fields u,v € T,X, the Gauss relation is

V.Fow = F.(V,)+h(u,v).
Then we have
h,s =h(0,,05) = Vo,05F — F.(Va,05)
=025 F + DO FF0gF' — 7,0, F.
By I}, = 0, this gives the mean curvature H at F(z),
H = tryh = ¢*°hog = " (025 F — T740,F) = ASF.
Hence, the F-equation in (1)) is rewritten as

(OF)* = J(F)A,F = J(F)g* (32 F — T750, F).
6



This equation is still independent of the choice of coordinates in ¢, which at this point are
allowed to fully depend on t.

2.3. The complex structure equations. Here we introduce a complex structure on the
normal bundle N¥,;. This is achieved by choosing {v;,15} to be an orthonormal basis of
N3Y; such that

JV1:I/2, JI/QI—I/l.

Such a choice is not unique; in making it we introduce a second component to our gauge
group, namely the group of sections of an SU(1) bundle over I x R

The vectors {F},- -, Fy,v1, 19} form a frame at each point on the manifold (3, g), where
F, for a € {1, - ,d} are defined as

F, =0,F.

If we differentiate the frame, we obtain a set of structure equations of the following type

8QF5 = FlﬁF“/ + Rapl1 + TaplV2,
(2.3) Oav1 = —KLE, + Agia,

Oavy = =T F, — Ay,
where the tensors k.gs, 7o and the connection coefficients A, are defined by

Kap = 0o Fp 11, Tap:=0aFp 12, Ay =041 1s.
The mean curvature H can be expressed in term of ks and 7,3, i.e.
H-= gaﬁ(maﬁm + Tapl2).

Next, we complexify the structure equations (2.3]) as follows. We define the complex vector
m and the complex second fundamental form tensor A,z to be

m = v + iy, Aog = Kag + 1Tag.
Then we define the complex scalar mean curvature 1) as the trace of the second fundamental
form,
(2.4) P i=tr A = g% \op.

Our objective for the rest of this section will be to interpret the (SMCF) equation as a
nonlinear Schrodinger evolution for ¢, by making suitable gauge choices.
We remark that the action of sections of the SU(1) bundle is given by

(2.5) = e, N—= e\, m—em, A, — Ay — 0.0.

for a real valued function 6.
We use the convention for the inner product of two complex vectors, say a and b, as

d+2

(a,b) = a;b;,
j=1

where a; and b; are the complex components of a and b respectively. Then we get the
following relations for the complex vector m,

(m,m) = [n|* + [* =2, (m,m) = (m,m) = [n|* — [1n* = 0.
7



From these relations we obtain
1 - 1 _

1 - .1 _
Raph1 + Tagts =5 (Xap + Aag)5 (M + 1) + 5= (Aag = Aap) 5= (m —m)

1 —
:§(>\a5ﬁl + )\aﬁm) = Re(Aagm).

Then the structure equations (2.3]) are rewritten as
{aaFB =T7,F, 4+ Re(Aapmm),

2.6
(2:6) Q’fm = =\ F,,

where
0 =0, +iA,.

2.4. The Gauss and Codazzi relations. The Gauss and Codazzi equations are derived
from the equality of second derivatives 0,03F, = 030, F, for the tangent vectors on the
submanifold ¥ and for the normal vectors respectively. Here we use the Gauss and Co-
dazzi relations to derive the Riemannian curvature, the first compatibility condition and a
symmetry.

By the structure equations (2.6]), we get

025 Fy =04(L'G, Fy + Re(Agym))

(2.7) =0aTG, Fy + T (T4, Fy + Re(Aao)) + Re(0aApym + gy (1A — ML F,))
=(0alG, + 5,17, — Re(Agy A2)) Fy + Re[(04 Mgy + TG Aao )]

Then in view of 0,03F, = 030,F, and equating the coefficients of the tangent vectors, we
obtain

OalG, + T4 7, — 0517, — Th TG, = Re(Ag, A% — Aoy AZ).
This gives the Riemannian curvature
(2.8) Rovap = (R 3F,, Fy) = (R(D, 0) F,, Fy) = Re(Agy Aao — AayAgo),

ya
which is a complex formulation of the Gauss equation. Correspondingly we obtain the the
Ricci curvature

(2.9) Ricys = Re(Aysth — Ao Xg).
After equating the coefficients of the vector m in (2.1), we obtain
A o A o

aa )\B-y ‘I‘ Fﬁy)\aa - 05 )\Oc’y ‘I‘ Fa'\/)\ﬁo'?
By the definition of covariant derivatives, i.e.

Vadgy = Oadgy — LAy — [0 Asors
we obtain

A o o A o o
aa )\5»}/ - Fory)\ﬁff - Faﬁ)\a'}/ = 05 )\Oc’y - FB,Y)\QO— - FO!B)\U'Y'

This implies the complex formulation of the Codazzi equation, namely
(2.10) Vs, = Vida,.

As a consequence of this equality, we obtain
8



Lemma 2.1. The second fundamental form X satisfies the Codazzi relations
(2.11) VN, = VAN, = VA A
Proof. Here we prove the last equality. By V97" = 0 and (2.10) we have
VEAL = 0" Vida = 97V g0 = V4 A
The first equality can be proved similarly. O

Next, we use the relation d,0sm = 93d,m in order to derive a compatibility condition
between the connection A in the normal bundle and the second fundamental form. Indeed,
from 0,0sm = 030,m we obtain the commutation relation

(2.12) 02,04 1m = i(0aAg — O5Aa)m.
By (2.6]) we have
0L05m = — OL(NJE,) = —(0405 + NTT, ) Fy — Ay Re(Aaym).
Then multiplying (2.12]) by m yields
2i(0aAs — 03 Aa) =([=Aj Re(Aaym) + AL Re(Agym)], m)
= — Moy + Mgy = 20 Im(A) Ag,).
This gives the compatibility condition for the curvature of A,
(213) &xAB - 86Aa = Im()\géj\ﬁfy)
Using covariant differentiation, this can be written as
(2.14) Vads = VgAa =Im(AAs,),
which can be seen as the complex form of the Ricci equations.

We remark that, by equating the coefficients of the tangent vectors in ([2.I2)), we also
obtain

Ao o Ao o
aa )\B + )\gl—‘a,}/ - 05 )\a + )\XCFB'Y’
and hence
Ao Ao
Va)\ﬁ = vﬁ)‘av
which is the same as ([2.I1)).

Next, we state an elliptic system for the second fundamental form A,z in terms of ¢, using
the Codazzi relations (Z.ITJ).
Lemma 2.2 (Div-curl system for \). The second fundamental form X satisfies
Vs, — Viday =0,
(2.15) A A
V3% Nap = V1.

We remark that a-priori solutions A to the above system are not guaranteed to be sym-
metric, so we record this as a separate property:

(2.16) Aag = Aga-
9



Finally, we turn our attention to the connection A, for which we have the curvature
relations (ZI4]) together with the gauge group (2X). In order to both fix the gauge and
obtain an elliptic system for A, we impose the Coulomb gauge condition

(2.17) V*A, =0.
Next, we derive the elliptic A-equations from the Ricci equations (2.14).

Lemma 2.3 (Elliptic equations for A). Under the Coulomb gauge condition, the connection
A solves

(2.18) V'V, Aa = Re(AJt) — A\IA)) As + V7 Im (A Aoo ).
Proof. Applying V# to ([2I4), by curvature and (2I7) we obtain
VI V3A, = Ricas A’ + V7 Im(AG A0, ).
Then the equation (2.I8]) for A is obtained from (2.9]). O

2.5. The elliptic equation for the metric ¢ in harmonic coordinates. Here we take
the next step towards fixing the gauge, by choosing to work in harmonic coordinates. Pre-

cisely, we will require the coordinate functions {z,,a = 1,---,d} to be globally Lipschitz
solutions of the elliptic equations
(2.19) Agzq = 0.

This determines the coordinates uniquely modulo time dependent affine transformations.
This remaining ambiguity will be removed later on by imposing suitable boundary conditions
at infinity. After this, the only remaining degrees of freedom in the choice of coordinates will
be given by time independent translations and rigid rotations. Thus, once a choice is made
at the initial time, the coordinates will be uniquely determined later on (see also Remark
2.5.7).

Here we will interpret the above harmonic coordinate condition at fixed time as an elliptic
equation for the metric g (see e.g. [11], [30, P161]). The equations (Z.19) may be expressed
in terms of the Christoffel symbols I', which must satisfy the condition

(2.20) 9Tl =0, fory=1,---d.
This implies
« 1 (07 (e 1 g (e}
(2.21) 90,95, = 59 0,00,  Oug™ = 59039 Oog 8
Let
1 g
(222) Faﬁ,’y = 5(&1957 + aﬁga'y - a’ygaﬁ) - g'yaraﬁ-

Then we also have
9*Tapr = 9" 9,015 =0,
and
Ronpo = 0500 — OsLgy.0 + Toanlgy, — Dpanl’,.

This leads to an equation for the metric g:
10



Lemma 2.4 (Elliptic equations of g). In harmonic coordinates, the metric g satisfies

gaﬁaiﬁg'ya = [_8'ygaﬁaﬁgaa - Jgaﬁaﬁgaw + a’ygaﬁaagaﬁ]

(2.23) ' i
+ 29 Toa T, — 2Re(Moth — Ay A2).
Proof. By the definition of Ricci curvature, (2.2)) and (2.20)), we have

Ric'ya :gaﬁRa’yBJ = gaﬁ(aﬁrwa,a - aarﬁfy,a) + gaﬁraa,urzfy - gaﬁrﬁa,urgg
:gaﬁ(aﬁrw,a - 80F57,a) + gaﬁroawrlﬁ%
=I+1I.

We compute the first term I. By the definition of I'ys, in (2:22), we have
1 (0%
I 259 ﬁ[aﬁ(&ygaa + &rg“/a - aag’w) - 80(8ﬁg’ya + a‘/gﬁa - 80!95’7)]
1 1
= = 59" 025070 + 59" (95, 9ac + 0o 957 = 03 Gp)
Since, by (2.21]) we have

(07 1 o 1
9°(03 5900 — 58309«1/3) = —0,9"" (98900 — 500 9as).

Then

1 aﬂ 2 ]‘ aﬂ 1 aﬁ 1

I =— 59 aaﬁg'ya + 5[_879 (aﬁgaa - 5&79056) - 809 (aﬁga'y - §a'yga6)]
1 (07 1 (07 (07 (07
= =59 PO259y0 + 509 05900 — 0s9*" 03gar + 049as0-9""].

Hence,

. 1 a 1 a o a a v
Rlc’ya = _59 Bai 5[_879 Baﬁgaa - 809 ﬁaﬁga'\/ + a’ygaﬁaag B] + g Braa,urg»y~

By (29]) this concludes the proof of the Lemma. O

ﬁg'\/a +

2.6. The motion of the frame {Fy,---,F;,m} under (SMCF). Here we derive the
equations of motion for the frame, assuming that the immersion F' satisfying (ILT).
We begin by rewriting the SMCF equations in the form

(2.24) OF = J(F)H(F)+ VF,,

where V7 is a vector field on the manifold 3, which in general depends on the choice of
coordinates.
By the definition of m and A3, we get

J(FYH(F) = J(F)Re(ym) = Rei(vm) = — Im(ym).
Hence, the above F-equation (2.24]) is rewritten as

(2.25) O F = —Im(ym) + VTE,.
11



Then we use this to derive the equations of motion for the frame. Applying 0, to (225,
by the structure equations (2.6]) we obtain

O F, = 0o F; = 05— Im(ym) + VT F]
= — Im((0s + iAa)Um + $(Ds + iAa)m) + 0V F, + V(IS F, + Re(Aayin))
= — Im(93Ym — YALE)) + 0V Fy + V(TS Fy + Re(Aaym))
= — Im(929m) + Re(Aay V) + [Im(¢pA]) + V, VF,
= — Im(0m — X, V) + [Im(YA)) + V, V],
By the orthogonality relation m_LF,, = 0, this implies
(Oym, Fy) = Oy(m, F,) — (m, 0, F,)
= — (m, —Im(9Pm — i\, V1))

= (m, 5 (0% = A V7))
= — (92 —ida, V7).

In order to describe the normal component of the time derivative of m, we also need the
temporal component of the connection in the normal bundle. This is defined by

B = (01, 19).
We have
(Om)*t = (0,(v1 +ivy))*t = By — iBvy = —iB(vy +ivy) = —iBm.
Then we get
Oym = —i(0Mp — iXV)F, — iBm,
which can be further rewritten as
P m = —i(0M " —iIXV)F,.
Therefore, we obtain the following equations of motion for the frame
O Fy = —Im (0 m — ide, V) + Im(¢A)) + VL, V7 E,,
{@Bm = —i(0M%) — INSVT)F,.

From this we obtain the evolution equation for the metric g. By the definition of the
induced metric g (2Z1I)) and ([2Z28), we have

iGap = O Fa, Fp) = (0iFa, Fg) + (Fa, 0:Fp)
= (= Im(99m — iXay VM) + (Y A]) + VoV, Fp)
+ (Fo, = Im(95¢m — idg, V) + [Im(Y X)) + V5V F,)
= Gys(Im(YAY) + Vo V) + gay (Im(PA]) + V5 V7)
= 2Im(¢YAap) + VaVs + ViV,

(2.26)

and hence,
(2.27) 0,97 = —2Im(ypA*?) — voVP — VPV,
(2.28) o5 = VoG + VGl — V'Gag,

12



where G, are defined by

- 1
Gag = Im(w)\ag) + §(V(XVB + VﬁVa).

So far, the choice of V' has been unspecified; it depends on the choice of coordinates on our
manifold as the time varies. However, once the latter is fixed via the harmonic coordinate
condition (2.20), we can also derive an elliptic equation for the advection field V:

Lemma 2.5 (Elliptic equation for the vector field V). Under the harmonic coordinate con-
dition ([2.20), the advection field V' solves

VeV V7 = 2Im(VAYnh — VAPAT) — Re(A9) — Ao A7)V
+ 2(Im (A7) + VOV ,.
Proof. Applying 9, to go‘ﬁf%, by ([2.217) and (2.28) we have
Oi(g*°T75) = = 2G*T L5 + g*° (2V oG} — V' Gap)
= — 2G5 + 2V Im(Y A7) + AV + [V, VIV

(2.29)

Since

[V, VIV = Ricl V7 = Re(Al) — Moo A7) V.
By the harmonic coordinate condition ([2Z20) and (ZI1l), the above two equalities give the
V-equations (2.29). O

Remark 2.5.1. Consider an arbitrary choice of coordinates (parametrization) {zy, -+, x4}
for the time evolving manifolds ¥, for ¢t € [0,7]. This yields a representation of ¥; as the
image of a map

F:R%x [0,T] — R**2,
restricted to time ¢. If 3; moves along the (SMCF) flow (2.:24)), then we have the relation
8t(g"ﬁflﬁ) = (V equation).

Here we uniquely determine the evolution of the coordinates as the time varies by choosing
the advection vector field V', precisely so that it satisfies the V-equation (2.29). For this
choice we obtain 9 (g™’ Flﬁ) = 0. This implies that g*° Flﬁ is conserved for any x € R?, and
thus the harmonic gauge condition is propagated in time.

2.7. Derivation of the modified Schrodinger system from SMCF. Here we derive
the main Schrodinger equation and the second compatibility condition. We consider the
commutation relation

(2.30) [0F  0m = i(0,Aq — 0o B)m.

t Yo

In order, for the left-hand side, by (2.6) and (2:26]) we have
8?8&%712—8?()@1%) = =07\, F, =\, O.F,

= — [0PAZ + A\L(Im(¢XT) + V, V)| F, + AL Im(95pm — iV om),
13



and
950 m = —i02[(0M7y — iNV)F,]
= — i (0N — iIAJV)F, — i(0M7 — iAJV7) T4, F, + Re(Aaom)]
= — iV, (07 — AV E, — (07 — iX]V) Re(Aaym).

Then by the above three equalities, equating the coefficients of the tangent vectors and the
normal vector m, we obtain the evolution equation for A

(2.31) PN, + AL(Im(AT) + V. V) =iV (0470 —iATV),

as well as the compatibility condition (curvature relation)

1 . o\ e o N
0y Ay — 0o B = 2—@()\3 Im(@f@bm — iAo VIm) + (047 — iANT V) Re(Aao™m), m)

1 NA 7. Y o 1 o S\ O
— §Ag(a§‘¢ + iAo V) + §(aA’ P —iAV ") Aao

1 A,/ Y o 3\ . o

= SN + Do V) + N0 — X V)]
= Re(A20,) — Im(A2 A, V.

which we record for later reference:

(2.32) 01 Aq — 8o B = Re(A1024) — Im(ALA0)V7.

This in turn allows us to use the Coulomb gauge condition (2.I7)) in order to obtain an
elliptic equation for B:

Lemma 2.6 (Elliptic equation of B). The temporal connection coefficient B solves
(2.33) V'V,B = —V'[Re(AJ9,'¢) — Im(AJAo5) V7] + (2Im(p A7) + VAV + VIVP)G5A,,.
Proof. Applying V¢ to (232)) yields

VIV, B = V79,A, — VI Re[AJ (029 + iA,5V7)].

By the harmonic coordinates condition (2.20)), (2.27)) and the Coulomb gauge condition (2.17))
the first term in the right hand side is written as

V0, A, =g"'V 0, A, = g7 (050,A,, — ['7.,0:A,) = gm@B@tAV
=0,(¢"03A,) — 0,97 - 03 A,
=0, VA, + (2Im(p A7) + VPV + VIV 95 A,
=(2Im(PA) + VPV + VIVF) 95 A,
We then obtain the B-equation. 0

Next, we use (Z31]) to derive the main equation, i.e. the Schrédinger equation for ¢. By
(2.10), the right-hand side of ([Z.31) is rewritten as

V30 —idIVY) = V30 —iVIN VT —iATV V7.
Hence, we have

(0F = VIV, + AL Im(yA]) + (ALV, VT = AV V) =iV VA7,
14



and then contracting this yields
i(0F = VIV + VIVA) = —idX) Tm (X)),
This can be further written as
(0 +iB = VIV + (Vo +i4a) (VY +iA%)) = —iA] Im(A]).

Hence, under the harmonic coordinates condition (2.20) and the Coulomb gauge condition
(2.I7) we obtain the main Schrédinger equation

i) + g*P 0051 = IV IV — 2iA VY + (B + AgA® — iV AY)h — iA] Im(¥A))
= VIV — 2iA, VP + (B + Ag A*)b — i) Im(PA7).

In conclusion, under the Coulomb gauge condition V*A, = 0 and the harmonic coordinate

condition ¢*T; = 0, by 234), ZI5), 223), @29), I]) and ([Z33), we obtain the

Schrodinger equation for the complex mean curvature

(2.35) {mﬂ” +g%0u050) = i(V — 24)a VY + (B + A A" = Vo A% —iA] Tm (A7),

(2.34)

¥(0) = %o,

where the metric g, curvature tensor A, the advection field V', connection coefficients A and
B are determined at fixed time in an elliptic fashion via the following equations

(Vidsy — Viday =0, VN5 = Vi,
9P 50970 = [—0,9°P 05900 — s g™ s gar + 04903059
+ 29 Toa,u TG, — 2Re(Ayoth — Aoy M),
VOV V7T = 2Im(VA) — VAPA?) — Re(Alh) — AaoA*)V7
+ 2(Im(pX*) + VAV,
VIV, Aq = Re(A] — NAG) Ay + V7 Im (A Ao ),
V'V, B = — V' [Re(A]029) — Im(AJA,5)V”]
\ + (2Im(PA°7) + VAV + VIV 04 A,

Fixing the remaining degrees of freedom (i.e. the affine group for the choice of the coordinates
as well as the time dependence of the SU(1) connection) we can assume that the following
conditions hold at infinity in an averaged sense:

AMoo) =0, g(loo)=1; V(o)=0, A(cc)=0, B(cx)=0

These are needed to insure the unique solvability of the above elliptic equations in a suitable
class of functions. For the metric g it will be useful to use the representation

g:Id—l—h

(2.36)

so that h vanishes at infinity.
Finally, we note that the above elliptic system (2.35]) is accompanied by a large family of
compatibility conditions as follows:
(i) The trace relation (2.4)).
(ii) The Gauss equations (2.8) connecting the curvature R of g and A.

(iii) The symmetry property (2.16]).
15



(iv) The Ricci equations (2.I4)) for the curvature of A.
(v) The Coulomb gauge condition (2.1I7) for A.
(vi) The harmonic coordinates condition ([2.20) for g.
These conditions will all be shown to be satisfied for small solutions to the nonlinear elliptic
system (2.35)).
Now we can restate here the small data local well-posedness result for the (SMCF) system
in Theorem in terms of the above system:

Theorem 2.7 (Small data local well-posedness in the good gauge). Let s > g, d>4. Then
there exists g > 0 sufficiently small such that, for all initial data 1y with

1460

the modified Schridinger system (2.33), with (X, h,V, A, B) determined via the elliptic system
230), is locally well-posed in H® on the time interval I = [0,1]. Moreover, the mean
curvature satisfies the bounds

(2.37) [¥]lexs 4+ 1A B, VLA, B)lles < Nlvbollas-

In addition, the auxiliary functions (A, h,V, A, B) satisfy the constraints (2.4)), (2.8), (2.10),
214), @I17) and 220).

Here the solution v satisfies in particular the expected bounds

[l co.0m9) S 1ol

The spaces [2X* and £*, defined in the next section, contain a more complete description
of the full set of variables ¥, A\, h, V, A, B, which includes both Sobolev regularity and local
energy bounds.
In the above theorem, by well-posedness we mean a full Hadamard-type well-posedness,
including the following properties:
i) Existence of solutions i) € C[0, 1; H®], with the additional regularity properties (2.37).
ii) Uniqueness in the same class.
iii) Continuous dependence of solutions with respect to the initial data in the strong H*
topology.
iv) Weak Lipschitz dependence of solutions with respect to the initial data in the weaker
L? topology.
v) Energy bounds and propagation of higher regularity.

s < €o,

Hs.

3. FUNCTION SPACES AND NOTATIONS

The goal of this section is to define the function spaces where we aim to solve the (SMCF)
system in the good gauge, given by (2.35]). Both the spaces and the notation presented in
this section are similar to those introduced in [21], 22, 23]. All the function spaces described
below will be used with respect to harmonic coordinates determined by our gauge choices
described in the previous section. We neither attempt nor need to transfer these spaces to
other coordinate frames.

For a function u(t,x) or u(z), let & = Fu denote the Fourier transform in the spatial
variable 2. Fix a smooth radial function ¢ : R? — [0, 1] supported in [—2,2] and equal to 1
in [—1,1], and for any i € Z, let

pi() = p(x/2') — p(x/27).
16



We then have the spatial Littlewood-Paley decomposition,

[e.e]

S PO =1 YS((D)-1

1=—00
where P; localizes to frequency 2¢ for i € 7Z, i.e,

F(FPu) = @i(§)u(§),
and
So(D) =Y _P(D), Si(D)=P(D), fori>0.

i<0

For simplicity of notation, we set
J o0

uj = Sju, U< = ZSiu, Usj = ZSZ'U, for j > 0.

i=j

=0

For each j € N, let Q; denote a partition of R? into cubes of side length 27, and let {xq}
denote an associated partition of unity. For a translation-invariant Sobolev-type space U,
set l;’ U to be the Banach space with associated norm

Jallp = 3 loull
QeQ;

with the obvious modification for p = oco.

Next we define the [2X* and [2N*® spaces, which will be used for the primary variable 1,
respectively for the source term in the Schrodinger equation for . Following [211 22 23],
we first define the X-norm as

_1L
|ul| x = sup sup 2 2||U||L2L2([0,1]x@)-
leN Q€9

Here and throughout, L? L? represents LY LZ. To measure the source term, we use an atomic

space N satisfying X = N*. A function a is an atom in N if there isa j > 0 and a ) € Q,
such that a is supported in [0, 1] x @ and

i

lallL2o.yxq@) S 272

Then we define N as linear combinations of the form
f= chak, Z lek| < 00, ay atom,
k k

with norm
||fHN = inf { Z |Ck| f= chak, ay atoms}.
k k
For solutions which are localized to frequency 2/ with 7 > 0, we will work in the space
X; =272X NL¥L2,

with norm

J
lullx; = 22 [lullx + [[ull Lo 2.
17



One way to assemble the X; norms is via the X*® space
2 2js 2
el =Y 27| Sull%, -
Jj=>0
But we will also add the [ spatial summation on the 27 scale to X, in order to obtain the
space [5 X; with norm
lullex, = (D lhxqullk,)"”.
QeQ;
We then define the space I X* by
el = 3728 ey,
Jj=0
For the solutions of Schrodinger equation in (Z.35), we will be working primarily in 2X*,
which is defined by
||u||12xs = Hqu2XS -+ H&tuHLQHS*?-
We note that the second component, introduced here for the first time, serves the purpose

of providing better bounds at low frequencies 7 < 0.
We analogously define

N; =2:N + L'I?,
which has norm

Iflly, = inf  ([Ally + [ f2llzze),

=22 fi+fs
and

1 1Bve = 3 22918, I,

Jj=20
Here we shall be working primarily with [2N®.
We also note that for any j € N, we have

sup 2_%||u||L2L2([0,1]><Q) < ullx,
QeQ;
hence
lull S 22 ully o

This bound will come in handy at several places later on.
For the elliptic system (2.30]), at a fixed time we define the H*® norm,

A 2, V3 A, Bllggs = [ Mls + [ DIAl[ssr + ([ DIV [|zs + D] A[ s + [[[ D] B

In addition to the fixed time norms, for the study of the Schrodinger equation for ¢ we
will also need to bound time dependent norms £° and £° for the elliptic system (236, in
terms of similar norms for ¢). For simplicity of notation, we define

lull zee = [[1DI7 Soullf ez + D 2 (1Sl oo o

7>0

Hs—1.

Then the Z7° spaces are defined by

ul|zes = ||ull zos + ||| D] Opul| p2prs—o.
18



For the A, V, A and B-equations in (Z:36]), we will be working primarily in Z%% Zb5t!
Z'5t1 and ZY°, respectively.

On the other hand, for the metric component h = g — I; we need to introduce some
additional structure which is associated to spatial scales larger than the frequency. Precisely,
to measure the portion of kA which is localized to frequency 27, j € Z, we decompose P;h as
an atomic summation of components h;; associated to spatial scales 2! with [ > |j|, where
hj, still localizes to frequency 27, i.e.,

Pih = hj.

=151
Then we define the Yj-norm by
P:h Yy, = inf 2l_U| h'l 1002
LA Ll T

Assembling together the dyadic pieces in an [? Besov fashion, we obtain the Y ¢ space with
norm given by

[Pl ee =D 25 9| Phlf5,.
J<Z

Then for h-equation in ([235), we will be working primarily in Y*™2 whose norm is defined
by

[Allys+2 = 7]

yers + VAR zres =IAlL g gurs + Wllgosss,

where the space Y* = y§-1-0s ) Zls, Collecting all the components defined above, for the
elliptic system (2.30]), we define the £° norm as

||()‘> h> V7Aa B) Es — ||)‘||ZO’S + ||h|

ys+2 + ||V||Zl,s+1 + ||A||Zl,s+1 + ||B||Zl,s,
and the £° norm as

(A, h, V, A, B)|

g = [\ VA B)les + ||0i(A b, Vi, A, B)|| 22

Since we often use Littlewood-Paley decompositions, the next lemma is a convenient tool
to see that our function spaces are invariant under the action of some standard classes of
multipliers:

Lemma 3.1. For any Schwartz function f € S, multiplier m(D) with || F~*(m(€))|lrr < oo,
and translation-invariant Sobolev-type space U, we have

lm(D) fllo S IF ()2l o
We will also need the following Bernstein-type inequality:

Lemma 3.2 (Bernstein-type inequality). For any j,k € Z with j+k >0, 1 <r < oo and
1< g <p<oo, we have

1

1_1
(3.1) 1P oo S 2% Pf i1,

a— d
(32) @y feollgrmrs S | follyuers, forp > ——.
19



Proof. We begin with the Bernstein-type inequality (8.I]). Using the properies of the Fourier
transform, Py f is rewritten as

P = [ (Fole =Py =2 | K= p)Sif)ds

where K (z) = F'p(x). Then

1Pl =243 Inalo) || KCHo =) P )yl

QeQ;

<2M() lxole / K (2@ — )1 (28 (@ — 1)) Pef (y)dy [5.) /"

QeQ;
+ 2M) K (2%2) 150 (252) % Py f |17 o
=1 +1I,

where d(Q, Q) inf{lz —y|l:z€Q,y € Q} and M is a large constant. Since j + k > 0, for
any fixed ) € Q; there are only finite many Qe Q, such that d(Q, Q) < 27%*M. Then from
Young’s inequality we can bound I by

ISSPAOY > 15 25 2) | allxg Pefll 7)Y S ohd(G—3) 1P f llir za-
QREQ; d(Q,Q)<2-FM,Q€Q;

On the other hand, since |K ()| < (x)~" for any large N, for IT we have

1T S 25 V)|12%2] V1 (250) 11| il o
< M Pl o,

which can be absorbed by the term on the left. These imply the bound (B.1]).

Next, we prove the estimate ([.2). The left hand side of (8:2)) is decomposed as

b5 Feollyrn S 3 Ixela) [0 Feole = y)dylmse

QEeQo

<3 Ixele) / ) ol — )y

QeQo ly|<1
+ 3 Ixe(@) / 1270 5™ o el — )y
Qe |y‘>1 QeQq
=17 + 1.

Then by (B3] we bound I; by

I S [ f<ollzrere S [ f<ollzrere.
20



On the other hand, by Holder’s inequality and (B]), we bound I, by

BE S (X lnels) [ ) xafeols = pdyllies)?

QeQy @EQ0 lvl>1
ST [ o™ g Sealier)
QeQo Q€0 ly>1

< f<ollis i / () DPdy) /P

Shf<olliyzoorz,
which gives the bound (3.2), and thus completes the proof of the lemma. O

Finally, we define the frequency envelopes as in [21],22] 23] which will be used in multilinear
estimates. Consider a Sobolev-type space U for which we have

o
lalfy =D l1Skull?
k=0

A frequency envelope for a function u € U is a positive [>-sequence, {a;}, with
1Sjullv < a;.
We shall only permit slowly varying frequency envelopes. Thus, we require ag ~ ||ul|y and
a; <290 Fg jE>0,0<5< 1.

The constant 6 shall be chosen later and only depends on s and the dimension d. Such
frequency envelopes always exist. For example, one may choose

(3.3) aj; = 2_‘5j||u||U+ml?x2_6|j_k‘||5ku||(].

4. ELLIPTIC ESTIMATES

Here we consider the solvability of the elliptic system (2.36]), together with the constraints
(2.10), [220) and (2I7). We will do this in two steps. First we prove that this system is
solvable in Sobolev spaces at fixed time. Then we prove space-time bounds in local energy

spaces; the latter will be needed in the study of the Schrodinger evolution (Z.35]).
For simplicity of notations, we define the set of elliptic variables by

S = ()\7 h’? V? A’ B)?

Later when we compare two solutions for (2.36]), we will denote the differences of two solutions
or the linearized variable by
0S8 = (0A,0h, 8V, 0A,0B).

Our fixed time result is as follows:

Theorem 4.1. a) Assume that ¢ is small in H® for s > d/2 and d > 4. Then the elliptic
system (230) admits a unique small solution S = (A, h,V, A, B) in H*, with

(4.1) 1S3 < M1
21

HS.



In addition this solution has a smooth dependence on v in H® and satisfies the constraints

24, 28), @16), @214), 220) and 2.I7).
b) Let ¢ and (A, h,V, A, B) = S(¢) be as above. Then for the linearization of the solution

map above we also have the bound:
(4.2) IDS(6U) e S 0|, o € (d/2—3, 5]
Moreover, assume that py is an admissible frequency envelope for 61 in H?. Then we have
(4.3) 19608 |3 < Di-
c) We also have a similar bound for the Hessian of the solution map,

(4.4) 1D*S(81%, 0290) e S 01l sz 10220 |12

with o,01,09 € (d/2 —3,s],01 4+ 09 = 0+ s.

Remark 4.1.1. Here we solve the elliptic system (Z30]) in the function space H* for s > d /2,
which is more suitable for the nonlinear estimates of ¥-equation. Nevertheless, this system
can be solved in a similar fashion for the full range of indices s above scaling, namely
s > d/2 — 1. However, in the additional range d/2 — 1 < s < d/2 one needs to replace the
above solution space H® with a slightly larger one,

I1S1l7z = lIA

ws + D[] o + |V e + I[D]A] e + [ D] Bl o,

where o = 2s — d/2+ 1. Then the elliptic system (2.36) admits a unique small solution S in
H*® with

IS

e S Pl

Proof of Theorem[{.1l a) The proof is based on a perturbative argument. We rewrite the
system (2.30) in the form

(aa)\ocﬁ = aﬁw + Hl)n
OaAgy — OgAay = Hay,
Agva = ng

(45) AV = Hy,
AA, = Ha,
\AB = Hy,
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where the nonlinear source terms are given by

Hiy = iAg) — h* 0, ap + Lap oA,

Hoy = —iAgAgy + iAsAay + TanyoAG — Doy 02,

H,=— haﬁaiggw - ygaﬁaﬁgaa - agaﬁaﬁgav + 0v9a50:9"
+ anﬁl“mﬂ,l“g,y —2Re(Apth — Ay A2,

Hy = — VOV, V7 + AV7 4+ 2Im(VA79) — VIPAY) — Re(AJY) — Aap A7)V
+ 2(Im (A7) + VOV,

Hy=—V'V,Aq + AAg + Re(¥A] — M) A + V' Im(AT Aoo),

Hg=—N'V,B+AB—-V" Re[)\;’(éflﬁ + X5V 7))
+ (2Im(PpA°7) + VAV + VIV 05 A,

B

In order to prove the existence of solutions to (LH) at a fixed time for small ¢ € H® we
construct solutions to (AH]) iteratively. We define the sets of elliptic variables

S = (A R ) g gy
at each step, based on the scheme
raa)\((xnﬁ—i-l) _ aﬁ¢ + Hl(;l)’
Oagy™ = 0sMETY = HY,
Agleth = H™,
AV — ),
AAGD = )
ABY = g
\

(4.6)

with the trivial initialization
S© =1(0,0,0,0,0), ¢©@ =n" 41,

where HY, B 1 HEY | HY and HYY are defined as Hyy, Hyy, H,, Hy, Hy and Hp
with
S=8m,
We will inductively show that

1S® 3¢ < Clw|

Hs,

with a large universal constant C'. This trivially holds for our initialization. Then using a
standard Littlewood-Paley decomposition, Bernstein’s inequality and the smallness of our
data ¢ € H*® in order to estimate the source terms Hl(;f), Hz(;f), Hén), H‘(/"), HXL) and H](gn),
we obtain

IS+ e+ [S™17 (1 + 18]
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From the iterative scheme (£6) and ¢» € H*® small, we can repeat the same analysis for
successive differences in order to obtain a small Lipschitz constant,

S — SO < 5 = S

HS.
Hence the elliptic system (2.30) admits a small solution

S = lim 8™ ¢ H*.

n—oo

The uniqueness and the Lipschitz dependence of the solution on 1 are easily obtained by
similar elliptic estimates.

Next, we prove the solution satisfies the constraints (2.4)), (2.16)), (2.14)), (2.17), (2.20) and

(28). To get started, let us summarize the compatibility conditions we need to verify:

Y= gaﬁ)‘aﬁu

Aag = Asa,

Vaodg — VA, =Im(A\ ]\ 5),
VeA, =0,

gaﬁraﬁﬁ =0,

Ricys = Re(Aypt) — Ay A%),
Rovap = Re(AsAoa — Maros).

We need to show that these constraints are satisfied for solutions to the elliptic system (2.36]).
We can disregard the B and V' equations, which are unneeded here.
To shorten the notations, we define

Cl = w - gaﬁ)\aﬁa

C25 = Aag — Asas

Cig = VadAs — VsAq —Im(Aay Ay),
C' = V°A,,

Cg = gaﬁraﬁ,&

%5 = Ricyg — Re(Aysth — Ayad%),
ol Rorap — Re(Myproa — Matos)-

Yo

Here C? and C? are antisymmetric, C% is symmetric and C7 inherits all the linear symmetries

of the curvature tensor.
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Our goal is to show that all these functions vanish. We will prove this by showing that
they solve a coupled linear homogeneous elliptic system of the form

ViC = VvAeC,,

AMC? = A+ 0)(CP+CP+ CT) + (XN + M) C2,
A,C% = RC® 4+ V(COA) + V(A\VC? + VAC?),
A,C* = V(CPA) + RC? + V*(\C?),

A,C° = RC® 4 V(CW) + AVC? 4+ VAC?,

1
Csa = i(V,yCE + VUCE),
V5CZ’yaB + VUC’:&)CB + V’chaaﬁ = 07
VICT 5 = VaCSs — VC0, + V(AC! +AC2).

yaB

Here the covariant Laplace operators Ay, respectively A;‘ are symmetric and coercive in H*.
We consider these equations as a system in the space

(CY,C%C3,C*,C°,C% CT) e H' x H' x H' x H' x H' x L? x L*

using H* bounds for the Laplace operator in the second to fifth equations, and interpreting
the last two equations as an elliptic div-curl system in L?, with an H~! source term. Since
the coefficients are all small, the right hand side terms are perturbative and 0 is the unique
solution for this system. The details are left for the reader, as they only involve Sobolev
embeddings and Holder’s inequality.

To complete the argument, we now successively derive the equations in the above system.
In the computations below, it is convenient to introduce several auxiliary notations. The
curvature of the connection A acting on complex valued functions is denoted by

F.3 = 0,43 — 0sA,
so that we have

[V£> V?]¢ = iFa6¢'
We also set

CZWB = Bovap = Royap; Ro'yaﬁ = Re()\'yﬁ;\oa — MaAos),
respectively
€85 = Ric,g —Ricys,  Ricys = Re(Aysth — \ad%), R i= g7 Ricys,

and

035 = Faﬁ - Fag, Faﬁ = Im()\a.yj\ﬂyﬁ).

o

The equation for C*. This equation has the exact form
A1 A, 2
V5O = V504
This is obtained by (2.13]) directly. O
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The equation for C?. The full system for C? has the form
(4.7) AMCZ =(A+9)(C®+ C®+ CT) + (N + M) C.
By A-equation (2.I5]) we have
VATV e =V, ValAys + VaVie
= RiCau Mg + Roapu A +iC3, N5 + i Im(A* X)X + VAV

Then we use C% C7 and C? to give

AAC2, =CO N — O8N + Clyg A — Ol N

+iC3 N g —iC2 N o +iCog1h + C*(A + Xy).

Hence, the C*-equation (7)) follows. O

The equation for C3. This has the form
AyCls = V(CosA°) = Val(CA°) + RpaosC>7 + Rices C*7 — Ricgs C
+ V7 Im(A\, 7 (VACZ, — V4C2,) + VN ,C2%,).

a~of

(4.8)

To prove this, it is convenient to separate the left hand side into two terms,
NGOy = ([Ay, ValAg — [Ay, Vil Aa) + (ValgAg — VA Aq — AgF o) =1+ 11
For the commutator we use the Bianchi identities to compute
I =1[V'V,, VA5 - [V°V,,V;s]A,
= V7 (Ryaps A° — Ropas A’) + (Roaps — Rogas) VA’ + R 005V Ag — R7 505V’ Ag
= V7 Rpoos A’ + 2Rpa0s V7 A° + Ricas VP Ag — Ricgs VO A,
= (Vs Ricas —VaRps)A° 4+ RpaesF7° 4 Ricas(F°5 + V3 A°) — Ricgs(F°, + V,A%)
= V5(Ricas A%) — Va(Ricss A%) + RparsF7° + Ricas F* 5 — Ricgs F°,.
On the other hand for the second term we use the A equation in (2.36]) to write
1 = V4[Ricg, A%] — V[Rica, A%]
+ V.,V Im()\,w;\"ﬁ) — VsV Im(\,,\%,) — V, V7 Im()\a(,;\"ﬁ)
=10 + I1>.
The first term I7; combines directly with the first two terms in /. For the second we commute
I1y = RonysF + RaopsF) — RoyosFo, — RpasFo+
+ V7 (V, Im()\wj\gﬁ) — VsIm(A\oA7,) — V, Im()\agj\gﬁ))
= — Ricas F'5 + Ricgs F', — RpaosF7
+ VT Im(A S (VAC2, — VACZ,) + VIA3C%,).

a~op

Summing up the expressions for I and II we obtain (4.g]). O
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The equation for C*. This has the form

o 1 «a 1 «a N\ o oY
(4.9) ACH ==V (CLLAY) — §[v ,VCE, — 5V'V Im(CI A+ A7C%).
To prove it we commute A, with V¢

ANV A, = V[V, V] Aq + [V, VOV Ay + VAL A,
1 . .
= — V7(Ric,, A) + 5[V, VIFq + V° (Ricos A7) + VOV'F,,

In the last term we can symmetrize in « and ~y, and the desired equation (4.9]) follows.

The equation for C°. Here we compute
(4.10) A,Ch =— [V, V5]C5 — Re(Vg(C'h) — 2027V C25 4+ V(A7 C2,)).
We can rewrite the g equation (2.23) as
1
Ricag = Ricaﬁ —|—§(VQCZ + VQCZ){)
which by contraction yields
R=R+V2C5.
To get to A,C®, by the above two equalities we write
1 —~ 1 1 .
§AQCE = Va(RiCaﬁ — Ricag) — i[Vo‘, Vﬁ]CS — §V5(R - R)
1 1 - 1 ~
= (V*Rag = 5VsR) = 5[V, V6]CZ = (VO Ras = 5VsR).
The first term drops by twice contracted Bianchi,
9" 9" (Vo Ryguo + Vi Rgyua + VeRyua) = 0,

and the last one is quadratic in A and yields C* and C? terms,
ap 1 » 1 n yao 1 ao
(V*Fap — 5 V5R) =Re(5V5(C) — X0VAC3, + SV5(N"C2,).

This completes the derivation of (L.10]).

The equation for C°. This has the form
1
(4.11) CS, = §(V,YC§ +V,C2).
Indeed, by the g-equation in (2.36) and its proof, we recover the Ricci curvature
N o ) 1 v
Re(Mo?) — A\yaA%) = Ric,, —5(8702 +0,C0) +T%,Cy.

This implies the relation (AI1]) immediately.
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The equation for C7. By the second Bianchi identities of Riemannian curvature and the
following equality

V(; Re()\w;\m — )\rano’B) + VU Re()\(;g;\-ya — )\5(15\75) + V’Y Re()\agj\ga — )\005\55) = 0,
we have the counterpart of the second Bianchi identities
véCZ'yaB + VUC’:&)CB + V’chaaﬁ = O>

which combine with the algebraic symmetries of the same tensor to yield an elliptic system
for C7. Precisely, using the above relation we have

VOO o5 = VaC3 — VsC5, + V(AC! + AC?),

yaB

which combined with the previous one yields the desired elliptic system, with C°¢ viewed as
a source term. 0

b) Assume that §j is an admissible frequency envelope for 6S in H?. In view of the bound
(A1) and of the smallness of ||| s, it suffices to prove the difference or linearized estimate

(4.12) 15k08 Iz < 118k Lo + Sxll s (1 + )| r) ™

If this is true, then the bound (4.2) follows. Thus, by the definition of frequency envelope
B.3), (42)) and the smallness of ) € H®, we also obtain the bound (4.3).

As an intermediate step in the proof of (4.2]), we collect in the next Lemma several bilinear
estimates. The proof of this Lemma is standard by Littlewood-Paley decompositions and
Bernstein inequality.

Lemma 4.2. Let d/2 -3 <o < s, d> 3, then we have
VS ()|l e S NIV RN 1e VAl s+ V] = [ VSR 1-,

[SAP) e SO me (| VA s + [M]] 225 ([ VER| 1o
IVO(AL) || o S IVOA|| go-1[|[ V|| s + [[VA| 15| VOR| 1o

Now we turn our attention to the proof of (4.12]). Here we first prove the estimates for
dA. By A-equations in (43]) it suffices to consider the following form

OabAas = D501 + S AY + ASth + ShVA + RVSA + VOhA + VASA,
OadAgy — O30Aay = GAN + ASX + VShA + VASA.

By the relation
(4.13) AE) = [€]72 (N - O+ € 2T —eXT) - ¢,

we obtain
1Sk | e SISk || e + ||| D] Sk[GAN + 10) + A(ON + §1b) + SAVA + hVEA
+ VA + Vho ||z

SISk || e + 3kl s
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Next we provide the estimate for dA; the other estimates can be proved similarly. By
A-equation in (£5) and Lemma 2] it suffices to consider the following form

ASA =5hV2A + hV25A + VShV A + VhVSA + VShVhA + (V)25 A
+ OA(A + V) + X2(5A + V6R) + VASA + AVOA.

Using Littlewood-Paley trichotomy and Bernstein inequality, we bound all the nonlinear-
ities except VAOA and AV by

|| D]~ Sk (6hV2A + hV?6A + VShV A + VAV A + VShVhA + (Vh)?6 A) || go
+ 11D Sk (SAN(A + Vh) + A2(5A + Vh))| o
S8kl (1 + Y]
For the remainder terms, we also have
I[DI71So(VAIA + AVEN)[| 2 S[1So(VASA + AVEA) |11 S Sol[ Al
and for k£ > 0

).

HS

I[DISk(VAIA + AVON) [l S 3k
This completes the proof of (£2).

Hs-.

c¢) Using the similar argument to b), we have

ID*S (14, 029) e < 1|61 4= 62| )"

7 (1 + ||

Hs 9

and
ID*S(81¢, 829)ll3ee S 11018l (1628 e (1 + [ ]| 11=) ™
Then by the smallness of ) € H®, ([4.2) and interpolation, the above two bounds imply
ID?S(81%, 83) e S 110180 o (10290 | 11
This completes the proof of (4.4]). O

Next we establish bounds for the above solutions in space-time local energy spaces:

Theorem 4.3. a) Assume that ¢ is small in I?°X® for s > d/2, d > 4. Then the solution
(A, h, A, V, B) for the elliptic system (2.36]) given by Theorem [{.1] belongs to £° and satisfies
the bounds

(4.14) 1Slles < Nleolliexe,

with Lipschitz dependence on the initial data in these topologies. Moreover, assume that py
is an admissible frequency envelope for 1 € I?X*, we have the frequency envelope version

(4.15) [Sklles < pr-

b) In addition, for the linearization of the elliptic system ([2.36]) we have the bounds
(4.16) 168 |e= < 1109 ]i2x-,
foroe(d/2—1,s].
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Proof of Theorem [.3 For the elliptic system (L), we will prove the bound for differences
oS

N
(4.17) 10S]le= < 10 llizx= + [0S le= [|Slles (1 + ISlles)

If this is true, by a continuity argument the bounds (4.14]) and (£.16) follow.
Assume that s, is an admissible frequency envelope for 6S € £7. We can separate the
bound (4I7) into two parts, namely

10008 || 2o -2 S |09 [[i2xo (1 + [0t Lo s —2)

respectively
N
(4.18) ||Sk58||ga Spk+8k||3|38(1—|— ||S gs) .

Here one can think of the first bound as a fixed time bound for the linearization of the
elliptic system (2.30), square integrated in time. As such, this is a direct consequence of
the bound (4.2) with argument 9;6v) and regularity index o — 2, and the bound (4.4]) with
01 = 04,00 = 0,00 = s — 2,09 = ¢ in Theorem [A.1] So it remains to prove (4.I8)).

If the bound (4.18)) holds, then by the bound (4.3) with § = 0;,0 = s — 2 and (4.I8]) with
d = 1Id,o = s, the bound (4.I7]) follows.

As an intermediate step in the proof of (4I8)), we collect in the next Lemma several
bilinear estimates and equivalent relations.

Lemma 4.4 (Bilinear estimates). Let s > d/2, 0 <o <s, d > 4, assume that h € Y*, then

we have

(4.19) [hh|lye S Al Ay,
(4.20) [AR] z00 S [ Al zow || Al vs,
(4.21) [(AR)][ 210 S [[Allze [ ]]vs-

As consequences of these bounds, for h*? = g — 1 hops = gag—1, X2 = go“O\,By, )x,f = g™\,
Ve =gV and AY = g*® Ag, assume that ||hag|ye+ < 1, we have
[Pagpllyor & |h27 |yost,
X[l z0.0 2 NG| z00 = [[Xas o,
[Vallzre = [[V*lz1e,
[Aallzrer ~ [|A%|z1o
Proof of Lemma[{.4]. We do this in several steps:

Proof of the bound ({.19). First, we consider the Y-norm estimates. For the high-low
interaction, for any decomposition P;h = le‘ i hj1, we have

1Y (hiahp)lly, 27 (Ryihap)lprore S 27yl poo 2 Il oo e
1>13] =15 1>l
Taking the infimum over the decomposition of ﬁj yields
1> (hiahe)lly, S Py, IRl 22,

=14l
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which is acceptable. Similarly, for the low-high interaction, we have

g d_1_8)i—4oi ~
1D (Peghhin)llygoss S2ETT4TT 32902 Pl o 2] P,
>3] k<j
SJHV}EHLOOHUﬂ||Pjh’|yd/2fa,s,

which is acceptable.
Next, for the high-high interaction, when 5 < 0 we rewrite it as

> Bi(BhPuh)+ Y (B hPyh).
J<j1<—j —Jj<h
Then we bound the first term by

9(d/2-1-0)j | Z Pj(leﬁleh)Hyj

J<ji<-j
2T N [Pyl e
J<ji<-=j
2N PRl s | Pl e
J<ji<-j

S22 Vol oo 2| Vo iz oo 2 + 2977 | 20| 10
We bound the second term by

2PN PPy h P bl S Y 2O |(PyyhPyy ) it g
—7<h —J<i1
d—06)j+7 2
< D 2IPLAN s
—J<i1
2|1 gro [P 21

When 5 > 0, we have

271> " Py(P,h P )y,

J1>j
<D 2T (P kP ), s
1
J1>j
< Z o(o—1+d/2)(j—j1) | Pjy k| 21 || Py B| 21
J1>j

which is acceptable.
Secondly, we consider the Z%°*l-norm estimates. For the low-frequency part, we have

||V(h2)§0||l§LooL2 f,HVh§0’|lgL<><>L2HhSOHL‘X’Loo - ZH(h’jhj)SOngLOOLl
7>0
Sl zrol| 2|z
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For the high frequency part, by Littlewood-Paley dichotomy, we have
20j||(}~lh)j||l§Lo<>L2
27|y llizpee 2 gl oo noe D 202 || (a2 oo 1
1>
<29yl oo [Vl e sros + 37 270702y ol e 2,
1>

which is acceptable. This completes the proof of (£.19).

Proof of the bound (.20). First we consider the Z%°-norm estimates. For the low-
frequency part we have

1(hN)<ollzzoere Slih<olloers I A<ollzzoere + Y 2972 sl oo 2 Agllizoe 12
3>0
Slhllz1.s

)\||ZO,U .
For the high-frequency part, by the Littlewood-Paley dichotomy, we have
29| (M)l

SO 27N ezl Nl 2o e + 27 I\ 2o 2 | ol 20
1<j

+ Y 27002 Byl e o | il e 2,

>3

which implies

Q27NN llgee2)'* S Whllzes X 250

>0
This completes the proof of ([Z20).

Proof of the bound (4.21)). For the low-frequency part, by Bernstein’s inequality we have
IV (AR)<ollizroere SIV(Aoh<o)llzrmrs + D IV(Ajhg)<ollizroere
>0
SIVA<ollizreer[Vh<oll oo r2 + IV A<ol oo 12l V<ol iz oo 2
+Z2dj/2||Aj||l§Lo<>L2||hj||L°<>L2
>0
SlAlzrol|R]| z0.

For the high-frequency part, by Littlewood-Paley dichotomy we bound the high-low and
low-high interactions by

27N Sk(Arhak + Ackhi) 2 Lo 12

278 (|| Aklliz oo 2 1hk | ow pow + ([ A<kl oo noe [V lli2 oo 12)
SHAklzee Rl s + [[All 700 ] 225,
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which is acceptable. We bound the high-high interaction by
275 71| Sk (Ajhy) I oo
>k
SN 2K A2 e
>k
S 27002 DI A2 o || | e 2,
i>k

which is also acceptable. Hence, we conclude the proof of the bound (Z21]). O

We now turn our attention to the proof of (AIE]).

Step 1. Proof of the elliptic estimates for \ equations. By the A-equations and Proposition
[4.4] it suffices to consider the following simplified form of the equations:

OadAap = D30t) + 5 AU + ASt) + SKVA + AVSA + VShA + VASA,
OadAgy — 036Ny = SAN + ASA + VShA + VASA.

By the relation (4.13) we have for any k& > 0
1Skl 200 S |SkRIU || 200 + [|Sk| DI T A + A) + A(89 + 6A)

+ SRV A+ VA + VhA + VhoA]|| go.s
S o+ sellSles

In order to bound the low frequency part & = 0, we use the relation

(1.22) o= 10+ 0,£(s)ds.

Then we have
1 lizroerz S NFO)L2 + 100 f [l 22
Using this idea, by Sobolev embeddings we have

15001222 S 10ROV iz 12 + | So| DI THIA(W + A) + A(6% + 6X)
+ 6hV A+ WYX + VA + VhoN] ||z 2
S [1S00¢ |20
+ [|So| D| MO A(W + N) + A(5¢ + 5N) + SAVA
+ WX + VEhA 4+ VhoN] (0)]| 2
+ [|So| D|TPO[SA( + N) + A(6 + 6X) + SRV A
+ hVSX + VOhA + VhON || 2z
S po + sollS

Es.

The high frequency part is obtained by a standard Littlewood-Paley decomposition and

Bernstein inequality. This gives the elliptic estimate for the d \-equation.
33



Step 2. Proof of the elliptic estimates for V, A and B equations. By the V, A, B-equations
and Proposition 1.4 it suffices to consider the following form

AV = hV?V + VAVV + VAVAV + V(A +V + Vh) + AV,

AA = hV2A+ VhVA +VhVhA + N (A+ Vh) +V(\?),

AB = hV?B+ V(AVA+ (V + A)N?) + A*VA + VAAVA + (V + A))\?)
+VVVA+ VhVVA.

The proofs of the four elliptic estimates for the above equations are similar, so we only prove
the elliptic estimate for the linearization of A-equation in detail, i.e.

ASA =5hV?A + hV?6A +V6hV A + VhVSA + VShVhA + (Vh)?6 A
+ SAN(A + Vh) + A2(0A + Vh) + VASA + AVOA.
We bound all the nonlinearities except VAdA and AV by
[|D|2Sk(0hV? A + hV?6 A + VOhV A + VhVSA + VShVhA + (Vh)*6A)|| g1.001
+ (|| D] 728k (SANA + VR) + AX(SA + V6h)) || 1041
S skl 08l |Sles (1 + [IS]le)™,

for 0 € (d/2 —1,s]. All terms are estimated in a similar fashion, so we only bound the first

term dhV2A.
For the low-frequency part we use the relation ([£22)) to bound the second term §AV?A by

IV=H(0RV2A) <ol 2100 22
SNVTHORVA)<0(0) | 2 + [V T101(0hV A) <ol 1212
S (6hV2A) <0(0) || p2ascavey + [|04(6AV? A) <ol 2 p2arare)
S [0h]| zeal[All 220 + VO0R| oo || All zrsrr + |0h]| 21042 ||V OL Al L2 o5
S 0R]|zro+2||Allzos

A minor modification of this argument also yields

IV 0V A)<olligroere S s0llS

Es-

For the high-frequency part, by Littlewood-Paley dichotomy and Bernstein’s inequality (3.1]),
we have

279 || D™ SRV A); 210012
< 27315k, V2 A iz + 158, V2 A ligoe sz + 3 5H VP Al e 12)

I>j
S N6hl|poore 2| Ayllizpoe o + D 2075 SRyl oo 12 | VY2 Al oo 12
I<j
+ 3 20792 N Gy | oo 2| Al p o 12
I>j
SsillSlles
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Finally, we bound the last two terms VAdA and AVAA. For low-frequency part, using
d > 4 we have

11D (VAN <ol 2
S IDI (VAN <0(0)]1 22 + D] 8(VAGN) <ol 222
< (V26N <0(0)]]11 + 18T AGN)<ol| 21
< 16X 200 | Allz0.

We also obtain

D17 (VAN <ollizroere S

For the high-frequency part, we have
|AH(VASN);
We can also bound the term AV similarly. This gives the elliptic estimate for d A-equation.

Step 3. Proof of the elliptic estimate for h-equation. By h-equation in (45]) and Proposi-
tion [4.4] it suffices to consider a more general equation of the form

ASh = 6hN?h + hV?5h + V6hVh + 6hNVhVh + hVhVSh + G AN.

The proof of the Z17*2 bound is similar to the estimates for \,V, A, B equations in Step
1, hence we only bound of the Y#271=%9+2.norm. We prove that the following frequency
envelope version holds:

g)".

e(1+S

||Sj5h||yd/2—1—6,o—+2 ,S SjHS

Case 1. The contribution of 6AN. By the Littlewood-Paley dichotomy, it suffices to
consider the high-low, low-high and high-high case

DR C2YPYS PR N OOV ¥ PR N (VP VS S
J2<j+0(1) J1<j+0(1) J1>5+0(1)
for any j € Z.

Case 1(a). The contribution of high-low and low-high interaction. The two cases are
proved similarly, so we only consider the worst case, namely the low-high interaction. When
Jj <0, by the definition of the Yj-norm we have

AUEMNATEY (G0 A )lly, 220 2727 (AN g, e
J1

Y
J1<J J1<g
< 20427270 Z 2U /2|6 ), Hlf ‘L°°L2H>‘j||l‘2. Lo L2
J1 J1
J1<j

S 23N DI Aco |y e 12 | DI Ao e 1.
< 26330 g1 .

When 5 > 0, we further divide the high-low interaction into

DTN = D BN+ D (0MN)

J1<J —Jj<51<J J1<—j
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For the first term, by Bernstein’s inequality we have
2T ATE N (A )il S 27 ) 10X, 20)5 1l poe 22
—Ji<51<y —J<i1sy

< 971 Z 2dj1/2||(5>\j1’|lJ2L°°L2’|>‘j||l]2L°°L2

—Jj<i1<y

For the second term we have
272AT S (GAA )l S 2070 ST 2 A e s

J1<—=j J1<—jJ

< 2(0 1)j Z 2d/2 1]1’|5AJ1||l2 L°°L2H j||l2 L00L2

J1<—j
< 2 DPoA<ollproe 21yl i2oe 12

Case 1(b). The contribution of high-high interactions. When j < 0, we divide this into
SN = D AN+ D (XA
J1>] —j=j1>j J1>—j
Then we bound the first term by

QB ATE Y (ANl

—j=j>j
NPARE Z H(é)\jl)\jl)jHl‘lﬂLle
—JZn>j
< 278N 2901 || VoS Acollproore | Vo A<ollzreore + Z||5>\j1||z§1LooL2||>\j1||l§1LooL2)
02j1>j Jj1>0

< 2(d—3—45)j80

Using the Y; norm we can also bound the second term by

2EIINATE N (A A )illyy S 272N T 21 (6A A )il e

=, J1>—j
5 Q(d_2_5)j Z 2j1Hd)\jl’|1J21L00L2||)\j1||l]21L00L2

J1>—j
5 2(d_2—45)j50

Finally, when j > 0, using again the Y; norm we have

20INATY (625 Ay S 22N (A5, M)l oo

Jj1>j J1>7
S Z (2= 0(=i) g (/2 10X lliz o2l A [liz oo
1 1
Jj1>j
S sillSlles-
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Case 2. The contribution of 6hV?h, hV25h and V6hVh. It suffices to prove that
|ATLS;(ShV2h + V?6h - b + VShVR)||ya/2-1-s0+2
For the high-low interactions, it suffices to consider the worst case V2P;0h - P<;h. For any

decomposition P;joh = ZlZ\jl dh;,, we have
IATES T (V26hj Ph)lly, S 27V |(V26hyu Pejh) | oo e

1214 123l

S 278l e 2l Pl oo 1o

1214

~

Taking the infimum over the decomposition of P;h yields
|ATH (V2 PioRP<;h) Iy, < [|Pohlly; | P<jhll oo roc,
which is acceptable. The low-high interactions is similar and omitted.

For the high-high interaction, it suffices to estimate »_ Voh;, Vhj);. By Bernstein’s
inequality we have

9(d/2-1-8)j~ +(o+2)* || A1 Z (Véh;, VR )illy,

j1>j(

J1>j
<2(d 3-8)j~ +(o+d/2)j ZH Voh;,Vhj); Hl‘lj‘LOOLl
J1>j
<2d=3-0)i" +(o+d/2)j ZHW%HzfﬂmL?HVhﬁ”le\L""LQ
J1>j
<2(d 3-25)j (||V5h<oHl2LooL2HVh<0||l2L°°L2 + szﬂHV(ShﬁHﬂ L00L2HVh]1Hl2 Loor2)
Jj1>0
+ Z 2(U—d/2)(j—j1)2(0+d/2)j1||v5h]‘1’|lj2.1LooL2||th1||l]21L°OL2

J1>35,5>0
S22 50| Sl + 35Sl
which is acceptable.
Case 3. The contribution of 6hVhVh and hVhVh. It suffices to prove that
|A™LS;(SAVAV h + hVAhVSh) ||y arz-1-s.02 S 55]|S||2

~ g3

For the low-frequency part, By Bernstein’s inequality and d > 4 we have
IATH SRV RV ) <ol yarz-1-s.0+2
SI(6RVRVR) <ol oo 12
Sl8h<olloeroe | (VAVR)<ollizoere + Y N0h; [l 12 [ (VAVA); 2o 2

j>0

For the high-frequency part, by Bernstein’s inequality we also have
2 ARV AV R)lly; < 27| (ORV AV Rl e 2 S 5511 Sz

Thus this completes the proof of Y#2-1-85+2 hound. O
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5. MULTILINEAR AND NONLINEAR ESTIMATES

This section contains our main multilinear estimates which are needed for the analysis of
the Schrodinger equation in (2.35). We begin with the following low-high bilinear estimates
of VAV.

Lemma 5.1. Let s > g, d > 2 and k € N. Suppose that Va(z) < (z)71, h € Y2 and

P € 12X5. Then for —s < o < s we have

(5.1) [Vher - Vibg|lieye S mind]|Allyo+z||Vnllizxs, [|Rllys+2|Yrlliexe
(5.2) 1h<k VaV i |liene S min{||hllyor2||Yr]lizxs, [[Allysre |ellexe }-
In addition, if —s < 0 < s — 1 then we have

(5.3) 1h<i VUi |lizne S [|hllvesz || Ve]lzxs

Proof. a) The estimates (5.1) and (5.3). The proof of second bound (5.3)) is similar to the
first, so we only prove the first bound in detail. By duality, it suffices to estimate

I == (VPhViy, ), j<k jE€Z, keN,

for any z := Sz € [2X}, with [2klli2x, < 1. For I; and any decomposition Pjh =3, hjy,
by duality and Bernstein inequality, we have

LSy sup (Vhy Vi, z)
1>[j| 1##1:2 x, <1
Y sup (VA pee e IVl 2222 |2 e 2222

l2|,7‘ ”Zk”l%XkSI

<3 2Vl e e e,

vl

S2E IS "B By 1y e 2 8
21|

Then taking the infimum over the decomposition of P;jh and incorporating the summation
over j yield

S° 2L Slbllyoe

J<k

wkHX"a

for any € > 0. If —s < o < d/2, we also have

Z 2UkIj < Z 2dj/2||Pjh||yj b || x» + Z 2(d/2+e—a)(j—k)2(a+2)j||pjh||yj ||

j<k §<0 §>0
SAllyore{[]

Thus the bound (G.1]) follows.
Estimate (2.3). By duality, it suffices to bound

II; = (P;hVaViy, 2), j <k, j €L,
38
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for any z;, € 2X} with [2kl[i2x, < 1. For any decomposition Pih = 3" hju, by [Val|(z) S
(z)~!, we consider the two cases |z| > 27/2 and |z| < 27/2 respectively and then obtain

II; ,SZ sup (th(z)_llgzz/z(:)s)V@Dk,zk)—I—Z sup (i ()" g2 () Viby, 21)

:][jl + ][jg.
The first term is bounded by
I Sy sup (lgllizoers Vel 22 ll2lliz, p2r2

l2|,7‘ ”Zk”lszSI

< Z Ql/2||hj,l||lllL°°L°° [l x,

1214

S22 2l gy e 2 e x,

12|51

The second term is bounded by

I 277 sup [ hjallg poo o | V0l 22| 2 e 2222

2l Ilgx st
S 2P hyallypoo o 10l x,
>3]
K292 N = g g e el x,
>

Then we obtain

> 2RI SO 2R Pblly; + Y 29y, ) e e

i<k J<0 Jj>0
S minf | Aflye-elellixe, llyos el -

Thus the bound (5.2)) follows. O

We next prove the remaining bilinear estimates and trilinear estimates.

Proposition 5.2 (Nonlinear estimates). Let s > %l, —s<o<sandd>2, assume that py
and s;, are admissible frequency envelopes for 1 € 12X7, S € £7 respectively. Then we have

(5.4) 15k (hz ks V) liene S min{sel|llizxs, pellhl z1s+2},
(5.5) 15k (Ask-aVO)|li2ne S min{spl[¢)[li2xs, prllAll 21041},
(5.6) 15k (BY)[lene S min{sg|[¢[lizxs, pel| Bll 21+ },
(5.7) 1S6(A*Y) lli2ne S minsgl|All gol|9ol|izxe, pell All 7.}
(5.8) 1Sk M) lizne < skl A Zo.0-

If —s <o <s—1, then

(5.9) 1S (ActaV8) e S sl
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Proof. We first prove (5.4 and (5.5). These two bounds are proved similarly, here we only
prove the first bound in detail. For the high-low case, by (B.1I) we have

Z 196V (R, Vibjy) llizne S Z Q(UH)thﬁ ||l§L2L2 ||V¢j2||lgL°oLoo

j2<k+C J1=k+0(1),j2<k+C
S Y 2R TRy era [l peer2
J2<k+C
Smindsg|[v|zxs, prllh]|z1s+2}-
For the high-high case, when ¢ + d/2 + 1 > 0 we have
> 1SV (h V) e
J1=424+0(1),j1>k
S Y 20MRRG (hy V) | e
J1=424+0(1),j1>k
< Z ot Hd/2) (k=) +Ho+2+d/2h | ,
J1=424+0(1),j1>k
S min{sg|[¢f|r2xs, prll bl z1s+2},
and when o 4+ d/2+ 1 < 0 we have
> ISV (g, V) lliene
J1=j24+0(1),j1>k
S D 2RI g, e
J1=j2+0(1),j1>k
S min{se|[ Y]z, prl| 2l 21542},
Next, we prove the bounds (5.0)-(5.8]). These bounds can be estimated similarly, we only
prove (5.0) in detail. Indeed, for (5.6]), by duality we have
1S6(BY) lene S 27 (Sk(BY) | 2 22

Then using Littlewood-Paley dichotomy to divide this into low-high, high-low and high-high
cases. For the low-high case, by Sobolev embedding we have

27 Sk(Bartoi) | zere SIBllzoor2[Wnlli2zz S prll Bll 7r.arse,

for any € > 0. We also have for o < d/2
2Uk||5k(B<kwk) ||L2L2 5 Z 2(d/2+6—a)(l—k) ||VUBI||L°°L22(d/2+6)k||¢k||L2L2

0<I<k
Ssellvllexs

The high-low case can be estimated similarly. For the high-high case, by Sobolev embedding
when o + d/2 > 0 we have

20k||Sk(Bl¢l) ||L2L2 5 Z 2(cr+d/2+e)(k—l)2(cr+d/2+e)l ||Bl ||L°°L2 ||"7bl ||L2L2
1>k
Smin{sgl[¢]lizxs, pelBll 21},
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and when o + d/2 < 0 we have

2°M|Sk (Bl ez S Y 2 ¥ | By oo 2 [ 212
>k

S min{s[|[]lxs, il Bl 21},

These imply the bound (5.0).
Finally, we prove the bound (59). If ¢ > d/2 — 1, by duality and Sobolev embedding, we
have

2| Ack Vi 22 Ssill¢lliexcs-
If 0 <d/2—1, we have

20k||A<kv¢kHL2L2 5 Z 2(d/2_1_0+6)(l_k)HVU+1A1||L°°L22(d/2+5)k||wk||L2L2

0<i<k
Sl
Then the bound (5.9]) follows. Hence this completes the proof of the lemma. O

We shall also require the following bounds on commutators.

Proposition 5.3 (Commutator bounds). Let s > %,d > 2. Let m(D) be a multiplier with
symbol m € S°. Assume h € Y2, A € ZY! and )y, € 12X®, frequency localized at
frequency 2F. If —s < 0 < s we have

(5.10) IVS<k—ah, m(D)V il ne S min[|h]lyeezlldllexs, 1hllys+2lldrlexe},

(5.11) 11Sk: Ack-a]Vibrllene S min{ || Al zuss [rllexe, LAl zeoe |[9gllexs )

Proof. First we estimate (5.10). In [21, Proposition 3.2], it was shown that
V[S<k—19,m(D)|VSip = L(VS<k_ag, VSi1),

where L is a translation invariant operator satisfying

L(f.9)(x) = / f(x + )9z + iy + 2)dydz, e L.

Given this representation, as we are working in translation-invariant spaces, by (&) the
bound (EI0) follows.
Next, for the bound (B.I1]). Since

1
[Sky Ack] VY = / /de@(Qky)QkyVA<k(x - sy)Q‘kvw[k_&Hg} (x — y)dyds,
0
By translation-invariance and the similar argument to (5.6)), the bound (5.11]) follows. This
completes the proof of the lemma. O
6. LOCAL ENERGY DECAY AND THE LINEARIZED PROBLEM

In this section, we consider a linear Schrodinger equation
(6.1) 1040 + 00 g™ Opth + 21 A%0pt) + Bip = F,

' ¥(0) = %o,
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and, under suitable assumptions on the coefficients, we prove that the solution satisfies
suitable energy and local energy bounds.

6.1. The linear paradifferential Schrodinger flow. As an intermediate step, here we
prove energy and local energy bounds for a frequency localized linear paradifferential Schrodinger
equation

(6.2) 107y, + Da(92h_4050n) + 20A%,_10uth = fi.

We begin with the energy estimates, which are fairly standard:

Lemma 6.1 (Energy-type estimate). Let d > 2, 1. solves the equation (6.2) with initial

data ¥x(0) in the time interval [0,1]. For a fivred s > ¢, assume that A € Z“**1, oy € 2Xy,

fit € N and for, € L*L?, where fi, = fix + for. Then we have

el ooz SHvw(O)IZ + 1A zrser llnl%, + leoullx | funll v,

(6.3)
+ 10kl oo e[| forll Lr e

Proof. By (6.2)), we have
1d

5 [kll72 = Re(thy, Qe

=Re (v, ié‘agii_ﬁwk —2A%,_ 10k — ifk)

= — Re(0, Uk, igz§_485wk> — Re /d A‘ik_40a|wk|2da: — Re(y, i fx)
R

:Re/ On A% o_s| bk *dx — Re(¥y, i fr),
R4

and notice that for each ¢t € [0, 1] we have by duality and Sobolev embedding

1
ln(®) 122 Il (0) 122 + / / 10 AZ Pt + [l el
+ ||l oo 2 || for | 1 2
< ()2 + Al [,
el o, Nl e g | o2

We take the supremum over ¢ on the left hand side and the conclusion follows. O

Next, we prove the main result of this section, namely the local energy estimates for
solutions to (6.2)):

Proposition 6.2 (Local energy decay). Let d > 3, assume that the coefficients g** =
58 + heB and A in [62) satisfy

(6.4) I

for some s > g. Let 1y, be a solution to (6.3) which is localized at frequency 2%. Then the
following estimate holds:

(6.5) [Vl S N1okllzz + [1fxlliz v,
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Proof. The proof is closely related to that given in [21, 22]. However, here we are able to
relax the assumptions both on the metric g and on the magnetic potential A. In the latter
case, unlike in [21, 22], we treat the magnetic term 2iA%, ,0,1 as a part of the linear
equation, which allows us to avoid bilinear estimates for this term and use only the bound
for A in Z1T

As an intermediate step in the proof, we will establish a local energy decay bound in a
cube ) € Q; with 0 <[ < k:

2Nkl To e o) S 1l Zoore + L felln 19kl x,

(6.6) _
+ 27+ Al zrosr + |hllysrs) [0, -

The proof of this bound is based on a positive commutator argument using a well chosen
multiplier M. This will be first-order differential operator with smooth coefficients which
are localized at frequency < 1. Precisely, we will use a multiplier M which is a sef-adjoint
differential operator having the form

(6.7) 128 M = a®(x)0, + 0na* (1)

with uniform bounds on a and its derivatives.
Before proving [6.5, we need the following lemma which is used to dismiss the (g — I) and
the A contributions to the commutator [9,9°0s, M].

Lemma 6.3. Let s > 4 and d > 3, assume that h € Y™, A€ Z"*! and ¢ € I} X}, let M
be as (6.7). Then we have

1
(6.8) / (0522 05, Ml ) ds < ||

vorelelZ

(6.9) /01 Re(AZ)_40athe, Mp)ds S (| Allzes [l -
Proof of Lemmal6.3. By (6.7) and directly computations, we get

(0,705, M] = 27¥[V(hVa + aVh)V + VhV?a + hV3a).
Then it suffices to estimate

1 1
ok / ((h<xVa + aVhep) Vb, Vb ds + 27 / (Vhap V2a + hapy V3a)iy, 1y )ds
0 0

The first integral is estimated by (5.I) and (5.2]). Using Sobolev embedding, the second
integral is bounded by

1
2_k/ (Vher + he)tr, vi)ds S VD herll 2 el Zere S IVAlLoons 9]l x, -
0

Hence, the bound (6.8)) follows.
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For the second bound (69), by (617) and integration by parts we rewrite the following
term as

d
Re(A0a10,1 Y (503 + Dpag)v)
5=1

= RGZ/ 18 wAaCLﬁ&ﬁw) — Zlb& Aaaﬁﬁﬁw iQZAaﬁaagﬁﬁiﬂ - i@Aaaﬁﬁiw

+ i05( A0 fagth) — 03 A°Qptbagt) — iA" G gbagy | da

z/ (V)AYVipdzx.
R4
Then we bound the left-hand side of (6.9) by

1 1
/ Re(A%, 0uib, Miy)ds <27 / / (V) At V| dirds
0 0 Rd

SIV Al e ps 1Ykl F2re-
This implies the bound (6.9)), and hence completes the proof of the lemma. O

Returning to the proof of (6.6]), for the self-adjoint multiplier M we compute

%ka M) =2 Re(Oybr, M)

=2 Re(i0, (927 _1050k) — 2A%_40athi — i fr, May,)
=i([—0agh_s08, My, i) + 2Re(—2A4%, _,0athy, — i frr, M)

We then use the multiplier M as in |21} 22] so that the following three properties hold:
(1) Boundedness on frequency 2* localized functions,
[Mullzz S flullzz.
(2) Boundedness in X,
[Mullx < Jlullx-

(3) Positive commutator,
i{[=0ag2y 05, Mlu,w) Z 2 lullZe (o.xq) = O + lhllyssa) ulliex,

If these three properties hold for u = 1, then by (6.9) and (6.4]) the bound ([6.6]) follows.
We first do this when the Fourier transform of the solution v, is restricted to a small angle

(6.10) suppty, C {[¢] S &}

Without loss of generality due to translation invariance, @ = {|z;| <2':j=1,...,d}, and
we set m to be a smooth, bounded, increasing function such that m’(s) = p?(s) where ¢ is
a Schwartz function localized at frequencies < 1, and ¢ ~ 1 for |s| < 1. We rescale m and
set my(s) = m(27!s). Then, we fix

1

M= o — (my(z1)01 + Ormy(xq)).
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The properties (1) and (2) are immediate due to the frequency localization of u = 1) and
my as well as the boundedness of m;. By (6.8)) it suffices to consider the property (3) for the
operator

—A = —5’a93§_45‘5 + 8ahii—4aﬁ-
This yields
P2V A, M| = —27720,0% (27 21)0) + O(1),
and hence
28— A, M, ) = 272027 20) 01l 22 + O1¢nl7212)
Utilizing our assumption (6.10), it follows that
2o el S =D, My, i) + 27Ol 7212)

which yields (3) when combined with (6.8]).
We proceed to reduce the problem to the case when (6.10) holds. We let {6;(w)}?_, be a
partition of unity,

Z@(w) =1, wes,
J
where 6;(w) is supported in a small angle about the j-th coordinate axis. Then, we can set

Qﬂk’j = @k,j¢k Where
Fouu=0() S b6,

€1 S

We see that

(i0; + O0ag2h_108) ks + 2iA%,_10athr
=01 fr — 0a[Onj» g% _ 4]0 — 2i[Oy j, AZ),_ 1] Outir.

By applying M, suitably adapted to the correct coordinate axis, to 1 ; and summing
over j, we obtain

25|y, H%ZLZ([O,I]XQ)

d 1
< lBegs + 3 / (—Op s i, My ;)
j=1"0

d
Y / (011 0ug2_ 061tk + (O s 20A%,_]0atby, My ;) ds
j=1
£ 4 Al + bl el
< WelBooge + el el + (275 4 [ AlLess + 18]

The commutator is done via (5.10) and (5.11). Then ([6.6]) follows.
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Next we use the bound (6.6) to complete the proof of Proposition [6:2l Taking the supre-
mum in (6.6) over Q) € Q; and over [, we obtain

2%l % SvnllZoo e + 1wl wlleomll, + [ forll oz [ 0n] oo e
+ (27 + [[All 2001 + [lhllyor) 9l
Skl Zoo e + I fullwellomllx + 11 forl|Z 2
+ 27+ Al zros + |hllysre) [0nlfx, -
Combined with (6.3), we get

el SNz + 1 fuliy, + I foell o2
+ (27 + Al g + |||

(6.11)

ver2) I,

We now finish the proof by incorporating the summation over cubes. We let {x¢} denote
a partition via functions which are localized to frequencies < 1 which are associated to cubes
Q of scale M2*. We also assume that |Vixg| < (28M)~!, 1 =1,2. Thus,

(i0; + Oagn_108) XUk + 21A%,_40axqUn
=X i + 10925108, XQ|Wr + 20A%,_40uxq - Vi
Applying ([6.3)) to xgo¥k, we obtain

> IIxotnllzere
Q

S Ixeue(0)zz + [Allzree Y lIxotnllk,
Q Q

+ QI el i) 2O lxanllz, )2
Q Q

+ ZH [f%g?i_ﬁﬁ, XQIUk + 2042, _40axq - YkllT1 12
Q

But by (6.4]) we have

S VeV xoltrliie S IV Vxg - e + 9V (Vg - )71,
Q Q

(6.12) , )
S |2l zres2) M7 IxQUkl[Foe 124
Q
and also
(6.13) D 11242, 40axq - VellTie S A+ A2 MY lixowlli -

Q Q

For M sufficiently large, we can bootstrap the commutator terms, and, after a straightforward
transition to cubes of scale 2* rather than M2, we observe that

(6.14) 1kl poe 2 SIR(0)1Z2 + I[N 1o 19kl x, + [ filliz v, k2 x, -
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We now apply (6.I1) to xgx, and then by (6.12) and (G.I3) we see that
> Ixevelx, SIoeO)z + D lxafullt, + M7 lIxovsl,
Q Q Q

+ (27F + ||n

vorz + 1Al z100) D lIxo¥rlfo, -
Q

For M > 1, we have
M= ull s, SN2 + L fallzn, + @7 + hllyssz + [Allzres) 1l -

By (6.4]), for k sufficiently large (depending on M), we may absorb the second and the last
terms in the right-hand side into the left, i.e

ieli2 v, S IR (O)]22 + 1l
On the other hand, for the remaining bounded range of k, we have

[Pl S (1]l z2,

and then (6.14) and (6.4)) gives
el x, SHe(O)Z2 + Al zeee 19l x, + 1 fellin el x,
SIeRO)IZe + 1 £l
which finishes the proof of (6.5]). O

6.2. The full linear problem. Here we use the bounds for the paradifferential equation in
the previous subsection in order to prove similar bounds for the full equation (G.1):

Proposition 6.4 (Well-posedness). Let s > g, d>3and h=qg—1c Y*2, assume that
the metric g, and the magnetic potential A satisfy
Bllese, AN, (Bl < 1.

Then the equation (61 is well-posed for initial data 1y € H? with —s < o < s, and we have
the estimate

(6.15) [¥lliexe S 1Yol + [|F]li2ne
Moreover, for 0 < o < s we have the estimate
(6.16) [¥lliexe S MlYbollae + | Flliznonrpz 2.

Proof. The well-posedness follows in a standard fashion from a similar energy estimate for
the adjoint equation. Since the adjoint equation has a similar form, with similar bounds on
the coefficients, such an estimate follows directly from (6I5). Thus, we now focus on the
proof of the bound (6I5). For ¥ solving (G.1]), we see that Wy, solves

10, Uy + 0ag™hy 405y + 201A%, 40,V = Fy, + Hy,
{‘I’k(o) = W,
where
Hp=— Skaaggi_ﬁﬂ — [Sk, a9k 105 — 2i[Sk, A%, _4]0a ¥
— 2iSk[AL),_40aVi] — Sk(BY).
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If we apply Proposition to each of these equations, we see that
1slliexe S 1Wokllzre + [1F%Fene + | Hkll 7oy
We claim that
D IHlEye S (hllyses + [Allz1s + (1Bl 205)* 9 fexe, for —s <o <.
k

Indeed, the bound for the terms in Hj follows from (54), (5I0), (11, (B3) and (G.6),

respectively. Then by the above two bounds, we obtain the estimate (6.15]).
Finally, by the -equation (6.1]), for time derivative bound it suffices to consider the form

Opp = AV + V(YY) + AV + By + F.

Then by the standard Littlewood-Paley dichotomy and Bernstein’s inequality, for 0 < o < s
we have the following estimates

10| z2mo—2 S W llLoome + ([ F || 22mo-2,
This, combined with (6.15]), yields the bound (6.16]), and then completes the proof of the

Lemma. ]

6.3. The linearized problem. Here we consider the linearized equation:

{z’@t\If + 009?050 + 2iA°0, 0 = F + G,

(6.17) 9(0) 7,

where
G = -GV — 21 A%0,1),

and we prove the following.

Proposition 6.5. Let s > %l, 0<o<s—1,d>3andh=g—1¢c Y2, assume that ¥ is
a solution of (GIM), the metric g, A and V' satisfy

15|

verz, [[Af 710 <1
Then we have the estimate
(6.18) [Wlliexe < [[Wolle + |1 Fllienonzza—2 + ([Gllys + Al z1000) [l
Proof. For ¥ solving (6.I7), we see that Wy, solves
10, Wy, + Oag™h 405V + 2iA%, 10,V = Fy + Gy, + Hy,
{‘I’k(o) = Wog,
where

Gr = —SK(GV*Y — 2iA%0,0),

Hk = — Sk(‘?aggi_ﬁgllf — [Sk, &xgii_@g]\lf — 2i[Sk, Aik_4]8a\11
— 2iSK[A%;_40.Vy).
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The proof of (G.I8)) is similar to that of (G.I6). Here it suffices to prove
Y NGy S NG el $llx + IAN G 9] fexe
k

Gl 2o—2 S (1G]yo+2 + [[All o) [Pl xo-

Indeed, the bound for the terms in Gy follows from (5.4)), (5:3), (5.5) and (5:9). The second
bound follows from a standard Littlewood-Paley decomposition and Bernstein’s inequality.
This completes the proof of the Lemma. O

7. WELL-POSEDNESS IN THE GOOD GAUGE

In this section we use the elliptic results in Section [ the multilinear estimates in Section [
and the linear local energy decay bounds in Section [@ in order to prove the good gauge
formulation of our main result, namely Theorem 2.7]

7.1. The iteration scheme: uniform bounds. Here we seek to construct solutions to
(235) iteratively, based on the scheme

1

(i0; + Dag™P05) ™) 4 2i( AT — 5

¥(0) = %o,

with the trivial initialization

Ymeayg D) — p)
(7'1) ) w Y

where the nonlinearities are
(7.2) F®) :aag(n)ocﬁ . am/)(m + (B(") + A&N)A(n)a _ V(")QA((N"))@/)(") _ Z-)\((In)v Imw(n);(yn)a)’

and S™ = (A p™ YO AM RO are the solutions of elliptic equations (Z.36) with
Y =90,

We assume that 1)y is small in H®. Due to the above trivial initialization, we also induc-
tively assume that

[0 [li2xs < Ol

Hs»
where C' is a big constant.
Applying the elliptic estimate ([EI4) to ([2.36) with ¢ = ¥ at each step, we obtain

IS™ g < [
Applying at each step the local energy bound (6.16]) with 0 = s we obtain the estimate
[ [l Sllol

Hs,

Hs + ||F(n)||l2NsmL2H372

Sollas + 18" les (14 [[S™ [l es) |90 2+
Sloll s + (Cllvbollas)* (1 + Cllwbol | ar)
<Ctol| s -

Here the nonlinear terms in F(™ are estimated using (5.1)), (5.6), (5.7) and (5.8) with o = s.
Since 1 is small in H®, the above two bounds give

(7.3) [0 [2xs < Ot

which closes our induction.

Hs,
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7.2. The iteration scheme: weak convergence. Here we prove that our iteration scheme
converges in the weaker H*~! topology. We denote the differences by

P+l — w(n+1) _ 1/,(“)7
S — (A Gt YD) gD Bty — gt _ gn)
Then from (7.I]) we obtain the system
10, Ut g(N)aﬁaiﬁqj(er) + 23 (A — %V(n)a)aa\p(nﬂ) = ) _ pl-1) 4 )
(0, ) = 0,
where the nonlinearities G™ have the form
G = — G2 ) — 24(AM — —v ) Dotp ™,

By (@I6]) we obtain
168" | ge1 < 0 fi2xo-1.
Applying (6.I8) with o = s — 1 for the W1 equation we have
[0 gt SIF™ = FO D nsmsnpeps-s + (1™ [yser + [V, A 120s] [47)]|i2 -
Then by (&), (56), (51) and (5.8 with 0 = s — 1 we bound the right hand side above by
I ot SCollas (T, 8™ oo wgs-t < T oo

HS

This implies that our iterations (™ converge in [2X*~! to some function ¢. Furthermore,
by the uniform bound (73) it follows that

(7.4) [¥llexs S o]z

Interpolating, it follows that 1™ converges to 1 in I>X°*~¢ for all ¢ > 0. This allows us
to conclude that the auxiliary functions S™ associated to 1™ converge to the functions
S associated to 1, and also to pass to the limit and conclude that v solves the (SMCF)
equation (2.35). Thus we have established the existence part of our main theorem.

7.3. Uniqueness via weak Lipschitz dependence. Consider the difference of two solu-
tions

(U,68) = (b — 9@ 1 — @),
The ¥ solves an equation of this form
10,V + 9,g VP 050 + 2i(AM> — %vw)aa\y =rM_F® 4@,
(0, 2) = g (2) = ¥ (2),
where the nonlinearity G is

G = — 9,(Gos0?) — 2i(A~ — %va)aaw?).

By (4.10), we have
165

gsfl S ||\I]||12Xsfl .
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Applying (6I8) with o0 = s — 1 to the ¥ equation, we obtain the estimate
19 ]lexot S [Woll st + [ FY = FOllans-snpems—s + ([Gllys+1 + (Vs A)lz2) 9P li2x
S %ol + Ol 86 e (2, 68) iaxgs-1 g
Then, by (4.16), we further have

[ lfrexe-r S ([ Wol

HS

1 2
ot + Cll, w8

Hs \II ||l2X571

Since the initial data wél) and 1/1(()2) are sufficiently small, we obtain
(7.5) []lzxcs 1 S [ Wol

This gives the weak Lipschitz dependence, as well as the uniqueness of solutions for (2.35]).

Hs—1.

7.4. Frequency envelope bounds. Here we prove a stronger frequency envelope version
of estimate ((.4]).

Proposition 7.1. Let ¢ € I?°X* be a small data solution to (2.33), which satisfies (7.4)). Let
{por} be an admissible frequency envelope for the initial data g € H*. Then {po} is also
frequency envelope for 1 in 12X,

Proof. Let p and s be the admissible frequency envelopes for solution (1, S) € I?X* x €°.
Applying Sk to the modified Schrodinger equation in (2.35]), we obtain the paradifferential
equation

o : 1 oo
(i0; + aag<§_486)¢k + 2i(A — §V)<k_4aa¢k = Fy, + Ji,
¥(0,2) = to(z),

where
Je = = S10a924_4080 — [Sk, 0agh_40s])
) 1., ) 1.,
- 22[510 (A - §V)<k—4]aaw - QZSk[(A - §V)2k—4aa¢k]>

and S = (A, h,V, A, B) is the solution to the elliptic system (230). We estimate ¢, = Sk
using Proposition [6.5. By Proposition [5.2], Lemma [5.1] and Lemma [5.3] we obtain

[¢xlliexs < pox + (P + si)l[¢[lizxs-
Then by (4.15), the definition of frequency envelope (3.3]) and (7.4)), this implies

i S pok + PrllYliexs-
By the smallness of ¢ € [2X?, this further gives pp < pox, and concludes the proof. O

7.5. Continuous dependence on the initial data. Here we show that the map vy —
(1,8) is continuous from H*® into I?X® x £°. By (4I0), it suffices to prove vy — 1 is
continuous from H* to [2X?.

Suppose that 1/1(()") — 1o in H®. Denote by pg;), respectively por the frequency envelopes
associated to 1/1(()"), respectively 1y, given by [B.3)). If %n) — 1)y in H® then p(()z) — pog in 2.
Then for each € > 0 we can find some N, so that

||P(()2N€||z2 <, for all n.
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By Proposition [.]]l we obtain that
(7.6) 1675 lexs < e, for all n.
To compare ™ with ¢ we use (Z.5)) for low frequencies and (Z.6)) for the high frequencies,

19 — plzxs SIS<n. (W™ — ) |lzxs + 1S58 0™ lizxs + ||Ss w0 l12x
S2YY| Sy, (W™ — )| jexe—1 + 2€

Sen. (W8 = o) || re—r + 2e.

<o

Letting n — oo we obtain
lim sup ™ — ¢[|pxs S €.

n—oo

Letting ¢ — 0 we obtain
hm||¢(") — ’gb”pxs = 0,
n—0

which completes the desired result.

7.6. Higher regularity. Here we prove that the solution (1, S) satisfies the bound

(¥, S)lliexoxer S tbollae, o > s,

whenever the right hand side is finite.
Differentiating the original Schrodinger equation (2.38) yields

(10, + 0ag™’ 05)Vtp + 2i( A — g)aaaw = —0,(Vg*P 1)) — 20V A“O,0) + VF,
where F'is defined as in ([7.2]) without superscript (n). Using Proposition [6.5(b) we obtain
IVelliexs S Vel + (Vi V) llizxses | (1 S)llizxs xes (1 + 11, S)lizxs xes) ™

For elliptic equations, by (4.1€) we obtain
[VSlles S IVYi2xs.

Hence, by ([7.4]), these imply
[(Ve, VE)[lexsxes S IV
Inductively, we can obtain the system for (V", V"S). This leads to
1V, V" S) lexexes S I1Wollmeen + ¢,

HS.

which shows that

e+ |9 [P

120, S)lliaxcsnxgstn S ol

8. THE RECONSTRUCTION OF THE FLOW

In this last section we close the circle of ideas in this paper, and prove that one can start
from the good gauge solution given by Theorem [2.7] and reconstruct the flow at the level of
d-dimensional embedded submanifolds. We do this in several steps:
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8.1. The starting point. Our evolution begins at time ¢ = 0, where we need to represent
the initial submanifold as parametrized with global harmonic coordinates, represented via the
map F : RY — R42. This is the goal of this subsection, which is carried out in Proposition
8.1l

Once this is done, we have the frame F, in the tangent space and the frame m in the
normal bundle. In turn, as described in Section 2| these generate the metric g, the second
fundamental form A\ with trace ¢ and the connection A, all at the initial time ¢ = 0.

Moving forward in time, Theorem 2.7 provides us with the time evolution of ¢ via the
Schodinger flow (2235]), as well as the functions (), g, V, A, B) satisfying the elliptic system
(230) together with the constraints (24)), [2.8]), (216), (Z14), 2I7) and 220). The objec-
tive of the rest of this section is then to use these functions in order to reconstruct the map
I which describes the manifold F' at later times.

We now return to the question of constructing the harmonic coordinates at the initial time.
In order to state the following proposition, we define some notations. Let F': R? — (R4+2, gg)
be an immersion with induced metric g(x). For any change of coordinate y = x + ¢(z), we
denote

F(y) = F(x(y)), )
and its induced metric gos(y) = (9, F', 0., F). We also denote its Christoffel symbol as T’
and h(y) = §y) — Ia-
Proposition 8.1 (Global harmonic coordinates). Let d > 3, s >
F:(R7, g) = (R, go)

be an immersion with induced metric g = I+ h. Assume that Vh(x) is small in H*(dx).
Then there ezists a unique change of coordinates y = x+ ¢(x) with lim,_, ¢(z) =0 and Vo

d

5, and

uniformly small, such that the new coordinates {yi,- -+ ,yq} are global harmonic coordinates,
namely, )
g (y)Los(y) =0, for anyy € RY.
Moreover,
(8.1) IV26 (@) 112y S N VA@) | 172 ()
and, in the new coordinates {y1,- -+ ,ya},
(8.2) 10y bl 112 (ay) S 100h| 122 a)-

Proof. Step 1: Derivation of the ¢-equations.
We make the following change of coordinates such that the {y,---,yq} is a global har-
monic coordinate
R — RY — R4+2
y — x — Flz(y)) = F(y)
where x + ¢(x) = y with lim, ,, ¢(x) = 0 and V¢ small.

To determine the function ¢, we perfor a few computations. For any vector f = (f1,---, f4),
we denote
oh ... 9h
8f 8:1,‘1 6Z‘d
dr \og . o
8961 8gcd
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Then we have

or  000r _,
oy  oroy *
This implies that
g—j =1;— %jt(?(x),
where the matrix C(z) is a higher order term which satisfies
9¢ 99

Cla) = (500 — C)5E,

or, equivalently, it is given by

9 9
Cla) = (222(1— 9y,

We denote

(8.3) ph —% + Coa(a).

Since F(y) = F(z(y)), then we have
OF OF OF dx, OF Ou,

(84) gaﬁ(y) :<8ya’ 82/5 = 825'“ aya> 85(71, 8y5>
:gw’(x)((sg - 8a¢u + C,ua)(ég - 8ﬁ¢u + Cl,ﬁ)
and
o Va @ 9 V(o
(8.5) 3 (y) =g 52220 = g (5 + 0,u00) (07 + Dug).

Oz, Ox,
We also have

agaﬁ(y) _ agaﬁ(y) 8$m

(8.6) Yy 0 Oy,

= _gu582y¢u - gaua§7¢u + aﬁ/gaﬁ + ]Caﬁ,w

where the higher order terms K.z, are defined as

Or, 02y

Kagr == G0y 0uPh + 905Cria s 9 PLOS by + G 8yZ 0,Cyp
ox Ox, Ox
+ 0y 9o Pl + 05 G P == + Oy, (9 (2) =2 =] P
2] B Y9 Ay [u()ayaayﬁ ¥

The relation §*°T 45, = 0 combined with (&3] and (8.6) implies that

0 :gmn(&?@ + amgba)(ég + 8n¢ﬁ) [ - guﬁaifygbu - g’yvagaﬁbu + 8ag'yﬁ + IC’YB#X
1 1

1 2 1 2
+ §gu68a«,¢u + §gauaﬁ«,¢u - ia*ygaﬁ - §’Ca6;y}-

This gives the elliptic equations of ¢,

(8.7) A¢, =Non,(g, ),
54



with the boundary condition lim,_,~, ¢(x) = 0, where the nonlinearities Non, (g, ¢) are given
by

1
Nonﬁ,(g, ¢) = — hy Ap, — haﬁgwaiﬁ¢1/ + gaﬁ(raﬁﬁf + Kyga — §Icaﬁ,’y)
+ gmn(égzangbﬁ + 8m¢a5£ + am¢aan¢6) [ - guﬁai»ygbu - gwaéaﬁbu

1 1 1
+ §gl¢58§'\/¢u + §ga1/8§—y¢u + FO!B,’Y + IC’YB#X - §’C0¢BF‘/} :

Step 2: Solve the ¢-equations ([RT). By the contraction principle, the existence and
uniqueness of solution of (87) and the bound (81 are obtained by the following Lemma.

Lemma 8.2. Let g be as in Proposition [81. Then the map ¢ — Non,(g,¢) is Lipschitz
from
H*" + H? — H*

with Lipschitz constant € for [|[V2¢||gs < e.

Proof of Lemma[82. In order to prove Lemma [R.2, we consider the following simplified lin-
earization for Non, (g, ¢) as a function of ¢:

T (g, ¢, ®) =h(1 + h)V?® + g(Vh + 6K)

(8.8) +g(V® + V¢V ) [gV?¢ + Vh + K]
+g(Vo+ VoVo) [gV2<I> + 0K
where ® is the linearized variable associated to ¢, K has the form
K :=gV?¢P + gVC(1+P)+ VhP(1+P) + V[g(1 + P)*P,
and oK is
K :=gV*®P + gV2poP + gViC(1 4+ P) + gVCSP + VhIP(1 + P)
+ V[gdP(1 + P)]P + V[g(1 + P)*}6P.
Here C and 0C satisfy
C=VoVp+CVep, 0C=VopVP+iCVep+CVO,
and P and 0P are
P=Vo+C, OdP=V>I+4C.
Then for the equation (8.8) we have estimates as follows:

Lemma 8.3 (Elliptic estimates for (8.8))). Let d > 3 and s > d/2. Assume that |V h]|
and ||V2¢|| s <€, then for the linearized expression [B8) we have the following estimate

(8.9) 1T (g, &, ®)llzz S VD]l + €l V*D|

Proof of Lemmal[83. First, we bound C, dC, P and §P. By Sobolev embeddings, using also
the smallness condition |V2¢||zs < €, we have

IVCllm= S V26l + IVC] s
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and

IVoC s SIVZ0 NIV @ls + VOC|11: [Vl 12 + IV C [ V@11
Ze|| V2| s + €||VOC|| s + || VC || s || V2P| i1
These imply
(8.10) IVCllas S €2, ||VOC||lms S el V2P| s
Similarly we have
(8.11) IVPllus Se, (IVOP|lgs S IV s
By Sobolev embedding we bound d/C by
16K | zze S(L+ VR (V2@ s [ VP11 + (V2 1 [ VP
+ ||VC| gs (1 + [|[VP||us) + IVC|| s [| VOP|| s
+ VA s [[VOP| s (1 + | VP 275 )?
+ (1 + ||VA| g)|VOP| gs | VP || us (1 + || VP us)]-
This combined with (8I0) and (8IT]) implies
(8.12) 16K || 25 < €||V2®| gz
Similarly, we also have
(8.13) 1K ||z < €2
Now by Sobolev embedding we bound 7T (g, ¢, ®) by
[Tl zzs SNVAIzs (14 VA ) (1 + V2R 5) + (1 + [ VAl ) 10K 125
+ (1 + VA ) V2@ (1 + (V26| 115
A+ IV )Vl as + VAl s + 1Kl 5]
+ (L [IVA )V s (1 + (V2 o) (1 + VAN ) V2| ars + (0K ).
By the assumptions, (8.13]) and (8.12)), this gives
1T (9.6, @)= SNV s + €] VAR 1.
We conclude the proof of the lemma. O
We continue to prove Lemma With small Lipschitz constant € for ||V2¢|gs < €, by
(B9) we have
INon, (g, é) = < Vhllm: + €,
and
INon, (g, ¢) — Non, (g, 6) || s < el V(¢ = &)l
These give the Lipschitz continuity, completing the proof of Lemma 0

Step 3: Prove the bound (82). First we prove the following bound

(8.14) ||(3yﬁ)(y(w))||Hs(5dg) S 116:h]

Hs(dz)-



By (84), it suffices to bound

(L4 P):[g(1 + P)?|| = SN10:g(1 + P)*||m=(1 + | VP
SN0eglm= (1 + | VP =)
+ 0P| ar= (1 + |0k 1r=) (L + | VP | 1r:)?

SUI0sgll i + 10:Pllz=) (1 + €)° < [|0a1]

He)

Hs.

This gives the bound (8.14).
In order to complete the proof, we also need the following lemma:

Lemma 8.4. Let the change of coordinates x + ¢(x) = y be as in Proposition 81l Define
the linear operator T as T(F)(y) = F(x(y)) for any function F € L*(dz). Then we have

(8.15) ITE)Y )o@y S NF(@)mo@, o €[0,[s]+1].

Given this lemma, the bound (82) is obtained by (8I4)) and (8IH) with o = s, and the
proof of Proposition [B.1]is concluded. It remains to prove the Lemma.

Proof of Lemma[8.4. Let k be an integer k € [0, [s] + 1], where [s] is the integer part of s.
By the change of coordinates = + ¢(z) = y, we have

Jx 0
"T(F)(y) = [-——FF(z) ~ [(1 "E(z).
OT(F)) = (55 @) ~ (1 + P)oLF ()

It suffices to consider the following forms
> OLFOLP ... Qi P(1 + P,

1<i<k—1, I+l +-+1l;=k,
1>1, i>w>1>1

By Sobolev embedding, we bound each terms by
|0, FORP - - P (L + P 2(ay) SO FRP -+~ 9GP (L + P/ det(] + 006)| 12 (an)
SNOLERP -+ P2 (L + [ VP ) |1 + Vg
SIEN VP g (L4 IV Al ) 7 (1 + [V R )
S F | se-

Then we have
k-1
OST(F) (W)l r2ay S Y ENF @iy S NF @) -
i=0

This implies

(8.16) IT(E) W) rrvayy S NV (@) |1 (ary, - for any & € [0, [s] + 1].

Thus the bound (8I5]) is obtained if o € [0, [s] + 1] is an integer. The similar bound for

noninteger ¢ follows by interpolation. U
U
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8.2. The time evolution of (), g, A). As part of our derivation of the (SMCF) equations
(238) for the mean curvature ¢ in the good gauge, coupled with the elliptic system (2.30),
we have seen that the time evolution of (), g, A) is described by the equations (231), (227
and (2.32). However, our proof of the well-posedness result for the Schrédinger evolution

(2.35) does not apriori guarantee that (2.31)), (2.27) and (2.32) hold. Here we rectify this

omission:

Lemma 8.5. Assume that ¢ € C[0,T; H®] solves the SMCF equation (2.38) coupled with
the elliptic system (2.36). Then the relations 2.27), 2.31) and [232)) hold.

Proof. We recall that, by Theorem 1] the solution & = (A, h, V, A, B) in H?® for the system
([2.36) satisfies the fixed time constraints (2.4)), [2.8), 2.10), 214), (220) and 2I7). On

the other hand, in terms of the time evolution, at this point we only have the equation (2.35])
for the mean curvature ¢. We will show that this implies (2.27), (2.31)) and (2.32).
To shorten the notations, we define the tensors

Trs = Oigap — 2Im(PAap) — VoV — ViV,
T27 = (0F — VIV, —iVIVA7Y) + AL Im(YA]) + Ay VIV = AIVV7,
T3 = 0,Aaq — 0aB — Re(NL0) + Im(AL M0 ) V.

We need to show that T = 0, T? = 0, T% = 0. To do this, we will show that (T, 72, T3)
solve a linear homogeneous coupled elliptic system of the form

(AT = V(TTY) + NPT + \T?,
VAT2e — \T3 4 A\VT' + TV,
VaTE" = VT2 = MNP + AVT' + T'V A,
VeT? = T'V A,
| VoTj — VTS = XT2.

Considering this system for (T, 72,7%) € H' x L? x L2, the smallness condition on the
coefficients (A, h,V, A, B) € S insures that this system has the unique solution (7%, 72, T%) =
0. It remains to derive the system for (T, T2 T3).

The equation for T'. This has the form
AL = TysRic’ o + T Ric’ s + 2T Roypy — V(T Ta) — Va (T T )
— 2Re(gop T + TR A0 + Aag T — gouTo7 Ny — T AN — Moo T5).

opto

(8.17)

We start with the first term in 7", and compute the expression A;0;g,s. We have

NgOigas = "0,V 0i9as — T2,V 0i955 — I5V,019as)
= 09" 0.0y 9ap) — 09" 00y gas) + [~ 9" T000u0958 — 9" T250,0: 50
— 9" 0.L,,0i955 — 9" 0T 0501950 — 9" (L0 Vu0igss + 05V, 01950)]
=1+11.
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We then use covariant derivatives to write /1 as
II == g™, (2V, 01958 + I'050:905 + T9501905)
— g“’TZﬁ(QVl,atgga + 1901900 + 19,0:906)
9" 0,00 0r958 — " 0T 501950
= — 29" 10, V., 0hgsp — 29" T3V, 0G50

— 0r9s5p9"" (0, F6 + 17,1 W) 01 9s5a9"" (0, Fuﬁ +1I° BF )

— 2019059" T, L0 5.
For I, by the g equation (2.23) we have

I = 0,[—0a9"" 01905 — 089" Ougua + 0ag" O5gu]

+ 200" T s To5) — 019" 00y gas) — 20; Ricags
=1+ L+ I

The expression [; is written as

1 1
Il = - aaatgwjr/u/,ﬁ - aﬁatgwjruu,a - 58601‘,9#1/ aGuv + iaaatgwjaﬁg/u/
= 009" 040, 9vs — 059" 0401 Gua + 009" 050: gy
- (vaatg‘uy - QFZ(SathV)FuV,B - (vﬁatguy - 2Fgéatg5y)r/u/,a

+ 5[Val09" Dsg — T 5(015" Do)
— 009" (V ,.0igus + Ffwatgéﬁ) — 059" (V01 Gva + Ffwatgéa + anatgué)
+ 809" (V309 + T, 019,15)
= Va0 g" (=T + Tupw) + V50i0" (Lo + Do) = V0u0190009" — V .019ua0sg"”
+20,9" (T3, Toup + T3 ova) + 0ug™ (=T0,08950 + 5,095
+ 09" (—989u09" T + Oagus 9™ Tsp )
— 019580a9" T, — ,950039" T,
For I, we first compute
20" (T puasT05) =9" T05(V u0igas + Vadigus — VeOrgua) + 49" T2, 01905
+ 9" (V,u0r985 + V0igus — Vsdigus) + 201979 Lo vpo
By the above computations, we collect the V0,g terms from Iy, Iy and I1
Va0 g" (=T + Tusw) + V0ig" (—Tva + Tuaw) — V0u0:91,3009" — V101900 039""
+ gwriﬁ(vuatgaa + VadiGus — Vs0igua) + 9" 100 (V101955 + V50195 — V50:9,8)
— 29" T, V,0i9s5 — 29" T35V, 01 Gsas
where the terms containing V0,g,, and V0,g,5 vanish, i.e.
V,u0i9us(—0ag" — 9"°Th, — 9"T5.) + VuOigua(—059" — g"°Ts — g"°Tl5) = 0,
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and the terms with V9,¢g"” were rewritten as
—Va0ig"'T g — V0ig"' T
== Va(0:9" Ty ) = Vp(0:9" Twa) + 0:9" (Val s + Valwa)
We collect the 0;¢ terms from I and I1 into
209" (L0, Lsu6 + T3 sva) — 095009 T0,, — 0195a039" T3,
+ 09" (2L s — 040, 9ap)
— 819589" (0,00 + T, T0,) — 0950 g™ (8,05 + T05T0,).

Adding the 0;g terms together with the third term in (8I8]) we obtain
019" (Val s + Valiwa + 200 Tous + 2% Dava + 2000 sl05 — 040,9as)

:atgw(aarw,ﬁ + aﬁrw,a - au(rﬁu,a + Fau,ﬁ) + 2Pua761—‘iﬁ - 2Fiﬁruv,6)
:28thVRaMBV.

(8.18)

Finally, using the harmonic coordinate condition g“’wa = 0, the terms containing the 0;¢sq
expression are written as

— 01955009 T, — 01950039 T, — 029559™ (04T e, + T T00) — Oigsag" (8105 + TsT0,)
= 8tg(;5Ric‘5a + 8tggaRic55.
Hence, the expression A;0,g,4 is written as
NyOigos = — Va0 T g) — V(09" Ty a) + 8tg(;gRic5a + 8tg5aR,iC5ﬁ

(8.19) ie
+ 28tguVROCNBV — 2@ Ricaﬁ .

For the last term —20; P/{Ycag, using the expression 72 we have

—20; Ricas = — 2Re(gosT20 + T2Ao + Mg T2 — g T2ON — T2 AN — X T27)

o
(Is1) +2Im(VAVE) + VaVY YA 5 — VAVIYAG — VEVIYAT)
(Ip) — 2Ricg, VoV 7 — 2RiCay V5V — 2V, Ricag V7
(Is3) — 2Re(¢Aay) Im(YA]) + 2Re(AasA”) Im(¢ Ao ).
Next, we compute
IIT:= — A,(2Im(YAas) + VoV + VsVa)

= —2VoV, Im(YAus) + [Ay, ValVs — [Ay, VIVa — Val, Vs — VAV,
= —2VV, Im(¥Aap) — Vs Rice, V7 — V, Ricg, VT — 2V, Rices V7
— Ricay V'Vs — Ricg, V'Va + 2R00ps(VIV? + VOV7) — VA, Vs — VAV,
Using the V-equation (2.29) we write the last two terms as
— VoA, Vs — VAV,
=2V, Vo Im(¥A5) + 2V 5V, Im(¥A7) + Vi Ricys V7 + Vg Ricyq V7

+ Ricys VoV + Ricoa VoV + Va(0,97T ) + V(0,97 T )
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where 8:55’ denotes the expression
@;’ = 0,g" — T,
We then add I3; together with V2 Im(y\) in I11 to get
I31 — 2VoV, Im(¢YAap) + 2VoV, Im(wﬂg) + 2V 3V, Im (A7)
= — 2Ricgs Im(YAY) + 2Raoss Im(1A”°) + 2 Re(AZ1)) Im (A, Af).
The last term and I35 can be further written as
2 Re(AZ4)) Im(Ag, M%) + Iss
=2Ra0gs Im(YA7) — 2 Ricas Im(¥A).

Hence, given the expressions of I3 and 11, we obtain

Is+ 111

= — 2Re(gos 720 + T A0 + Aag T2 — Gou T2 Ny — T AINs — Moo T57)

— Ricaﬁ@; - Ricaa% - 2Ragﬁ58/t_,\g_;$ + VQ(@/WFW,B) + Vﬁ(ﬁft&ﬁrw,a%

which combined with (8I9) yields the T'-equation (8I7).

The equation for T?. This has the form

( - O N ag g « 1
VAT =ig T — AT + g™ A (=Va T + 5V Top)
1,08 Ao o 1,0 A
(8.20) ) — THB (VAN 4+ TN + THoV ),
' 1
2,0’ No o
VaTy” —ViT: =59 N=N(VoT,, +V, T, —V,T,,)

+ Mi(VT, 4+ VT, — Vo T5,)] — TN, 4+ T3,

\

We compute the divergence of T2 in (820) first. Applying VA< to T2, we have
VAT2T <[V4 0P — VIVIA, + (07 = VIVE VA7l + VA7 (07 — VIV
+ VAL Im(YA])) — iVAVEVATY
+ V,ﬁ%V”’V" — VA"’)\MVQV”’ + AV VL VT = ATA VT
Three of the terms on the right-hand side are written as
(VA 0f = VIVAN, — VAN, VOV + AV, V, V7
:gaﬁ(vﬁat)\g — 0 VA]) + igaﬁ(vﬁB — 0y Ag) g, — &gaﬁV?AZ
+ AV VLV —2VA7N, VOV — VIV VNS — iV, F7)\
== 00" (VM Xap + ThgA7) — OGN + XV, V, V7
—i(0;Ag — VsB)N7 —iV,F\T — 2VA"’)\MV°‘V7 — V7V, VLA

«
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We can further use T to rewrite the last two terms on the first line above as
- &efggko‘ﬂ + AV, V,VE
1
= — 0,97 T 03 sA*? — §7°01(0agss — iaggag)x“ﬁ + ATV, VY, VO
1
:gaé)‘aﬁ(atguérgg - aaatgﬁé + 5&5&29015) + )‘aﬂyvav'\/va
1
:g”5>\a5(—va8tg55 + §V58tgag) + )\MVQV,YVU
1
:Auy(vuTl,uo - 5Vcrjwl,,uz/)
+ A2V, Im(¢AG) + V7 Im(¢Aag) — [Va, V]V
and the following term as
—i(81Ag — VB)N —iV,FIN] = —id T3 —iN" Re(A\JVA9).
Similarly, we compute the second commutator by
[0F — VIV VAN + VIVIVT =07V i + igT T + ity Re(A7 V)
+ VI(VIVT 4+ VIV,

Hence, using 72 and the V equation (Z.29) we reorganize the expression of V4T and
obtain

VAT —igTTy — i Tf + g7 AP (=V o Tgs + %V5T;ﬁ)
— 09" (VEAL + Th A7) + A [=2V, Im(¥AF) + V7 Im (¢ Aag)]
— iN7 Re(A\JV4Y) + 8ig™ Vi + i) Re(A Vi)
— VAT Tm(A9)) + V(AL Im (A7)
— iRic”s VA — V F7%) — 2F°*V 24
+ VI(VIVT 4 VOVT) = 2V, VOV
— 207V, Im(A" ")) + AJ0,g°T .

Using T%“ and the V-equation (2.29), we have

A2V, Im(¥AG) + V7 Im(¢Aap)] — iA* Re(AVA))

+ i) Re(AVAY) + V(AL Im (A7) — iRic”s VA — Vo Fo — 2F7* Ve

+ 227V Im(ypA]) — VA7 (AL Im(1hA2))

=2V Im(YA77) — 2VA7 X5 Im (A7)

Combining these two expressions, we obtain
1
VAT =ig T — AT + g7 A (= Va T + 5V Tos)

— TYP(VEA, + Thghy) + TV + VAT,
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Next we compute the curl of T? in (820). By T? we have
VAT = ViTe
=[V2,0F =V VNG — [V5,07 = VIVIIAL + AV Im(¢A7) — ALV 5 Im (A7)
— [V, V3V + XV V, V7 = A VYV, V7
— A [Va, VgV = VANV V7 + VIV V7.
We use T to rewrite six of the terms on the right-hand side as
(V2,08 = VIVIAG = V5,07 = VIVIIN, + AV V, V7 = A VeV, V7
— VI VRV + VIAVVY
:% 97 =N (VaT,, + YV, T — Vo T,,) + Ma(VT,, + VYV, 15, — V,T3,)]
— iTING + T3
— N5V Im (A7) + MeV 5 Im(1p A7)
(1) + N5 (= VL Im (A7) + V7 Im(PAa,)) — Mo (=V,, Im($AF) + V7 Im(PAg,))
— iRe(A\LVAY)AG + i Re(A[VAY) A7)
(1) + [%Ag(Ram + RS+ R )V — %AZ(RW@ + Ry, + Rigs)V°
— V7 Raros Ay — VI Rongs A7 + VI Roos Ao + V7 Rgpas A7)
Then we use Bianchi identities and compatibility conditions to compute I; and I by
L =i[Vg, V5IVA7y
and
Iy = V' Rpy0500, + VI Rgyas A7 = X[V, V]V

Hence, we obtain

1
2,0’ No o
VaTy? = ViT? =59 M=N(VoT,, + Y, T, — VT,
+ M(VT,, + VT, — Vo T5,)] — iToAG + T3,

This completes the derivation of (8.20]). O
The equation for T. This has the form

{vaTj; = —T"%9,Ag,

VaTj — VT2 =Tm(T% Nop + NI T2).
Applying V* to T3, we then use the Coulomb condition V¥4, = 0 and the B-equation
(Z33) to get
VT3 =V®0, A0 — AyB — V* Re(AVAY + iAI N, V7)
:go‘ﬁﬁgatAa + 8tgﬁﬁ/85Aﬁ/ - Tl’gfyagA,Y = —Tl’agﬁaAg.

The curl of T® is obtained by (2.13)) directly. O
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O

8.3. The moving frame. Here we undertake the task of reconstructing the frame (F,,m).
For this we use the system consisting of (2.6]) and (2.20]), viewed as a linear ode. We recall
these equations here:

. nel o
s o~ Dy et
respectively
(8.2 {&Fa = —Tm (92 — iday V) + [Im(yA)) + V,V]F,
Ofm = —i(0M — iIXV)F,

We start with the frame at time ¢ = 0, which already is known to solve (8.21]), and has
the following properties:

(i) Orthogonality, F, L m, (m,m) = 2, (m,m) = 0 and consistency with the metric

Yap = (Fa, FB>'
(i) Integrability, OsF, = OuFp.
(iii) Consistency with the second fundamental form and the connection A:

OuEs - m = g, (Oam, m) = —2iA,.

Next we extend this frame to times ¢ > 0 by simultaneously solving the pair of equations
(82T)) and (8:22). To avoid some technical difficulties, we first do this for regular solutions,
i.e. s > d/2+ 2, and then pass to the limit to obtain the frame for rough solutions.

8.3.1. The frame associated to smooth solutions. The system consisting of (8.21]) and (8.22))
is overdetermined, and the necessary and sufficient condition for existence of solutions is
provided by Frobenius’ theorem. We now verify these compatibility conditions in two steps:

a) Compatibility conditions for the system (821)) at fixed time. Here, by C25 =0, C35 =

and C7,,, = 0 we have
0.(15, Fy + Re(Ag,m)) — 85(T% Fy + Re(Aaym)) = CL 5 F° =0,
and
Oa(iAgm + NGF,) — O(iAam + AL F,) = iCoam = 0,
as needed.

b) Between the system (821 and (822)). By (821I) and (822]) we have
O (iAgm + N F,) — 0o (iBm + i(07p — iXJ V) F,) = iTom + T2 F,
and

D[ Tm(9hm — iMay V) + [Tm (L) + v V) = T}, Fy + Re(Agamn)]
8.23
( ) = - Re[(gUQng + )‘ch}o)m] Tl'yorﬁa o (8ﬁ o 8‘J‘Téo o aUTﬁla)FU'
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The first equality is obtained directly. For the second equality ([823), by (2.6) and ([2:26) we
compute this by

LHS[®23) = — Re[(goaT5” + A5T,0)1m] + Va(Im(¢Agq) + Vo Vo) F7
+Im (VY Aos — VEUAas)F7 = Roasy VI F — 01, F,.
By T"! we compute the last term by
—O Y Py = — (TY7 = 2Im(YA7) = VIV = VIV )go 0 F,
1 _
— i[aﬁ(To{U + 2Tm (YA ) + Vo Vo + Vo Vo )| F7

1 _
— 5[8,1(T§0 + 2Im(YAgy) + ViV, + Vo V)] FC

1 _
+ 5[&,(% + 2Im(YAga) + VVi 4+ Vo Vi) F7
1
=—T"Tg,,F, — 5(0@{0 + 0uTh, — 0,Th ) F°
+ [_vﬁ Im(wj‘oca) - Im(ng;‘BU) + Im(vé¢Xﬁa)
1 1 1
— §(VQV5 + VBVQ)VU — §[V5, VJ]VQ — §[VO“ VJ]VB]FU.
Then by Bianchi identities and compatibility condition we have
1 .
5([Ve, Va]Vo = [V, Vo[Va = [Va, Vo] Vs) = Roapy V7
1

"2
From the above expressions the equality (8.23) follows.

(RBOCU'Y - RBO’O!’Y - R(xa’ﬁ—y - QRJOCB'Y)V’Y == 0

Once the compatibility conditions in Frobenius’ theorem are verified, we obtain the frame
(F,,m) for t € [0,1]. For this we can easily obtain the regularity

0y(Fy,m) € L*H**?, Oy(Fy,m) € L°H*,

Finally, we show that the properties (i)-(iii) above also extend to all ¢ € [0, 1]. The properties
(ii) and (iii) follow directly from the equations (82I)) and (822) once the orthogonality
conditions in (i) are verified. For (i) we denote

gOOZ <mam>a goc(): <Faam>a gaﬁz <FocaFB>
Then by ([2.26) and T,5 = 0, we have

0o = = 5O + har V") oo = 2) = (BT + V") (Gas = o)
5 (O + iy V) (0, m) + (Im(UX]) + VoV ") + iBFeo.
4 (oo — 2) = 2Im(0™ ¢ — iATV7)Gino,
Oy (m,m) = —iB(m,m) — i(0**1 — iXIV")Gao,
01(9as = Gap) =(Im(PAY) + VaV7)(gsy = Gay) + (m(PAF) + V5V ) (Gay =~ Jory)

+ Im (9% Gs0 — iXar V7 Gp0) + Im(0F0Fa0 — iy V7 Gao).
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Viewed as a linear system of ode’s in time, these equations allow us to propagate (i) in time.

8.3.2. The frame associated to rough solutions. Here we use our approximation of rough
solutions with smooth solutions for the 1 equation in order to construct the frame in the
rough case. Precisely, given a small initial data 1y € H?®, there exists a sequence {¢g,} €
H**2 such that ||1, — ¥o|lgs — 0. By Theorem 2.7, the Schrodinger system (2.38) coupled
with (2.36) admits solutions t,, with ,,(0) = v, and

||¢n| Hst2 S ||¢On| Hst2, ||wn - ¢| Hs S ||w0n - ¢0|

A-priori, we do not know whether the initial data 1, is associated to a frame at the
initial time. Hence we first use (8.21]) to construct the frame (Fé"), m™) associated with 1,
at t = 0. At some point z(, we choose Fo(l")(xo) and m™(z,) so that they are orthogonal,
and (m™, m™) =2, (m™ m™) =0 and (F{", FB(")) = génﬁ) hold. With this initial data,
we view (821 as a linear ode with continuous coefficients. As above, the necessary and
sufficient condition for solvability, as provided by Frobenius’ theorem, is a consequence of
the relations C? = 0, C® = 0 and C” = 0, which are in turn a consequence of Theorem F.1l

The above construction determines the frame (Fo(l"), m™) up to symmetries (rigid rotations

s — 0.

and translations). Hence, the frame (Fo(l"),m(”)) at t = 0 is uniquely determined by the
condition

lim (™, m™)(z,0) = lim (F,, m)(x,0).

T—00 T—r00

In this construction, the properties (i)-(iii) above also extend to all z. The properties (ii) and
(iii) follow directly from equation (8.2I]) once the orthogonality conditions in (i) are verified.
For (i) we use (821]) to compute

. . 1 _ 1< . o~
9agso = Lo5Gr0 + 5 Aas (M 1) + S Aas(Goo = 2) + Aq(9py — G) +i4agso,
9a(Goo — 2) = —2Re(AGy0),
Oa{m,m) = —2iA,(m,m) — 2Re N g0,
aa (gﬁ'\/ - gﬁ'y) = Fgﬁ (gafy - ga’y) + ng(gaﬁ - gaﬁ) + Re(j‘ﬁagfyo + S\—yagﬁo)'
By ode uniqueness and the choice of the initial data, the desired properties for the frame are
propagated spatially.

Once we have the frames (Fo(l"),m(")) at t = 0, we can invoke the smooth case analysis
above, using (822) and 1, € H**2 to extend the frame (F\”, m™) to t > 0 with initial data
(F&”,m™)(x,0).

In order to obtain a limiting frame (F,, m) we study the properties of the regular frames
(F{™, m™) in three steps:

a) Uniform bounds. By (821)), (£13), (Z37) and Sobolev embeddings we have

10, F{™|

e ST E® 4 A0
Sl

HS
Fo(00)| + [m(00)] + [10: (5™, m™) | )
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and
10,m™ || s S| AWM 4 X FR))|
Slnlle (|Fa(00)] + [m(00)| + 1|8 (£, m™) || +)
Then, by the smallness of ¢,, € H®, we obtain

10, (B, m™)|

we S [|9n]

HS.

b) Sobolev and uniform convergence at t = 0. Using an argument similar to that in a), by
(B21) and Theorem 1] b) we have

102 (F( = Forym®™ — m) |z <lltbon — vollze + ol a1 102 (FS? — Fooym™ — )|

By the smallness of 1), this implies the H® convergence. The uniform convergence at t = 0
also follows by Sobolev embeddings.

Hs Hs-

c) a.e. convergence for t > 0. Here we use (2.26) as an ode in time. The coefficients
converge in L? for a.e. x, so the frames (Fo(l"), m(™) will also converge uniformly in time for
a.e. x. This can be rectified to uniform convergence in view of the uniform Sobolev bounds
in (i). This yields the desired limiting frames (F,,m).

By (821]) we also have

10:(F® — ED m® —mO)|| pee s < ook — illzorrs S tbok — ol

This shows that the limiting frame satisfies both equations (8.22) and (821]), as well the as
the uniform bounds in (a).

HS.

8.4. The moving manifold ;. Here we propagate the full map F' by simply integrating

229), i.e.
F(t) = F(0) + /t —Im(ym) + V7 F,ds.
Then by (82I]), we have 0
0. F(t) = 0,F(0) + /0 . Im(9hm — iday V) + [Im(YA)) + V, V] F,ds,

which is consistent with above definition of F,.

8.5. The (SMCF) equation for F. Here we establish that F solves (II). Using the
relation Aog = 0,03F - m we have

—Im(ym) = — Im(g*P 0,05 F - (11 +ivy) (v — ivy))
=(A F - 1)y — (AGF - 1)1y
=J(AF) = JH(F).

This implies that the F' solves (L1]).
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