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Robust Stability of Hybrid Limit Cycles With
Multiple Jumps in Hybrid Dynamical Systems

Xuyang Lou, Yuchun Li and Ricardo G. Sanfelice

Abstract—For a broad class of hybrid dynamical systems, block upper triangular structure. An extension of the Parac
we establish (esults fOF rqbust asymptot]c Stablhty of hylid map method was proposed in [6] for the analysis of limit
limit cycles with multiple jumps per period. Hybrid systems .y cjeg in left-continuous hybrid impulsive dynamical syss,
are given in terms of differential and difference equationswith hich diff to th dels with state-tri .
set_constraints._ H_ybrid Iimit cycles are giver_l by compact sis W ICh, as adi ,erence othe mo ,eSW' state- ngggrguhsu
defined by periodic solutions that flow and jump. Under mild in [1], have variables that exhibit jumps at pre-establisti@e
assumptions, we show that asymptotic stability of such hybd instances. For a similar class of hybrid systems, [7] prssen
limit cycles is not only equivalent to asymptotic stability of a differential conditions in terms of linear matrix inequs for
fixed point of the associated Poinca map but also robust 10 pjia| stability within a contraction framework. Motivad by

perturbations. Specifically, robustness to generic pertusations, S . . e
which capture state noise and unmodeled dynamics, and to applications in power systems, a trajectory sensitivigrapch

inflations of the flow and jump sets are established in terms Was proposed in [8] to derive sufficient conditions for sligbi
of KL bounds. A two-gene network with binary hysteresis is of limit cycles in switched systems with differential-algaic

presented to illustrate the notions and results throughoutthe  constraints. In such models, the jumps occur due to the model

paper. switches or to the reinitialization of the variables needed
Index Terms—Hybrid limit cycle, Poincar& map, hybrid sys- keep them within the so-called consistency spaces geuderate
tems, stability, robustness. by the algebraic constraints [10]. More recently, in [9]e th
existence and stability of limit cycles in reset controltsyss,
. INTRODUCTION which are a specific class of hybrid systems, are investigate

In recent years, the study of limit cycles in hybrid systemi4sing techniques that rely on the linearization of the Paiiéc
has received substantial attention. One reason is theeggist Map about its fixed point. _
of hybrid limit cycles in many engineering applicationscsu  Besides our preliminary results in [11], [12], results for
as walking robots [1], genetic regulatory networks [2], mehe study of robustness of limit cycles in hybrid systems
chanical systems [3], neuroscience [4], among othersilBgab are currently missing from the literature, being perhaps th
of hybrid limit cycles is often a fundamental requirement fomain reason that a robust stability theory for such systems
their practical value in applications. The literature sekawa- has only been recently developed in [13]. In fact, all of the
riety of results for the study of limit cycles in several clas of aforementioned results about limit cycles are formulatd f
hybrid systems [1], [2], [5]-[9]. In [1], the method of Poiae hybrid systems operating in nomlnal/n0|§e—free condgion
sections is employed to establish existence and asymptdtite development of tools that characterize the robustness
stability of periodic orbits in impulsive systems emerging Properties to perturbations of stable hybrid limit cyclesery
bipedal walking. The approach consists of building a map thghallenging and demands a modeling framework that properly
describes the evolution of the state of the system rightreefd'andles time and the complex combination of continuous and
impulses (or jumps), which, in the setting of [1], occur agliscrete dynamics. _ N -
points belonging to a surface. By collapsing the flow dynamic N t_h|s paper, we establish sufﬂmen_t condl'q_ons for guar-
into such a return map — resembling the so-called Poincat@teeing (local and global) asymptotic stability of hybrid
map — the properties of the limit cycle can be studied usieg tMit cycles. The constructions proposed to certify asyofipt
theory of discrete-time systems. This approach leads tadtses Stability of hybrid limit cycles are exploited to guarantbet
in [5] highlighting properties of periodic orbits in genkraSuch property is robust to perturbations. A result on rafess
impulsive systems and the design of stabilizing contrsllefo generic perturbations, which allows for state noise and
for walking robots. More precisely, [5] shows that periodi¢inmodeled dynamics, is proposed in termskof bounds.
orbits for such systems that are within an invariant madifoll N€ satisfaction of the so-called hybrid basic conditionii ]
(for which an explicit construction is provided) implieseth IS Shown to be a crucial property in guaranteeing robustness

existence of local coordinates in which the Poincaré mapehat® Such wide range of perturbations. Furthermore, due to the
X. Lou is with Key Laboratory of Advanced Process Control faght ~Particular structure of the sets on which flows and jumps
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cycles, and numerous examples can be found. To incorporate binary hysteresis in the interaction betwee
The organization of the paper is as follows. Section Henea and geneb, two discrete logic variables;; and ¢,
presents a motivational example. Section Il presents exedare incorporated. The dynamics of the logic variables dépen
preliminaries about hybrid systems. Section IV presengs tbn the thresholdsf; and #,, respectively. The constants
definition of hybrid limit cycle, stability notions, and hgid and 6, inferred from biological data satisfy < 6; < 67"
Poincaré map. In addition, with the hybrid limit cycle défin and0 < 6, < 65***, wheref"** and 65> are the maximal
tion, sufficient conditions for stability of hybrid limit @es values of the concentration of proteih and of proteinB,
are established. Section V highlights issues with pertisha respectively.
and provides results on general robustness of stability to
perturbations. In addition, a two-gene network with bina%
hysteresis, which exhibits periodic solutions with foumjos
per period, illustrates our results throughout the paper.

The discrete dynamics of the hybrid system are described as
llows. Wheng; = 0 andz; = 6; + r;, the statey; is updated

to 1, i.e., ¢/ = 1, wherer;, i = 1,2, are positive constants
defining the hysteresis width. Whep =1 and z; = 0; — r;,
Notation. R" denotes then-dimensional Euclidean spacethe statey; is updated ta, i_e_,qi+ =0, wherei = 1,2. Note

R, denotes the set of nonnegative real numbers,Rgo,:=  that at jumps, the continuous statgsand z, do not change,

[0, +00). N denotes the set of natural numbers includinge., i.e., 2 = z; andz = z,. We can express the conditions for
N:={0,1,2,---}. Given a vectorz € R", |z| denotes the continuous and discrete behavior in a compact form using the
Euclidean norm. Given a continuously differentiable fimet following functions:

h:R™ — R and a functionf : R™ — R", the Lie derivative (o N YA ] o \m\ s

of h at z in the direction of f is denoted byL sh(z) = il ) = (20 = 1)(=2 +6: + (1 = 2q:)ra), i € 11,2}

(Vh(z), f(z)). Given a functionf : R™ — R", its domain Then, the condition for continuous evolution is given by

of definition is denoted bylom f, i.e., dom f := {x € R™ : m(z1,q1) < 0 andna(22,q2) <0,
f(z) is defined. Given a setd C R" and a pointz € R™, and the condition for discrete evolution is given by
|z|4 := infyc 4|z — y| when A is closed;A (respectively, m(z1,q1) =0 of na(22,q2) = 0.

€0 A) denotes its clo§ure (r_especti_vely, closed convex hB"): Parameters of the model include positive consténtss, 1,
dgnote; a cIo_sed unit ball in Euilldean space (of apprccpn%t% 01, 05,71, andrs Satisfying +r1 < O™, G 1y < O,
dimension). Giver > 0 andx € R", x+ 0B denotes a closed 9

. . . 1—r1>0,and92—r2>0.
ball centered at with radiusd. A functiona : Ryg — Rxo 08 N
belongs to clas& (o« € K) if it is continuous, zero at zero, 02
and strictly increasing; it belongs to claks; (a € Koo) if, oy
in addition, is unbounded. A functiofi : R>¢ x R>¢ — Rxg 0el Oy
belongs to clas&L (8 € KL) if for eacht > 0, B(-,t) is
nondecreasing andm,_,q+ S(s,t) = 0 and, for eachs > 0, 05

B(s,-) is nonincreasing antm; ., 5(s,t) = 0. § 0al03

II. MOTIVATIONAL EXAMPLE 0al

Consider the genetic regulatory network with two genes, ool
andb, each encoding proteiné and B, respectively, proposed ' o
in [2]. The dynamics of such genetic network are given by 003 07 o5 o8 07 o5 os 1

b= ks (22,02) —mz (1)  Fig. 1. Phase plot of solut h senet Ki ject
By = k28+(2’1, 6‘1) — ozs Fig. 1. Phase plot of solutions to the genetic network in (i) €) (projection

. to (z1,22) plane). The pointO; is given by (z1, 22) = (0.85,0.60), the
where z; > 0 and 2z, > 0 represent the concentration OfpointOs is (21, z2) = (0.50,0.77), the pointOs is (21, z2) = (0.26,0.40)

protein A and of proteinB, respectively. The constanty and the pointOy is (21,22) = (0.70, 0.16).
and 0, are the thresholds associated with concentrations ofA imulation to th . ith t@hS— 0.6. O —
proteinsA and B, respectively. In this model, geneand its simulation to the system with parametets= v.5, o2 =

protein A are expressed at a growth rate > 0 when z, is 0271 =72 = 1, by = kz =1, andry = r; = 0.1 is depicted
above the threshold,. Similarly, geneb and its proteinB in Fig. 1. The trajectory (blue line) in Fig. 1 shows a limitcby
are expressed at a growth raktg'> 0 when z; is above the O defined by the solution to the hybrid genetic network system

threshold,. Degradations of both proteins are assumed Yt initial condition (21,25, g1, ¢2) = (0.79,0.40,1,0) that

be proportional to their own concentrations, a mechanisah tgumPs at the point);, i = 1, 2’3.’4’ an_d fl(_)ws_m betwee_n .
is captured by—v,2; and —ysz, respectively. The positive points. As suggested from the simulation in Fig. 1, the limit

constantsy; and~, represent the degradation rates of protefﬁyCIeO is asymptotically stable for the system (more rigorous

A and B, respectively. The step functio and s are a_nalysis_ is perf_ormed at a later section_). A more detailed
P y P s ’ discussion of this example can be found in [2].

defined as
5+(Zia9)—{0 P s_(20,0)=1—s4(2:,0), (2) Mo'uyated by the example, our interest is in developing
it z; < analysis tools that can be applied to such systems so as to
where i = 1,2, s;(z,0) represents the logic for genedetermine the stability and robustness properties of Hybri

expression when the protein concentration exceeds a thicesHimit cycles with multiple jumps in a period, which are misgi
0, while s_(z;,0) represents the logic for gene inhibition. tools in the literature of hybrid limit cycles.



I1l. PRELIMINARIES ON HYBRID SYSTEMS system?#q as follows:

We consider hybrid systen# as in [13], given by fi(l=g2) =z

. . . k2Q1*'Y222 ~
zt = g(x) xeD 0
wherez € R™ denotes the state of the systeingdenotes its xt = ga(z) z€Dg N Mg
derivative with respect to time, and™ denotes its value after ayhere Ca = (z € Réo x {0,1}2

) . . mz,q1) <
jump. The functionf : R™ — R"™ (respectivelyg : R™ — R") = 2 2. _
is a single-valued map describing the continuous evoluti%hgl?(;;(’g)qf) O:}’O}Dcfl_h; J{lfmep%n?p;g{ios’ gi}ve'nniag/%ql) =
(respectively, the discrete jumps) while C R™ (respectively, ’ o

D C R") is the set on which the flow map is effective gg(:zj):_{gl(x) i (21,01) =0,712(22, 2) <0 @
(respectively, from which jumps can occur). The data of a 92({) if 7 (21,01) <0,7m2(22,42) =0

hybrid systen# is given byH = (C, f, D, g). AsolutiontoX for eachx € Dg N Mg, where gi(z) = (21,22,1 —
is parameterized by ordinary tinteand a countey for jumps.  q1,¢2), 92(x) = (21, 22,q1,1 — ¢2). It follows from [2] that
It is given by a hybrid are : dom ¢ — R that satisfies the when the conditions

dynamics ofH; see [13] for more details. A solutiop to H 01 +1r1 < ki/y1 <07 Oy + 1o < ko/y2 < 05 (5)
is said to be complete dom ¢ is unbounded. It is said to behold, there exists a hybrid limit cyck® for the hybrid system

maximal if it is not a truncated version of another solutiom, with four jumps per period. It is given b§) = U?ﬂ S;,
The set of maximal solutions t& from the setK is denoted with? a

ki (k1 _ —v15 7 ,

as o o si={zertia=| 70N MO e nlf < (0.0)

Sy (K):={¢$:¢ is a maximal solution t6{ with $(0,0) € K'}. ! po(2)e ™ ]

We definet — ¢7(t, x0) as(a)solution of the flow dynamics SQ:{zERQ:z: %_E%—?E;;;Z:z
i=f(z) zeC e (5 TP ]

from zy € C. A hybrid systent is said to be well-posed if it ) p2(1)e s 1 /

satisfies thénybrid basic condition§l3, Assumption 6.5]For 53 ={*€R 2= k2 (ks _py(2))e2e |0 € [, tff]} {1, 1)}

more details about this hybrid systems framework, we réfer t i i

readers to [13]. &:{zeRQ:z:{ ﬁig;i::é }se[oﬂ]} x {(0,1)}

sefo, t;l} < {(1,0)}

where

1 1
ky = ko 33
o W—Po(l) 7 ' E—Pl(Q) 2
ty=In {’“_1—(91-%1) » tz=In 22— (02+h2) ’ (6)

71

IV. HYBRID LIMIT CYCLES AND BASIC PROPERTIES

A. Definitions

In this work, we consider a class of flow periodic solutions ty =1In [g’j{(}“ tLty= [9”23,(332} .
defined as follows. andpo, p1, p2, p3 € R? are the vertices of the s& (projected
Definition 1: (flow periodic solution) A complete solutionto R?); see [2, Propositign 3./3]. T/his system has a hybrid limit
¢* to H is flow periodic with periodl™ and N* jumps in cycle with periodT™ = ¢, +t, +t3 +t, and N* =4. A
each periodf T* € (0,00) andN* € N\ {0} are the smallest
numbers such that* (t+71, j+N*) = ¢*(t,j) forall (¢, j) € B. Basic Properties of Hybrid Limit Cycles
dom ¢". In what follows, we focus on a class of hybrid systems that
The definition of a flow periodic solutiop™ with period satisfies the following assumption.
T* >0 and N* jumps per period above implies that('tf,_j)_e Assumption 4:For a hybrid systen# = (C, f, D,g) on
dom ¢, then (¢ + 7,5 + N*) € dom¢”. A flow periodic pn there exist a closed setf c R™ and N* continuously
solution toH generates a hybrid limit cycle. differentiable functionss; : R” — R such that
De_finition_2: (hybrid limit cycle) A flow periodi<_: soluti_on 1) the flow setcan be written ag” = ﬂf\; C;, and the
¢* with period 7" € (0,00) and N* € N\ {0} jumps in jump setcan be written asD = (JY, D;, whereC; =

each period defines laybrid limit cycleO = {x e R" : © = {z € R" : hi(z) > 0} and D; = {z € R" : h(z) =
¢*(t,4), (t,j) € dom ¢* }.1 0, Lyhi(x) < 0} for eachi € {1,2,---, N*};

Next, the example in Section Il is revisited to illustrate th 2) the flow map f is continuously differentiable on an
hybrid limit cycle notion in Definition 2. open neighborhood oM N C, and the jump mag is

Example 3:Consider the hybrid genetic network system in __ continuous onM N D;
in Section 1. On the regiolg := {a := (21,22,q1,¢0) € ) foreachi, ke {1,2,--- N*}, Lyhi(z) <0 forall z €
R2>o><{0, 1322 ([0, 01 +71] [0, 02] x {0} x {0})U([6:, O] x MnND; andg(MND;) ﬁ (MND)=10,and(MND;)N
[0, 05 +75] x {1} x {0}) U ([, — 1, 05°%] x [0, 632%] x {1} x (M N Dy) = 0 for eachi # k; o _
{11 U([0,61] % [B — 9, 05%] x {0} x {1})} (later, the seMq 4) Har = (Mﬁ_C, fyMnND,g) has a flow perlo_dlc solution
will be part of our analysis), it can be described as a hybrid ¢* With period 7" > 0 and N* € N\ {0} jumps per

LAlternatively, the hybrid limit cycle® can be written agz € R" : z = period that defines a hybrid limit cycl@ C M N(CUD).
o*(t,7),t € [ts, ts +T7*],(t,5) € dom ¢*} for somets € R>p. 2p;(n) is the n-th component op;, i € {0, 1,2, 3}.



Remark 5:1tem 1) in Assumption 4 implies that flows D; is defined byTp,: CUD — R>qU{cc}, wheré

occur when everyh; is nonnegative and jumps only occur Tp,(z) :=inf{t > 0: ¢(t,j) € D;, ¢ € Sp(z)} (7)
at points in zero level sets df;. The continuity property for eachz € C'U D.

of f in item 2) of Assumption 4 is further required for
the existence of solutions t& = f(z) according to [13,

Proposition 2.10]. Item8) and4) in Assumption 4 allow us
to restrict the analysis of a hybrid syste# to a region of

the state spacd/ c R™. As we will show later, the sed/

is appropriately chosen for each specific system such tha
guarantees completeness of nominal solution& {g and the

Inspired by [1, Lemma 3], we have that for eache
{1,2,---,N*}, the functionz — Tp,(z) is continuous on
a subset ofM N (C'U D); see [12, Lemma 4.13]. Next, let
us introduce the Poincaré map for hybrid systems. For each
%Me[{l,z--- , N*}, the hybrid Poincaré map, : M N D; —

N D; given by

existence of flow periodic solutions. It can be shown that the £#(%) = {6(Tp.(9(2)),4) = ¢ € Sulg(x)), (8)
hybrid limit cycle generated by periodic solutions as define (Tp,(g(x)),j) € dom¢ } Yz e MND;
in Definition 2 is closed and bounded. is well-defined and continuous ok, due to the continuity of

Tp, on &; and well-posedness df ;. Note that for points
Next, Example 3 is revisited to illustrate Assumption 4. 4 in the range of a hybrid limit cycle witdN* jumps, P;(x)
is the value of the solution from after N* jumps; cf. [1].
Example 6:Consider the hybrid genetic network systenThe importance of the hybrid Poincaré map in (8) is that it
Hg in Example 3. On the regiof/; and under the conditions allows one to determine the stability of hybrid limit cycles
in (5), the setsC and D¢ are equivalent tad’c := {x € Now, we define asymptotic stability using a hybrid Poincaré
Mg : hi(x) > 0 Vi € {1,2,3,4}}, and D¢ := U;_, Dg,, map. Below,P)* denotest compositions of the Poincaré map

respectively, where P; with itself.
Dg, :={x € Mg : hi(z) = 0,Ty(z) f1(x) < 0},i € {1,2} Definition 8: For eachic {1,2,---, N*}, a fixed pointz*
De, ={x € Mg : hi(z) =0,Ti(2) fa(x) < 0},i € {3,4}  4f 3 poincare mag; : M N D; — M N D; is said to be
fi(z) :== k1(91; qf) - Mz, fﬂ{)(;i k2q1 - V222, . stableif for eache > 0 there existss > 0 such that for
[i(z) = =72, Tyz) = e mmm=), eachz € MND;, |z —x*| < 6 implies|PF(z) —2*| < ¢
D3(z) = —ef2tm2=22 Ty(z) = e~ (027m2722) for all integersk > 0;

and the functiong;: CcUDG—R, ic{1,2,3,4}, are defined as ~ * globally attractive with basin of attraction containing
h(z) = 1+t 4 on _’é’ every point in M N D, if for all © € M N D; ,

lim PF(z)=x*;

ho(z) = e~ G17n=21) yelma — g, st _ o
ha(z) = ef2tra=22 4 a2 _ 9 « globally asymptotically stabléf it is both stable and
ha(z) = e~ (02—r2=22) +e1—q’2 _9 globally attractive with basin of attraction containing

o 4
With the closed sed/¢ introduced in Example 3 and the sets every pointind 1 D;;

Cq and Dg given above, the systerfiig can be rewritten o locally attractiveif there existsy > 0 such that for all

asHa, = (Mc N Cgq, fa,Mc N Dg,ga). Then, using the r € MND;, |vr— x| < pimplies 1i_>m PF(z) = z%;
conditions in (5), we obtain that for all € McNDg, andeach  , |ocally asymptotically stabli it is both stable and locally
i€ {1,2,3,4), Ly s hi(@) = Ti(@) faoor(igry < 0. By attractive.

definition, the set§’¢ aﬁdDG are closedf is continuous on

MaNnCgq, fo is continuously differentiable on a neighborhoo . L

of Mg N Cg, andgg is continuous onV/ g N Dg. Moreover, % Stability of Hybrid Limit Cycles

it can be verified thay (Mc N Dg,) N (Mg N Dg) = 0 and In this section, we present sta}piliw prope_zrties of hyb_ir'miﬂ

(Mg N Dg,) N (Mg N Dg,) =0, for all i,k € {1,2,3,4}, cycles forH. Following the stability notion introduced in [13,

i # k. Therefore, Assumption 4 holds. A Definition 3.6], we employ the following notion for stabijlit
of hybrid limit cycles.

Remark 7:1n [1] and [6], the authors extend the Poincare Definition 9: Consider a hybrid systeri{ on R" and a
method to analyze the stability properties of periodic wrbicompact hybrid limit cycleO. Then, the hybrid limit cycle
in nonlinear systems with impulsive effects. In particulaf’ is said to be
the solutions to the systems considered therein are right- stablefor H if for every ¢ > 0 there exists) > 0 such
continuous over (not necessarily closed) intervals of flow. that every solutionp to H with |¢(0,0)|o < 0 satisfies
particular, the models therein (as well as those in [7]) requ |p(t, 7)o < e for all (t,5) € dom ¢;

C N D = 0, which prevents the application of the robustnessain particular, when there does not exist= 0 such that? (¢, z) € D;,
results in [13] due to the fact that the hybrid basic condiio we have{t > 0: ¢/ (¢t,2) € D;} = 0 for eachi € {1,2,---, N*}, which
would not hold. On the other hand, our results allow us #8370 () = <. e

. . . In this paper, our results employ the term “global” as in [&8H related
establish robustness properties of hybrid limit cyclesrs®  references, which requires careful treatment. More pesgiin that reference,

in Section V. it is stated that, for a hybrid systett = (C, f, D, g) with state inR™, points
outsideC' U D belong to the basin of attraction, and that global asymptoti

. . stability corresponds to the case when that basin is equi™oindicating
FOHOW'ng [1], for a hyb”d system#, and for each that solutions fromC' U D are required to converge to the asymptotically

ie{1,2,---,N*}, thetime-to-impact function with respect tostable set; see [13, Definition 3.6].



globally attractivefor A if every maximal solutior to
from CUD is complete and satisfigfjm lo(t, 7)o =0;
] — 00

globally asymptotically stabléor 7 if it is both stable
and globally attractive;
locally attractivefor # if there existsy > 0 such that
every maximal solutio to  starting from|¢(0,0)|o <
w is complete and satisfi%slim lo(t, 7)o = 0;

]— 00
locally asymptotically stablér # if it is both stable and
locally attractive.

For eachi € {1,2,--- ,N*}, and forz € M N (C' U D),
define the “distance” functiod, : M N (C' U D;) — Rxq as

xf € MND; is a stable point of;,. Then,P;(z}) = z} due to

the continuity ofP; in (8) and, for anye > 0, there exist$ > 0
such thati € (7 + 6B) N (M N D;) implies PF (%) € (z} +

éB) N (M N D;) Yk € N. Moreover, by assumption, every
maximal solutionp to H; from € (z7 +0B)N (M N D;) is
complete and unique. Since solutions are guaranteed tb exis
from M N D;, there exists a complete solutignfrom every
such pointz. Furthermore, the distance betweenand the
hybrid limit cycle O satisfie§

sup ot j)|o < . ma; sup
1

X d;og(z).
(t,j)€dom ¢ {12, N} ge (23 4+8B)N(MND;)
Since the functiond;’s are well-defined and continuous 6h

di(z) = sup l6(t, )]o d; is continuous at:}. SinceQ is transversal tal/ N D; (see
t€[0,Tp, ()], (t.j)€dom ¢, ¢ESw,, (x) [12, Lemma 4.9]) O N (M N D;) is a singletong(x}) € O,

when0 < Tp,(z) < oo, and andg is continuous, we have thaf o g is continuous at:}.
di(z) = sup lo(t, 7)o Moreover, sincel; o g(z;) = 0, it follows by continuity that

(t,j)€dom ¢, p€ESw ,, (v)
if Tp,(x) = co. Note thatd; vanishes orQ. Denote the basin max sup
of attraction of the se® by B». Then, similar to [1, Lemma W€{1,2, N"} e (@ +3B)N(MND;)
4] but exploiting the hybrid basic conditions, we have tht t Therefore, an open neighborhood @fgiven by V := {z €
functionsd;’s are well-defined and continuous @ see [12, R": {lrgaxN }di(x) € [0, €)} is such that any solutios to
Lemma 4.15]. ez, N e , .
A relations]hip between stability of fixed points of PoirmarHM from ¢(0,0) € V satl_sf|es|<_;5(t,j)|o S ¢ f_or all (.t’]) <
maps and stability of the corresponding hybrid limit cydes dom ¢. Thus, the necessity of ite) follows immediately.
The stability part of item2) follows similarly. Sufficiency

established next. L L )
, ) of the global attractivity part in item2) is proved as follows.

Theorem 10: Consider a hybrid systef on R™ and a  g,ppose the hybrid limit cycle generated by a flow periodic
clos_ed setM C R™ satisfying Assumption 4. _Suppose eVeRysiution to £, from 2, i € {1,2,---,N*} is globally
maximal solution toH s = (M NC, f, MND, g) is complete. ayractive for,, with basin of attraction containing every
Then, the following equivalences hold: point in M N (C U D). Then, givene > 0, for any solution

1) for eachi € {1,2,--- ,N*}, z7 € M N D; is a stable 4 to 7¢,,, there existsI’ > 0 such that|¢(t, j)|o < e for
fixed point of the Poinc& mapP; in (8) if and only if the g (t,j) € dom¢ with ¢ > T. Note that¢ is complete
hybrid limit cycleO of #,, generated by a flow periodic and dom ¢ is unbounded in the-direction as Assumption 4
solution¢* with period7™ and N* jumps in each period prevents solutions from being Zeno via [16, Lemma 2.7]. It
from ¢*(0,0) = 7 for eachi € {1,2,---,N*} is stable follows that| P¥(27)|o < e for sufficiently largek. Therefore,
for Has; . x} is a globally attractive fixed point of;.
for eachi € {1,2,--- \N*}, 27 € M N D;is aglobally " Finally, we prove the necessity of the global attractivigrp
asymptotically stable fixed point of the PoineanapP; in item 2). For eachi € {1,2,---,N*}, assume that’ ¢

if and only if the unique hybrid limit cycl® of #x  nr D, is a globally attractive fixed point of;,. Then, for
generated by a flow periodic solutiaft with periodT™* anye > 0, there exists) > 0 such that,

and N* jumps in each period from* (0, 0) = « for each - 5 _
i€{1,2,---,N*} is globally asymptotically stable for . 566 (3 *+ 0B) N (M N Dy) . N
4, With basin of attractioR containing every point in IMPlies lim PF(z) = 7. Moreover, following from Defini-
Mn(CuUD). tion 8, it is implied that a maximal solutiopt to H,; from

Proof: We first prove the sufficiency of iterh). By As-  * '° complete. Then, by continuity a; andg,

given anye > 0, we can picke andé such that) < € < e and
diog(z) <e.

2)

sumption 4, every maximal solution %, is unique via [13,

lim d; o g(PF(2)) = d; o g(z]) =0,
k—o00

Proposition 2.11]Consider the hybrid limit cycl€® generated from which it follows that

by a flow periodic solution t6<, from =} with } € M ND;
for eachi € {1,2,--- , N*}. SinceQ is stable fort,,, given
e > 0 there exist®) > 0 such that for any solution to H,,
|$(0,0)|o < 6 implies |¢(t, j)|o < e for all (¢,5) € dom ¢.
Sinceg is complete andP* (z}) = ¢(Tp, (g(x})), j) for some
4, in particular, we have that’*(z})|o < ¢ for eachk € N.

Thereforex; € M ND, is a stable fixed point of the Poincaré

map P;.
Next, we prove the necessity of itei) as in the proof
of [1, Theorem 1]. Suppose that for each {1,2,--- ,N*},

5A global property forH 5, implies a global property of the original system
‘H only whenM containsC' U D.

Hljl.gloo lp(t, 5)lo
< lim max sup d; o Q(Pik (@)

k—ooie{1,2,--- ,N*} e (27 +5B)N(MAD;)

< max sup lim d; o g(Pf (%))
i€{1,2,+ N} e (27 +5B)N(MND;) k%0
< d; ;) =0. 9
ie{lglfi.?i]\f*} OQ(IE ) ( )
]

Remark 11:In [1], sufficient and necessary conditions for
6Given two functionsd : R™ — R>o andg : R™ — R", the operatoro

defines a function composition, i.el,c g(z) = d(g(z)) for all x € R™.



stability properties of periodic orbits in impulsive syste whered; corresponds to state noisé, captures unmodeled
are established using properties of the fixed points of tlgnamics andis; captures generic disturbances on the state
corresponding Poincaré maps. Compared to [1], Theorem diich as measurement noise. Similarly, we consider the per-
enables the use of the Lyapunov stability tools in [13] tdifyer turbed discrete dynamics

asymptotic stability of a fixed point without even computing et =g(@+d)+dy x+die MND.

the P9incare map. . where d, captures generic disturbances on the state. The
At times, one might be interested only on local asymptotigybrid system?,; with such perturbations results in the
stability of the fixed point of the Poincaré map. Such case y.")‘érturbed hybrid system
handled by the following result. N i = flx4+d)+ds x+dseMNC
Corollary 12: Consider a hybrid syster on R™ and a Hu { xt = glx+d)+da z+deeMND (10)
closed setM C R" satisfying Assumption 4. Suppose everyhe perturbations; (i = 1,2,3,4) might be state or hybrid
maximal solution toH y; = (M NC, f,MND,g) is complete. time dependent, but assumed to have Euclidean norm bounded
Then, for each € {1,2,--- \N*}, z; e MnD;isalocally py A7, > 0 (i = 1,2,3,4), and to be admissible, namely,
asymptotically stable fixed point of the Poineanapp’; if and  qom d; (i = 1,2,3,4) is a hybrid time domain and the
only if the unique hybrid limit cycl& of #,, generated by functiont — d;(t, j) is measurable olomd; N (R>o x {j})
a flow periodic solution* with period 7™ and N* jumps in  for eachj € N.
each period fromp*(0,0) = 7 for eachi € {1,2,---,N*}  The following result establishes that the stability @ffor
is locally asymptotically stable foH . Hs is robust to a class of the perturbations defined above.
The following example illustrates the sufficient condition thaorem 14: Consider a hybrid syste#h on R”

in Corollary 12 by checking the eigenvalues of the Jacobifhseq setir — R™ satisfying Assumption 4. 10 is an

matrix of each Poincaré map at its fixed points. asymptotically stable compact set fé¢,; with basin of
Example 13:Consider the hybrid genetic network systerattraction Bo, then for every proper indicatow of O on

Ha,, introduced in Example 6. By [2, Proposition 3.1], every3,, there exists3 € £ such that for every > 0 and every

maximal solution toHc,, is complete. Therefore, the hybridcompact sek” C Bo, there existVl; > 0,4 € {1,2, 3,4}, such

systemHg on Mg satisfies Assumption 4 and has a flowhat for any admissible perturbation, i € {1,2,3,4}, with

periodic solutiong™ with period7™ given in Example 3 and Euclidean norm bounded by/;, respectivelyevery solution

four jumps per period, which defines a unique hybrid limip to #,, with ¢(0,0) € K satisfies

CyC|eOCMG_,ﬁ(C(,;UD(;). Now, for ea_\chi € {1,2,3_, 4}, Iet_ W((g(t,j)) < B(w(d;(o,())),t +j)+e Y(tj) € dom ¢~)

P; be the Poincaré map f6¢c,, associated to the fixed point

z*. The sufficient condition in Corollary 12 can be verified ~ Proof: We introduce the following perturbed hybrid sys-

by computing the eigenvalues of the Jacobian matrix of th@m Hfy with p > 0:

Poincaré mapsP, at each fixed point:f, i € {1,2,3,4}. 24P { t € Fy(x) zeC,

Due to the linear form of the flow and jump maps, it is Mzt e Gy(z) xeD,

possible to obtain an analytic form of the Jacobian matricegere

of the Poincaré maps; see [2, Eq.(19)]. Here, we apply the — n .

shooting method in [8] to compute the Jacobian matricesthase Co EC SR (o4 pB)N(MNC) 20,

on approximate Poincaré maps numerically for parameters Fp(w) =Tof((z + pB) N (M N C)) + pB,

91 = 06, 92 = 0.5,’71 = 2 = 1, /{1 = kQ = 1, and DP = {IGRH : ($+pB)ﬁ(MﬁD)§£®},

r1 =re = 0.1. The four fixed points are obtained as Gp(z) ={veR":ven+pB,

z] ~ (0.70,0.16,0,0) € Dg,, x5 =~ (0.85,0.60,1,0) € Dg,, neg((x + pB)N(MND))}.

r3 ~ (0.50,0.77,1,1) € Dg,,x; =~ (0.26,0.40,0,1) € Dc,, Then, every solution t6{,; with admissible perturbations

and the : : e . having Euclidean norm bounded by;, i € {1,2,3,4}, is a

period time of the hybrid limit cycle 5* ~ 2.83. . . 2 with o > Sy v:

It can be verified that the four eigenvalues of the Jacobiigluupn to the hybrid systerfty, with p > max{ L2

matrix are located inside the unit circle. Therefore, therig, 3 M4}' Wh'Ch corresponds to an outer periurbatioréo

limit cycle O of the hybrid genetic network system is Iocall)ﬁnd satisfies [17, (C1)-(C4)] (see [17, Example 5.3] for more

asymptotically stable. The properties of the hybrid limjitle dhetafils). 'Ir;hen, the cle}im_ follows l_Jy [17,|Tf_1e0rem 161'6] Iand
O are illustrated numerically in Fig. 1 (blue line). the fact that every solution i@/, is a solution to (11). In
fact, using [17, Theorem 6.6], for every proper indicatoof

O on Bp there existsf € KL such that for each compact
set K C Bp and eache > 0, there existsp* > 0 such
that for eachp € (0, p*], every solution¢, to (11) from
In this section, we present results guaranteeing robustnes satisfiesw (e, (t,§)) < B(w(¢p(0,0)),t + j) + ¢ for all

to generic perturbations of asymptotically stable hybimaitl (¢, j) € dom¢,. The proof concludes using the relationship
cycles. More precisely, we consider the perturbed contisuchetween the solutions t6{,; and (11), and picking)/;,
dynamics of the hybrid systety; = (M NC, f,MND,g) e {1,2,3,4}, such thatmax{M,, My, Ms, M} € (0, p*].
given by O

t=flx+di)+ds x+dzeMnC Through an application of [13, Lemma 7.19], it can be

and a

(11)

V. ROBUSTNESS OFHYBRID LIMIT CYCLES
A. Robustness to General Perturbations



shown that the hybrid limit cycle is robustlg.L asymptot- VI. CONCLUSION

ically stable onB(_g. In certain applications, a relationship  Notions and tools for the analysis of hybrid limit cycles
between the maximum valug of the perturbation and thejn hyprid dynamical systems are proposed. In addition to
factore in the semiglobal and practicalZ bound in (13) can pominal results, the key novel contributions include ctindis
be established numerically, as shown in the next example. for robustness of asymptotically stable hybrid limit cysieith
Example 15:Consider the hybrid systeri{q,, in Exam- respect to perturbations atalinflations of flow and jump sets.
ple 6. The admissible state perturbation and genetic fetur The proposed results are applicable to the situation where a
tions considered ard, = d3 = d4 = (psin(t),0,0,0). The hybrid limit cycle may contain multiple jumps within a pedio
unmodeled dynamics consideredds = (0, pcos(t),0,0). An example isincluded to aid the reading and illustrate the
To validate Theorem 14, more simulations are performed e@ncepts and the methodology of applying the new results.
quantify the relationship betweesi (the maximal value of Current research efforts includketermining necessary condi-

the perturbation parametes) and ¢ (the desired level of tions for the existence of hybrid limit cycles [14nd hybrid

closeness td?). Given a compact sek := [0.36,0.44] x

control design for asymptotic stabilization of such limjyctes

[0.46,0.54] x {0} x {0} and different desired region radiusegs well as their robust implementation.

e = {0.02,0.04,0.06,0.2,0.4,0.6}, the simulation results are
shown in Table I, which indicates that the relationship hestv
p* ande can be approximated a8 = 0.5¢. As it can be seen, [1]
the larger admissible convergence error the larger peationp
parametep™ can be. These validate the result in Theorem 14[.

A
TABLE |
SIMULATION RESULTS FOR DIFFERENCE VALUES OF [3]
p* £ p/e
0.0103 0.02 0.5150 4]
0.0204 0.04 0.5100
0.0305 0.06 0.5083 5]
0.1019 0.20 0.5095
0.2000 0.40 0.5000
0.3021 0.60 0.5035 [6]

B. Robustness to Inflations 6f and D 7
We consider the following specific parametric perturbation
on h, in both the flow and jump sets, with > 0 denoting (8]
the parameter: the perturbed flow set is an inflation of they,

original flow set while the condition(z) = 0 in the jump set
is replaced byi(x) € [—¢, €]. The resulting system is denotecho]
asHS, and is given by

24 { & fx) reC.nNM

Mzt g(z) x€D.NM

where the flow set and the jump set are replaced_by=
{r € R" : h(z) > —e} and D. = {z € R" : h(x) €
[—e€, €], Lyh(z) < 0}, respectively, while the flow map and
jump map are the same as féf;;. We have the following
result, whose proof follows from the proof of Theorem 14. [13]

[14]

(11]

(12)

[12]

Theorem 16: Consider a hybrid systeth on R” and a
closed setM < R™ satisfying Assumption 4. 10 is an
asymptotically stable compact set f@{,; with basin of
attraction Bp, then there existg € KL such that, for every [15]
e > 0 and each compact sét C B, there exists > 0 such
that for eache € (0, €] every solutiong to #H5, in (12) with
¢(0,0) € K satisfies

|6, 7)o < B(1¢(0,0)|o,t+j) +&  ¥(t,j) € dome. (13)
Theorem 16 implies that the asymptotic stability propefty(g

the hybrid limit cycleO is robust to a parametric perturbation
on h.

[16]

17]
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