
UC Irvine
ICS Technical Reports

Title
Petri net equivalence

Permalink
https://escholarship.org/uc/item/0982h7vw

Author
Sidwell, Richard D.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0982h7vw
https://escholarship.org
http://www.cdlib.org/

Notice: This .Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

N

Technical Report 87-02
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717

ABSTRACT

Determining whether two Petri nets are equivalent is an interesting
problem from both practical and theoretical standpoints. Although it is
undecidable in the general case, for many interesting nets the equivalence
problem is solvable. This paper explores, mostly from a theoretical
point of view, some of the issues of Petri net equivalence, including both
reachability sets and languages. Some new definitions of reachability set
equivalence are described which allow the markings of some places to·
be treated identically or ignored, analogous to the Petri net languages
in which multiple transitions may be labeled with the same symbol or
with the empty string. The complexity of some decidable Petri net.
equivalence problems is analyzed.

This work was supported in part by NSF grant DCR 84-06756

Introduction.
Background
Equivalence
Relationship of Different Equivalence Definitions .
Methods For Determining Equivalence
Reachability Set Equivalence
Language Equivalence.
Petri Net Extensions
Conclusions and Further Research ..
References

Page
1
2
2
6

10
11
13
15
16
17

1.. Introduction

Users Manual
Version 2.3

RGA is an interpreter for a special language designed for the analysis of

reachability graphs, or control flow graphs, generated from Petri nets [PETE77].

Although in some cases the reachability graph can become too large to be tractable,

or can even be infinite, many interesting problems exist whose reachability graphs

are of reasonable size. In RGA, the user has access to the names of the places in

the net, and to the states of the reachability graph. The structure of the graph is

also available through functions which return the sets of successor or predecessor

states of a state and the arcs connecting the states. The RGA language allows

dynamic typing of identifiers, recursion, and function and operator overloading.

Rather than providing a number of predefined analysis functions, RGA provides

primitive functions which allow the user to conduct complex analyses with little

programming effort. RGA is part of a suite of tools, called "P-NUT" (Petri Net

UTilities), developed by the Distributed Systems group at UC Irvine. The P-NUT

tools are intended to facilitate the analysis of concurrent systems described by Petri

nets.

In RGA, the user merely types an expression, and the interpreter evaluates

it and prints the resulting value. For example, using the function nsucc which

returns the number of successor states of a state, and the set of all states S, the

user can write

forall s in S [nsucc(s) > O]

This expression will return true if for each state in the set S, the number of its

successors is greater than zero. Thus this expression is a test for deadlock-freeness

of the Petri net [AGER.79].

Another test might be to determine if the net is conservative, that is, that

tokens are never gained or lost [AGER.79]. The function tokens(s) returns the sum

of the tokens on all places in a state s. The first state in the graph is written #0,

so the expression for net conservation might be

forall s in S [tokens(#O) = tokens(s)]

1

2

The following sections describe·the properties of the interpreter for the lan:

guage, the data types and expressions which exist in the language, and how the

user may define functions using the primitive functions provided by the interpreter.

Then some examples are given to show how the system may be used to answer more

complex questions than can be answered using the primitive functions. Finally,

some implementation issues are discussed and some conclusions are drawn.

2. Execution Environment
RGA is an interpreter, and thus its operation is similar to that of most LISP

interpreters. Any expression which the user types is immediately evaluated, and

that value is printed on the standard output. The expression is then thrown away,

and the user is prompted again for another command. In addition to typing

expressions, the user may define expressions to be evaluated later as functions.

Expressions and function definitions may be read from a file as well as from the

standard input.

Unlike LISP, RGA has a number of distinct data types which it uses. But there

is no explicit way to declare variables. In fact, all variables in the RGA language

are dynamically typed when they are assigned values: an identifier or expression

always represents a <value, type> pair. The user never explicitly deals with the

type component, however. During execution, an identifier may have more than

one value (and. therefore, type) associated with it simultaneously. These values

are stored on an execution stack, and only the most recently bound value may be

accessed at any time.

Because identifiers need not be declared before their use, it is very easy to

define functions. However, it also means that much of the type checking which

needs to be performed must be delayed until execution time, since the types and

values of identifiers used in a function definition will not be known at the time the

function is defined.

Three types of errors are possible using RGA. The first error type is a syntax

error in an expression or command. This type of error results in the message

"Command ignored." The second type of error is a run-time error, such as a type

conflict or a division by zero. A run-time error usually results in an appropriate

message's being printed, followed by a prompt. The execution stack is not "cleaned

up" so that variables will have the values they had at the time of the error,

facilitating debugging of defined functions. If user-defined functions were being

3

executed at the time of the error, a stack-back trace of function calls is printed.

The final type of error is an internal error in the RGA interpreter, which should not

happen under normal circumstances. Usually this type of error prints a message

and produces a core image for debugging the interpreter.

3. Lexical Issues
RGA is case sensitive. All command keywords and predefined function names

are written in lower case. All identifiers which the user defines may be written

in lower, upper, or mixed case. The user may not redefine a reserved language

keyword, but predefined identifiers may be redefined, although that is not recom

mended. In addition to the five predefined identifiers S, P, T, C, and A (described

later), the reachability graph which is loaded during initialization will typically

define a number of identifiers to be places and sets of places and transitions; these

identifiers must follow the requirements for identifiers described below.

An identifier is represented as an upper or lower case alphabetic letter,

followed by zero or more letters, digits, single-quote characters, periods, and un

derscores. A number is represented as an optional minus sign followed by one or

more digits; floating point as well as integer values may be represented.

A command to RGA is normally terminated by a newline character. Receiving

this character will cause RGA tc;> perform the indicated function. For very long

expressions or function definitions, a line may be terminated with a backslash(\)

followed by a newline. This combination of two characters is treated as a single

space character, so its only effect is to delimit other tokens. Multiple space and tab

characters and comments are treated as a single space. Comments may be inserted

using the conventions of the C and PL/I languages: /* comment text */.

4. Expression Types and Execution Semantics
This section describes the syntax and semantics of the expressions available

in RGA, and it describes the built-in primitive functions which are available. It

is divided into subsections which describe each of the different data types which

the language supports and the functions which return those types. The commands

which may be used to define new functions are described in Section 4, and a formal

BNF description of the language is given in Appendix A. All expressions in the RGA
language evaluate to a value whose type is either a state, an integer, a booiean,

a transition, an arc (A), a floating point number, a character string, a set, or a

4

Figure 1
A simple Petri net

Figure 2
A Petri net with the same reachability set as Figure 1-

by Hack in his work ([HAcK76A], [HACK76B]), and the languages pl, P, and p>-.
described in [PETE81].

As an example of the independence of reachability set equivalence and lan
guage equivalence, consider the Petri nets shown in Figures 1-4. Figure 1 shows a
simple Petri net which implements mutual exclusion; a token will never be in places
P2 and p3 at the same time. Figure 2 shows a Petri net with the same reachability
set as the one in Figure 1 (assuming the homomorphisms map places p5 and P6 in
net 2 to the same tuple-position as place p5 in net 1). However, the transition firing
sequences are different since a and b must fire before c can in Figure 2, but not in

5

Figure 3
A Petri net with the same language as Figure 1

Figure 4
A Petri net isomorphic to that in Figure 1

Figure 1. Figure 3 is a Petri net with the same language as Figure 1, but different
reachability sets since the top transition labeled .X can fire without affecting the
language. Figure 4 is a Petri net with both the same reachability set and the same
language as that of Figure 1.

Relationship

OPl OP2

o op~
p3 0

p~

0 Op,
p4 0

P6

Or

8q

C' A

A'1 A';
~Pl~~

t~ t~

Figure 5
Reducing R_J.. to R_!

Different Equivalence Definitions

C' B

6

The different ways of defining Petri net equivalence are independent to some
extent, but are related nevertheless. Obviously, equivalence for J<f and J?.. are
reducible to equivalence for J?..).. It is not too difficult to reduce J?..). to Rf in linear
time and space (the reduction is given below), so the complexity for solving any of
the reachability set equivalence problems should be about the same. The analogous
_reductions are not possible for languages; equivalence for, et! and et are obviously
reducible to et\ but et! is easier to solve than equivalence for et or et\ This fact
was proven in [HAcK76A], where it was demonstrated that equality for et and et). _are
undecidable, but equality for et! is equivalent to the reachability problem, which
was proven decidable in [MAYR81]. It is also possible to reduce equivalence for J<.'A
to equivalence for et'A and vice versa (the reductions are given below). All these
reductions can be done using linear space and time, so the complexity for solving
any of the equivalence problems, except for et!, should be about the same.

The problem of equivalence for J<..'A is reduced to equivalence for J<.f usirig a
construction similar to one used by Hack in reducing the polynomial graph inclusion

7

problem to the subset problem for 'R/. Given two Petri nets, CA and CB, we
construct nets C,A and Ck such that R>..(CA,hA) ~ R>..(CB,hB) if and only if
Rf(C~,hA_) ~ Rf(Ck,h~) (see Figure 5). The subset problem is reducible to the
equiv~ence problem as shown in [HACK76B] (also in (PETE81]). First, we make the
number of places in the two Petri nets the same by adding, for each equivalence
set (a set containing all the places in the net for which the values of h are equal),
enough places to the proper net to make the size of the corresponding equivalence
sets in the two nets equal. Next (Hack's contribution), we eliminate the effects .
of all unobservable places (those for which h(p) = 0) by adding places q and r
to CA_, and adding places q1 and r 1 to Ck. In CA_, r and q are not used for any
transitions, and the initial marking includes one token in q and none in r. In Ck,
the place r 1 is a typical run place, which is initially marked, and is included as both
an input and an output to each transition in the original net CB. Thus, the net
operates normally as long as a token remains in r', but if the token is removed the
net freezes. The token is removed by adding a transition from r' to q1

• For each
place Pi for which hB(Pi) = 0 (including any places added to equalize the two nets),
we add one transition with q1 and Pi as inputs and q1 as an output, and another
transition with q1 as an input and q1 and Pi as outputs. These transitions allow
each unobservable place to have as many (or as few) tokens as desired. Finally, we
eliminate the effects of identical places by adding a transition between every pair
of places Pi and Pi (including any places added t'o equalize the two nets) such that
hB(Pi) = hB(P;) with inputs q1 and Pi and outputs q1 and Pi· This allows the tokens
in any set of identical places to be arbitrarily distributed among the places in the
set.

The equivalence problem for R/' is reduced to the equivalence problem for ..!)..
by constructing new nets O~ and Ok such that R>..(CA,hA) = R>..(CB,hB) if and
only if L>..(C.A,,hA,) = L)..(CB,h~) (refer to Figure 6). To construct the Petri net C'
from the Petri net C (for either CA or CB), add a run placer, initially marked with
one token, which is an input and an output to each transition in C. Also add place
q, initially unmarked, with a transition tq from r to q. The net thus runs normally
until tq is fired, which freezes it. Add new transitions tp8 , each with two inputs, Pi

and q, and one output, q, for each place in C. The function k' supporting the new
homomorphism h' is equal to A for each transition in O' except for the transitions
tp., which have the value A if h(pi) = 0 or the value h(pi) otherwise (the alpha.bet
~ is the same as the range of h excluding 0).

The net 0 1 operates as follows: Since r is initially marked, the net operates
the same until an arbitrary reachable marking is reached, when tq fires, freezing
the part of the net that corresponds to the original net C, and enabling the
new transitions tPi. Since all transitions fired up to this point have been labeled
with A, no string has yet been generated. With a token in q, however, each
transition tp, can fire as many times as there are tokens in Pi, adding up to that
many symbols somewhere in the language. The language generated by C' is thus

Figure 6
Reducing 'R).. to cf)..

8

{ z I 1/J(z) ~ h(µ) for some µ E R(C) } , where 1/J is the Parikh mapping (a mapping
from a string to the number of occurrences of each symbol in the string1).

The equivalence problem for cf).. is reduced to the equivalence problem for!<..)..
by constructing new nets C~ and C_k such that L)..(CA,hA) = L>..(CB,hB) if and
only if R)..(C_A,h~) = R)..(C_k,h~). To construct the Petri net 0 1 from the Petri net
C, add a place r, initially marked with one token, which is an input (but not an
output) to each transition in C. Add another place, c, initially marked with one
token. The number of tokens on this place will be doubled (weakly) each time a
transition of C fires. Add two more places, n and t, initially unmarked, and two
more transitions t., and tn. Transition tr has n as its only input, and r as its only
output. Transition tn has places n and t as inputs, and as outputs, one arc to n
and two arcs to c. Finally, for each transition ti in C, add place ai as an output for
ti, place Pto transition ta, with input places ~ and c, and outputs ai, Pt1 and t, and
transition td,, with input place ai and output place n. The function h' supporting
the new homomorphism h' is equal to 0 for all places of 0 1 except for places Pti;

1 For example, over the alphabet {a, b, c, d, r }, 1/J(abracadabra) = (5, 2, 1, 1, 2), since there are 5
a's, 2 b's, etc.

Figure 1
Reducing of.\ to f(A

9

for these places, let o-(a) be the ordinal value of symbol a in an ordering o- of the
alphabet :E, with o-(.A) = 0. Then, h'(PtJ = o-(h(ti)).

The new net 0 1 works as follows (see Figure 7): When there is a token on
r, any enabled transition of C can fire; assume that ti does. Firing ti removes the
token from r and places a token on ai, as well as making the changes to C' that
would normally be made to C. With a token on ai, transition ta, can now fire once
for each token in c, moving the tokens from c to t, and weakly adding c to Pt•. When
all the tokens are gone from c (or sooner since we only add weakly), transition tdi .

10

fires, placing a token in n, and enabling transition tn, which can fire once for each
token in t, and places twice this many tokens in c. When this is done (or sooner),
transition tr fires, placing a token in r again so that the cycle can repeat. At any
time, _place Pt, contains between 0 and ~ 2i tokens, where /3j = ti in the firing
sequence /31/32 ... f3k. Thus, the possible markings for these places correspond to
the possible transition firings of the original net, and the reachability sets of two
nets constructed in this way will be equivalent if and only if the languages of the
original nets are equivalent.

Unfortunately, these reductions are mostly of theoretical interest, and have
little practical use; the equivalence problem for all these classes is undecidable in
the general case. There are special instances of Petri nets where equivalence is
decidable, but these reductions will not generally preserve the -necessary restric
tions. For example, reachability set equivalence is decidable for Petri nets with five
places (see [HoPc79]), but language equivalence is not (see [VALK81, p 323]). The
equivalence between 'R and cf shown here does not apply since the reductions add
places to the net, invalidating the restriction to five places.

Methods Determining Equivalence
There are several general methods for determining whether two Petri nets

have equivalent reachability sets or languages. If they .are finite, the obvious way is
to simply generate and compare them. Since they are infinite in the general case,
we must use other methods. One method is to compare closed forms for them. For
example, to compare two languages which happen to be regular, we can generate
regular expressions that represent each language in a finite form and compare them.
It is usually easier to compare them if they can be put into a canonical form.

Another method is to find a way to transform one Petri net into the other
using transformations known to preserve equivalence. For example, it is obvious
that replacing a place by two places connected together by a A-labeled transition
with the inputs of the original place being connected to the first place, and the
outputs to the second will not change either the language or reachability set of
the net. Other transformations may depend on certain properties of the net. For
example, a dead transition, which can never be enabled, may be removed without
affecting the net. This is the obvious method to use if the nets being compared
were somehow derived from each other. ·

It is also possible to use a combination of these techniques. For example, some
transformations may be applied to two Petri nets to simplify them, or put them
into a form for which a closed form may more easily be generated, then the closed
forms generated and compared .

. The rest of the paper will discuss the complexity of determining Petri net
equivalence for reachability sets and languages. Only comparison of closed forms
will be considered; the study of Petri net transformations is another topic of Petri
net research.

11

Reachability S
The reachability set equivalence problem for general Petri nets is undecidable

(see [HAcK76B] or [PETE81] for a proof of the undecidability ofJZf; the undecidability
ofJZ ~ndJZ.\ follows immediately). For many special Petri net~ however, equivalence
can be decided. In general, the reachability sets of these Petri nets have a special
property which allows them to be compared. For example, for bounded Petri nets,
with finite reachability sets, equivalence is obviously decidable.

Another property that the reachability sets for many common classes of Petri
nets have is that of being semilinear [Grns66]. A set R ~ Nr is linear if there exist
vectors Jo, Ji, ... , fn in Nr such that:

R= {fo+x1fi+···+xnfn I x1, ... ,x.,,, areinN}.

A set R is semilinea.r if it is a finite union of linear sets. Semilinear sets correspond
exactly to predicates expressible in Presburger arithmetic, for which procedures
exist to decide ([Grns66, 0PPE78]), thus reachability set equivalence is decidable
for any type of Petri net that has a semilinear reachability set.

Hopcroft and Pansiot have shown that Petri nets with at most five places have
semilinear reachability sets ([HoPcT9]). A reversible Petri net. is one in which for
every transition there is another transition with inputs and outputs reversed, allow
.ing any transition to be "undone" by firing its complementary transition; reversible
Petri nets have semilinear reachability sets ([ARAK77]). A persistent Petri net is one
in which any enabled transition is disabled only by firing it (i.e., firing a transition
will not disable a different one); these nets also have semilinear reachability sets
([GRAB80]). A Petri net is weakly persistent if, whenever transition sequences (3
and f3' are firable and f3 covers f3', there exists a rearrangement {31 {311 of (3 that is
fireable; these, too, have semilinear reachability sets ([YAMA81]). Yamasaki defines
a class of Petri nets called normal Petri nets which have semilinear reachability sets
([YAMA84]). A Petri net is normal if ea.ch transition t which has an input place in
a minimal circuit c also has an output place inc.

All these classes (and probably many more) have semilinear reachability
sets, and therefore the reachability set equivalence problem is decidable for them.
However, just because a problem is decidable does not mean that it is easy to decide;

. the complexity of solving Presburger formulae is at least 22n, so the reachability
set equivalence problem for Petri nets with semilinear reachability sets is decidable
but intractable. Another class of Petri nets for which reachability set equivalence
is decidable but intractable is bounded Petri nets, in which the number of tokens
in every reachable marking is less than some integer bound b. This is the first
non-contrived problem whose complexity is non-primitive recursive ([CARD76]).

Part of the reason that the complexity of reachability set equivalence for
bounded Petri nets is so high is that it is given in terms of the number of places
and transitions in the net rather than the bound b--it is possible to construct a net
with o(n) places which is bounded by 22

n. One way to reduce the complexity is to

12

express it in terms of the bound b. For example, a safe net is a net in which no place
can hold more than one token (i.e., a net with a bound of 1). For a safe net with
n places, there are 2n possible markings; thus the simple algorithm of enumerating
and cqmparing the elements of the reachability sets could decide whether two safe
Petri nets had equal reachability sets in 0(2n) time. In general, the complexity of
the equivalence problem for a net in which each of its n places has a bound of b
is o(bn). While this complexity is better, it is still high. It is also the worst case
complexity; the average complexity may be much better.

Another way to reduce the complexity of reachability equivalence for bounded
Petri nets is to divide the places in the net into k sets such that at most one place in
each set is marked at any time. Many safe Petri nets used in practical applications
can be divided into such sets in a natural way. If the sets were truly independent of
each other, the size of the reachability set would be the product of the number of
markings possible in each set. To get an upper bound, we can assume that the places
are distributed evenly among the sets, and that any or none of the places in the set
can have a token (this results in the largest possible value of the product), giving
an upper bound of (1 +n/k)k markings in the reachability set. This complexity has
its largest value when each set contains one place (k = n); this is possible for any
safe Petri net and results in the 0(2n) complexity described previously. However, k
can be much smaller for many Petri nets. The minimum upper bound occurs when
k is as small as possible; if at most one of all of the places in a Petri net will ever
be marked, then k = n, and the upper bound is n + 1.

The complexity can be reduced further for safe Petri nets which satisfy one
further requirement: Exactly one of the places in each of the k sets will be marked
at any given time. This is not possible for safe Petri nets in general, but if it can
be done for a given net, we can reduce the upper bound to (n/k)k. Note that if
k > n/2, then either some of the sets will contain only one place (which by definition
will always remain marked, and is therefore useless), or some places appear in more
than one set. Sharing is permissible as long as the constraints hold, since this
only reduces the independence between sets, reducing the size of the reachability
set even further. This upper bound has its maximum value when k = n/e (where
e = 2.718 ...), or since k must be an integer, when k = n/3. The minimum value,
as before, occurs when all of the places in the net are in one set, and k = 1.

This upper bound has a number of practical implications for using Petri nets
to model systems. The number k generally corresponds to the number of separate
processes or entities being modeled. For example, a model of a communications
protocol might consist of a sender and a receiver, each of which is a subnet which
always contains a token, so k would be two in this case. In a Petri net model of a
multi-tasking program, k would be equal to the number of tasks in the program,
which is generally small. So even though the upper bound is exponential, it is often
small enough to be practical. The instances when k is large correspond in general
to very complex systems (such as an entire communications network, with hundreds

13

Figure 8
An unbounded Petri net with a regular language

of senders and receivers) which are diffi~ult to analyze as a whole using any kind
of model. In these cases, it is often possible to verify the system using induction:
verify a simple subset, with a low value of k, then show that an extended system,
with k increased by 1, is equivalent to the simple system.

language Equivalence
Not as much research has been done on Petri net. language equivalence ·as

on ~eachability set equivalence. For general Petri. nets, Hack has shown that the
equality problem is undecidable for ..f and ..f>., but that equality for ..fl is reducible
to the Petri net reachability problem ([HAcK76A]). The reachability problem was
later shown to be decidable, but intractable ([MAYR81]). A stronger result was
proved by Valk and Vidal-Naquet ([VALK81]): the equivalence problem for two
languages in ..f, with one Petri net having four and the other five unbounded places
is undecidable. Analysis of the complexity for decision of language equivalence is
harder than that for reachability set equivalence since a Petri net with a finite
reachability set may have an infinite language.

One class of Petri nets for which language equivalence is decidable is the
class of Petri nets that generate regular languages. This class includes the class of
bounded Petri nets, since the reachability graph of a bounded Petri net is isomorphic
to a finite automaton. However, unbounded Petri nets exist which also have regular
languages, such as the one in Figure 8. It is decidable whether a Petri net has a
regular language ([VALK81]). Of course, not every regular language is in ..f or..!').
since the latter have the property that all prefixes of strings in the language are
also in the language.

For Petri nets with regular languages, a. convenient closed form for representing
the language is the regular expression. Hunt, Rosenkrantz, and Szymanski have
shown several complexity results for the equivalence problem of regular expressions
([HUNT76]). For general regular expressions, and for regular expressions with a star
height greater than or equal to 1, the equivalence problem is CSL-complete. If the
star-height is zero (no stars), or the alpha.bet has only one symbol, the equivalence
problem is NP-complete. The equivalence problem is also NP-complete if one or

14

both of the languages being compared is bounded (there exist strings w1 , w2 , ••• , Wm

from :E* such that the language L ~ wiw2 · · · w:n, not to be confused with a
bounded Petri net). The correlations between the structural properties of a Petri
net an_d a regular expression with equivalent language are not known. Neither is the
relationship between the size of a Petri net and the size of a regular expression with
an equivalent language. This is an important question-if the regular expression
represents the language in a much more compact way than a Petri net, the Petri
net language equivalence problem may be tractable.

Another class of Petri net languages which has been studied is the class of
terminal languages, ofo (and the corresponding oft and ..L'S). These languages differ
form the of languages by the additional requirement that the final marking of the
net be a specified terminal marking in order for the generated string to be in the
language. Hack proved that the equivalence problem for of o and of~ is undecidable
in general ([HACK76A]). A subclass for which equivalence is decidable is the set ·of
regular ..L'o languages. The of o language generated by a. bounded Petri net is regular,
but unlike the of languages, it is undecidable whether the of o language generated
by an arbitrary Petri net is regular or not. All regular l~nguages can be generated
by a. ofS type .Petri. net. · "

Two other classes of Petri net languages have been described in [PETE81]:
the G-type and T-type languages. The G-type languages a.re similar to the .,lo

languages in that a. terminal marking is specified, but the final marking of the net
need only cover (i.e., have at lea.st as many tokens in ea.ch place as) the terminal
marking. The T-type languages require that no transitions be enabled in the final
net marking for the string to be in the language (i.e., this is the set of transition
firing sequences that lead to a. deadlock). Both of these languages have been shown
to be subclasses of the ::lo languages, but these classes a.re largely unexplored. It is
not known whether equivalence is decidable for them or not except for the T-type
languages with A-transitions, which are equivalent to the of S languages.

Other Petri net languages which deserve further study are the languages of
infinite words (often referred to as w-languages). These languages reflect the infinite
behavior of the Petri net, and could be useful for studying such important properties
as livelock-freeness. A Petri net is livelock-free if ea.ch transition which is live
(potentially fira.ble from any marking) will always eventually fire (i.e., every infinite
word in the language includes every transition infinitely often). Valk has initiated
work in this area. ([VALK83]), but it is mostly exploring the hierarchy of infinite
Petri net languages and relating it to other classes of w-la.nguages. There are still
many open questions, such as equivalence issues. Equivalence is almost certainly
undecidable in the general case for these languages, but what a.bout simpler cases,
such as bounded or safe nets?

15

N
Many extensions have been proposed to make Petri nets more useful. Some of

these extensions increase the power of Petri nets; others do not. The most common
extension is to allow a place to be tested for zero tokens by allowing inhibitor arcs
arcs ~hich disable a transition unless the place is empty. This extension increases
the power of Petri nets to that of a Turing machine. Another useful extension is
to augment each transition with timing information. Several methods have been
proposed-the most general is described in [MERL 7 4]. Merlin added time to Petri
nets by associating a minimum and maximum time to each transition; once enabled,
the transition can not fire until the minimum time has elapsed, but must fire before
the maximum time does. It is easy to show that this extension also gives Petri nets
the power of a Turing machine. Another extension that raises the power of a Petri
net to a Turi~g machine is priorities-indicating which transition should be allowed
to fire when a conflict exists ([HACK76B]).

One extension that does not increase the power of a Petri net is the addition
of color to the tokens ([JENS81]). Transitions in these nets behave differently
depending on the color of the tokens on the input places. However, the hehavior
is essentially the same as if the places and transitions were replicated-once for
each color. The ma.in effect of the extension is to reduce the size of the net.
Unfortunately, it doesn't reduce the complexity of analysis in general. It should
be emphasized that only a finite number of colors is allowed-using an infinite
number of colors allows a Turing machine to be simulated. An extension related to
colored tokens is the predicate-transition net ([GENR81]). This extension associates
a predicate with each transition rather than a color, but the idea and usefulness is
the same.

Of course, the equivalence problem is undecidable for any extensions that
increases or maintains the power of Petri nets. However, combining some of these
extensions with the restricted nets described in this paper might be useful. For
example, any bounded Petri net, even if powerful extensions are allowed, has the
theoretical power of a finite state automaton; the equivalence problem is thus
decidable in this case.

Of particular interest is the addition of time, since many Petri nets are
designed to model objects that involve time, such as communications .protocols
and computer processors. One major motivation for adding timing information
to Petri nets is to allow the performance of a Petri net modeled system to be
analyzed. Most of the Petri nets used with timing are bounded and often safe;
the equivalence problem as discussed in this paper is thus decidable for them.
However, the definition given here does not compare the timing information of the
nets-two nets could be equivalent according to our definition, but one net could
perform significantly faster than the other. This is certainly a useful definition for
equivalence, but for some applications it may be useful to define two nets to be
equivalent only if they take the same amount of time.

16

We have discussed some different definitions of Petri net equivalence, and the
complexity of solving the equivalence problem, both of Petri net reachability sets
and of Petri net languages. While it is undecidable in general, for common nets
it is decidable and often feasible. There are still many areas in which research
needs to be done, particularly in the area of Petri net languages and Petri net
extensions-especially timed Petri nets.

The definition of reachability sets given in this paper is new-in particular the
method of combining and hiding places for reachability set analysis. The impact of
this definition on the reachability graph of a Petri net hasn't been explored at all,
especially for the J?. and J?.A classes. A logical way to generate the reachability graph
for these would be to generate the reachability graph the normal way (using the
places of the net rather than a transformation on them) and then apply the desired
homomorphism to get a new, but similar, reachability graph. This graph, however,
would probably have several distinct nodes with indistinct labels-indicating the
states that appear the same from the outside, but are different internally. It may
be desirable to combine these nodes together to form a user's view of the net. For
example, consider a Petri net that models a postage stamp machine. The customer
puts two dimes into the machine· and a. postage stamp comes out. The standard
reachability graph of this machine would have three states: one representing the
initial state of the machine (no money inserted), one for the state where just one
dime has been inserted,and one for the state where two dimes have been inserted
and a stamp has been ejected. Removing the stamp puts the machine back in
the initial state. However, there is really no way to tell the first two states apart
without looking inside the machine (except to insert a dime and see what happens).
It is possible that a customer may insert one dime in the machine and receive a
stamp for it (if someone else previously put just one dime in and left), .thus to the
customer, the machine has only two states: a stamp is present or one is not. When
a stamp is present, removing it puts the machine in the other state. When no
stamp is present, inserting a dime will either keep the machine in the same state
(apparently doing nothing) or it will eject a stamp. It is hard to know which view
is more desirable; the latter needs to be studied. It may also be possible to generate
the user's view reachability graph without generating all the states in the complete
:version (which may be useful if the complete version has hidden unbounded states).

[ARAK77J

[CARD76)

(CCIT80]

(GENR81)

[Grns66]

(GRAB80]

REFERENCES

Araki, T. and T. Kasami, "Decidable Problems on the Strong Connec
tivity of Petri Net Reachability Sets," Theoretical Computer Science,
vol. 4, pp. 97-119, 1977.

Cardoza, E. W., R. J. Lipton, and A. Meyer, "Exponential Space.
Complete Problems for Petri Nets and Commutative Semigroups,"
Proceeding8 of the Eighth Annual A CM Sympo8ium on Theory of Com
puting, New York: ACM, 1976, pp. 50-54.

Comite Consultatif Internationale do Telegraphique et Telephonique,
"Draft Revised CCITT Recommendation X.25," Computer Communi
cation Review, pp. 56-129, 1982.

Genrich H. J. and K. Lautenbach, "System Modelling with High-Level
Petri Nets," Theoretical Computer Science, vol. 1·3' pp. 109-1361 1981.

Ginsburg, S. and E. H. Spanier, "Semigroups, Presburger Formulas, and
Languages," Pacific Journal of Mathematics, vol. 16, pp. 285-296, 1966.

Grabowski, J ., "The Decidability of Persistance for Vector Addition
Systems," Information Proces8ing Letters, vol. 11, pp. 20-23, 1980.

[HACK76A] Hack, Michel, "Petri Net Languages," Technical Report 159,
Cambridge, Massachusetts: Laboratory for Computer Science, Mas
sachusetts Institute of Technology, 1976.

[HAcK76B] Hack, Michel, "Decidability Questions for Petri Nets," Technical Report
161, Cambridge, Massachusetts: Laboratory for Computer· Science,
Massachusets Institute of Technology, 1976.

[HoPc79] Hopcroft, J. and J. J. Pansiot, "On the Reachability Problem for
Five-Dimensional Vector Addition Systems," Theoretical Computer Sci
ence, vol. 8, pp. 135-159, 1979.

[HuNT76] Hunt, Harry B. III, Daniel J. Rosenkrantz, and Thomas G. Szyman
ski, "On the Equivalence, Containment, and Covering Problems for
the Regular and Context-Free Languages," Journal of Computer and
System Science8, vol. 12, pp. 222-268, 1976.

17

[JENS81)

[MERL-74)

[MAYR81]

(0PPE78]

(PETE81]

[VALK81]

[VALK83)

[YAMA81]

(YAMA84)

18

Jensen, Kurt, "Coloured Petri Nets and the Invariant-Method," Theo
retical Computer Science, vol. 14, pp. 317-336, 1981.

Merlin, P., "A Study of the Recoverability of Computing Systems,"
Ph.D. Dissertation, University of California, Irvine: Department of
Information and Computer Science, 1974.

Mayr, Ernst W., "An Algorithm for the General Petri Net Reachability
Problem," Symposium on Theory of Computing, (Milwaukee 1981),
pp. 238-246.

aPn

Oppen, D. C., "A 22 Upper Bound on the Complexity of Presburger
Arithemetic," JOSS, vol. 16, pp. 323-332, 1978.

Peterson, James L., Petri Net Theory and the Modeling of Systems,
Englewood Cliffs: Prentice-Hall, 1981.

Valk, Rudiger and Guy Vidal-Naquet, "Petri Nets and Regular
Languages," Journal of Computer and System Sciences, vol. 23,
pp. 299-325, 1981.

Valk, Rudiger., "Infinite Behaviour of Petri Nets," Theoretical Com
puter Science, vol. 25, pp. 311-341, 1983.

Yamasaki, Hideki, "On Weak Persistency of Petri Nets," Information
Processing Letter.,, vol. 13, pp. 94-97, 1981.

Yamasaki, Hideki, "Normal Petri Nets," Theoretical Computer Science,
vol. 31, pp. 307-315, 1984.

