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Abstract

Background: Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-
acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other
tropical areas. In animal models, production of interferon-gamma (IFN-c) is critical for resistance, but in humans the
characteristics of IFN-c production and the bacterial antigens that are recognized by the cell-mediated immune response
have not been defined.

Methods: Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60
patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or
purified bacterial proteins in vitro, and IFN-c responses were analyzed by ELISPOT and flow cytometry.

Findings: B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-c. In
addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active
melioidosis developed CD4+ (and CD8+) T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF,
members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T
cells of the effector–memory (TEMRA) phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum.

Conclusions: Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make
IFN-c that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in
large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or
polysaccharide–conjugate subunit vaccines against this important but neglected disease.

Citation: Tippayawat P, Saenwongsa W, Mahawantung J, Suwannasaen D, Chetchotisakd P, et al. (2009) Phenotypic and Functional Characterization of Human
Memory T Cell Responses to Burkholderia pseudomallei. PLoS Negl Trop Dis 3(4): e407. doi:10.1371/journal.pntd.0000407

Editor: Albert I. Ko, Weill Medical College of Cornell University, United States of America

Received December 19, 2008; Accepted March 6, 2009; Published April 7, 2009

Copyright: � 2009 Tippayawat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Wellcome Trust, UK, grant number AL-069426 and Public Health Service Grants U01 AI061363 and U54 AI065359 (PLF)
from the National Institute of Allergy and Infectious Diseases, USA. PT is supported by the Commission on Higher Education, Ministry of Education, Thailand. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ganja_le@kku.ac.th

Introduction

Melioidosis is a serious infectious disease in Southeast Asia and

Northern Australia caused by the soil-dwelling Gram-negative

bacterium, Burkholderia pseudomallei [1]. In Northeast Thailand, the

mortality rate for acute melioidosis remains high, approximately

50%, despite recent advances in antibiotic treatments. Serological

evidence, based on the indirect hemagglutination assay (IHA),

suggests that 80% of people living in endemic areas have been

exposed to B. pseudomallei, without showing clinical symptoms [1–

3]. Recurrent melioidosis can also occur either as relapse after

antibiotic treatment or re-infection [3,4]. B. pseudomallei is classified

as a NIAID category B potential agent for biological terrorism [5].

The mechanism that enables the organism to avoid the

bactericidal effects of the host immune response has never been

fully understood, and there are no licensed vaccines.

B. pseudomallei is able to disseminate throughout the body,
invades non-phagocytic cells and replicates in phagocytes [6,7]. In

mice, B. pseudomallei is a potent inducer of IFN-c and IFN-c
inducing cytokines such as IL-12, IL-18 and TNF in vitro and IFN-
c is essential for resistance in vivo via the activation of macrophages

for both oxygen dependent and independent killing mechanisms

[8]. In mice, NK cells and bystander CD8+ T cells provide innate

production of IFN-c [9], while IFN-c secreting, antigen-specific
CD4+ T cells contribute to protection against primary infection

with B. pseudomallei and following immunization with experimental

vaccines in vivo [10,11]. In addition, murine models of vaccination

with dendritic cells pulsed with heat killed B. pseudomallei in the
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presence of CpG oligodeoxynucleotides showed significant levels
of protection [12] suggesting the role of specific T cells in host
protection.

In contrast, the mechanisms of cell-mediated immunity to B.

pseudomallei in humans are poorly understood. IFN-c, IL-12, IL-18

and TNF are found in plasma samples from acute, septic

melioidosis but the IFN-c producing cells have not been well

characterized [13]. Previous studies in small numbers of patients in

northern Australia and Papua New Guinea who recovered from

melioidosis have demonstrated evidence of T cell priming to B.

pseudomallei, but the characteristics of the responding cell

populations and the antigens recognized have not been defined

[14,15].

Here, we analyzed a large cohort of individuals from the

melioidosis endemic region of Thailand to identify the cellular

sources of IFN-c in response to whole B. pseudomallei and the

bacterial ABC transporter proteins LolC, OppA and PotF which

are T cell immunogens in mice and candidate vaccine antigens

[16,17]. Peripheral blood cells from healthy individuals with

serological evidence of exposure to B. pseudomallei and recovered

melioidosis patients (but not seronegative control subjects) showed

evidence of CD4 and CD8 T cell priming to both whole bacteria

and purified B. pseudomallei antigens. Together with a prominent

IFN-c response from NK cells, these sources of IFN-c may

contribute to host resistance against melioidosis in the endemic

setting.

Materials and Methods

The study and the consent forms were approved by the Khon

Kaen University Ethics Committee for Human Research (Project

number HE470506). Informed consent was obtained from all the

subjects recruited into the study.

Blood samples
Blood samples from 133 healthy donors who had no clinical

history of melioidosis were collected at the Blood Bank, Khon

Kaen University, Thailand. Another set of blood samples was

obtained from patients and control subjects at Sappasithiprasong

Hospital, Thailand for cellular studies by ELISPOT assay. Patients

were defined as those who had recovered from melioidosis

(previously diagnosed by isolation of B. pseudomallei from blood

or tissues) and completed antibiotic treatment (n = 36). Non

infected control subjects (n = 21) were those who attended the

hospital for non infectious reasons at the diabetic clinic and had no

history of clinical melioidosis, and were matched for age, sex,

occupation, the presence of diabetes as an underlying condition

and lived in the same endemic area. In addition, 24 recovered

melioidosis patients and 10 healthy control subjects were enrolled,

using the same criteria, at Srinagarind Hospital, Thailand for

cellular sources of IFN-c, kinetics and memory cells assayed by

flow cytometry. The subjects who had antibodies to B. pseudomallei

at a titer of 1:40 or greater by IHA were considered seropositive

[15,18]. None of the subjects had any clinical sign or symptoms of

any infection including HIV/AIDS at the time of blood collection.

In vitro cell stimulation
B. pseudomallei strain K96243 is a clinical isolate from Thailand

and is the prototype genome sequence strain [19]. Whole heat-

killed B. pseudomallei (hkBp) was prepared by heating the bacteria at

100uC for 20 minutes, washed twice with PBS pH 7.4, aliquoted

and stored at 280uC. The number of viable bacteria was

determined by colony-forming counts and defined as colony-

forming units (CFU) prior to heating. Recombinant B. pseudomallei

ABC transporter proteins (LolC, OppA and PotF) were prepared

as previously described [16,17] and used as test stimulators in this

study. Phytohemagglutinin (PHA) (Biochrom AG, Germany),

human recombinant IL-12, and IL-15 (BD Biosciences, USA)

and a MHC class I-restricted T cell epitope control of pooled

peptides of cytomegalovirus, Epstein Barr virus and influenza virus

(CEF) were used as positive controls (Mabtech, AB, Sweden).

Recombinant protein from Francisella tularensis, FT1823 [20] was

included as a non related protein/negative control.

Enzyme-linked immunospot assay (ELISPOT) for human
IFN-c

Peripheral blood mononuclear cells (PBMCs) from each subject

were isolated from heparinized blood samples by density

centrifugation on Ficoll-Hypaque and adjusted the number of

cells as required prior to stimulation. In brief, 96-well PVDF-plates

(MSIP, Millipore) were previously coated overnight with 15 mg/ml

1D1K anti-human IFN-c at 4uC. Fresh PBMCs were added in

duplicate wells at 56105 PBMCs/well and each stimulator was

added at the optimal concentration. After 42 hours, secreted IFN-

c was detected by adding 1 mg/ml biotinylated mAb 7-B6-1-biotin

for IFN-c for 3 hours and followed by 1 mg/ml streptavidin-

alkaline phosphatase (Mabtech, AB, Sweden) prior to enumeration

under a stereomicroscope. The responses were compared in the

absence or presence of 0.3 mg/ml cyclosporin A (CsA, Sigma,

USA).

Intracellular cytokine staining assay by flow cytometry
Whole blood samples were firstly analyzed for complete blood

count using an automatic machine (Sysmex, Germany). The

number of absolute lymphocytes was then adjusted to 96105

lymphocytes/ml by diluting with completed RPMI medium (10%

FBS supplement). The adjusted cells in 100 ml were added into 96

well culture plates and added up by another 100 ml of 26
concentration of stimulators and incubated at 37uC with 5% CO2.

Cultured cells were blocked with 10 mg/ml brefeldin A (Sigma,

Author Summary

The Gram-negative bacterium, Burkholderia pseudomallei,
is a public health problem in southeast Asia and northern
Australia and a Centers for Disease Control and Prevention
listed Category B potential bioterrorism agent. It is the
causative agent of melioidosis, and clinical manifestations
vary from acute sepsis to chronic localized and latent
infection, which can reactivate decades later. B. pseudo-
mallei is the major cause of community-acquired pneu-
monia and septicemia in northeast Thailand. In spite of the
medical importance of B. pseudomallei, little is known
about the mechanisms of pathogenicity and the immu-
nological pathways of host defense. There is no available
vaccine, and the mortality rate in acute cases can exceed
40% with 10–15% of survivors relapsing or being
reinfected despite prolonged and complete treatments.
In this article, we describe cell-mediated immune respons-
es to B. pseudomallei in humans living in northeast
Thailand and demonstrate clear evidence of T cell priming
in healthy seropositive individuals and patients who
recovered from melioidosis. This is the most detailed
study yet performed on the cell types that produce
interferon-gamma to B. pseudomallei in humans and the
antigens that they recognize and the first to study large
sample numbers in the primary endemic focus of
melioidosis in the world.

Human Cellular Immunity to B. pseudomallei
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USA) for 3 hours prior to the end of the incubation time. Then

washed and blocked with anti-CD16 (BD Biosciences). The

following antibodies were used for immune cell surface staining:

FITC anti-CD4, PE anti-CD8 or PE anti-CD56 (BD Biosciences)

and Tricolor anti-CD3 (Invitrogen, USA). In addition, cell surface

markers for memory T cell phenotypes were included: FITC anti-

CCR7 (R&D systems, USA), PE anti-CD45RA (Invitrogen) and

Tricolor anti-CD4 or CD8 (Invitrogen). Isotype-matched control

antibodies were used in each analysis. After 30 min of staining,

followed by fixation with 10% paraformaldehyde-PBS overnight at

room temperature, cells were then permeabilized by 0.12%

saponin (Sigma, USA) for 15 min followed by APC anti-IFN-c
(Invitrogen, USA) for 30 min prior to analysis by FACScalibur

with CELLQuest software (BD Biosciences, USA).

Statistical analysis
Statistical analysis (one way-ANOVA, unpaired and paired t-

test) was performed using Graphpad Prism version 5 software

(GraphPad, San Diego, CA, USA). A P-value,0.05 was

considered statistically significant.

Results

Cellular immune responses to B. pseudomallei of healthy
individuals living in an endemic area of melioidosis

To examine the cellular immune response to B. pseudomallei of

healthy individuals living in Northeast Thailand, PBMCs of 133

donors from the Blood Bank at Khon Kaen University, Thailand

were cultured with whole bacteria, recombinant B. pseudomallei

ABC transporter proteins (LolC, OppA and PotF) or control

stimulators and 42 hours later assayed for IFN-c production by

ELISPOT. We have previously shown in mice that several

different cell types contribute to IFN-c responses to B. pseudomallei

in vitro; NK cells and bystander T cells produce IFN-c indirectly

via a cytokine mediated pathway which is not blocked by

cyclosporin A (CsA), whereas specific B. pseudomallei primed T

cells respond via a CsA sensitive T cell receptor (TCR) dependent

process [9,11]. To validate this approach in human peripheral

blood, we initially compared the CsA sensitivity of cytokine (IL-

12+IL-15), mitogen (PHA) or antigen specific IFN-c responses in

vitro in the presence or absence of CsA. Compared to medium

alone controls, cells incubated with PHA or a pooled cocktail of

established T cell reactive peptides from pathogens known to be

present in the Thai population (CMV, EBV and influenza) showed

strong IFN-c responses which were inhibited in the presence of

CsA (Figure 1A; P,0.0001, paired t-test). In contrast, the IFN-c
response to IL-12/IL-15 or the low but detectable background

response observed in cells incubated with an irrelevant Francisella

tularensis control protein were not CsA susceptible. Moreover, the

results revealed that whole B. pseudomallei (hkBp) and three Bp-

derived ABC transporter proteins (LolC, OppA and PotF) could

induce IFN-c responses via TCR independent (innate) and

dependent (specific) pathways in healthy individuals in vitro

(Figure 1B).These IFN-c responses were in a dose dependent

manner ranging between 16104–16107 CFU/ml hkBp and 0.1–

3.0 mg/ml of the 3 proteins (data not shown).

Specific T cell responses to B. pseudomallei correlate with
serological evidence of exposure to the bacterium

IHA has been widely used as routine serologic test for

melioidosis with the threshold titer of 1:40 in the endemic area

indicating previous exposure to B. pseudomallei [15,18]. To

investigate whether the magnitude of the cellular immune

response correlated with evidence of exposure to B. pseudomallei

by serology, 133 healthy donors were classified into five groups

based on their B. pseudomallei antibody IHA titers (as 1:20, 1:40,

1:180, 1:160 and 1:320 (n = 6, 19, 60, 45 and 3, respectively;

Figure 2). The results revealed that the continual increase of the

average values of specific (CsA sensitive) IFN-c spots in response to

B. pseudomallei and its proteins was significantly correlated with

increasing antibody titers (P,0.0001, one way ANOVA). No such

correlation was observed in the response to CEF vs. medium

controls or for the innate (CsA resistant) IFN-c spots to B.

pseudomallei (P.0.05, one way ANOVA). Thus environmental

Figure 1. IFN-c responses to B. pseudomallei of 133 healthy individuals living in Northeast Thailand. PBMCs of healthy blood donors
were stimulated with whole bacteria, recombinant Bp proteins and control stimulators for 42 hours in vitro and IFN-c secreting cells were
enumerated by ELISPOT. IFN-c spot forming cells (SFC) per 16106 PBMCs in response to (A) control stimulators including medium alone (M),
cytokines (1 mg/ml IL-12 plus IL-15), 1.25 mg/ml PHA, 2 mg/ml pooled viral peptides (CEF) and 1 mg/ml non related protein of F. tularensis (FT) and (B)
IFN-c responses to 36106 CFU/ml heat killed B. pseudomallei (hkBp), 1 mg/ml ABC transporter proteins of B. pseudomallei (LolC, OppA and PotF). IFN-c
spots were enumerated in the absence (closed circles) and presence (crossed) of 0.3 mg/ml cyclosporin A (CsA). Horizontal lines represent the mean
value of each group, *** P,0.0001, ns-non statistical significance (paired t-test).
doi:10.1371/journal.pntd.0000407.g001
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exposure to B. pseudomallei in the endemic region of NE Thailand

generates both T cell and B cell responses to B. pseudomallei in

healthy individuals even in the absence of disease.

Cellular immune responses to B. pseudomallei in patients
recovered from melioidosis

To assess the extent of T cell priming in patients who had

survived active infection, specific T cell responses to whole

bacteria and recombinant proteins of B. pseudomallei were studied

in 36 recovered melioidosis cases and 21 other patient control

subjects from the same endemic region chosen on the basis of same

age, sex and occupation with no history of clinical melioidosis but

who were seropositive for B. pseudomallei exposure. The frequency

of IFN-c producing cells was significantly increased in recovered

patients compared to seronegative control subjects (data not

shown) but was similar to that observed in seropositive healthy

individuals (Figure 3A) (P.0.05, unpaired t-test). However, there

were some individuals who had no specific IFN-c producing cells

to B. pseudomallei above the background of medium control in both

groups. Of note, IFN-c levels as quantified by ELISA were

significantly higher in recovered melioidosis patients than

seropositive individuals (Figure S1). According to Figure 3B, the

comparison of IFN-c responses between patients who recovered

from melioidosis with a history of localized infection (n = 13) and

severe sepsis (n = 11) did not show any significant difference. These

specific T cell responses declined over the time but remained

detectable after 80 weeks (Figure 3C). These results indicated that

either whole B. pseudomallei or its proteins could trigger the cellular

immune response following re-exposure to the microorganism in

vitro up to 80 weeks post admission.

Diabetes mellitus (DM) is a major risk factor for human

melioidosis [21], and only 4 cases of recovered melioidosis without

DM were found in this study. Even though we observed no

difference between IFN-c responses of these groups, it remains

inconclusive for the effect of diabetic condition on host T cell

responses (data not shown). In addition, recovered melioidosis

patients with a history of recurrent infection (n = 6) compared to

those with a single disease episode (n = 30) also showed no

statistically significant difference (data not shown); suggesting that

under these conditions IFN-c responses do not differentiate

between primary and recurrent melioidosis.

Cellular sources and kinetics of IFN-c in response to B.
pseudomallei

To identify the cellular sources of IFN-c responses to B.

pseudomallei, whole blood samples from six seropositive healthy

individuals and ten recovered melioidosis cases (all with IHA

antibodies 1:40 or greater) were restimulated with B. pseudomallei in

the absence of CsA and analyzed by four-color flow cytometry. As

shown from one representative of seropositive group, the small

lymphocyte area was gated (Figure 4A) and analysis of IFN-c+ cells

showed that NK cells (CD32CD56+), CD4+ T (CD3+CD4+) and

CD8+ T (CD3+CD8+) cells all contributed to IFN-c production to

hkBp (Figure 4B). A dominant contribution of CD4+ and CD8+ T

Figure 2. Distribution of specific T cell responses to whole B. pseudomallei and three ABC transporter proteins. PBMCs from 133 healthy
blood donors as described in Figure 1 were classified according to plasma IHA antibody titers; 1:20, 1:40, 1:80, 1:160 and 1:320 (n = 6, 19, 60, 45 and 3,
respectively) and analyzed for specific (CsA sensitive) IFN-c secreting spots assayed by ELISPOT in response to medium alone, 2 mg/ml pool viral
peptides (CEF), whole B. pseudomallei (hk Bp) and Bp derived ABC transporter proteins (LolC, OppA and PotF). *** P,0.0001, ns-non statistical
significance (one way ANOVA).
doi:10.1371/journal.pntd.0000407.g002
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cells on IFN-c production was confirmed by significant reduction

of specific IFN-c (CsA sensitive) spots following depletion of CD3,

CD4 and/or CD8 cells (Figure S2). In addition, the mean

fluorescent intensities (MFI) of intracellular IFN-gamma staining

of CD3+ and CD32 (NK) cells of 4 recovered melioidosis cases

were analyzed and revealed that the average MFI of IFN-gamma

gated on CD3+ cells was significantly higher than CD32 (NK) cells

(P,0.05, paired t-test) (Figure S3). Together with our finding that

the ELISPOT size of remaining IFN-c+ cells after T cell depletion

was very small suggests that innate (CsA resistant) cells produce

less of this cytokine compared to specific T cells.

The analysis of blood samples from 6 seropositive individuals

and 10 recovered melioidosis cases showed background staining of

total IFN-c producing cells in medium alone at 0.0360.01 and

0.360.09% (mean6SE), respectively. The relative contribution of

each cell type to the IFN-c response to B. pseudomallei also varied

according to the time point examined in culture after addition of

the bacteria. NK cells appeared to respond more rapidly than T

cells and significantly contributed to the production of rapid IFN-c
at 4 hours and decreased over time in both groups (Figure 5). On

the one hand, the frequency of IFN-c producing NK cells were

significantly higher in seropositive healthy individuals than

recovered melioidosis at 4 and 12 hours (P,0.05, unpaired t-

test). On the other hand, there was a statistically significant

difference of IFN-c producing CD4+ T cells being higher in

recovered melioidosis than the seropositive individuals at both

time points and all three time points for IFN-c producing CD8+ T

cells. These results demonstrated the increasing contribution to

IFN-c production over the time from T cell subsets, particularly in

the recovered melioidosis group.

Rapid responses of memory phenotype T cells to whole
B. pseudomallei

To investigate whether the rapid IFN-c producing T cells in

response to B. pseudomallei were memory T-cell phenotypes,

immune subsets of human memory T cells were identified based

on the cell surface expression of CD45RA and CCR7 [22] in 16

recovered melioidosis cases and 7 seropositive control subjects.

The results demonstrated the percentages of IFN-c producing

memory T cells and the majority of memory CD4+ and CD8+ T

cells of both groups were revealed as terminally differentiated T

effector memory (TEMRA) cells which was significantly higher than

the other memory phenotypes of effector memory (TEM) and

central memory (TCM) cells of CD4+ and CD8+ T cells (P,0.0001,

unpaired t-test) (Figure 6A).

When the clinical histories of these 16 recovered melioidosis

subjects were analyzed, distinctive patterns of memory T cell

phenotypes were revealed. The memory T cells of the septicemic

melioidosis group (n = 12) were TEMRA significantly greater than

TEM and TCM of both CD4+ and CD8+ subsets (P,0.0001,

unpaired t-test). Interestingly, there was a trend of localized

melioidosis group (n = 4) showed stronger responses of TEMRA

with small contribution of TCM cells and TEM cells, but it was not

statistically significant (Figure 6B).

Figure 3. Specific T cell responses to B. pseudomallei of
recovered melioidosis cases vs. seropositive control subjects.
(A) Specific (CsA sensitive) IFN-c secreting spots in response to medium
alone, whole B. pseudomallei and Bp-derived ABC transporter proteins,
LolC, OppA and PotF were analyzed from 36 recovered melioidosis
cases (R) and 21 seropositive control subjects (S+). (B) Of these 36
recovered melioidosis cases, only 24 cases were analyzed according to

the previous history of localized melioidosis (LR, n = 13) and septicemic
melioidosis (SR, n = 11) and (C) the time of sample collection (weeks)
after completion of antibiotic treatments of recovered melioidosis
cases. Horizontal lines represent mean6SE value of each group.
Medium alone of recovered melioidosis and seropositive control
groups was less than 5 IFN-c SFC/106 PBMCs.
doi:10.1371/journal.pntd.0000407.g003
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Discussion

Burkholderia pseudomallei is an important cause of community

acquired sepsis and death in endemic regions of SE Asia and

Northern Australia and is listed as potential bioterrorism threat.

Yet despite its current and potential impact on public health our

understanding of immune defenses against this pathogen are

incomplete. B. pseudomallei is capable of extensive extracellular

growth and abscess formation, but is also genetically adapted to

survive and replicate within host cells [6,23]. It is killed by IFN-c

activated macrophages in vitro [24], making cell mediated

immunity a potentially important component of resistance. Here,

a total of 224 individuals living in the endemic area of NE

Thailand of varying immunological and clinical history for

exposure to B. pseudomallei were examined for the magnitude and

characteristics of their IFN-c responses following restimulation of

whole blood with whole bacteria or B. pseudomallei derived antigens

in vitro.

Northeast Thailand is the primary endemic focus of melioidosis

in SE Asia and the majority of individuals show evidence of

Figure 4. Identification of IFN-c secreting T cells responding to whole B. pseudomallei by four-color flow cytometry. Whole blood
samples from eight recovered melioidosis cases and six seropositive control subjects were incubated with whole B. pseudomallei for 12 hours and
stained for intracellular IFN-c vs. three immune cell surface markers (Tri-color anti-CD3, FITC-anti-CD4 and PE-anti-CD8 or PE-anti-CD56). The profile
from one representative donor of seropositive control subjects, (A) gated on lymphocyte cells, and (B) gated on IFN-c+ cells.
doi:10.1371/journal.pntd.0000407.g004

Human Cellular Immunity to B. pseudomallei
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seroconversion from an early age [2]. To obtain an initial estimate

of the diversity of the IFN-c response in this setting, blood samples

from 133 randomly selected individuals who had no clinical

history of melioidosis were tested for reactivity to B. pseudomallei by

IFN-c ELISPOT. The majority showed clear induction of IFN-c
positive cells above that of medium alone controls in the presence

of whole bacteria. Addition of cyclosporin A (CsA) which

specifically inhibits T cell receptor-mediated but not cytokine

mediated lymphocyte activation [9,11,25] showed this response

was made up of both innate and adaptive IFN-c responses. To

further define the adaptive IFN-c component, we compared the

frequency of CsA sensitive IFN-c producing cells against the

antibody titer of each individual. Serological evidence of exposure

to B. pseudomallei is clinically determined by an indirect

hemagglutination (IHA) assay which mostly detects antibodies to

conserved lipopolysaccharides and/or capsular polysaccharides

and is useful in diagnosis of melioidosis particularly in non or low

endemic areas [1]. Although the threshold IHA titer for

serodiagnosis varies in different countries, in the Northeast Thai

population; an IHA titer 1:40 is considered to be indicative of

previous exposure to B. pseudomallei in healthy individuals [15,18].

The frequency of specific, B. pseudomallei induced IFN-c cells

closely correlated with the serological status of the donor, whereas

no such correlation was observed with control antigens derived

from viruses known to be prevalent in the Thai population. Thus

environmental exposure to B. pseudomallei induces concordant

adaptive T and B cell responses as also seen in other examples of

infection or vaccination [26,27].

In mice, IFN-c is critical for survival of the infected host and

NK cells, as well as both CD4+ and CD8+ T cells contribute to its

production [9,10]. Using intracellular cytokine staining and

specific cell depletion we found a similar situation in humans in

which all three cell types produced IFN-c in vitro, with their

relative contribution differing according to the serological status of

the host. An initial finding was that human NK cells were

prominent producers of IFN-c in vitro, providing some 80% of the

IFN-c positive cells in the first few hours of the culture period. This

response was observed in both seronegative and seropositive

individuals, was not inhibited by CsA and most likely represents an

innate response to the bacterium presumably driven via the

generation of IFN-c inducing cytokines such as IL-12, IL-15 and

IL-18 in culture [9,28]. This observation may also explain the

previous findings by Lauw et al of a rapid IFN-c dependent

induction of the chemokines Mig and IP-10 in whole blood

cultures of healthy individuals in the presence of dead B.

pseudomallei [29].

In seropositive individuals, this innate response was supple-

mented by the presence of IFN-c positive CD4+ T cells and CD8+

Figure 5. Kinetics of IFN-c producing cells from ten recovered melioidosis cases and six seropositive control subjects in response to
B. pseudomallei in vitro. Whole blood samples were incubated with whole B. pseudomallei for 4, 12 and 24 hours and stained for intracellular IFN- c
vs. three immune cell surface markers (Tri-color anti-CD3, FITC-anti-CD4 and PE-anti-CD8 or PE-anti-CD56). (A) Distribution of individual responses,
horizontal lines indicate mean6SE values of the group and (B) the relative contribution of CD4, CD8 and NK cells to produce IFN- c of ten recovered
melioidosis cases (R) vs. six seropositive control subjects (S+), gated on IFN-c+ cells. * P,0.05, ** P,0.005, ns-non significant (unpaired t-test).
doi:10.1371/journal.pntd.0000407.g005
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T cells in both recovered melioidosis patients and asymptomatic

healthy control subjects. A predominance of CD4+ T cells was

observed from the peripheral blood of recovered melioidosis

subjects. Haque A, et al. also reported that antigen-specific CD4+

T cells were important for the resistance against B. pseudomallei

during the later phase of primary infection [10]. Clear evidence of

priming of CD8+ T cells was also observed, presumably reflecting

the cytoplasmic habitat of the bacterium within host cells [14].

These antigen specific T cells provided the majority of the total

IFN-c generated in culture as evidenced by their higher mean

fluorescent intensities (MFI) of IFN-c staining (Figure S3), larger

ELISPOT sizes (data not shown) and by the significant effect of T

cell depletion on the IFN-c ELISPOT response. Of note, we have

compared T cell responses by the production of IFN-c vs.

granzyme B by ELISPOT and the results showed high correlation

of these 2 indicators in response to B. pseudomallei suggesting the

importance of cytotoxic T cell response in melioidosis (Figure S4).

However, the role of these cells to combat this intracellular

pathogen requires further studies.

We then used differential expression of CD45RA and CCR7 to

characterize the IFN-c producing T cells as either central memory

(CM), effector memory (EM) or a more recently described effector

memory RA (EMRA) populations [30–32]. By these criteria,

.80% of IFN-c+ CD4+ T cells and .90% of IFN-c+ CD8+ T cells

reacting to B. pseudomallei were TEMRA cells, with the remaining

minority being TCM and TEM cells. Thus, B. pseudomallei

predominately induces ‘effector memory RA’ T cells in the

peripheral blood that respond rapidly to repeated exposure to the

microorganism as also reported with other pathogens such as

human cytomegalovirus and human immunodeficiency virus

[31,33]. There was a trend towards a greater contribution of

TEM and TCM cells in patients with a history of septicemia

compared to localized melioidosis but this did not attain statistical

significance and further studies using larger cohort sizes are

needed to confirm this.

Several earlier reports established that exposure to B. pseudomallei

primed human T cells for proliferation and secretion of the

macrophage activating cytokine IFN-c in vitro. However, these

studies were restricted to small numbers of individuals in Northern

Australia and Papua New Guinea and did not define the

frequencies, memory phenotypes of the responding cell popula-

tions or the antigen specificity of these responses. The results

presented here confirm and extend these findings to a larger

sample size in the endemic region of Thailand. A consistent

finding in all studies are that T cell responses were greater in

seropositive versus seronegative individuals. With the larger group

sizes provided in the Thai population we can go further and show

that this also correlates with antibody titer, and not simply

between antibody positive versus negative status. What is less clear

is the relative strength of the cell mediated responses between

seropositive healthy donors and recovered patients. Barnes et al

found that lymphocyte proliferation and IFN-c production was

greater in seropositive healthy donors (n = 8) than those recovered

from infection (n = 5), arguing as in the case of tuberculosis, of

impaired immunity in those who experienced clinical disease [13].

However, our results in the Thai population showed no difference

in the frequencies of IFN-c producing cells in the recovered

melioidosis group versus seropositive healthy donors, although

both were clearly greater than seronegative control subjects. In

contrast, the amount of IFN-c secreted (as determined by ELISA)

and the frequency of high IFN-c responders was greater in the

recovered group suggesting an increased immune priming

following a significant bacterial burden compared to healthy

exposed control subjects. Of note, even with the larger sample

sizes used here, IFN-c responses were similar between individuals

with and without diabetes, in patients with septicemic versus

localized disease or in cases of recurrent versus single episodes of

disease [4].

Given the high mortality of acute melioidosis and the problems

of treatment, the development of an effective vaccine is an

Figure 6. Memory phenotypes of IFN-c producing cells from recovered melioidosis cases vs. seropositive healthy control subjects
in response to B. pseudomallei in vitro. Whole blood samples were incubated with whole B. pseudomallei for 12 hours and stained for intracellular
IFN- c vs. three immune cell surface markers (Tri-color anti-CD4 or CD8, FITC-anti-CCR7 and PE-anti-CD45RA), gated on IFN-c+ cells. The distribution of
memory phenotype subsets i.e., central memory (TCM, CD45RA2CCR7+), effector memory (TEM, CD45RA-CCR72) and terminally differentiated T
effector memory (TEMRA, CD45RA+CCR72) of (A) 16 recovered melioidosis (R) vs. 7 seropositive individuals (S+), (B) recovered melioidosis with the
history of septicemic (SR, n = 12) vs. localized (LR, n = 4) melioidosis. Horizontal lines indicate mean6SE values of the group.
doi:10.1371/journal.pntd.0000407.g006
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important but difficult task. This is needed to protect individuals

living in endemic areas as well as in situations of accidental or

purposeful exposure following a bioterrorism scenario. Experi-

mental strategies using wild type bacteria of reduced virulence

[34], live attenuated mutants of B. pseudomallei [23,35] and killed

whole cells [12] have all been attempted with varying success.

However, one important approach requires identification of

individual B. pseudomallei specific proteins, which are both

immunogenic and protective, for inclusion in protein and/or

polysaccharide sub-unit based vaccines [36–38]. To date, the

number of B. pseudomallei proteins which have been defined as T

cell immunogens in mice or humans is very limited [38–40]. In

other pathogenic bacteria, ABC transporter proteins have roles in

bacterial survival, virulence and pathogenicity, are immunogenic

in humans and an increasing number are being considered as

candidate vaccine antigens [41–43]. We have previously shown

that three members of the bacterial ABC transporter family, LolC,

PotF and OppA are immunogenic in mice and particularly in the

case of LolC provide at least partial protection against lethal

challenge with B. pseudomallei following immunization in adjuvant

[17]. We now show that all three proteins are recognized by T

cells from seropositive individuals and could be considered for

future vaccine development. No T cell response was observed in B.

pseudomallei seronegative individuals, arguing that these antigens

are relatively specific for B. pseudomallei and priming is not the

result of cross reactivity against other common bacterial infections

in the community.

In conclusion, we provide here the most extensive study to date of

the human cell mediated immune response to B. pseudomallei and the

first to define this aspect of immunity in Thailand, the major

endemic focus of melioidosis in the world. Our data demonstrate

that B. pseudomallei specific CD4+ T cells secreting IFN-c are

generated following exposure to the bacterium in the environment

and the magnitude of this cellular response correlates with the

serological status of the individual. Our findings that NK cells and

CD8+ T cells also provide a potential source of IFN-c, may help to

explain the apparent lack of impact of HIV/AIDS on the incidence

of melioidosis in Thailand. Our ability to detect specific T cell

responses to defined B. pseudomallei proteins in large numbers of

individuals now provides the opportunity to screen candidate

antigens for inclusion in protein or protein-polysaccharide conju-

gate subunit vaccines against this important and emerging infection.

Supporting Information

Alternative Language Abstract S1 Translation of the Abstract

into Thai by Jirawan Mahawantung and Ganjana Lertmemong-

kolchai

Found at: doi:10.1371/journal.pntd.0000407.s001 (0.09 MB PDF)

Figure S1 Quantification of IFN-c production from recovered

melioidosis cases vs. seropositive healthy control subjects in

response to B. pseudomallei in vitro. Whole blood samples from 14

seronegative (S2), 29 seropositive (S+) healthy and 29 recovered

melioidosis (R) individuals were incubated with medium alone,

16106 CFU/ml whole B. pseudomallei, 10 ng/ml IL-12+IL-15 and

1.25 mg/ml PHA for 42 hours and collected cultured supernatants

for quantitative IFN-c analysis by ELISA. Horizontal lines

indicate mean6SE values of the group, * P,0.05, ns-non

significant (unpaired t-test).

Found at: doi:10.1371/journal.pntd.0000407.s002 (0.10 MB PDF)

Figure S2 Immune cell depletion and specific IFN-c secreting

spots in response to hkBp and its ABC transporter proteins. CD3,

CD4 and/or CD8 cells were depleted from PBMCs of a

seropositive healthy donor by immunomagnetic beads prior to

stimulation (ELISPOT details as in Figure 1). Percentage (%) of

specific (CsA sensitive) IFN-c response after depletion was

compared to the response of total PBMCs. Data show mean6S.E.

Found at: doi:10.1371/journal.pntd.0000407.s003 (0.09 MB PDF)

Figure S3 Mean fluorescent intensities of IFN-c produced by

CD3+ vs. NK cells in response to B. pseudomallei. Whole blood

samples of 4 recovered melioidosis were incubated with hkBp for

12 hours and stained for intracellular IFN-c vs. immune cell

surface markers, details as in Figure 4. (A) The mean fluorescent

intensity of IFN-c staining cells analyzed by histograms of medium

(grey) overlayered with hkBp (black line) stimulated CD3+ vs. NK

cells, (B) distribution and mean6S.E of MFI of 4 recovered

melioidosis (panel B). * P,0.05 (paired t-test).

Found at: doi:10.1371/journal.pntd.0000407.s004 (0.08 MB PDF)

Figure S4 Correlation of IFN-c vs. granzyme B production by

specific T cells in responses to whole B. pseudomallei and three ABC

transporter proteins. PBMCs from 54 healthy blood donors were

determined for IFN-c vs. granzyme B by ELISPOT as described

in Figure 1 (r2 = correlation coefficient).

Found at: doi:10.1371/journal.pntd.0000407.s005 (0.10 MB PDF)
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