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Framework for Regional Earthquake-Induced Landslide  

Assessment using a Data-Informed Probabilistic Approach 
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Paolo Zimmaro5, Domniki Asimaki6, Jonathan P. Stewart7 

 

ABSTRACT 
 This paper presents a data-informed, probabilistic methodology employed to assess regional co-seismic landslide hazards in California, 

primarily by jointly analyzing geologic data and geotechnical properties of various geologic units and incorporating uncertainties in the 

prediction analyses. Geotechnical data from a borehole database, a California statewide geologic map, and judgment in consultation 

with local geologists/geotechnical engineers are integrated to estimate a range of plausible shear strength parameters and slope properties 

that represent the epistemic uncertainty in these parameters. A logic tree approach is implemented to account for the epistemic 

uncertainties in the input model parameters, as well as in empirical displacement models, that may influence the accuracy of the co-

seismic landslide displacement predictions.  

   

Introduction 
The state of California is seismically active and has a high likelihood of earthquake-induced landslides that may cause 

damage to aboveground and buried infrastructure, causing concerns for public safety and economic losses. The 

possibility of occurrence of such landslides needs to be assessed to minimize potential exposure to damage and to aid 

emergency response management plans. This issue is of particular importance for distributed infrastructure, such as 

pipeline and transportation networks.  

 

The resistance of slopes to earthquake-induced landslides is largely dependent on the material shear strength, geology, 

slope configuration, groundwater table and ground shaking intensity. The rigid sliding block approach has been used 

extensively to estimate earthquake-induced displacements of slopes on a regional scale [1-4]. To estimate 

displacements, the approach requires the yield acceleration, 𝑘𝑦, which is defined as the horizontal acceleration that 

results in a factor of safety (𝐹𝑆) of 1.0. The calculation of 𝑘𝑦 for regional-scale analysis often utilizes an infinite slope 

assumption, and the resulting expressions (Eqs. 1 and 2) are a function of the factor of safety (𝐹𝑆), the effective 
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cohesion (𝑐′), the effective friction angle (𝜙′), the material and water unit weights (  and 𝛾𝑤, respectively), the slope 

angle (𝛼), the thickness of the sliding mass (𝑡), and the proportion of sliding mass that is saturated (𝑚).  

 

𝑘𝑦 = (𝐹𝑆 − 1)𝑔/(cos 𝛼 ∙ tan 𝜙′ + 1/tan 𝛼)     (1) 

𝐹𝑆 = 𝑐′/(𝛾 ∙ 𝑡 ∙ sin 𝛼 ) + tan 𝜙′ (1 − 𝑚 ∙ 𝛾𝑤/𝛾 )/tan 𝛼    (2) 

 

Shear strength parameters can vary significantly, even within the same geologic unit, due to spatial variability and 

continuity, the reliability of testing procedures, and interpretation of data. This paper describes the process of (1) 

assigning shear strengths on a regional scale based on geologic units and geotechnical data, and (2) utilizing the logic 

tree approach to incorporate uncertainties related to material strength parameters, slope properties and predictive 

displacement models in seismic landslide analyses.  

 

Previous Work 
Previous studies have evaluated the prediction of seismic landslides using the rigid sliding block approach.  These 

studies used a limited amount of shear strength data and found that only a fraction of observed landslides is captured, 

and the total area of predicted landslides is much larger than observed [2-4]. These studies only used single values of 

the input parameters without accounting for uncertainties and concluded that the overprediction of landslides may be 

due to the use of one set of shear strength parameters per geologic unit. More recent studies [5, 6] highlighted the 

importance of considering the spatial variability of shear strengths across geologic units and accounting for 

uncertainties in seismic landslide predictions. One approach to incorporating epistemic uncertainties in the analysis is 

the use of logic trees, which is common practice in probabilistic seismic hazard analysis [7-9]. This study builds upon 

previous work to develop a logic tree for seismic landslide analysis that can be utilized at the state-scale and 

incorporates not only parametric uncertainty but also differences in the displacement prediction models.  

 

General Methodology and Data 
The primary geospatial inputs essential for the estimation of seismic landslide displacements include digitized 

regional-scale geologic maps, a digital elevation model (DEM) for computing slope angle, sliding mass thickness, 

water table data, material unit weight, shear strength parameters and earthquake ground motion parameters. This study 

used the statewide geologic map developed by [10] for assigned shear-wave velocities, which consists of fifteen 

geologic units (Fig. 1). The geologic map provides a consistent representation of the spatial distribution of geologic 

units across the state; however, there are regional geologic differences between northern and southern California. 

Although the boundary between the two regions is not well defined, this study presumes the red line shown in Fig. 1 

to be the geologic boundary between northern and southern California for strength assignment purposes. The red line, 

which generally follows the Santa Ynez and Garlock faults, also shows the approximate southern extent of the 

Franciscan Complex (KJf), a rock complex consisting mostly of mélange, sandstone, shale, chert and greenstone.  

 

 
Figure 1. Geologic Map of California [10] 



A 10-m resolution DEM from the CGS was used to derive the slope angles for the entire region.  Slopes in California 

are as steep as about 80o in hilly terrains with slopes less than 10o associated with alluvial fans and floodplains. Most 

landslides triggered by earthquake events are shallow in nature and occur on steeper slopes [11]. Minimum slope 

inclination for observed earthquake-induced soil slides and rock slumps is about 15° [12]. The unit weight is assumed 

to be 18 kN/m3 for the entire region. The thickness of the sliding mass was derived from judgment in consultation with 

local landslide experts. Low, best and high estimates of the sliding mass thickness are 5 m, 10 m and 15 m respectively 

for northern California and 1.5 m, 3 m and 4.5 m for southern California respectively. The degree of saturation of the 

sliding block are computed from water table depths obtained from the California well database [13]. 

 

Shear Strength Estimation 

Shear strength parameters (𝑐′ and 𝜙′) were obtained from a borehole database maintained by the California Geologic 

Survey (CGS). The database includes results from geotechnical testing, mostly direct shear tests conducted by 

consultants and observation reports of geologic properties and lithology of borehole samples. The data was statistically 

analyzed and used in conjunction with geologic data to characterize the strength properties of the geologic units. The 

geologic subunits defined in the borehole logs were grouped and matched with the geologic units described in [10] 

according to their descriptions and the interpretation of the lithology and grain sizes. Subsequently, best estimates of 

𝑐′ and 𝜙′ mapped to the geologic subunits were assigned to the corresponding statewide geologic units. The computed 

values of 𝑐′ and 𝜙′ were compared with values documented in Chapter F of the Hayward fault scenario report [14] 

and CGS seismic hazard reports. The properties were adjusted for some units to ensure the relative strengths of the 

geologic units was appropriate. As 𝑐′ tends to follow a lognormal distribution [15, 16], the mean and standard deviation 

of the natural logarithm of 𝑐′ (in units of kPa) are used in the analysis. Table 1 presents the shear strength parameters 

and water table depth information for each of the geologic units considered in this study. Statistical analysis of the  

 

    Table 1. Computed shear strength and water table depth data for each geologic unit 

 
 *Values in black represent northern California data while values in blue represent southern California data.  



borehole datasets indicates that 𝑐′ in northern California is higher than values obtained in southern California at the 

same confining pressure. The reverse is the case for 𝜙′. 

 

Logic Tree for Displacement Calculation 

The logic tree analysis is used to capture different combinations of shear strength parameters, slope properties and 

displacement models, with each input parameter represented at a node with a range of values on the branches. Weights 

are assigned to each branch of the logic tree to reflect the degree of confidence in each input parameter. The weighting 

factor uses the 3-point distribution described in [17] for 𝜙′, 𝑐′, 𝑡 and 𝑚. These input parameter combinations result in 

81 values of 𝑘𝑦 computed from Eqs. 1 and 2 which are then re-sampled into a 5-point distribution using [17]. The 

logic tree shown in Fig. 2 displays the parameters for a single 10-m grid cell within the Tertiary shale (Tsh) geologic 

unit in northern California. For this study, three displacement models are considered – two of the models [3, 7] use a 

combination of magnitude (M) and peak ground acceleration (PGA) and are each given weights of 0.3. The third model 

uses a combination of PGA and peak ground velocity (PGV) [7] and is given a weight of 0.4. 

 

 
Figure 2. Illustrative logic tree for geologic unit Tsh in northern California 

 

Conclusions 

This paper outlined a logic tree approach for seismic landslide assessment that can be applied state-wide in California.  

The logic tree approach allows for the analysis to account for the epistemic uncertainty in the various input parameters.  

Best estimates and uncertainty in the shear strength parameters for different geologic units were derived from statistical 

analysis of borehole and geologic data. Similar analyses and judgment were used to develop logic tree branches for 

the other input parameters (𝑡 and 𝑚). The methodology presented above is applied to individual 10-m grid cells but 

can be expanded to develop probabilistic distributions of the amount of displacement and size of seismic deformation 

zones for risk assessments of spatially distributed infrastructure as described in companion papers [18, 19]. 
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