
UC Irvine
ICS Technical Reports

Title
Petri net equivalence

Permalink
https://escholarship.org/uc/item/0982h7vw

Author
Sidwell, Richard D.

Publication Date
1987
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0982h7vw
https://escholarship.org
http://www.cdlib.org/


Notice: This .Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

N 

Technical Report 87-02 
Department of Information and Computer Science 

University of California, Irvine 
Irvine, CA 92717 

ABSTRACT 

Determining whether two Petri nets are equivalent is an interesting 
problem from both practical and theoretical standpoints. Although it is 
undecidable in the general case, for many interesting nets the equivalence 
problem is solvable. This paper explores, mostly from a theoretical 
point of view, some of the issues of Petri net equivalence, including both 
reachability sets and languages. Some new definitions of reachability set 
equivalence are described which allow the markings of some places to· 
be treated identically or ignored, analogous to the Petri net languages 
in which multiple transitions may be labeled with the same symbol or 
with the empty string. The complexity of some decidable Petri net. 
equivalence problems is analyzed. 

This work was supported in part by NSF grant DCR 84-06756 
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1.. Introduction 

Users Manual 
Version 2.3 

RGA is an interpreter for a special language designed for the analysis of 

reachability graphs, or control flow graphs, generated from Petri nets [PETE77]. 

Although in some cases the reachability graph can become too large to be tractable, 

or can even be infinite, many interesting problems exist whose reachability graphs 

are of reasonable size. In RGA, the user has access to the names of the places in 

the net, and to the states of the reachability graph. The structure of the graph is 

also available through functions which return the sets of successor or predecessor 

states of a state and the arcs connecting the states. The RGA language allows 

dynamic typing of identifiers, recursion, and function and operator overloading. 

Rather than providing a number of predefined analysis functions, RGA provides 

primitive functions which allow the user to conduct complex analyses with little 

programming effort. RGA is part of a suite of tools, called "P-NUT" (Petri Net 

UTilities), developed by the Distributed Systems group at UC Irvine. The P-NUT 

tools are intended to facilitate the analysis of concurrent systems described by Petri 

nets. 

In RGA, the user merely types an expression, and the interpreter evaluates 

it and prints the resulting value. For example, using the function nsucc which 

returns the number of successor states of a state, and the set of all states S, the 

user can write 

forall s in S [nsucc(s) > O] 

This expression will return true if for each state in the set S, the number of its 

successors is greater than zero. Thus this expression is a test for deadlock-freeness 

of the Petri net [AGER.79]. 

Another test might be to determine if the net is conservative, that is, that 

tokens are never gained or lost [AGER.79]. The function tokens(s) returns the sum 

of the tokens on all places in a state s. The first state in the graph is written #0, 

so the expression for net conservation might be 

forall s in S [tokens(#O) = tokens(s)] 

1 
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The following sections describe·the properties of the interpreter for the lan:

guage, the data types and expressions which exist in the language, and how the 

user may define functions using the primitive functions provided by the interpreter. 

Then some examples are given to show how the system may be used to answer more 

complex questions than can be answered using the primitive functions. Finally, 

some implementation issues are discussed and some conclusions are drawn. 

2. Execution Environment 
RGA is an interpreter, and thus its operation is similar to that of most LISP 

interpreters. Any expression which the user types is immediately evaluated, and 

that value is printed on the standard output. The expression is then thrown away, 

and the user is prompted again for another command. In addition to typing 

expressions, the user may define expressions to be evaluated later as functions. 

Expressions and function definitions may be read from a file as well as from the 

standard input. 

Unlike LISP, RGA has a number of distinct data types which it uses. But there 

is no explicit way to declare variables. In fact, all variables in the RGA language 

are dynamically typed when they are assigned values: an identifier or expression 

always represents a <value, type> pair. The user never explicitly deals with the 

type component, however. During execution, an identifier may have more than 

one value (and. therefore, type) associated with it simultaneously. These values 

are stored on an execution stack, and only the most recently bound value may be 

accessed at any time. 

Because identifiers need not be declared before their use, it is very easy to 

define functions. However, it also means that much of the type checking which 

needs to be performed must be delayed until execution time, since the types and 

values of identifiers used in a function definition will not be known at the time the 

function is defined. 

Three types of errors are possible using RGA. The first error type is a syntax 

error in an expression or command. This type of error results in the message 

"Command ignored." The second type of error is a run-time error, such as a type 

conflict or a division by zero. A run-time error usually results in an appropriate 

message's being printed, followed by a prompt. The execution stack is not "cleaned 

up" so that variables will have the values they had at the time of the error, 

facilitating debugging of defined functions. If user-defined functions were being 



3 

executed at the time of the error, a stack-back trace of function calls is printed. 

The final type of error is an internal error in the RGA interpreter, which should not 

happen under normal circumstances. Usually this type of error prints a message 

and produces a core image for debugging the interpreter. 

3. Lexical Issues 
RGA is case sensitive. All command keywords and predefined function names 

are written in lower case. All identifiers which the user defines may be written 

in lower, upper, or mixed case. The user may not redefine a reserved language 

keyword, but predefined identifiers may be redefined, although that is not recom

mended. In addition to the five predefined identifiers S, P, T, C, and A (described 

later), the reachability graph which is loaded during initialization will typically 

define a number of identifiers to be places and sets of places and transitions; these 

identifiers must follow the requirements for identifiers described below. 

An identifier is represented as an upper or lower case alphabetic letter, 

followed by zero or more letters, digits, single-quote characters, periods, and un

derscores. A number is represented as an optional minus sign followed by one or 

more digits; floating point as well as integer values may be represented. 

A command to RGA is normally terminated by a newline character. Receiving 

this character will cause RGA tc;> perform the indicated function. For very long 

expressions or function definitions, a line may be terminated with a backslash(\) 

followed by a newline. This combination of two characters is treated as a single 

space character, so its only effect is to delimit other tokens. Multiple space and tab 

characters and comments are treated as a single space. Comments may be inserted 

using the conventions of the C and PL/I languages: /* comment text */. 

4. Expression Types and Execution Semantics 
This section describes the syntax and semantics of the expressions available 

in RGA, and it describes the built-in primitive functions which are available. It 

is divided into subsections which describe each of the different data types which 

the language supports and the functions which return those types. The commands 

which may be used to define new functions are described in Section 4, and a formal 

BNF description of the language is given in Appendix A. All expressions in the RGA 
language evaluate to a value whose type is either a state, an integer, a booiean, 

a transition, an arc (A), a floating point number, a character string, a set, or a 
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Figure 1 
A simple Petri net 

Figure 2 
A Petri net with the same reachability set as Figure 1-

by Hack in his work ([HAcK76A], [HACK76B]), and the languages pl, P, and p>-. 
described in [PETE81]. 

As an example of the independence of reachability set equivalence and lan
guage equivalence, consider the Petri nets shown in Figures 1-4. Figure 1 shows a 
simple Petri net which implements mutual exclusion; a token will never be in places 
P2 and p3 at the same time. Figure 2 shows a Petri net with the same reachability 
set as the one in Figure 1 (assuming the homomorphisms map places p5 and P6 in 
net 2 to the same tuple-position as place p5 in net 1). However, the transition firing 
sequences are different since a and b must fire before c can in Figure 2, but not in 



5 

Figure 3 
A Petri net with the same language as Figure 1 

Figure 4 
A Petri net isomorphic to that in Figure 1 

Figure 1. Figure 3 is a Petri net with the same language as Figure 1, but different 
reachability sets since the top transition labeled .X can fire without affecting the 
language. Figure 4 is a Petri net with both the same reachability set and the same 
language as that of Figure 1. 
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The different ways of defining Petri net equivalence are independent to some 
extent, but are related nevertheless. Obviously, equivalence for J<f and J?.. are 
reducible to equivalence for J?..).. It is not too difficult to reduce J?..). to Rf in linear 
time and space (the reduction is given below), so the complexity for solving any of 
the reachability set equivalence problems should be about the same. The analogous 
_reductions are not possible for languages; equivalence for, et! and et are obviously 
reducible to et\ but et! is easier to solve than equivalence for et or et\ This fact 
was proven in [HAcK76A], where it was demonstrated that equality for et and et). _are 
undecidable, but equality for et! is equivalent to the reachability problem, which 
was proven decidable in [MAYR81]. It is also possible to reduce equivalence for J<.'A 
to equivalence for et'A and vice versa (the reductions are given below). All these 
reductions can be done using linear space and time, so the complexity for solving 
any of the equivalence problems, except for et!, should be about the same. 

The problem of equivalence for J<..'A is reduced to equivalence for J<.f usirig a 
construction similar to one used by Hack in reducing the polynomial graph inclusion 
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problem to the subset problem for 'R/. Given two Petri nets, CA and CB, we 
construct nets C,A and Ck such that R>..(CA,hA) ~ R>..(CB,hB) if and only if 
Rf(C~,hA_) ~ Rf(Ck,h~) (see Figure 5). The subset problem is reducible to the 
equiv~ence problem as shown in [HACK76B] (also in (PETE81]). First, we make the 
number of places in the two Petri nets the same by adding, for each equivalence 
set (a set containing all the places in the net for which the values of h are equal), 
enough places to the proper net to make the size of the corresponding equivalence 
sets in the two nets equal. Next (Hack's contribution), we eliminate the effects . 
of all unobservable places (those for which h(p) = 0) by adding places q and r 
to CA_, and adding places q1 and r 1 to Ck. In CA_, r and q are not used for any 
transitions, and the initial marking includes one token in q and none in r. In Ck, 
the place r 1 is a typical run place, which is initially marked, and is included as both 
an input and an output to each transition in the original net CB. Thus, the net 
operates normally as long as a token remains in r', but if the token is removed the 
net freezes. The token is removed by adding a transition from r' to q1

• For each 
place Pi for which hB(Pi) = 0 (including any places added to equalize the two nets), 
we add one transition with q1 and Pi as inputs and q1 as an output, and another 
transition with q1 as an input and q1 and Pi as outputs. These transitions allow 
each unobservable place to have as many (or as few) tokens as desired. Finally, we 
eliminate the effects of identical places by adding a transition between every pair 
of places Pi and Pi (including any places added t'o equalize the two nets) such that 
hB(Pi) = hB(P;) with inputs q1 and Pi and outputs q1 and Pi· This allows the tokens 
in any set of identical places to be arbitrarily distributed among the places in the 
set. 

The equivalence problem for R/' is reduced to the equivalence problem for ..!).. 
by constructing new nets O~ and Ok such that R>..(CA,hA) = R>..(CB,hB) if and 
only if L>..(C.A,,hA,) = L)..(CB,h~) (refer to Figure 6). To construct the Petri net C' 
from the Petri net C (for either CA or CB), add a run placer, initially marked with 
one token, which is an input and an output to each transition in C. Also add place 
q, initially unmarked, with a transition tq from r to q. The net thus runs normally 
until tq is fired, which freezes it. Add new transitions tp8 , each with two inputs, Pi 

and q, and one output, q, for each place in C. The function k' supporting the new 
homomorphism h' is equal to A for each transition in O' except for the transitions 
tp., which have the value A if h(pi) = 0 or the value h(pi) otherwise (the alpha.bet 
~ is the same as the range of h excluding 0). 

The net 0 1 operates as follows: Since r is initially marked, the net operates 
the same until an arbitrary reachable marking is reached, when tq fires, freezing 
the part of the net that corresponds to the original net C, and enabling the 
new transitions tPi. Since all transitions fired up to this point have been labeled 
with A, no string has yet been generated. With a token in q, however, each 
transition tp, can fire as many times as there are tokens in Pi, adding up to that 
many symbols somewhere in the language. The language generated by C' is thus 



Figure 6 
Reducing 'R).. to cf).. 
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{ z I 1/J( z) ~ h(µ) for some µ E R( C) } , where 1/J is the Parikh mapping (a mapping 
from a string to the number of occurrences of each symbol in the string1 ). 

The equivalence problem for cf).. is reduced to the equivalence problem for!<..).. 
by constructing new nets C~ and C_k such that L)..(CA,hA) = L>..(CB,hB) if and 
only if R)..(C_A,h~) = R)..(C_k,h~). To construct the Petri net 0 1 from the Petri net 
C, add a place r, initially marked with one token, which is an input (but not an 
output) to each transition in C. Add another place, c, initially marked with one 
token. The number of tokens on this place will be doubled (weakly) each time a 
transition of C fires. Add two more places, n and t, initially unmarked, and two 
more transitions t., and tn. Transition tr has n as its only input, and r as its only 
output. Transition tn has places n and t as inputs, and as outputs, one arc to n 
and two arcs to c. Finally, for each transition ti in C, add place ai as an output for 
ti, place Pto transition ta, with input places ~ and c, and outputs ai, Pt1 and t, and 
transition td,, with input place ai and output place n. The function h' supporting 
the new homomorphism h' is equal to 0 for all places of 0 1 except for places Pti; 

1 For example, over the alphabet {a, b, c, d, r }, 1/J(abracadabra) = (5, 2, 1, 1, 2), since there are 5 
a's, 2 b's, etc. 



Figure 1 
Reducing of.\ to f(A 
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for these places, let o-( a) be the ordinal value of symbol a in an ordering o- of the 
alphabet :E, with o-(.A) = 0. Then, h'(PtJ = o-(h(ti)). 

The new net 0 1 works as follows (see Figure 7): When there is a token on 
r, any enabled transition of C can fire; assume that ti does. Firing ti removes the 
token from r and places a token on ai, as well as making the changes to C' that 
would normally be made to C. With a token on ai, transition ta, can now fire once 
for each token in c, moving the tokens from c to t, and weakly adding c to Pt•. When 
all the tokens are gone from c (or sooner since we only add weakly), transition tdi . 
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fires, placing a token in n, and enabling transition tn, which can fire once for each 
token in t, and places twice this many tokens in c. When this is done (or sooner), 
transition tr fires, placing a token in r again so that the cycle can repeat. At any 
time, _place Pt, contains between 0 and ~ 2i tokens, where /3j = ti in the firing 
sequence /31/32 ... f3k. Thus, the possible markings for these places correspond to 
the possible transition firings of the original net, and the reachability sets of two 
nets constructed in this way will be equivalent if and only if the languages of the 
original nets are equivalent. 

Unfortunately, these reductions are mostly of theoretical interest, and have 
little practical use; the equivalence problem for all these classes is undecidable in 
the general case. There are special instances of Petri nets where equivalence is 
decidable, but these reductions will not generally preserve the -necessary restric
tions. For example, reachability set equivalence is decidable for Petri nets with five 
places (see [HoPc79]), but language equivalence is not (see [VALK81, p 323]). The 
equivalence between 'R and cf shown here does not apply since the reductions add 
places to the net, invalidating the restriction to five places. 

Methods Determining Equivalence 
There are several general methods for determining whether two Petri nets 

have equivalent reachability sets or languages. If they .are finite, the obvious way is 
to simply generate and compare them. Since they are infinite in the general case, 
we must use other methods. One method is to compare closed forms for them. For 
example, to compare two languages which happen to be regular, we can generate 
regular expressions that represent each language in a finite form and compare them. 
It is usually easier to compare them if they can be put into a canonical form. 

Another method is to find a way to transform one Petri net into the other 
using transformations known to preserve equivalence. For example, it is obvious 
that replacing a place by two places connected together by a A-labeled transition 
with the inputs of the original place being connected to the first place, and the 
outputs to the second will not change either the language or reachability set of 
the net. Other transformations may depend on certain properties of the net. For 
example, a dead transition, which can never be enabled, may be removed without 
affecting the net. This is the obvious method to use if the nets being compared 
were somehow derived from each other. · 

It is also possible to use a combination of these techniques. For example, some 
transformations may be applied to two Petri nets to simplify them, or put them 
into a form for which a closed form may more easily be generated, then the closed 
forms generated and compared . 

. The rest of the paper will discuss the complexity of determining Petri net 
equivalence for reachability sets and languages. Only comparison of closed forms 
will be considered; the study of Petri net transformations is another topic of Petri 
net research. 
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Reachability S 
The reachability set equivalence problem for general Petri nets is undecidable 

(see [HAcK76B] or [PETE81] for a proof of the undecidability ofJZf; the undecidability 
ofJZ ~ndJZ.\ follows immediately). For many special Petri net~ however, equivalence 
can be decided. In general, the reachability sets of these Petri nets have a special 
property which allows them to be compared. For example, for bounded Petri nets, 
with finite reachability sets, equivalence is obviously decidable. 

Another property that the reachability sets for many common classes of Petri 
nets have is that of being semilinear [Grns66]. A set R ~ Nr is linear if there exist 
vectors Jo, Ji, ... , fn in Nr such that: 

R= {fo+x1fi+···+xnfn I x1, ... ,x.,,, areinN}. 

A set R is semilinea.r if it is a finite union of linear sets. Semilinear sets correspond 
exactly to predicates expressible in Presburger arithmetic, for which procedures 
exist to decide ([Grns66, 0PPE78]), thus reachability set equivalence is decidable 
for any type of Petri net that has a semilinear reachability set. 

Hopcroft and Pansiot have shown that Petri nets with at most five places have 
semilinear reachability sets ([HoPcT9]). A reversible Petri net. is one in which for 
every transition there is another transition with inputs and outputs reversed, allow
.ing any transition to be "undone" by firing its complementary transition; reversible 
Petri nets have semilinear reachability sets ([ARAK77]). A persistent Petri net is one 
in which any enabled transition is disabled only by firing it (i.e., firing a transition 
will not disable a different one); these nets also have semilinear reachability sets 
([GRAB80]). A Petri net is weakly persistent if, whenever transition sequences (3 
and f3' are firable and f3 covers f3', there exists a rearrangement {31 {311 of (3 that is 
fireable; these, too, have semilinear reachability sets ([YAMA81]). Yamasaki defines 
a class of Petri nets called normal Petri nets which have semilinear reachability sets 
([YAMA84]). A Petri net is normal if ea.ch transition t which has an input place in 
a minimal circuit c also has an output place inc. 

All these classes (and probably many more) have semilinear reachability 
sets, and therefore the reachability set equivalence problem is decidable for them. 
However, just because a problem is decidable does not mean that it is easy to decide; 

. the complexity of solving Presburger formulae is at least 22n, so the reachability 
set equivalence problem for Petri nets with semilinear reachability sets is decidable 
but intractable. Another class of Petri nets for which reachability set equivalence 
is decidable but intractable is bounded Petri nets, in which the number of tokens 
in every reachable marking is less than some integer bound b. This is the first 
non-contrived problem whose complexity is non-primitive recursive ([CARD76]). 

Part of the reason that the complexity of reachability set equivalence for 
bounded Petri nets is so high is that it is given in terms of the number of places 
and transitions in the net rather than the bound b--it is possible to construct a net 
with o(n) places which is bounded by 22

n. One way to reduce the complexity is to 
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express it in terms of the bound b. For example, a safe net is a net in which no place 
can hold more than one token (i.e., a net with a bound of 1). For a safe net with 
n places, there are 2n possible markings; thus the simple algorithm of enumerating 
and cqmparing the elements of the reachability sets could decide whether two safe 
Petri nets had equal reachability sets in 0(2n) time. In general, the complexity of 
the equivalence problem for a net in which each of its n places has a bound of b 
is o(bn). While this complexity is better, it is still high. It is also the worst case 
complexity; the average complexity may be much better. 

Another way to reduce the complexity of reachability equivalence for bounded 
Petri nets is to divide the places in the net into k sets such that at most one place in 
each set is marked at any time. Many safe Petri nets used in practical applications 
can be divided into such sets in a natural way. If the sets were truly independent of 
each other, the size of the reachability set would be the product of the number of 
markings possible in each set. To get an upper bound, we can assume that the places 
are distributed evenly among the sets, and that any or none of the places in the set 
can have a token (this results in the largest possible value of the product), giving 
an upper bound of (1 +n/k)k markings in the reachability set. This complexity has 
its largest value when each set contains one place (k = n ); this is possible for any 
safe Petri net and results in the 0(2n) complexity described previously. However, k 
can be much smaller for many Petri nets. The minimum upper bound occurs when 
k is as small as possible; if at most one of all of the places in a Petri net will ever 
be marked, then k = n, and the upper bound is n + 1. 

The complexity can be reduced further for safe Petri nets which satisfy one 
further requirement: Exactly one of the places in each of the k sets will be marked 
at any given time. This is not possible for safe Petri nets in general, but if it can 
be done for a given net, we can reduce the upper bound to (n/k)k. Note that if 
k > n/2, then either some of the sets will contain only one place (which by definition 
will always remain marked, and is therefore useless), or some places appear in more 
than one set. Sharing is permissible as long as the constraints hold, since this 
only reduces the independence between sets, reducing the size of the reachability 
set even further. This upper bound has its maximum value when k = n/e (where 
e = 2.718 ... ), or since k must be an integer, when k = n/3. The minimum value, 
as before, occurs when all of the places in the net are in one set, and k = 1. 

This upper bound has a number of practical implications for using Petri nets 
to model systems. The number k generally corresponds to the number of separate 
processes or entities being modeled. For example, a model of a communications 
protocol might consist of a sender and a receiver, each of which is a subnet which 
always contains a token, so k would be two in this case. In a Petri net model of a 
multi-tasking program, k would be equal to the number of tasks in the program, 
which is generally small. So even though the upper bound is exponential, it is often 
small enough to be practical. The instances when k is large correspond in general 
to very complex systems (such as an entire communications network, with hundreds 
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Figure 8 
An unbounded Petri net with a regular language 

of senders and receivers) which are diffi~ult to analyze as a whole using any kind 
of model. In these cases, it is often possible to verify the system using induction: 
verify a simple subset, with a low value of k, then show that an extended system, 
with k increased by 1, is equivalent to the simple system. 

language Equivalence 
Not as much research has been done on Petri net. language equivalence ·as 

on ~eachability set equivalence. For general Petri. nets, Hack has shown that the 
equality problem is undecidable for ..f and ..f>., but that equality for ..fl is reducible 
to the Petri net reachability problem ([HAcK76A]). The reachability problem was 
later shown to be decidable, but intractable ([MAYR81]). A stronger result was 
proved by Valk and Vidal-Naquet ([VALK81]): the equivalence problem for two 
languages in ..f, with one Petri net having four and the other five unbounded places 
is undecidable. Analysis of the complexity for decision of language equivalence is 
harder than that for reachability set equivalence since a Petri net with a finite 
reachability set may have an infinite language. 

One class of Petri nets for which language equivalence is decidable is the 
class of Petri nets that generate regular languages. This class includes the class of 
bounded Petri nets, since the reachability graph of a bounded Petri net is isomorphic 
to a finite automaton. However, unbounded Petri nets exist which also have regular 
languages, such as the one in Figure 8. It is decidable whether a Petri net has a 
regular language ([VALK81]). Of course, not every regular language is in ..f or..!'). 
since the latter have the property that all prefixes of strings in the language are 
also in the language. 

For Petri nets with regular languages, a. convenient closed form for representing 
the language is the regular expression. Hunt, Rosenkrantz, and Szymanski have 
shown several complexity results for the equivalence problem of regular expressions 
([HUNT76]). For general regular expressions, and for regular expressions with a star
height greater than or equal to 1, the equivalence problem is CSL-complete. If the 
star-height is zero (no stars), or the alpha.bet has only one symbol, the equivalence 
problem is NP-complete. The equivalence problem is also NP-complete if one or 
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both of the languages being compared is bounded (there exist strings w1 , w2 , ••• , Wm 

from :E* such that the language L ~ wiw2 · · · w:n, not to be confused with a 
bounded Petri net). The correlations between the structural properties of a Petri 
net an_d a regular expression with equivalent language are not known. Neither is the 
relationship between the size of a Petri net and the size of a regular expression with 
an equivalent language. This is an important question-if the regular expression 
represents the language in a much more compact way than a Petri net, the Petri 
net language equivalence problem may be tractable. 

Another class of Petri net languages which has been studied is the class of 
terminal languages, ofo (and the corresponding oft and ..L'S). These languages differ 
form the of languages by the additional requirement that the final marking of the 
net be a specified terminal marking in order for the generated string to be in the 
language. Hack proved that the equivalence problem for of o and of~ is undecidable 
in general ([HACK76A]). A subclass for which equivalence is decidable is the set ·of 
regular ..L'o languages. The of o language generated by a. bounded Petri net is regular, 
but unlike the of languages, it is undecidable whether the of o language generated 
by an arbitrary Petri net is regular or not. All regular l~nguages can be generated 
by a. ofS type .Petri. net. · " 

Two other classes of Petri net languages have been described in [PETE81]: 
the G-type and T-type languages. The G-type languages a.re similar to the .,lo 

languages in that a. terminal marking is specified, but the final marking of the net 
need only cover (i.e., have at lea.st as many tokens in ea.ch place as) the terminal 
marking. The T-type languages require that no transitions be enabled in the final 
net marking for the string to be in the language (i.e., this is the set of transition 
firing sequences that lead to a. deadlock). Both of these languages have been shown 
to be subclasses of the ::lo languages, but these classes a.re largely unexplored. It is 
not known whether equivalence is decidable for them or not except for the T-type 
languages with A-transitions, which are equivalent to the of S languages. 

Other Petri net languages which deserve further study are the languages of 
infinite words (often referred to as w-languages). These languages reflect the infinite 
behavior of the Petri net, and could be useful for studying such important properties 
as livelock-freeness. A Petri net is livelock-free if ea.ch transition which is live 
(potentially fira.ble from any marking) will always eventually fire (i.e., every infinite 
word in the language includes every transition infinitely often). Valk has initiated 
work in this area. ([VALK83]), but it is mostly exploring the hierarchy of infinite 
Petri net languages and relating it to other classes of w-la.nguages. There are still 
many open questions, such as equivalence issues. Equivalence is almost certainly 
undecidable in the general case for these languages, but what a.bout simpler cases, 
such as bounded or safe nets? 
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N 
Many extensions have been proposed to make Petri nets more useful. Some of 

these extensions increase the power of Petri nets; others do not. The most common 
extension is to allow a place to be tested for zero tokens by allowing inhibitor arcs
arcs ~hich disable a transition unless the place is empty. This extension increases 
the power of Petri nets to that of a Turing machine. Another useful extension is 
to augment each transition with timing information. Several methods have been 
proposed-the most general is described in [MERL 7 4]. Merlin added time to Petri 
nets by associating a minimum and maximum time to each transition; once enabled, 
the transition can not fire until the minimum time has elapsed, but must fire before 
the maximum time does. It is easy to show that this extension also gives Petri nets 
the power of a Turing machine. Another extension that raises the power of a Petri 
net to a Turi~g machine is priorities-indicating which transition should be allowed 
to fire when a conflict exists ( [HACK76B ]). 

One extension that does not increase the power of a Petri net is the addition 
of color to the tokens ([JENS81]). Transitions in these nets behave differently 
depending on the color of the tokens on the input places. However, the hehavior 
is essentially the same as if the places and transitions were replicated-once for 
each color. The ma.in effect of the extension is to reduce the size of the net. 
Unfortunately, it doesn't reduce the complexity of analysis in general. It should 
be emphasized that only a finite number of colors is allowed-using an infinite 
number of colors allows a Turing machine to be simulated. An extension related to 
colored tokens is the predicate-transition net ([GENR81]). This extension associates 
a predicate with each transition rather than a color, but the idea and usefulness is 
the same. 

Of course, the equivalence problem is undecidable for any extensions that 
increases or maintains the power of Petri nets. However, combining some of these 
extensions with the restricted nets described in this paper might be useful. For 
example, any bounded Petri net, even if powerful extensions are allowed, has the 
theoretical power of a finite state automaton; the equivalence problem is thus 
decidable in this case. 

Of particular interest is the addition of time, since many Petri nets are 
designed to model objects that involve time, such as communications .protocols 
and computer processors. One major motivation for adding timing information 
to Petri nets is to allow the performance of a Petri net modeled system to be 
analyzed. Most of the Petri nets used with timing are bounded and often safe; 
the equivalence problem as discussed in this paper is thus decidable for them. 
However, the definition given here does not compare the timing information of the 
nets-two nets could be equivalent according to our definition, but one net could 
perform significantly faster than the other. This is certainly a useful definition for 
equivalence, but for some applications it may be useful to define two nets to be 
equivalent only if they take the same amount of time. 
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We have discussed some different definitions of Petri net equivalence, and the 
complexity of solving the equivalence problem, both of Petri net reachability sets 
and of Petri net languages. While it is undecidable in general, for common nets 
it is decidable and often feasible. There are still many areas in which research 
needs to be done, particularly in the area of Petri net languages and Petri net 
extensions-especially timed Petri nets. 

The definition of reachability sets given in this paper is new-in particular the 
method of combining and hiding places for reachability set analysis. The impact of 
this definition on the reachability graph of a Petri net hasn't been explored at all, 
especially for the J?. and J?.A classes. A logical way to generate the reachability graph 
for these would be to generate the reachability graph the normal way (using the 
places of the net rather than a transformation on them) and then apply the desired 
homomorphism to get a new, but similar, reachability graph. This graph, however, 
would probably have several distinct nodes with indistinct labels-indicating the 
states that appear the same from the outside, but are different internally. It may 
be desirable to combine these nodes together to form a user's view of the net. For 
example, consider a Petri net that models a postage stamp machine. The customer 
puts two dimes into the machine· and a. postage stamp comes out. The standard 
reachability graph of this machine would have three states: one representing the 
initial state of the machine (no money inserted), one for the state where just one 
dime has been inserted,and one for the state where two dimes have been inserted 
and a stamp has been ejected. Removing the stamp puts the machine back in 
the initial state. However, there is really no way to tell the first two states apart 
without looking inside the machine (except to insert a dime and see what happens). 
It is possible that a customer may insert one dime in the machine and receive a 
stamp for it (if someone else previously put just one dime in and left), .thus to the 
customer, the machine has only two states: a stamp is present or one is not. When 
a stamp is present, removing it puts the machine in the other state. When no 
stamp is present, inserting a dime will either keep the machine in the same state 
(apparently doing nothing) or it will eject a stamp. It is hard to know which view 
is more desirable; the latter needs to be studied. It may also be possible to generate 
the user's view reachability graph without generating all the states in the complete 
:version (which may be useful if the complete version has hidden unbounded states). 
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