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ABSTRACT OF THE DISSERTATION

Constructions and Applications of Space-Filling Designs

by

Qian Xiao

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2017

Professor Hongquan Xu, Chair

Maximin distance designs as an important class of space-filling designs are widely used in

computer experiments, yet their constructions are challenging. In this thesis, we develop an

efficient procedure to generate maximin Latin hypercube designs, as well as maximin multi-

level fractional factorial designs, from existing orthogonal or nearly orthogonal arrays via

level permutation and expansion. We show that the distance distributions of the generated

designs are closely connected with the distance distributions and generalized word-length

patterns of the initial designs. Examples are presented to show that our method outper-

forms many current prevailing methods. In addition, based on number theory and finite

fields, we propose three algebraic methods to construct maximin distance Latin squares, as

special Latin hypercube designs. We develop lower bounds on their minimum distances. The

resulting Latin squares and related Latin hypercube designs have larger minimum distances

than existing ones, and are especially appealing for high-dimensional applications. We show

an application of space-filling designs in a combinatorial drug experiment on lung cancer.

We compare four types of designs: a 512-run 8-level full factorial design, 80-run random

sub-designs, 27-run random sub-designs and a 27-run space-filling three-level sub-design un-

der four types of models: Kriging models, neural networks, linear models and Hill-based

nonlinear models. We find that it is the best to adopt space-filling designs fitting Kriging

models.
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CHAPTER 1

Introduction

The study of experimental design is extremely important in modern industry, science, and

engineering. A good experimental design should minimize the number of runs needed to

acquire as much information as possible. Much scientific research involves modeling compli-

cated physical phenomena via complex computer codes. Scientists and engineers make use of

computer experiments to explore the complex relationships between inputs and outputs, and

to find an approximate model that is much simpler than the true but complicated model. In

doing so, it is crucial to use a good space-filling design (Fang et al., 2006; Morris and Moore,

2015; Lin and Tang, 2015). The goal of space-filling designs is to bound the bias between the

approximate model and the true model. There are two schools of thought on how to bound

the bias. One approach is to spread the design points out as far from each other as possible

consistent with staying inside the experimental boundaries. The other approach is to space

the points out evenly over the region of interest. These designs are called space-filling de-

signs. Space-filling designs include Latin hypercube designs (LHDs) and their modifications,

maximin distance designs (Johnson et al., 1990) and uniform designs (Fang et al., 1999).

A LHD is an n × k matrix of which each column is a permutation of levels 1, 2, . . . , n or

0, 1, . . . , n− 1. LHDs have uniform one-dimensional projections and orthogonal-array based

LHDs (Tang, 1993) have improved two- or three-dimensional projections. Since computer

experiments are deterministic and replicates should be avoided, these designs are desirable.

A maximin distance design spreads design points over the design space in such a way

that the separation distance, i.e., the minimal distance between pairs of points, is maximized.

Maximin distance designs are asymptotically D-optimal when observations are weakly cor-

related from a Gaussian process. The main idea of the uniform design is to uniformly scatter
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design points over the experimental domain, and Hickernell (1998) defined several discrep-

ancy, including centered l2-discrepancy, to measure the uniformity of the design. Stochastic

algorithms such as simulated annealing (Morris and Mitchell, 1995; Joseph and Hung, 2008;

Ba et al., 2015), the threshold-accepting method (Winker and Fang, 1997; Fang et al., 2006)

and swap or swarm optimization algorithms (Moon et al., 2011; Chen et al., 2013) have been

used to construct maximin distance designs and uniform designs. However, such methods

are not efficient for large designs due to the computational complexity. Nevertheless, large

designs are needed for computer experiments; for example, Morris (1991) considered many

simulation models involving hundreds of factors.

Space-filling fractional factorial designs are also widely used in physical experiments, e.g.

drug combination experiments. Combinatory drugs have been broadly applied to treat var-

ious diseases since they often have higher efficacy and lower toxicity compared to individual

drugs. It is challenging to quantify drug contributions and drug interactions for multiple

drugs due to the inherent complexity of underlying biological systems (Al-Shyoukh et al.,

2011). Various models should be used to analyze drug combination experiments, and for

such situations space-filling designs are the most desirable (Zhou and Xu, 2014). However,

few good designs and results are available in the literature because it is computationally

expensive to construct designs when both the numbers of runs and factors are large.

In this thesis, we develop new methodology and design theory for space-filling designs.

In Chapter 2, we propose an efficient procedure to generate maximin Latin hypercube de-

signs, as well as maximin multilevel fractional factorial designs, from existing orthogonal or

nearly orthogonal arrays via level permutation and expansion. We show that the distance

distributions of the generated designs are closely connected with the distance distributions

and generalized word-length patterns of the initial designs. Examples are presented to show

that our method outperforms many current prevailing methods.

In Chapter 3, based on number theory and finite fields, we propose three algebraic meth-

ods to construct maximin distance Latin squares, as special Latin hypercube designs. We

develop lower bounds on their minimum distances. The resulting Latin squares and related

Latin hypercube designs have larger minimum distances than existing ones, and are espe-
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cially appealing for high-dimensional applications. These algebraic constructions do not need

any searching and thus can be used to generate large space-filling designs.

In Chapter 4, we present an application of space-filling designs in drug combination

experiments on lung cancer. We focus on a 512-run combinatorial drug experiment by Al-

Shyoukh et al. (2011). We compare four types of designs: a 512-run 8-level full factorial

design, 80-run random sub-designs, 27-run random sub-designs and a 27-run three-level

space-filling design under four major models: Kriging models, neural networks, linear models

and Hill-based nonlinear models. We find that it is the best to adopt space-filling designs

fitting Kriging models.

Chapter 2 is accepted for publication as “Construction of maximin distance designs via

level permutation and expansion,” Statistica Sinica in 2017. Chapter 3 is published as

“Construction of maximin distance Latin squares and related Latin hypercube designs,”

Biometrika in 2017.
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CHAPTER 2

Construction of Maximin Distance Designs via Level

Permutation and Expansion

2.1 Introduction

Computer experiments are widely used in scientific researches and product developments to

simulate real-world problems with complex computer codes (Santner et al., 2013; Fang et al.,

2006; Morris and Moore, 2015). The most suitable designs for computer experiments are

space-filling Latin hypercube designs (LHDs), yet their construction is challenging, especially

for those with a large number of runs and factors.

Many researchers have studied orthogonal LHDs; see, among others, Steinberg and Lin

(2006), Cioppa and Lucas (2007), Lin et al. (2009), Sun et al. (2010) and Yang and Liu

(2012). However, orthogonal LHDs are not necessarily space-filling, e.g. design (a) in Figure

2.1. Another approach is through computer search using some optimality criteria based on

discrepancy or distance. Hickernell (1998) defined several discrepancy criteria, and among

them the centered L2-discrepancy (CD) is the most widely accepted. Johnson, Moore and

Ylvisaker (1990) proposed the maximin and minimax distance criteria. In this chapter, we

adopt the maximin distance criterion which seeks to scatter design points over the experimen-

tal domain such that the minimum distance between points is maximized. Johnson et al.

(1990) showed that maximin distance designs are asymptotically optimal under a Bayesian

setting. Morris and Mitchell (1995) proposed the criterion

φp =

(
n∑
i=2

i−1∑
j=1

1

dpi,j

) 1
p

, (2.1)

where di,j is the distance between the ith and jth row of the design. When p is sufficiently
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Figure 2.1: Comparison of 9-run 2-factor LHDs

large, φp is asymptotically identical to the maximin distance criterion. Morris and Mitchell

(1995), Joseph and Hung (2008), Ba et al. (2015), and many others proposed algorithms

to construct maximin LHDs; see Lin and Tang (2015) for a summary. To the best of our

knowledge, the R package SLHD by Ba et al. (2015) is currently the most efficient algorithm.

Tang (1993) proposed to generate orthogonal array-based LHDs (OALHDs) by expand-

ing levels in randomized orthogonal arrays (OAs). Though these OALHDs have desirable

sampling and projection properties, most of them are not space-filling, e.g. designs (b) and

(c) in Figure 2.1. A searching scheme can be applied to OALHDs (Leary et al. (2003)), but

the results are not satisfactory. Ba et al. (2015) used a level expansion procedure similar

to that of Tang (1993) when generating SLHDs with multiple slices. They justified their

method from a geometric perspective but did not provide theoretical support. We provide

some theoretical results to complement the work of Tang (1993) and Ba et al. (2015). We

show that OAs, or nearly OAs if OAs do not exist, are good initial designs as they tend to

generate robust space-filling designs. To avoid searching over the entire space of OALHDs

generated via level expansion, we propose to perform level permutations on the initial designs

and restrict level expansions only to the maximin OAs. Tang et al. (2012), Tang and Xu

(2013), and Zhou and Xu (2014) used the level permutation method for constructing uni-

form and maximin fractional factorial designs, but their method cannot be used to construct

LHDs and relies on the existence of multi-level OAs. We propose a procedure, the maximin

distance level expansion (MDLE) method, to construct maximin designs by combining the
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strength of level permutation and expansion while avoiding their weaknesses. Our procedure

is efficient, providing better designs using less time compared with existing methods. It is

general, not only in the capability of constructing both maximin fractional factorial designs

and maximin LHDs, but also in the flexibility to use multiple phases in level expansion that

can significantly reduce the computation needed.

This chapter is organized as follows. We present our theoretical results in Section 2.2.

In Section 2.3, we introduce the procedure, searching algorithm, and justifications for our

MDLE method. In Section 2.4, examples are given to show that our method outperforms the

ordinary level expansion method, the OMLHD method, the R package SLHD, and the level

permutation method. In Section 2.5, we introduce a multi-phase method for constructing

large maximin designs. Section 2.6 concludes, and all proofs are given in the Appendix.

2.2 Some Theoretical Results

Let D(n, sk) be an n-run, k-factor, and s-level (labelled as 1, 2, . . . , s) balanced design where

each level appears exactly n/s times in every column. From the initial design D(n, sk) we

can generate a set of designs D
′
(n, (ms)k) with ms levels by a level expansion procedure. For

each column in the initial design D, we replace the n/s positions of entry l (l = 1, 2, . . . , s) by

a random sequence of n/(ms) replicates of numbers: (l−1)m+1, (l−1)m+2, . . . , (l−1)m+m,

where n, k, s,m are all integers larger than 1 and n is divisible by ms. When m = n/s, the

generated D
′
s are LHDs.

Example 1. As an illustration, we perform the level expansion procedure to generate a

D
′
(8, 42) from a D(8, 22). For each column in D, we first replace all four entries of 1 with

a random permutation of numbers: 1, 1, 2, 2, and then replace all four entries of 2 with a

random permutation of numbers: 3, 3, 4, 4, thus generating a 4-level design D
′
. In all we

have 1296 possible D
′
s. Here is an example:

D =

 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

T

⇒ D
′
=

 1 2 1 2 3 4 4 3

2 3 1 3 1 4 2 4

T

.
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Let xi,l be the (ith,lth) element and xi be the ith row of the initial design D. After level

expansion, they are x
′

i,l and x
′
i of the generated design D

′
, respectively. Let hi,j be the

Hamming distance (number of positions where the corresponding entries in the pair of rows

are different) between rows xi and xj. Take dil,jl = |xi,l − xj,l|. Denote the L1-distance

between two rows xi and xj as di,j =
∑k

l=1 dil,jl. In this paper, we focus on constructing

maximin designs in regard to the L1-distance. Let dmin(D) be the minimum L1-distance

among all pairs of rows in design D. In the same way, we define h
′
i,j, d

′

il,jl, d
′
i,j and dmin(D

′
)

for the generated design D
′
, respectively. For any balanced design D, we define the distance

distribution as (# denotes the count)

Bl(D) = n−1#{(i, j) : di,j = l;xi, xj ∈ D, i, j = 1, 2, . . . , n}.

It is easy to show that a design without repeated runs has B0(D) = 1. The maximin design

is defined as the one that sequentially minimizes the distance distribution B0(D), B1(D),

B2(D), B3(D), . . .. Designs with smaller φp values defined in (2.1) are more space-filling and

have better distance distributions.

Lemma 1. (a) For i, j = 1, . . . , n and i 6= j, upper and lower bounds for the L1-distance

between the ith and jth row in the generated design D
′

are

mdi,j − (m− 1)hi,j ≤ d
′

i,j ≤ mdi,j + (m− 1)k.

(b) Upper and lower bounds for the minimum pairwise L1-distance of the generated design

D
′

are

mdmin(D)− (m− 1)hmax(D) ≤ dmin(D
′
) ≤ mdmin(D) + (m− 1)k,

where hmax(D) is the largest pairwise Hamming distance in design D.

Given n, s, and k from different initial designs D(n, sk), by level expansion we can

generate different sets of designs D
′
(n, (ms)k). By Lemma 1, the upper bound for dmin(D

′
) is

determined by dmin(D). If we can generate a design D
′
opt with dmin(D

′
opt) = mdmin(DMm) +

(m − 1)k where DMm is the maximin initial design, it is clear that D
′
opt has the largest

minimum distance among all possible D
′
s from all possible initial designs D. In Lemma

7



1, the lower bound of dmin(D
′
) is also positively related with dmin(D). Therefore, in order

to generate good maximin designs via level expansion, initial designs with better distance

distributions should be used.

From any initial design D, by level expansion we have ((n/s)!/(r!)m)sk possible generated

designs D
′
, where r = n/(ms).

Theorem 1. For i, j = 1, . . . , n and i 6= j, the expectation and variance of the pairwise

L1-distances in the generated designs D
′

via level expansion have the following relationship

with the pairwise L1-distance in the initial balanced design D:

E(d
′

i,j) = mdi,j + (k − hi,j)γ and Var(d
′

i,j) = C1,0 + C1,1hi,j,

where γ = n(m2 − 1)/[3m(n− s)], C1,0 = kn(m2 − 1)(m2n+ 2n− 3m2s)/[18m2(n− s)2],

and C1,1 = (m2 − 1)[2n2(m2 − 1)− 3m2s(n− s)]/[18m2(n− s)2].

Thus the expected value of d
′
i,j is a function of both di,j and hi,j. For a 2-level design,

the L1-distance di,j equals the Hamming distance hi,j. For a design with more than 2 levels,

di,j is greater than or equal to hi,j. In addition, the coefficient (m) for di,j is almost three

times as large as the absolute value of the coefficient (γ) for hi,j. Therefore, the expected

value of d
′
i,j is dominated by di,j. Generally speaking, a large di,j value leads to a large d

′
i,j

value on average.

When s > 2, we can improve designs’ minimum distances by level permutation (Zhou and

Xu (2014)). When permuting levels for one or more factors of a design, the pairwise Hamming

distances do not change, but its pairwise L1-distances vary. Given a design D(n, sk), we

can generate in total (s!)k level-permuted designs (including isomorphic designs) and then

consider all possible level expansions for each design. Let Θ denote the set of all designs

generated by all level permutations and expansions.

Lemma 2. When all possible level permutations and expansions are considered, for i 6= j,

the expectation and variance of the pairwise L1-distances in generated designs D′ are

EΘ(d
′

i,j) = kγ + (m
s+ 1

3
− γ)hi,j

V arΘ(d
′

i,j) = C1,0 +

(
C1,1 +m2 (s+ 1)(s− 2)

18

)
hi,j,

8



where γ, C1,0, and C1,1 are constants defined in Theorem 1.

Now we study the space-filling property for the generated design D′. For D′ ∈ Θ, let

d̄′ =
∑n

i 6=j=1 d
′
i,j/(n(n − 1)) be the average distance in the generated design D′. It is easy

to show that d̄′ = kn(m2s2 − 1)/(3ms(n− 1)) because D′ is level balanced for each column.

Next, we show that the expectation of sum of squared distances in D′ is minimized when

the initial design is an OA. The concepts of generalized word-length pattern (GWLP) and

generalized minimum aberration (GMA) from Xu and Wu (2001) are needed to describe this

result. For design D(n, sk), the GWLP is the vector (A1(D),A2(D), . . . Ak(D)), where the

value of Aj(D) (j = 1, 2 . . . , k) represents the total aliasing between the general mean and all

j-factor interactions in the full ANOVA model. The GMA criterion sequentially minimizes

the GWLP.

Theorem 2. When all possible level permutations and expansions are considered,

EΘ(
n∑

i 6=j=1

(d
′

i,j)
2) = C2,1A2(D) + C2,0,

where C2,1 = 2n2(m(s+ 1)/3− γ)2/s2 and C2,0 is a constant.

From Theorem 2, we have EΘ(
∑n

i 6=j=1(d
′
i,j− d̄′)2) = EΘ(

∑n
i 6=j=1(d

′
i,j)

2)−EΘ(
∑n

i 6=j=1(d̄
′
)2)

= C2,1A2(D) + constant. Since C2,1 > 0, the expectation of the variation of pairwise L1-

distances in D′ is minimized when A2(D) = 0. For a level balanced design, A1(D) = 0. Xu

and Wu (2001) showed that D is an OA of strength two if and only if A1(D) = A2(D) = 0.

Thus, if the initial design is an OA of strength two or higher, generated designs tend to have

small variations among all pairwise L1-distances and large minimum pairwise L1-distance.

In other words, designs generated from OAs via level permutation and expansion tend to

have robust space-filling properties.

Example 2. Consider constructing 32-run LHDs with 8 factors from five different 2-level

designs with different A2 or A3 values. The first two designs are regular 28−3 designs (with

A2 = 0) and the other three designs have 1, 2, 3 pairs of duplicated columns, indicated by

A2 = 1, 2, 3, respectively. Given a 2-level design, we randomly generated 105 LHDs via
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Table 2.1: Summary of minimum pairwise L1-distances

Design (A1, A2, A3, A4) Min Q1 Median Q3 Max

Design 1 (0, 0, 0, 3) 15 36 39 42 52

Design 2 (0, 0, 1, 2) 15 35 38 41 51

Design 3 (0, 1, 0, 2) 14 33 36 39 49

Design 4 (0, 2, 0, 1) 11 32 35 38 48

Design 5 (0, 3, 0, 3) 10 29 32 34 45

level permutation and expansion and computed the minimum pairwise L1-distance for each

of them. Table 2.1 compares the minimum, first quartile (Q1), median, third quartile (Q3)

and maximum of the 105 minimum distances for five different initial designs. It is evident

that initial designs with smaller A2 values are more likely to generate designs with larger

minimum distances via level permutation and expansion.

It is possible, but tedious, to extend Theorem 2 and link EΘ(
∑n

i 6=j=1(d
′
i,j)

r) with the

values of A2(D), . . . , Ar(D) for r > 2, similar to Theorem 4 of Zhou and Xu (2014). We do

not pursue this here.

2.3 Maximin Distance Level Expansion (MDLE) Method

2.3.1 Procedures of MDLE

Based on the results in the previous section, we propose the MDLE method that combines

both level permutation and expansion. The method starts from OAs, or nearly-OAs if the

corresponding OAs are not available, and expands their levels with one or more phases. Here

we first discuss how to construct maximin designs from OAs with only one phase of level

expansion. Refer to Section 2.5 for generalizations. To generate D
′
(n, (ms)k), we start from

an OA(n, sk0) with k0 ≥ k. The MDLE method has three steps.

1. Select the GMA k-column subset from an OA(n, sk0) and denote it by D(n, sk).

10



2. If s > 2, perform level permutation for design D from Step 1. Select the maximin

design and denote it by Dp(n, s
k).

3. For each column in Dp from Step 2, replace the n/s positions of entry l (l = 1, 2, . . . , s)

by a random sequence of n/(ms) replicates of numbers: (l−1)m+1, (l−1)m+2 . . . , (l−

1)m+m. Select the maximin design as the final design D
′
(n, (ms)k).

We usually start from saturated OA(n, sk0), or nearly saturated OAs with k0 ≤

(n− 1)/(s− 1). When k0!/(k!(k0− k)!) is small, we can enumerate and compare all subsets

to find the GMA subset in Step 1; otherwise, we adopt a simple searching method: randomly

generate and compare ngma subsets and select the GMA subset where ngma ranges from 1000

to 5000 based on the design size and computation available. We use the concept of minimum

moment aberration (Xu (2003)) to efficiently determine GMA subsets. For 2-level regular

designs we choose existing minimum aberration designs from the R package FrF2. In Steps

2 and 3, we adopt a threshold accepting (TA) algorithm modified from that of Dueck and

Scheuer (1990). Compared with the simulated annealing algorithm by Kirkpatrick (1984)

and Morris and Mitchell (1995), TA converges faster.

To implement the TA algorithm, we need to specify neighbour designsN (Dc) for a current

design Dc in Steps 2 and 3. To generate neighbour designs N (Dc) in Step 2, we randomly

choose two levels from a randomly chosen column of Dc and exchange all elements of these

two levels. In Step 3, we define neighbour designs N (Dc) by exchanging the levels in two

positions from a randomly chosen column of Dc, where these two positions have different

values in Dc and the same value in Dp from Step 2.

We choose φ(D) = φp(D) defined in (2.1) as the objective function to be minimized in

our TA algorithm. The pseudo code for our TA algorithm is given in Algorithm 1. Based

on the design size and time limits, typically we set nseq equal to 2000, choose nrounds from

30 to 75, and choose nsteps from 3000 to 7500.
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Algorithm 1 Pseudo code for threshold accepting (TA) algorithm

Initialize nseq (number of steps to compute threshold sequences)

Initialize nrounds (number of rounds) and nsteps (number of steps)

Initialize a starting design Dc and let Dmin = Dc

for i = 1 to nseq do

Generate a new design Dn from its neighbors N (Dc) and let ∆i = |φ(Dc)− φ(Dn)|

end for

Compute the empirical distribution of ∆i , i = 1, 2, . . . , nseq, denoted it as F (x)

for r = 1 to nrounds do

Generate threshold τr = F−1 (0.5(1− r/nrounds))

for j = 1 to nsteps do

Generate a new design Dn from the neighbors N (Dc) and let δ = φ(Dn)− φ(Dc)

if δ < τr then let Dc = Dn

if φ(Dc) < φ(Dmin) then let Dmin = Dc

end for

end for

Return Dmin

2.3.2 Justifications for the Procedures of MDLE

Zhou and Xu (2014) showed that from GMA initial designs we can generate designs with the

best distance distributions on average via all possible level permutations. Thus, choosing

GMA design D in Step 1 can benefit finding maximin design Dp in Step 2. Further, Lemma

1 and Theorem 1 in Section 2.2 show that from the maximin design Dp we can generate

D
′
s with the best distance distributions on average in Step 3. By Theorem 2, GMA ini-

tial designs minimize the expectation of the variation of distances in generated designs via

level permutation and expansion. Therefore, this 3-step procedure is robust and efficient in

generating good space-filling designs.

We further justify our method from a geometric point of view. Ba et al. (2015) discussed

a relevant geometric idea, but it only applies to SLHDs with multiple slices. Here we discuss
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the situations for fractional factorial designs and general LHDs, including SLHDs with only

one slice. We relate a design’s geometric structure with its GMA structure. To get a

space-filling n-run and k-factor design, a straightforward idea is to divide the design space

equally into n k-dimensional lattices, put one point in each lattice, and properly adjust each

point’s position within its lattice. This geometric structure of “one point per lattice” can

be achieved by performing level expansion to full factorial initial designs. For example, see

OALHDs in Figure 2.1(b),(c), and (d) generated by the level expansion process from full

factorial D(9, 32). These designs have only one point per lattice formed by the solid lines,

but the positions of points within the lattices are different. By either the level permutation

or level expansion process, the “one point per lattice” structure is not changed, but their

positions within the lattice are adjusted, and thus the distance distribution of the design can

be improved. By our MDLE method with full factorial initials, we can find the design with

best distance distribution while keeping the “one point per lattice” structure, e.g., design

(d) in Figure 2.1.

As a generalization, when n < sk, an initial design with the most low-dimensional pro-

jections that are full factorials is ideal for our MDLE method, and GMA designs have such a

property in many cases. Box and Hunter (1961) pointed out that any p-dimensional (p < r)

projection of a 2-level regular design with resolution r is a full-factorial design. Chen (1998)

proved that for a 2-level regular design,
(
n
p

)
−
∑p

j=r

(
n−j
p−j

)
Aj(D) p-dimensional projections

(p = r, . . . , br+ (r− 1)/2)c) are full-factorial designs. Under these cases, since the GMA ini-

tials have largest resolutions and sequentially minimize Aj(D) (j = 1, 2, . . . k), they have the

most parts that are full-factorials in p-dimensional projection spaces (p ≤ br + (r− 1)/2)c).

GMA nonregular designs have similar projection properties; see Xu et al. (2009) for a re-

view. As a result, GMA initial designs tend to generate better space-filling designs via level

expansion.
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2.4 Results and Comparisons

2.4.1 Construction of Maximin LHDs

First, we compared our MDLE method with the ordinary level expansion (OLE) method of

Tang (1993) and Leary et al. (2003) in generating maximin OALHDs. The OLE method

first randomly selects a required number of columns from a saturated or nearly saturated

OA to be the initial design, then performs level expansion, and searches for the maximin

generated LHDs. In order to make a fair comparison, we replaced the simulated annealing

algorithm in Leary et al. (2003) with our more efficient TA algorithm.

Table 2.2 lists some arbitrarily chosen cases for comparison, where “d(pair)” represents

the minimum pairwise L1-distance (and the number of pairs with the minimum distance).

For all tables, we use bold font to represent the better results. For the 32, 64 and 128-

run cases, the MDLE method starts from the respective 2-level minimum aberration initial

designs that are available in R package FrF2, whereas the OLE method starts from the

corresponding saturated OAs. For the 27, 54, 81, and 125-run cases, both methods start

from initial designs OA(27, 313), OA(54, 325), OA(81, 340), and OA(125, 531), respectively;

these are available in R package DoE.base. All codes were run in R on a laptop with an

Intel 2.50GHz I7 CPU. Time used by our MDLE method ranged from 5 minutes to an hour

for the different cases here. For all cases, we let the OLE method use at least twice as much

time as the MDLE method.

From Table 2.2, it is clear that the MDLE method generates better OALHDs than the

OLE method for all cases. Compared with the MDLE method, the OLE method only

includes Step 3, but does not have the first two steps of the MDLE method. Thus, Table 2.2

shows the usefulness of the first two steps in the MDLE method which provides good initial

designs for level expansion. When the MDLE method starts with 2-level initial designs, Step

2 is skipped since level permutations do not change designs’ distance distributions. Thus,

the usefulness of Step 1 alone can be seen from the 32, 64 and 128-run cases in Table 2.2.

From the 54-run/25-factor, 81-run/40-factor and 125-run/31-factor cases, we can see the

usefulness of Step 2 alone since Step 1 is skipped.
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Table 2.2: Comparisons of constructions of maximin LHDs

MDLE OLE OMLHD SLHD

n k d(pair) ψp d2 d(pair) d(pair) ψp d(pair) d2

27 9 72(2) 0.012 28.8 68(5) 60(1) 0.025 63(1) 28.2

32 20 205(1) 0.005 55.6 205(2) 177(1) 0.012 190(1) 55.1

54 5 54(1) 0.0311 28.1 45(1) 47(2) 0.0393 44(1) 27.8

54 20 329(1) 0.0034 88.4 317(1) 279(1) 0.0083 294(1) 88.2

54 25 425(3) 0.0022 102.7 399(1) 360(1) 0.012 382(1) 100.9

64 6 83(1) 0.0209 40.6 61(1) 70(3) 0.0299 67(1) 39.1

64 20 378(1) 0.0034 105.2 369(1) 310(1) 0.0084 340(1) 102.6

64 40 813(1) 0.0025 157.4 804(1) 698(1) 0.0048 771(1) 155.7

81 8 152(1) 0.0111 64.2 102(1) 123(2) 0.0198 121(1) 62.7

81 25 604(2) 0.0022 147.9 577(1) 504(1) 0.0028 540(1) 146.7

81 40 1016(1) 0.0016 194.9 962(1) 899(1) 0.0016 934(1) 194.5

125 10 284(2) 0.0072 111.8 199(1) 237(3) 0.0136 232(1) 110.6

125 23 797(1) 0.0021 206.9 640(1) 668(1) 0.0021 726(1) 206.8

125 31 1126(1) 0.0014 251.1 971(1) 955(1) 0.0076 1038(1) 250.8

128 12 378(1) 0.0051 135.5 284(1) 314(1) 0.0092 313(1) 132.6

128 49 1893(1) 0.0014 337.6 1873(1) 1643(1) 0.0057 1801(1) 335.3

128 64 2512(1) 0.0017 395.2 2479(1) 2239(1) 0.0061 2497(1) 392.1
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Next, we compared our MDLE method with the OMLHD method of Joseph and Hung

(2008) and the R package SLHD of Ba et al. (2015) in generating space-filling LHDs. Joseph

and Hung (2008) proposed the multi-objective criterion

ψp = ωρ2 + (1− ω)
φp − φp,lb
φp,ub − φp,lb

, (2.2)

where φp is defined in (2.1) with p = 15, ρ2 is the average of squared column-wise correlations,

ω is the weight which is set to 0.5, φp,lb and φp,ub are the smallest and largest possible φp

values. Joseph and Hung (2008) used a modified simulated annealing algorithm to search for

LHDs that minimize ψp values. Table 2.2 lists some cases for comparison, where ψp is defined

in (2.2) and d2 represents designs’ minimum pairwise L2-distances. For the OMLHD method,

we ran the code from Y. Hung’s homepage (http://stat.rutgers.edu/home/yhung

/index.htm) with nstart = 5 and default settings, and chose the best results. For the SLHD

method, we ran the command maximinSLHD with slice parameter t = 1 and default settings

for 200 times, and chose the best results.

For all cases in Table 2.2, the MDLE method generates better space-filling designs than

the OMLHD method in regard to both the L1-distance and the ψp criterion. Our MDLE

method searches designs toward the L1-distance alone. Designs from our method have small

pairwise correlations, since they can always collapse to OAs or nearly OAs. Further, the

MDLE method generates better maximin designs than the SLHD method under both the

L1- and L2-distances. In order to make a fair comparison with the SLHD package, the φp

criterion used in the MDLE method adopted the L1- and L2-distance for each case respec-

tively. Our MDLE method was implemented in R whereas the SLHD and OMLHD methods

were implemented in C++. The R package SLHD provides an interface to call the C++

program. Our MDLE method used less than half of the time used by the SLHD and OMLHD

methods, although C++ is more efficient than R in terms of computation.

2.4.2 Construction of Maximin Fractional Factorial Designs

First, we compared our MDLE method with the level permutation (LP) method of Zhou and

Xu (2014) in generating maximin fractional factorial designs (FFDs). Zhou and Xu (2014)
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Table 2.3: Comparisons in the constructions of four-level maximin FFDs

(a)

MDLE LP

n k d(pair) d(pair)

16 3 2(12) 2(12)

16 4 4(60) 4(56)

16 5 4(1) 4(4)

32 3 2(156) 2(156)

32 4 2(8) 2(8)

32 5 4(100) 4(106)

32 6 5(48) 5(58)

32 7 6(24) 6(28)

32 8 8(132) 8(128)

32 9 9(62) 8(6)

(b)

MDLE LP

n k d(pair) d(pair)

48 10 9(6) 8(3)

48 13 13(15) 12(10)

64 9 8(395) 6(38)

64 11 10(77) 9(12)

80 7 5(177) 4(48)

80 11 9(1) 8(29)

128 29 30(42) 29(79)

128 40 43(1) 40(2)

included a table of 10 maximin designs with n ≤ 32 that are comparable here, and we list

them in Table 2.3 (a). We further selected another eight larger cases with n ≥ 48 in Table

2.3 (b) to compare the two methods. All designs are 4-level FFDs. For the MDLE method,

in the 16, 32, 64, and 128-run cases, 2-level minimum aberration initial designs were used;

in the 48 and 80-run cases, OA(48, 247) and OA(80, 279) were used as the initial designs. For

the LP method, in the 48, 64, 80 and 128-run cases, initial designs OA(48, 413), OA(64, 411),

OA(80, 411) and OA(128, 440) were used, respectively. Both methods’ codes were run in R.

For all cases, the LP method used at least twice as much time as the MDLE method.

In Table 2.3 (a), for the first nine cases both methods generated designs with the same

minimum pairwise distances. For the last case in Table 2.3 (a) and all cases in Table 2.3

(b), the MDLE method outperforms the LP method. Furthermore, the LP method relies on

existing OA initials that have the same number of runs, factors and levels as the generated

designs. These OAs are often difficult to find or even do not exist. For example, there

is no OA(24, 68) that can be used to generate maximin D
′
(24, 68). Compared with the LP
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Table 2.4: Comparison in the construction of four-level and six-level uniform designs

MDLE MDLE-CD UD-page designs

n k s CD d(pair) CD d(pair) CD d(pair)

32 7 4 0.074 6(18) 0.070 5(6) 0.071 4(1)

32 13 4 0.0343 13(5) 0.0343 13(5) 0.0344 12(2)

40 13 4 0.3186 13(4) 0.3067 12(5) 0.3068 11(1)

40 15 4 0.5080 16(56) 0.4969 13(1) 0.4987 14(1)

48 11 4 0.1841 10(11) 0.1758 8(1) 0.1767 7(1)

48 15 4 0.461 15(13) 0.447 13(1) 0.449 12(1)

36 12 6 0.1744 20(15) 0.1673 19(14) 0.1691 17(1)

48 12 6 0.1416 19(21) 0.1362 16(2) 0.1374 16(1)

54 9 6 0.0601 12(13) 0.0564 8(1) 0.0568 10(3)

54 12 6 0.1362 17(14) 0.1268 16(1) 0.1299 16(2)

60 9 6 0.0576 12(11) 0.0544 8(1) 0.0546 9(2)

method, our MDLE method has more flexibility in design size, since we can start from 2-level

designs to generate multi-level designs. For example, we can start from a 2-level OA(24, 223)

to generate the 24-run/6-level maximin design with up to 23 factors.

Next, we compared designs from our MDLE method with some existing uniform designs

listed on the uniform design homepage (http://uic.edu.hk/isci/). These uniform designs

(UD-page designs) were searched by Kaitai Fang and his collaborators toward the centered

L2-discrepancy (CD) criterion where smaller CD values indicate more space-filling designs.

In order to make a fair comparison, in Table 2.4 we also include a modified version of

our MDLE method (MDLE-CD) which searches best designs using the CD criterion in

Step 3. We selected some 4-level and 6-level cases for comparison in Table 2.4. Both the

MDLE and MDLE-CD methods started from the initial designs OA(32, 231), OA(40, 239),

and OA(48, 247) to generate the 4-level designs, and OA(36, 313), OA(48, 247), OA(54, 318),

and OA(60, 230) to generate the 6-level designs for the corresponding cases.

Table 2.4 shows that designs by the MDLE method are always better than the UD-page
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designs in regard to maximin distance criterion. Designs from the MDLE-CD method are

better than the UD-page designs toward the CD criterion.

2.5 Multi-phase MDLE Method

In constructing maximin designs D
′
(n, (ms)k) from initial designs D(n, sk), when m is very

large, the one-phase MDLE method introduced in Section 2.3 is not efficient because level

expansion produces too many designs. In addition, when n and k are too large given the com-

putation constraint, we need to further restrict the searching space in the MDLE method.

Under such situations, we can apply a multi-phase MDLE method. The multi-phase MDLE

method shares the same Steps 1 and 2 as the one-phase MDLE. The difference lies in Step

3: instead of directly generating D
′
(n, (ms)k) from Dp(n, s

k), we gradually expand the lev-

els from s to ms in multiple phases. For example, in a two-phase MDLE method with

m = m1m2, in Step 3 we first generate maximin design D1(n, (m1s)
k) via level expansion

from Dp in Step 2; then from D1 we generate maximin design D2(n, (m2m1s)
k) which is

D
′
(n, (ms)k) via level expansion again. It is straightforward to generalize and justify this

process with more phases in both theory and geometry, as in Section 2.3.2.

The more phases we use, the more restrictions are put on the searching space. The

number of designs needed to be compared decreases dramatically with multiple phases. For

example, to generate D
′
(16, 82) from D(16, 22) for the one-phase MDLE method, we have

in total about 4 × 1013 possible D
′
s to be compared; for the two-phase MDLE method, we

only need to compare about 1.7× 106 designs. More restrictions on the searching space also

means that we are more likely to miss good designs, at least in theory. In practice, with

limited computations, the multiple-phase method can be more efficient than the one-phase

method, especially for large designs.

Table 2.5 compares the one-phase and two-phase MDLE methods in generating maximin

LHDs with time constraints. For both methods, we started from the respective full factorial

designs for the first five cases, the minimum aberration designs for the 32- and 64-run cases,

OA(54, 324), OA(81, 340), and OA(125, 531) for the rest of cases, respectively. For the last
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Table 2.5: Comparison of one-phase and two-phase MDLE methods in constructing LHDs

One-phase Two-phase

n k d(pair) time d(pair) time sequence

27 3 14(4) 67 14(5) 107 3→ 9→ 27

32 5 37(1) 103 37(3) 101 2→ 8→ 32

64 6 83(1) 301 81(1) 306 2→ 8→ 64

81 4 50(1) 478 50(3) 490 3→ 9→ 81

125 3 38(5) 603 37(3) 950 5→ 25→ 125

32 15 151(1) 211 150(2) 218 2→ 8→ 32

54 12 173(1) 886 178(2) 806 3→ 9→ 54

54 20 309(1) 1346 322(2) 1275 3→ 9→ 54

64 40 805(1) 1062 810(1) 995 2→ 8→ 64

81 40 1005(1) 1479 1014(1) 936 3→ 9→ 54

125 31 1111(1) 2085 1116(1) 1548 5→ 25→ 125

Note: Time in seconds.

five cases, where the numbers of runs and factors are relatively large, the two-phase method

generates better designs in a shorter time than the one-phase method. Given adequate

computation time, the one-phase method eventually generates better designs than the two-

phase method; see the last four cases in Table 2.5 and corresponding results in Table 2.2

where we ran the one-phase MDLE method for a longer time.

When OAs with different levels exist, generally speaking, it is better to use OA initials

with fewer levels given abundant computations. As an illustration, for the 128-run/12-factor

case, starting from the 2-, 4- and 8-level OA initials, the one-phase MDLE method generates

LHDs with the minimum L1-distances of 378, 375 and 368, respectively. The 2-level OA

initial gives the best result here, but requires more than 5 times the computations to achieve

a stable result compared with the 8-level initial. Since any 8-level OA can be collapsed to a

2-level OA, the MDLE method is less likely to miss good results from 2-level OAs. For large

designs with computation constraints, OA initials with larger levels may work better since
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the searching space is much smaller and less phases are needed.

2.6 Summary

We propose the MDLE method which can efficiently generate maximin LHDs and maximin

fractional factorial designs. To justify our method, we establish a relationship of the L1-

distance distributions between the initial and generated designs via level expansion. When

all possible level permutations of the initial designs are considered, we give expectations and

variances of the pairwise L1-distances for the generated designs. Various comparisons show

that our MDLE method outperforms the ordinary level expansion process, the OMLHD

algorithm, the SLHD package, and the level permutation method. We also find many more

space-filling designs compared to the existing uniform designs.

The MDLE method is easy to generalize for mixed-level cases. Starting from a mixed-

level initial design, we can individually set the level expansion path for each factor. In this

way, we can generate mixed-level factorial designs. Although the MDLE method cannot

generate maximin designs with any run size, it works well from nearly OAs (Xu (2002))

or optimal supersaturated designs (Xu and Wu (2005)), when suitable OA initials are not

available.

2.7 Appendix: Proofs

Proof of Lemma 1. (a) For i 6= j, when xi,l = xj,l, d
′

il,jl takes on values of 0, 1, . . . ,m − 1;

when xi,l 6= xj,l, d
′

il,jl takes on values of m(dil,jl−1)+1, . . . ,m(dil,jl−1)+2m−1. Therefore,

the smallest possible d
′
i,j value is

min d
′

i,j = 0 ∗ (k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 1) = mdi,j − (m− 1)hi,j

and the largest possible d
′
i,j value is

max d
′

i,j = (m− 1)(k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 2m− 1) = mdi,j + k(m− 1).
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Thus, we have mdi,j − (m− 1)hi,j ≤ d
′
i,j ≤ mdi,j + k(m− 1).

(b) Let xa and xb be the pair of rows in design D that forms the minimum pairwise

L1-distance dmin(D) (there could be many such pairs). Let x
′
c and x

′

d be the pair of rows

in design D
′

that forms the minimum pairwise L1-distance dmin(D
′
) (there could be many

such pairs). Then

dmin(D
′
) = d

′

c,d ≤ d
′

a,b ≤ mda,b + k(m− 1) = mdmin(D) + (m− 1)k,

dmin(D
′
) = d

′

c,d ≥ mdc,d − (m− 1)hc,d ≥ mdc,d − (m− 1)hmax(D)

≥ mda,b − (m− 1)hmax(D) = mdmin(D)− (m− 1)hmax(D).

Thus, we have mdmin(D)− (m− 1)hmax(D) ≤ dmin(D
′
) ≤ mdmin(D) + (m− 1)k.

Proof of Theorem 1. We first calculate the probability distribution for d′il,jl with its range

given in Lemma 1. For i 6= j, when xi,l = xj,l, the probability distribution is

P (d
′

il,jl = 0) =
m
(
n/(ms)

2

)
m(m− 1)(n/(ms))2 +m

(
n/(ms)

2

) =
n−ms
m(n− s)

,

P (d
′

il,jl = t) =
2(m− t)(n/(ms))2

m(m− 1)(n/(ms))2 +m
(
n/(ms)

2

) =
2n(m− t)
m2(n− s)

for t = 1, 2, . . . ,m− 1. Thus,

E(d
′

il,jl) =
m−1∑
t=1

tP (d
′

il,jl = t) =
n(m2 − 1)

3m(n− s)
= γ, (2.3)

E((d
′

il,jl)
2) =

m−1∑
t=1

t2P (d
′

il,jl = t) =
n(m2 − 1)

6(n− s)
=
m

2
γ. (2.4)

When xi,l 6= xj,l, the probability distribution is

P (d
′

il,jl = d0 + t) =
t+ 1

m2
, for t = 0, 1, . . . ,m− 1,

P (d
′

il,jl = d0 + t) =
2m− t− 1

m2
, for t = m, . . . , 2m− 2,

where d0 = m(dil,jl − 1) + 1. It is straightforward to verify that

E(d
′

il,jl) =
2m−2∑
t=0

(d0 + t)P (d
′

il,jl = d0 + t) = mdil,jl, (2.5)
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E((d
′

il,jl)
2) =

2m−2∑
t=0

(d0 + t)2P (d
′

il,jl = d0 + t) = m2d2
il,jl +

m2 − 1

6
. (2.6)

It is clear that dil,jl = 0 when xi,l = xj,l. Combining (2.3) and (2.5), we have

E(d
′

i,j) =
k∑
l=1

E(d
′

il,jl) =
k∑
l=1

mdil,jl + (k − hi,j)γ = mdi,j + (k − hi,j)γ. (2.7)

Next, combining (2.4) and (2.6), we have

E

(
k∑
l=1

(d
′

il,jl)
2

)
=

k∑
l=1

E((d
′

il,jl)
2) = m2

k∑
l=1

d2
il,jl +

m2 − 1

6
hi,j + (k − hi,j)

mγ

2
. (2.8)

Further, we have

E((d
′

i,j)
2) = E

( k∑
l=1

d
′

il,jl

)2
 = E

(
k∑
l=1

(d
′

il,jl)
2

)
+ E

(
k∑

p6=q=1

d
′

ip,jpd
′

iq,jq

)
. (2.9)

Since d
′
ip,jp and d

′
iq,jq (p 6= q) are independently determined by the pth and qth columns in

the initial design D, with (2.3) and (2.5), we have

E

(
k∑

p 6=q=1

d
′

ip,jpd
′

iq,jq

)
=

k∑
p 6=q=1

E(d
′

ip,jp)E(d
′

iq,jq) = m2

k∑
p 6=q=1

dip,jpdiq,jq+

+ 2(k − hi,j)γ
k∑
l=1

mdil,jl + (k − hi,j)(k − hi,j − 1)γ2. (2.10)

Combining (2.8), (2.9), and (2.10), after some simple algebra, we have

V ar(d
′

i,j) = E
(

(d
′

i,j)
2
)
−
(
E(d

′

i,j)
)2

= C1,0 + C1,1hi,j,

where C1,0 and C1,1 are constants given in Theorem 1.

Proof of Lemma 2. We need to distinguish two types of operations: level permutation and

level expansion. Let σ denote a level permutation and π denote a level expansion. Let

Eσ denote the expectation toward designs generated by all possible level permutations and

Eπ denote the expectation toward designs generated by all level expansions. As we per-

form level permutation first and level expansion second, using the properties of conditional

expectations, we have

EΘ(d
′

i,j) = Eσ[Eπ(d
′

i,j|σ)], (2.11)

V arΘ(d
′

i,j) = Eσ[V arπ(d
′

i,j|σ)] + V arσ[Eπ(d
′

i,j|σ)]. (2.12)
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For a given level permutation σ, let dσi,j denote the L1-distance of a level permuted design

generated by σ. Level permutation does not change pairwise Hamming distances of a design.

Applying Theorem 1 to each level permutation σ, we have

Eπ(d
′

i,j|σ) = mdσi,j + (k − hi,j)γ, (2.13)

V arπ(d
′

i,j|σ) = C1,0 + C1,1hi,j. (2.14)

Similar to the proof of Theorem 1, when considering all possible level permutations,

Eσ(dσi,j) =
s+ 1

3
hi,j, (2.15)

V arσ(dσi,j) = Eσ((dσi,j)
2)− [Eσ(dσi,j)]

2 =
(s+ 1)(s− 2)

18
hi,j. (2.16)

Combining (2.11), (2.13), and (2.15), we have

EΘ(d
′

i,j) = Eσ[mdσi,j + (k − hi,j)γ] = m
s+ 1

3
hi,j + (k − hi,j)γ

= kγ + (m
s+ 1

3
− γ)hi,j. (2.17)

Combining (2.12), (2.13), (2.14), and (2.16), we have

V arΘ(d
′

i,j) = Eσ[C1,0 + C1,1hi,j] + V arσ[mdσi,j + (k − hi,j)γ]

= C1,0 + C1,1hi,j +m2V arσ[dσi,j]

= C1,0 + (C1,1 +m2 (s+ 1)(s− 2)

18
)hi,j. (2.18)

Proof of Theorem 2. From (2.17) and (2.18), we have

EΘ(
n∑

i 6=j=1

(d
′

i,j)
2) =

n∑
i 6=j=1

EΘ((d
′

i,j)
2) =

n∑
i 6=j=1

[V arΘ(d
′

i,j) + (EΘ(d
′

i,j))
2]

=
n∑

i 6=j=1

[C1,0 + (C1,1 +m2 (s+ 1)(s− 2)

18
)hi,j] +

n∑
i 6=j=1

[kγ + (m
s+ 1

3
− γ)hi,j]

2.(2.19)

Xu (2003) showed that the GWLP is related to moments of Hamming distances. In partic-

ular, for a balanced design with A1(D) = 0, we have the following relationships:

n∑
i 6=j=1

hi,j =
kn2(s− 1)

s
, (2.20)
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n∑
i 6=j=1

h2
i,j =

n2

s2
{2A2(D) + (s− 1)k[1 + (s− 1)k]}. (2.21)

Then the result follows from (2.19), (2.20), and (2.21).

25



CHAPTER 3

Construction of Maximin Distance Latin Squares and

Related Latin Hypercube Designs

3.1 Introduction

Computer experiments are increasingly being used to investigate complex systems (Santner

et al., 2013; Fang et al., 2006; Morris and Moore, 2015). The most suitable designs for such

experiments are space-filling Latin hypercube designs (Lin and Tang, 2015). Several criteria

have been proposed to measure space-filling, including discrepancy criteria via reproducing

kernel Hilbert spaces (Hickernell, 1998) and maximin and minimax distance criteria (Johnson

et al., 1990). In this paper, we adopt the maximin distance criterion, which maximizes the

minimum distance between design points. This criterion optimizes the worst case, thus

generating robust space-filling designs. Johnson et al. (1990) showed that maximin distance

designs are asymptotically optimal under a Bayesian setting. Morris and Mitchell (1995),

Joseph and Hung (2008), Ba et al. (2015) and many others proposed algorithms to construct

maximin Latin hypercube designs; see Lin and Tang (2015) for a summary. To the best

of our knowledge, the R package SLHD by Ba et al. (2015) is the most efficient current

algorithm. Zhou and Xu (2015) proposed to construct maximin Latin hypercube designs via

good lattice point sets.

Morris (1991) and Kleijnen (1997) gave many computer models involving several hun-

dred factors, which may require run-economic designs. Under such a situation, it is not

unreasonable to assume effect sparsity, that is, relatively few factors are active. Loeppky

et al. (2009) provided an informal rule of thumb that the number of runs for a computer

experiment should be around ten times the input dimension, but also suggested that, under
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effect sparsity, the run size should be around ten times the effective dimension, given good a

priori knowledge on the number of active factors. In order to identify active factors from a

large number of factors with limited budgets or runs, saturated or even supersaturated Latin

hypercube designs are useful; see, for example, Butler (2001, 2007). Yet, the construction of

such maximin Latin hypercube designs is challenging.

An n×n Latin square is a supersaturated Latin hypercube design where each row and each

column is a permutation of n levels. We propose three algebraic methods for constructing

n × n maximin Latin squares, where n = q, q − 1 or q − 2 and q is a prime or a prime

power. We study their properties and derive lower bounds on their minimum distances.

The generated Latin squares and related saturated n × (n − 1) Latin hypercube designs

have larger minimum distances than existing ones. Our methods are associated with Costas

arrays, which are introduced next.

3.2 Costas Arrays and Welch Method

Costas arrays are widely used in the radar and sonar applications due to their ideal autocor-

relation properties (Costas, 1984; Drakakis, 2006). Costas array of order n can be represented

geometrically by allocating n points on an n× n checker-board, such that each row and col-

umn has only one point and all of the n(n− 1)/2 displacement vectors between each pair of

points are distinct. Costas arrays can be represented algebraically as permutation vectors,

which are used in this chapter.

Definition 1 (Difference triangle). For any vector a = (a1, . . . , an), the difference triangle

T (a) is (ti,j), where ti,j = ai+j − aj for i = 1, . . . , n− 1 and j = 1, . . . , n− i.

Definition 2 (Costas array). Let a = (a1, . . . , an) be a permutation of 1, . . . , n. Then a is

a Costas array of order n if and only if no row in the difference triangle T (a) contains a

repeated value.

Fig. 3.1(a) shows the difference triangle T (a) for a permutation vector a = (6, 4, 5, 1, 3, 2).

All elements in each row of T (a) are distinct, so a is a Costas array.
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(a) (b) (c) (d)

Figure 3.1: Difference triangles and cyclic Latin squares from Costas arrays.

(a) difference triangle for Costas array (6, 4, 5, 1, 3, 2); (b) 6× 6 cyclic Latin square from

Costas array (6, 4, 5, 1, 3, 2); (c) difference triangle for Costas array (0, 6, 4, 5, 1, 3, 2); (d)

7× 7 cyclic Latin square from Costas array (0, 6, 4, 5, 1, 3, 2).

An n× k Latin hypercube design is an n× k matrix where each column is a permutation

of n equally-spaced levels, which are denoted by n consecutive numbers, say, 1 to n or 0 to

n− 1. The minimum distance of a design D, denoted by dmin(D), is the minimum distance

between any two distinct rows. In this chapter we consider L1-distance, also known as the

rectangular or Manhattan distance. For any n× k Latin hypercube design, the average row

pairwise L1-distance is (n + 1)k/3 (Zhou and Xu, 2015). The minimum distance cannot

exceed the integer part of the average; thus we have the following upper bound.

Lemma 1. For any n×k Latin hypercube design D, dmin(D) ≤ dupper = b(n+1)k/3c, where

bxc is the integer part of x.

Let p be a prime throughout the chapter. In Galois field Fp, a number α is a primitive

root modulo p if and only if for every nonzero element i in Fp there exists an integer k

such that αk = i mod p. In other words, if α is a primitive root modulo p, the vector

(α, α2, . . . , αp−1) mod p is a permutation of 1, . . . , p− 1. The Welch Costas array is defined

as follows; see Golomb (1984) and Drakakis (2006).

Definition 3 (Welch Costas array). Let α be a primitive root modulo p. For i = 1, . . . , p−1,

let ai = αi−1+c mod p where c is an integer and 1 ≤ c ≤ p − 1. The permutation vector

a = (a1, . . . , ap−1) is a Costas array of order p− 1.
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From a Welch Costas array of order p−1, we can generate a (p−1)× (p−1) cyclic Latin

square by right shifting the vector p − 2 times. We can also generate a p × p cyclic Latin

square by augmenting the vector with an additional element 0.

Example 1. For p = 7, the Welch Costas array with primitive root α = 3 and parameter

c = 3 is a = (6, 4, 5, 1, 3, 2). Fig. 3.1(b) shows the 6× 6 cyclic Latin square generated by a.

Its minimum distance is 12. To construct a 7 × 7 Latin square, we use a∗ = (0, a) as the

generator which is the first row of the cyclic design. Fig. 3.1(c) and (d) show the difference

triangle T (a∗) and the Latin square, respectively. Its minimum distance is 18.

Lemma 2. For any n× n cyclic Latin square D with generator a, there are at most bn/2c

distinct pairwise L1-distances, and its ith (i = 1, . . . , bn/2c) possible distance is the sum of

the absolute values of all elements in the ith and (n− i)th row of the difference triangle T (a).

As an illustration, the 6× 6 cyclic design in Fig. 3.1(b) has 3 possible distances: 14, 12

and 18 which are calculated via the (1st, 5th), (2nd, 4th) and (3rd, 3rd) rows of T (a) in

Fig. 3.1(a), respectively. With Lemma 2, for an n × n cyclic design, it requires only O(n2)

operations to determine the minimum distance, while for a general n× n design, it requires

O(n3) operations.

Proposition 1. All possible (p − 1) × (p − 1) cyclic Latin squares via generators of Welch

Costas arrays with order p− 1 are equivalent under row and column permutations.

From the proof of Proposition 1, we can see that all such cyclic Latin squares are equiv-

alent to the leave-one-out good lattice point designs in Zhou and Xu (2015). Thus, the

minimum distance of all such designs is (p2− 1)/4 by Theorem 4 and Proposition 2 in Zhou

and Xu (2015).

The (p− 1)× (p− 1) Welch designs have bad two-dimensional projections. For example,

the points of the Welch design in Fig. 3.1(b) lie on the diagonal when projected onto the

first and fourth columns. Here we propose a simple modification: replace p− 1 with 0 when

constructing (p − 1) × (p − 1) Welch designs. The modified Welch designs not only have

improved projections and column correlations, but also have larger minimum distances when
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p > 7, though for p = 5 and p = 7, they have smaller minimum distances. See Section 3.5

for details.

Comparing Fig. 3.1 (a) and (c), T (a∗) is equivalent to T (a) adding the Costas array

(6, 4, 5, 1, 3, 2) as the first column. Even if a is a Costas array, a∗ = (0, a) may or may not

be one.

Lemma 3. Let a∗ = (0, a). The difference triangle T (a∗) is equivalent to T (a) adding the

vector a as the first column.

Theorem 1. Let p ≥ 5 be any prime and a be any Welch Costas array of order p− 1. The

p× p cyclic Latin square D with generator a∗ = (0, a) has dmin(D) ≥ (p2 + 7)/8 + 2.

This bound is very conservative and in practice the results are much better. If α is a

primitive root modulo p, β = α−1 mod p is another primitive root modulo p. The number of

different primitive roots modulo p can be calculated by the Euler’s totient function φ(p− 1),

which counts the number of integers up to p−1 that are coprime to p−1; φ(n) = n
∏

t|n(1−

1/t), where the product is over all distinct prime numbers t dividing n.

Example 2. For p = 7, the primitive roots are 3 and 5. From either primitive root, we can

construct six Welch Costas arrays with order 6, and then construct six 7× 7 Latin squares.

Five designs have dmin = 16 and one design has dmin = 18. The lower bound in Theorem 1

is 9 and the upper bound in Lemma 1 is 18. The best design from our construction achieves

the upper bound, and the worst designs have much larger minimum distance than the lower

bound.

Proposition 2. Let α be a primitive root modulo p and β = α−1 mod p. Let a and b be two

Welch Costas arrays with primitive roots α and β, and parameters c1 and c2, respectively.

When c1 + c2 = 1 mod (p− 1), the p× p cyclic Latin squares with generators a∗ = (0, a) and

b∗ = (0, b) have the same distance distribution.

As an illustration, when p = 13, using two Welch Costas arrays with α = 2, c1 = 8 and

β = 7, c2 = 5, we can generate two 13× 13 designs with the same distance distribution and
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minimum distance of 56. Proposition 2 shows that it is equivalent to use primitive root α and

β = α−1 mod p in the construction. Thus, in all we only need to compare φ(p− 1)(p− 1)/2

possible designs.

3.3 Gilbert Method

The Gilbert construction was proposed by Gilbert (1965) and called the logarithmic Welch

construction by Costas (1984). Gilbert (1965) used these arrays to construct Latin squares

without repeated diagrams. Our purpose and use of Gilbert Costas arrays are different from

his.

Definition 4 (Gilbert Costas array). Let β be a primitive root modulo p. For i = 1, . . . , p−1,

let bi = logβ(i) + 1 − c mod (p− 1), where c = 1, . . . , p − 1; if bi = 0 set bi = p − 1. The

permutation vector b = (b1, . . . , bp−1) is a Costas array of order p− 1.

Gilbert Costas arrays are inverse permutations of Welch Costas arrays. As any permuta-

tion is a bijection, if {f(1), . . . , f(n)} is a permutation of {1, . . . , n}, its inverse permutation

is {f−1(1), . . . , f−1(n)}.

Example 3. For p = 7, with primitive root 3 and parameter c = 1, the corresponding Welch

Costas array is a = (3, 2, 6, 4, 5, 1) and the Gilbert Costas array is b = (6, 2, 1, 4, 5, 3). It is

clear that b is the inverse permutation of a. The 6× 6 cyclic Latin square with generator b

is an equal distance design with all pairwise distances equal to 14. The 7 × 7 cyclic Latin

square with generator b∗ = (0, b) has dmin = 14.

Theorem 2. Let p ≥ 5 be a prime and b be a Gilbert Costas array of order p − 1. The

(p− 1)× (p− 1) cyclic Latin square D with generator b has dmin(D) ≥ (p− 1)(p+ 3)/8 when

p = 1 mod 4, and dmin(D) ≥ (p+ 1)2/8 when p = 3 mod 4.

This lower bound in Theorem 2 is tight for p = 5 or 7. For example, the 6×6 design with

generator b = (5, 1, 6, 3, 4, 2), a Gilbert Costas array with primitive root 3 and parameter

c = 2, has dmin = 8 which equals the lower bound.
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Proposition 3. Let a and b be two Gilbert Costas arrays with primitive roots α and β, and

parameters c1 and c2, respectively. The (p−1)×(p−1) cyclic Latin squares with generators a

and b have the same distance distribution under either of the following conditions: (i) α = β

and c1 − c2 = (p− 1)/2 mod (p− 1); (ii) β = α−1 mod p and c1 + c2 = 1 mod (p− 1).

By Proposition 3, there are at most φ(p − 1)(p − 1)/4 designs with different minimum

distances via the Gilbert construction. For example, when p = 7, the generated cyclic designs

via primitive root 3 and parameters 1, 2, 3, 4, 5 and 6 have the same distance distribution

as the designs via primitive root 5 and parameters 6, 5, 4, 3, 2 and 1, and their minimum

distances are 14, 8, 12, 14, 8 and 12, respectively.

Theorem 3. Let p ≥ 5 be a prime and b be a Gilbert Costas array of order p− 1. The p× p

cyclic Latin square D with generator b∗ = (0, b) has dmin(D) ≥ (p2 + 7)/4.

This lower bound in Theorem 3 is roughly 75% of dupper in Lemma 1 for large p, which

nearly doubles the lower bound in Theorem 1.

Proposition 4. Let b be any Gilbert Costas array of order p−1 via primitive root β modulo

p. All possible p× p cyclic Latin squares with generators b∗ = (0, b) are equivalent under row

and column permutations.

By Proposition 4, the p× p cyclic Latin squares generated via Gilbert Costas arrays do

not depend on parameter c. Thus, in all we have φ(p− 1) possible designs.

3.4 Golomb Method

Let q = pm be a prime power and consider the Galois field Fq. If m = 1, elements and

primitive roots are integers in Fp. If m ≥ 2, the elements and primitive roots in Fq are

polynomials. If α is a primitive root, αq−1 = 1 and (α, α2, . . . , αq−1) is a permutation

vector of nonzero elements in Fq. There are φ(q − 1) primitive roots in Fq. Golomb (1984)

constructed the following Costas arrays.
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Definition 5 (Golomb Costas array). Let α and β be two primitive roots in Fq where q =

pm. For i, j = 1, . . . , q − 2, let gi = j if αi + βj = 1 in Fq. The permutation vector

g = (g1, . . . , gq−2) is a Costas array of order q − 2.

The two primitive roots α and β are not necessarily different. By switching α and β, we

obtain another Golomb Costas array, which is the inverse permutation.

Theorem 4. Let q = pm ≥ 7 be a prime power and g be a Golomb Costas array of order

q − 2. The (q − 2)× (q − 2) cyclic Latin square D with generator g has dmin(D) ≥ q2/8 for

even q and dmin(D) ≥ (q2 − 1)/8 for odd q.

Theorem 5. Let q = pm ≥ 7 be a prime power and g be a Golomb Costas array of order

q − 2. The (q − 1)× (q − 1) cyclic Latin square D with generator g∗ = (0, g) has dmin(D) ≥

(q − 1)(q − 3)/4 + 2 for odd q and dmin(D) ≥ (q − 2)2/4 + 3 for even q.

Proposition 5. Given the same primitive root β and possible different α in Fq, all (q−1)×

(q− 1) cyclic Latin squares with generators g∗ = (0, g) are equivalent under row and column

permutations.

The lower bounds of dmin in Theorems 4 and 5 are roughly 37.5% and 75% of the upper

bound dupper in Lemma 1 for large p, respectively. These bounds are conservative and in

practice the minimum distances of Golomb designs are much larger.

Example 4. Let q = 24 = 16 and set the irreducible polynomial as x4 + x + 1 over F16.

Set primitive roots α = β = x. For i = 1, . . . , 14, solving equations xi + xj = 1 in F16,

we find solution pairs (i, j) which are (1, 4), (2, 8), (3, 14), (6, 13), (11, 12), (7, 9) and (5, 10)

where i and j are interchangeable in the solution pairs since α = β. By Definition 5, this

Golomb Costas array is g = (4, 8, 14, 1, 10, 13, 9, 2, 7, 5, 12, 11, 6, 3). The 14×14 Latin square

with generator g has minimum distance of 62, and a ratio (dmin/dupper) of 89%. This is

much better than the lower bound in Theorem 4 which is 32. The 15× 15 Latin square with

generator g∗ = (0, g) has minimum distance of 70 and a ratio (dmin/dupper) of 88%, where

the lower bound in Theorem 5 is 58.
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Setting m = 1, the Golomb method can efficiently generate (p − 2) × (p − 2) and (p −

1) × (p − 1) maximin designs. In generating (p − 1) × (p − 1) designs, this lower bound in

Theorem 5 nearly doubles the lower bound in Theorem 2 where the Gilbert method is used.

Example 5. For p = 13, there are four primitive roots 2, 6, 7 and 11, and thus in all

16 possible Golomb Costas arrays g. With generators g, we can construct four 11 × 11

designs with dmin = 38 and twelve designs with dmin = 40. By Proposition 5, with generators

g∗ = (0, g), we can fix α = 2 and there are four possible 12× 12 designs whose dmin are 38,

40, 42 and 48, respectively. As a comparison, the best 12× 12 Gilbert design has dmin = 46.

3.5 Results and Comparisons

In this section, we compare our three methods with the R package SLHD by Ba et al.

(2015) and the good lattice point method by Zhou and Xu (2015). The following lemma is

straightforward.

Lemma 4. Let D be a Latin square with levels 1 to n and D′ be the (n + 1) × n design

obtained by adding a row of zeros to D. Then dmin(D′) = dmin(D).

With Lemma 4, we generate p × (p − 1) Latin hypercube designs by adding a row of

zeros to our (p − 1) × (p − 1) Latin squares from the Welch, Gilbert or Golomb method.

Table 3.1 compares p × (p − 1) Latin hypercube designs constructed via different methods

and shows their minimum row pairwise L1-distances. The p × (p − 1) Welch designs are

equivalent to good lattice point designs whereas the modified Welch designs have larger

minimum distances than good lattice point designs when p > 7. For the modified Welch

designs we add a row of (p− 1)’s to the (p− 1)× (p− 1) Latin squares whose levels are from

0 to p − 2. The Gilbert and Golomb designs outperform good lattice point designs for all

cases and outperform linearly permuted good lattice point designs for most cases. For the

R package SLHD, we run the command maximinSLHD with option t = 1 and default settings

for 100 times, and choose the best results. The best of the Gilbert and Golomb methods

are comparable to the R package SLHD, especially for large p. All of our three methods
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Figure 3.2: Ratio percentages for (p−1)×(p−1) Latin squares generated by Gilbert method

(solid), Golomb method (dashed), simplified Gilbert method (dotted), and simplified Golomb

method (dot-dash).

are much faster than the R package SLHD. For example, it takes about an hour for the

97 × 96 case using the R package SLHD on a laptop with an Intel 2.50GHz I7 CPU, while

our algebraic methods take only a few seconds. The minimum distances of our designs can

be further improved in some cases by permuting levels as Zhou and Xu (2015) did. We do

not pursue this here.

The Gilbert method outperforms the Welch method and the R package SLHD for con-

structing p× p Latin hypercube designs when p ≥ 29, and the Golomb method outperforms

the R package SLHD in most cases for constructing (p−2)×(p−2) Latin hypercube designs;

see the Supplementary Material.

Our algebraic construction methods are suitable for constructing high dimensional de-

signs. As p gets larger, the Gilbert and Golomb methods tend to produce better designs

in the sense that the ratios of dmin/dupper become higher as shown in Fig. 3.2, where dupper

is the upper bound given in Lemma 1. Here we further introduce two simplified methods
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Table 3.1: Comparison of L1-distance for p× (p− 1) Latin hypercube designs

p MWel Gil Gol GLP LPGLP SLHD

7 10 14 14 12 13 15

11 32 34 34 30 34 37

13 52 46 48 42 54 50

17 82 86 80 72 84 87

19 104 102 106 90 106 108

23 152 154 158 132 154 159

29 236 250 244 210 250 253

31 268 276 292 240 280 289

37 376 408 404 342 408 411

41 458 512 498 420 508 510

43 502 558 542 462 562 562

47 596 672 668 552 676 672

53 752 848 856 702 846 857

59 926 1056 1050 870 1050 1067

61 988 1134 1130 930 1132 1135

67 1156 1372 1378 1122 1362 1370

71 1328 1518 1538 1260 1516 1541

73 1402 1632 1634 1332 1596 1628

79 1636 1888 1898 1560 1872 1919

83 1802 2122 2112 1722 2090 2120

89 2066 2442 2456 1980 2382 2435

97 2446 2902 2872 2352 2886 2898

Note: mWel, modified Welch method; Gil, Gilbert method; Gol, Golomb method; GLP,

good lattice point method; LGLP, linearly permuted good lattice point method; SLHD, R

package SLHD.
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which avoid searching primitive roots and parameters. The simplified Gilbert method uses

the smallest primitive root and parameter c = 1. The simplified Golomb method uses the

smallest primitive root as α and the second smallest primitive root as β. Fig. 3.2 shows

that all of our methods perform well when p is large. The simplified Golomb method is

better than the simplified Gilbert method, and the ratios of dmin/dupper are near or above

90% when p > 100 for the former method. It would be interesting to find the explicit forms

of dmin for the Gilbert and Golomb methods or to study their asymptotical properties.

From a Latin square, we can generate many Latin hypercube designs by deleting one

or more columns. Deleting one column from an n × n Latin square reduces the minimum

distance by at most n− 1. If we start with an n× n design with large dmin/dupper ratio, we

can drop a small number of columns which will lead to good designs with large minimum

distances. To drop a comparatively large number of columns, one can adopt a searching

scheme such as threshold accepting, which has been thoroughly discussed in Fang et al.

(2006).

Based on the Welch, Gilbert and Golomb constructions, there are some secondary con-

structions of Costas arrays with orders of p, p − 2, p − 3, pm, pm − 1, pm − 3, pm − 4 and

pm− 5; see Beard (2006) and Drakakis et al. (2011). As a generalization of our methods, we

can also use these Costas arrays to construct cyclic Latin squares. It is also straightforward

to extend all theoretical results in this chapter using the L2-distance.

3.6 Appendix

Proof of Lemma 2. Denote x1 = (a1, . . . , an) and xi = (an−i+2, . . . , an, a1, . . . an−i+1) for 2 ≤

i ≤ n. Let a0 = an for convenience. For any i < j, xj is obtained from xi by applying k = j−i

steps of right-cyclic shift, and their L1-distance is
∑n

i=1 | a(i+k) mod n− ai | which is denoted

as dk here. Further, dn−k =
∑n

i=1 | a(i+n−k) mod n − ai |=
∑n

i=1 | a(i−k) mod n − ai |=
∑n

i=1 |

a(i+k) mod n − ai |= dk. Thus, all pairwise L1-distances can be categorized into bn/2c groups

which are represented by the L1-distances between its 1st row and its 2nd, . . ., (bn/2c+1)th

row. Furthermore, dk =
∑n

i=1 | a(i+k) mod n − ai |=
∑n−k

i=1 | ai+k − ai | +
∑n

i=n−k+1 |
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ai+k−n − ai |=
∑n−k

i=1 | ai+k − ai | +
∑k

j=1 | aj − an−k+j |=
∑n−k

i=1 | tk,i | +
∑k

j=1 | tn−k,j |,

where tk,j is the jth element in the kth row of the difference triangle T (a). This completes

the proof.

Proof of Proposition 1. Let Dα,c be the (p− 1)× (p− 1) generated design using the Welch

Costas array with primitive root α and parameter c. Denote the (ith, jth) element in design

Dα,c where c 6= 0 as xi,j, and in design Dα,0 as yi,j. Let j′ = j + c mod (p− 1) and if j′ = 0

set j′ = p − 1. We have xi,j = x1,j−i+1 mod (p−1) = αj−i+c mod (p−1) mod p = αj
′−i mod (p−1)

mod p = yi,j′ . Thus, any Dα,c where c 6= 0 is equivalent to Dα,0 under column permutations.

Without loss of generality, let c = 0 in the following proof. For any two different primitive

roots α and β, there exists an unique integer t which is coprime to p− 1, such that β = αt

mod p. Denote the (ith, jth) element in design Dβ,0 as zi,j. Let i′ = ti mod (p− 1) and j′ =

tj mod (p− 1). Then j′ − i′ = t(j − i) mod (p− 1) and βj
′−i′ = βt(j−i) = αj−i mod p. This

leads to zi′,j′ = yi,j. Thus, Dα,0 and Dβ,0 are equivalent under row and column permutations.

This completes the proof.

Proof of Theorem 1. With Lemmas 2 and 3 and the Costas property of T (a) that there are

no repeated values in any row of the difference triangle, for the p× p generated design, the

lower bound of the pairwise distances can only occur between the 1st and {(p+ 1)/2}th row

under the following situations.

(i) When p = 4k + 1 and k ≥ 2, the lower bound occurs when the (2k)th row of

T (a) consists of numbers: −1, 1, . . . ,−k, k, the (2k + 1)th row of T (a) consists of numbers:

−1, 1, . . . ,−(k − 1), (k − 1),−k or k, and the two elements added at the first position are 1

and 2. Under such a situation, by Lemma 2, dmin(D) ≥ 4×{1 + . . .+ (k−1)}+ 3k+ 1 + 2 =

2k2 + k + 3 = (p2 + 7)/8 + 2. The bound also holds for p = 5.

(ii) When p = 4k + 3 and k ≥ 1, the lower bound occurs when the (2k + 1)th row of

T (a) consists of numbers: −1, 1, . . . ,−(k+ 1) or (k+ 1), the (2k+ 2)th row of T (a) consists

of numbers: −1, 1, . . . ,−k, k, and the two elements added at the first position are 1 and

2. Under such a situation, by Lemma 2, dmin(D) ≥ 4 × (1 + . . . + k) + (k + 1) + 1 + 2 =

2k2 + 3k + 4 = (p2 + 7)/8 + 2.
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Proof of Proposition 2. Denote two Welch Costas arrays as a and b where aj = αj+c1−1

mod p and bj = βj+c2−1 mod p. Given β = α−1 mod p and c1 + c2 = 1 mod (p − 1),

bj = α−j−c2+1 = αp−j−c2 = αp−j+c1−1 = ap−j mod p. Thus, b is the inverse reflection of a.

When only considering absolute values and ignoring the order, elements are the same for

every uth (u = 1, . . . , p− 2) row of difference triangles T (a) and T (b). Define a∗ = (0, a)

and b∗ = (0, b). With Lemma 3, for T (a∗) and T (b∗), the sum of the first element of the

uth (u = 1, . . . , (p− 1)/2) and (p− u)th rows are the same. Further, by Lemma 2 the p× p

designs with generators of a∗ and b∗ have the same distance distribution.

Proof of Theorem 3. We first prove a claim that in the difference triangle T (b), if number v

exists in the uth row, 2 ≤ u ≤ (p− 1)/2, then number −v cannot exist in the (p− u)th row.

Suppose otherwise, by Definitions 1 and 4, there exist integers i and j where 1 ≤ i, j ≤ p−1,

1 ≤ i+u ≤ p−1, 1 ≤ j+p−u ≤ p−1 and 1 ≤| v |≤ p−1, such that logβ(i)− logβ(i+u) = v

mod (p− 1) and logβ(j)− logβ(j + p− u) = −v mod (p− 1). Then, we have i = (i+ u)βv

mod p and j + p − u = jβv mod p. This leads to ijβv = (i + u)(j − u)βv mod p. Since

βv 6= 0 mod p, we have ij = (i+u)(j−u) mod p or u(j−i−u) = 0 mod p. Since u 6= 0 mod p,

we have j = u+ i mod p. Since 1 ≤ j ≤ p−1 and 1 ≤ i+u ≤ p−1, we have j = u+ i. But

for 1 ≤ j+p−u ≤ p−1, we have 1 ≤ i+p ≤ p−1 which is a contradiction to 1 ≤ i ≤ p−1.

Thus, our claim is proved.

With Definition 2, Lemma 3 and the proved claim above, ignoring the first column of

T (b∗), for any u = 2, . . . , (p − 1)/2, considering the absolute values of elements in the

uth and (p − u)th row of T (b∗) together, no value can appear more than twice. Since β

is a primitive root modulo p, β(p−1)/2 = p − 1 mod p and logβ(p − 1) = (p − 1)/2. Then

p−u = (p−1)umod p and logβ(p−u) = logβ(p−1)+logβ(u) = (p−1)/2+logβ(u) mod (p− 1).

This implies bp−u = bu + (p− 1)/2 mod (p− 1). Therefore, with Lemma 2, the lower bound

is dmin(D) ≥ 2× {1 + . . . + (p− 3)/2} + (p− 1)/2 + 1 + 1 + (p− 1)/2 = (p2 + 7)/4. When

considering u = 1, by Definition 2 and Lemma 2, it is straightforward that the above lower

bound stands.
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Proof of Theorem 5. First we prove a claim that for Golomb Costas array g = (g1, . . . gq−2)

where q = pm with primitive roots α and β, in the difference triangle T (g), if number v exists

in the uth row where 2 ≤ u ≤ (q − 1)/2, then number −v cannot exist in the (q−1−u)th row.

Suppose otherwise, by Definition 5 there exist integers i and j where 1 ≤ i, j, gi, gj ≤ q − 2,

1 ≤ i+ u ≤ q− 2, 1 ≤ j+ q− 1− u ≤ q− 2 and 1 ≤| v |≤ q− 2, such that in Galois field Fq,

αi + βgi = 1,

αi+u + βgi+v = 1,

αj + βgj = 1,

αj+q−1−u + βgj−v = 1,

⇒



αiβv + βgi+v = βv,

αi+u + βgi+v = 1,

αj + βgj = 1,

αj−uβv + βgj = βv,

⇒


αi(βv − αu) = βv − 1,

αj−u(βv − αu) = βv − 1.

In Fq, if βv − αu 6= 0 , we have αi = αj−u. Since α is primitive root and given the range of i

and j, we have j = i+u. Then j+q−1−u = i+q−1 > q−2 contradicts with the condition

1 ≤ j + q − 1− u ≤ q − 2. In Fq, if βv − αu = 0, we have αi + βci = 1 and αi+u + βci+v = 1.

Thus, we have αi + βci = 1 and αu(αi + βci) = 1. Then, αu = 1 and u = q − 1. This

contradicts with the range 2 ≤ u ≤ (q − 1)/2. Thus, our claim is proved. With this claim,

similar to the proof of Theorem 3, we can compute the lower bound as follows. When q is

odd, dmin(D) ≥ 2 × {1 + . . . + (q − 3)/2} + 1 × 2 = (q − 1)(q − 3)/4 + 2; when q is even,

dmin(D) ≥ 2× {1 + . . .+ (q − 4)/2}+ (q − 2)/2 + 1 + 2 = (q − 2)2/4 + 3.

3.7 Supplementary Material

3.7.1 Additional Results and Comparisons

In Table 3.2, we show the minimum distances of p × p Latin hypercube designs generated

by our Welch, Gilbert methods and the R package SLHD for 5 ≤ p < 100. For the SLHD

method, we run the command maximinSLHD with option t = 1 and default settings for 100

times, and choose the best results. It takes about an hour to generate a hundred 97 × 97

maximin Latin hypercube designs using SLHD on a laptop with an Intel 2.50GHz I7 CPU.

In contrast, our algebraic methods take only a few seconds. For p < 29, the Welch method

is comparable to the SLHD and is better than the Gilbert method; for p ≥ 29, the Gilbert
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method is consistently the best.

Table 3.2: Comparison of L1-distance for p× p Latin hypercube designs

p Gil Wel SLHD p Gil Wel SLHD

5 10 10 10 47 708 680 691

7 16 18 18 53 878 866 877

11 40 40 41 59 1106 1064 1077

13 54 56 55 61 1180 1142 1157

17 92 92 93 67 1426 1368 1395

19 110 120 115 71 1600 1554 1565

23 164 166 166 73 1704 1644 1657

29 266 264 263 79 2000 1892 1941

31 310 298 300 83 2208 2104 2140

37 432 420 426 89 2552 2440 2467

41 534 524 521 97 3030 2866 2938

43 584 566 576

Note: Gil, Gilbert method; Wel, Welch method; SLHD, R package SLHD.

In Table 3.3, we show the minimum distances of (p−2)× (p−2) Latin hypercube designs

generated by our Golomb method and the SLHD package for 7 ≤ p < 100. The Golomb

method outperforms the SLHD method for most of the cases, especially for large ones.

3.7.2 Additional Proofs

Proof of Theorem 2. With Lemma 2 and the Costas property of the difference triangle, the

lower bound can occur only between the 1st and {(p + 1)/2}th row of the design. When

p = 4k + 1, dmin(D) ≥ 4× {1 + . . . + k} = (p + 3)(p− 1)/8. When p = 4k + 3, dmin(D) ≥

2× {2× (1 + . . .+ k) + (k + 1)} = (p+ 1)2/8.

Proof of Proposition 3. (i) Since α is a primitive root, we have α(p−1)/2 = p − 1 mod p and

logα(p−1) = (p−1)/2. Because p− i = (p−1)i mod p, logα(p− i) = logα(p−1) + logα(i) =
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Table 3.3: Comparison of L1-distance for n× n Latin hypercube designs with n = p− 2

n Gol SLHD n Gol SLHD n Gol SLHD n Gol SLHD

5 8 10 27 226 229 51 820 805 77 1860 1842

9 26 28 29 270 263 57 1026 1018 81 2054 2046

11 40 40 35 386 381 59 1102 1078 87 2388 2351

15 72 72 39 482 474 65 1314 1311 95 2856 2808

17 98 92 41 520 525 69 1526 1485

21 140 141 45 638 627 71 1562 1567

Note: Gil, Gilbert method; Gol, Golomb method; GLP, good lattice point method; LP-GLP,

linearly permuted good lattice point method.

(p− 1)/2 + logα(i) mod p− 1. Then bi = logα(i) + 1− c2 = logα(p− i)− (p− 1)/2 + 1− c2 =

logα(p − i) + 1 − c1 = ap−i mod p− 1. Thus, bi = ap−i, and b is the inverse reflection of a.

With Lemma 2, the (p− 1)× (p− 1) cyclic Latin squares with generators a and b have the

same distance distribution.

(ii) Since β = α−1 mod p, we have logβ(i) = − logα(i) mod p− 1. Then bi = logβ(i) +

1 − c2 = − logα(i) + 1 − c2 = − logα(i) + c1 = p − ai mod p− 1. Since both ai and bi are

between 1 and p− 1, we have bi = p− ai. Then |bj − bi| = |aj − ai| for any i and j, and the

difference triangle of a is the same as that of b towards the absolute values. Therefore, by

Lemma 2, the (p− 1)× (p− 1) cyclic Latin squares with generators a and b have the same

distance distribution.

Proof of Proposition 4. Given a primitive root β, denote a and b as the Gilbert Costas arrays

with parameters c and c′, respectively, where 1 ≤ c, c′ ≤ p−1. Denote the (ith, jth) element

in the p× p designs with generators a∗ = (0, a) and b∗ = (0, b) as xi,j and yi,j, respectively.

Define a0 = b0 = 0. We have xi,j = aj−i mod p and yi,j = bj−i mod p. Let j′ = jβc
′−c (mod p)

and i′ = iβc
′−c (mod p). Then j′− i′ = βc

′−c(j − i) mod p. If i = j, we have yi′,j′ = xi,j = 0.

If i 6= j, we have logβ(j′− i′ mod p) = logβ(j− i mod p) + (c′− c) mod p− 1, which leads

to bj′−i′ mod p = aj−i mod p and yi′,j′ = xi,j. This completes the proof.
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Proof of Theorem 4. By Definition 2 and Lemma 2, similar to the proof of Theorem 2,

we obtain the lower bound as follows. When q is even, it must be a power of two and

dmin(D) ≥ 2× [2× {1 + 2 + . . . + (q − 4)/4} + q/4] = q2/8. When q = 1 (mod 4), we have

dmin(D) ≥ 4× {1 + 2 + . . . + (q − 1)/4} − (q − 1)/4 = (q2 − 1)/8; when q = 3 (mod 4), we

have dmin(D) ≥ 4× {1 + 2 + . . .+ (q − 3)/4}+ (q + 1)/4 = (q2 − 1)/8.

Proof of Proposition 5. Similar to the proof of Proposition 4, let n = q − 1 and xi,j =

gj−i mod n = logβ(1−αj−i). Let α = βt where t is coprime to n. Then xi,j = logβ(1−βt(j−i)) =

yi′,j′ where i′ = ti mod n and j′ = tj mod n. This shows that the n×n Latin square generated

by α and β is equivalent to the n × n Latin square generated by β and β. This completes

the proof.
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CHAPTER 4

Application of Space-Filling Designs in a Drug

Combinatorial Experiment on Lung Cancer

4.1 Introduction

Combinatorial drugs have been widely applied in cancer treatments due to its improved

efficacy and reduced toxicity compared with individual drugs (Devita et al. (1975) and Ning

et al. (2014)). Preclinical experiments in vitro are usually conducted to find the optimal

drug combinations. For economic reasons, designs with less runs and good predictive power

are preferred. The study of efficient experimental designs and proper follow-up statistical

modeling techniques are of much importance. Due to the complexity of underlying biological

systems, a systematic quantification of effects for multiple drugs is challenging, and thus

various models should be explored for the experiment (Al-Shyoukh et al. (2011)). In such

situations, space-filling designs are ideal due to their robustness (Zhou and Xu (2014)).

Several criteria have been proposed to measure designs’ space-filling property. Hickernell

(1998) proposed the discrepancy criteria via reproducing kernel Hilbert spaces and Johnson

et al. (1990) proposed the maximin and minimax distance criteria. In this chapter, we

adopt the maximin distance criterion, which maximizes the minimum pair-wise distance

between design points. Johnson et al. (1990) showed that maximin distance designs are

asymptotically optimal under a Bayesian setting, and are robust since the worst cases are

optimized. Moreover, maximin designs are the most suitable for Kriging models (refer to

Section 4.3.1).

In this chapter, we focus on a combinatorial drug experiment on lung cancer conducted
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Table 4.1: Dose levels for each drug in the combinatorial experiment on lung cancer

Drug Dosage (µM)

AG490 (A) 0 0.3 1 3 10 30 100 300

U0126 (B) 0 0.1 0.3 1 3 10 30 100

I-3-M (C) 0 0.3 1 3 10 30 100 300

Coded level 0 1 2 3 4 5 6 7

by Al-Shyoukh et al. (2011). Ning et al. (2014) analyzed the same experiment. Three

drugs AG490(A), U0126(B), and indirubin-3
′
-monoxime (I-3-M)(C) were used and they are

inhibitors targeting signaling pathways for cell survival and proliferation. In the experiment,

a 512-run 8-level full factorial design (Dfull) was applied to both lung cancer cells and normal

cells. The response variable is the ATP level (standardized to 0-1 range) of the cell measured

72 hours after the drug treatment. The actual dosages for each drug are given in Table 4.1

and coded as level 0 to 7.

When analyzing all 512 runs in the experiment, Ning et al. (2014) fitted a Hill-based

model with mean square error (MSE) 8.91 ∗ 10−4 for normal cells and 1.42 ∗ 10−2 for cancer

cells. Considering the run economy, Al-Shyoukh et al. (2011) recommended 80 random runs

to fit linear models and neural networks; under their best model, the MSEs in predicting

values for all 512 runs are 6∗10−3 for normal cells and 1∗10−2 for cancer cells. In this chapter,

we show that when analyzing 512 runs, Kriging model interplates the data which leads to

MSE= 0; when using space-filling designs, only 27 runs are needed in Kriging models, and

the MSEs in predicting values for all 512 runs are 1.49∗10−4 for normal cells and 1.29∗10−3

for cancer cells, which are much smaller than the MSEs in Al-Shyoukh et al. (2011) using

80 runs. In this chapter, we compare four types of designs: a 512-run 8-level full factorial

designs, 80-run random sub-designs, 27-run random sub-designs and a 27-run space-filling

three-level design under four types of models: Kriging models, neural networks, linear models

and Hill-based nonlinear models. We find that it is the best to adopt space-filling designs

fitting Kriging models.

This chapter is organized as follows. In Section 4.2, we give the construction of a space-
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filling 27-run three-level design. In Section 4.3, we illustrate the Kriging model, neural

network, linear model and Hill-based nonlinear model. In Section 4.4, we show the results

comparing four types of designs under four types of models. Section 4.5 concludes.

4.2 Construction of space-filling three-level designs

From the 512-run 8-level full factorial design Dfull, we have 56 choices of three levels for

each drug, and thus there are in total 175616 distinct 27-run 3-level sub-designs. After

standardizing the actual dosages for each drug to 0-1 range, we search for the space-filling

sub-design via a scalar measure (Morris and Mitchell (1995))

φp =

(
n∑
i=2

i−1∑
j=1

1

dpi,j

) 1
p

, (4.1)

where p = 15 and di,j is the L1-distance (also known as the rectangular or Manhattan

distance) between the ith and jth row of the design. When p is sufficiently large, φp is

asymptotically identical to the maximin distance criterion and smaller φp value means better

space-filling property. The space-filling 3-level sub-design in actual dosages is the one with

coded level 0, 6 and 7 for each drug (refer to Table 4.1 for actual dosages). This design is

very robust under various models (see Section 4.4); in addition, it enjoys the advantages of

being a full factorial design and can give clear interpretations for the main and interaction

effects.

4.3 Response surface modeling

In this section, we illustrate four types of models to investigate the response surface and give

details on how we fit these models for the combinatorial drug experiment.

4.3.1 Kriging models

The Kriging model was proposed by Krige (1951) and systematically introduced in Sacks

et al. (1989) and Ginsbourger et al. (2009). The basic idea of Kriging method is that we
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can predict the values at target points in the domain via calculating the weighted average

of values at known points in the neighborhood. The mathematical form of Kriging model is

defined as

y(x) =
L∑
j=0

βjBj(x) + z(x), (4.2)

where {Bj(x), j = 0, . . . , L} is a chosen basis over the domain and z(x) is a Gaussian process.

In equation (4.2),
∑L

j=0 βjBj(x) models the drift of the process mean, which is called the

“trend”. In this chapter, after comparing various types of trends, we adopt a constant trend

model and rely on z(x) to fit the response surface through the observed data. Here z(x) is

a Gaussian process with zero mean and covariance

C(xi, xj) = σ2 ∗ (
d∏
l=1

k(xi,l, xj,l) + gδi,j),

where xi and xj are the ith and jth runs, and xi,l and xj,l are the (ith, lth) and (jth, lth)

elements in the d-dimensional design; σ2 is a parameter measuring variance; g is the nugget

term; δi,j = 0 if i 6= j, otherwise δi,j = 1. The type of spatial correlation function k(xi,l, xj,l)

controls the smoothness of the model, and Rasmussen and Williams (2006) and Martin and

Simpson (2005) recommended to use the Matérn family. In this chapter, we use the Matérn

family

k(xi,l, xj,l) = (1 +

√
5h

θl
+

5

3
∗ (

h

θl
)2) ∗ exp(−

√
5h

θl
).

where the input distance h = |xi,l − xj,l| and θl is the range parameter which scales the

correlation length. Figure 4.1 shows some spatial correlation functions with different θs. For

this model, Rasmussen and Williams (2006) showed that data points with higher pairwise

L1-distance have less correlation. Let y be an unobserved data point. As y moves away from

the nearest observations, the variance of this distribution increases. Here we include a small

enough nugget effect g = 10−3 for 512-run and 80-run designs to avoid numerical problems

in model estimation. Under these settings, the parameters are estimated by the maximum

likelihood (MLE) method via R package ”DiceKriging” (Roustant et al. (2009)). It is ideal

to use maximin designs in Kriging models, since any unobserved point will not be too far

from the nearest observed point and thus the variance can be controlled.
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Figure 4.1: Examples of spatial correlation functions of Matérn family
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4.3.2 Neural networks

Al-Shyoukh et al. (2011) fitted a single-layer, four-neuron neural network (perceptron) and

a two-layer, single-neuron per layer cascaded neural network. These two models perform

similarly and are too simple to perform well. In Section 4.4, we include the former one and

an improved neural network in the model comparison. One rule of thumb to choose the

number of hidden neurons is

Nh =
Nd

α(Ni +No)
,

where Nd, Ni and No are the number of data, input neurons and output neurons, respectively,

and α is a scaling factor from 2 to 10. Since designs used in this chapter have 512, 80 or

27 runs and we want to use the same neural network structure for all these designs in order

to make the results comparable, it is proper to adopt a two-layer, four-neuron per layer

neural network according to the rule of thumb. Mathematically, for each hidden neuron, the

network function

f(x) =
1

1 + e−
∑
wixi

,
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where wi are parameters to be estimated, xi are input values and i ranges from 1 to the

number of hidden neurons from the previous layer (including the input layer). For the

output neuron f(x) =
∑
wixi. We fit the neural networks via resilient back-propagation

with weight backtracking. We use the R package ”neuralnet” (Günther and Fritsch (2010))

with default settings except that we set the number of training repetitions to 10.

4.3.3 Linear and non-linear models

Regression models are the most common analytical tools in drug experiments. In this chap-

ter, we study each type of designs under both linear and non-linear regression models. For

the linear model, we include all main, interaction and quadratic effects for drugs A,B and

C; the model is

y = β0 + β1A+ β2B + β3C + β4AB + β5AC + β6BC + β7A
2 + β8B

2 + β9C
2 + ε . (4.3)

For non-linear models, we fit the Hill-based model by Ning et al. (2014). In vivo systems, the

relationship between drug dosages and their effects usually follows a sigmoidal curve (Chou

(2006)). Based on this, Ning et al. (2014) proposed the Hill-based model

y =
1

1 + ( C
IC50(θ)

)γ(θ)
+ ε , (4.4)

where the total dosage C = C1 +C2 +C3, and C1, C2 and C3 are the actual dosages of drugs

A, B and C in the experiment, respectively; the drug proportion θi = Ci/C for i = 1, 2, 3;

IC50(θ) = a0 +a1θ1 +a2θ2 +a3θ1θ2 +a4θ
2
1 +a5θ

2
2; γ(θ) = b0 +b1θ1 +b2θ2 +b3θ1θ2 +b4θ

2
1 +b5θ

2
2.

Here function IC50(θ) measures the dosage of the drug combination which yields 50% effect

level, and γ(θ) measures the changing rate of the smooth curve. Hill-based models are able to

address all drug combinations and characterize the interaction patterns. When fitting linear

models, we standardize the actual dosages of the three drugs to 0-1 range; when fitting

Hill-based models, we use the actual dosages without standardization.
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4.4 Results and analysis

In this section, we compare Kriging models, neural networks, linear models and Hill-based

models in fitting four types of designs: the 512-run 8-level full factorial design (Dfull), 80-run

random sub-design (RD80), 27-run random sub-design (RD27) and 27-run 3-level space-filling

design (MmD27). For each case, we list the mean square error (MSE) in predicting all 512

runs in the experiment and correlations (r) between predicted values and actual values. We

show results for normal cells in Table 4.2 and results for cancer cells in Table 4.3. In all

tables, the results for designs RD80 and RD27 are average values of 100 random ones; results

are presented in the format “MSE(r)”, and “aE-b” means a∗10−b; we round results to 10−6.

Table 4.2: Comparison of models and designs in fitting normal cell data

Dfull RD80 RD27 MmD27

Kriging 0 (100.00%) 2.09E-04(99.88%) 9.66E-04(99.56%) 1.49E-04(99.95%)

NN1 5.63E-04(99.72%) 2.20E-03(98.58%) 3.36E-03(98.27%) 2.86E-03(99.11%)

NN2 7.65E-05(99.96%) 1.40E-03(99.30%) 4.63E-03(97.64%) 4.13E-03(98.98%)

Linear 4.97E-04(99.74%) 1.21E-03(99.38%) 4.99E-03(98.00%) 2.94E-03(99.44%)

Hill-based 8.91E-04(99.54%) 8.17E-03(96.53%)* 2.55E-02(88.87%)* 7.64E-03(96.51%)

Note: “NN1” represents the single-layer four-neuron neural network; “NN2” represents the two-

layer four-neuron per layer neural network; values with “*” are unstable results.

Table 4.3: Comparison of models and designs in fitting cancer cell data

Dfull RD80 RD27 MmD27

Kriging 0 (100%) 3.70E-04(99.78%) 1.84E-03(99.23%) 1.29E-03(99.69%)

NN1 4.72E-04(96.20%) 3.00E-03(98.55%) 4.28E-03(98.27%) 4.14E-03(98.76%)

NN2 6.62E-04(99.72%) 1.75E-03(99.26%) 3.63E-03(98.51%) 3.37E-03(98.91%)

Linear 3.02E-03(98.69%) 3.22E-03(98.82%) 4.42E-02(87.69%) 1.70E-02(97.49%)

Hill-based 1.42E-03(99.40%) 1.92E-02(96.74%)* 4.36E-02(86.61%)* 1.33E-03(99.47%)

Note: “NN1” represents the single-layer four-neuron neural network; “NN2” represents the two-

layer four-neuron per layer neural network; values with “*” are unstable results.
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From Tables 4.2 and 4.3, we can see that for both cases of normal cells and cancer

cells, Kriging models are the best for all four types of designs in regard to both MSEs and

correlations (r). When fitting 512-run design Dfull, Kriging model interplates the data which

leads to MSE=0. When fitting random 80-run data (RD80), the Kriging model gives MSEs

2.09 ∗ 10−4 for normal cells and 3.07 ∗ 10−4 for cancer cells, which are also much smaller

than the MSEs 6 ∗ 10−3 for normal cells and 1 ∗ 10−2 for cancer cells using the best model in

Al-Shyoukh et al. (2011). Same conclusions can be drawn if we look at correlations (r).

From Tables 4.2 and 4.3, we can see that for both cases of normal cells and cancer cells,

design MmD27 outperforms design RD27 for all types of models in regard to both MSEs

and correlations (r). When fitting the Kriging model which gives the best results, design

MmD27 performs better than design RD80 for normal cells, but worse for cancer cells.

Designs MmD27 and RD80 are comparable in performance. Due to the cost consideration,

one would prefer MmD27 and this saves 66% of the runs compared with RD80.

In Figures 4.2 and 4.3, we show the scatter-plots of predicted versus observed ATP level

(response variable) for both normal and cancer cells using the space-filling three-level design

MmD27. From Figure 4.2, it is clear that the Kriging model predicts the rest 485 data

points very well and significantly outperforms other models. From Figure 4.3, we can see

that both the Kriging and Hill-based model perform well. Note that the purpose of this drug

combinatorial experiment is to minimize the ATP level on cancer cells but maximize that

on normal cells. From Figure 4.3, it is clear that the Kriging model predicts better for cases

with low ATP levels on cancer cells compared with the Hill-based model. Thus, the Kriging

model is preferred and design MmD27 performs well.

Further, in Figure 4.4, we show the scatter 3D-plot comparing predicted ATP levels

between designs Dfull and MmD27 under Kriging models for both normal and cancer cells.

In Figure 4.4, values on each dimension are log(10i) when i 6= 0, and 0 when i = 0, where

log is the natural logarithm and i is the actual drug dosage. We use colors to represent the

ATP level for each drug combination. From Figure 4.4, we can see that the predicted ATP

levels via MmD27 are nearly the same as the estimated ones via Dfull. In addition, we also

show the contour plots comparing Dfull and MmD27 under Kriging models for both normal
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Figure 4.2: Scatter-plots of predicted versus observed ATP levels on normal cells using design

MmD27.
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Figure 4.3: Scatter-plots of predicted versus observed ATP levels on cancer cells using design

MmD27.
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Figure 4.4: Comparison of predicted ATP levels via Dfull and MmD27 under Kriging models.
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Figure 4.5: Contour plots of predicted ATP levels via Dfull and MmD27 under Kriging

models on normal cells.
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Figure 4.6: Contour plots of predicted ATP levels via Dfull and MmD27 under Kriging

models on cancer cells.
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and cancer cells. In Figures 4.5 and 4.6, we draw the contour plots for any two drugs while

fixing the third to be 0. We can see that for both normal and cancer cells, Dfull and MmD27

performs similarly for all drug combinations of AB, AC and BC. Therefore, design MmD27

is good enough to analyze both global response surface and two-drug interactions. In Table

4.4, we give the estimated parameters of the Kriging models using all four types of designs

where values for designs RD80 and RD27 are average values of 100 random ones. In Tables

4.5 and 4.6, we list the five-number summary of estimated parameters for designs RD80 and

RD27, and we can see that RD27 has much larger variations. When using only 27 runs, we

need to choose a desirable design, e.g. a space-filling design, rather than a random one.

Table 4.4: Estimations of parameters in Kriging models

For normal cells θA θB θC σ2 trend

Dfull 1.23 2.00 1.24 0.26 0.60

MmD27 0.89 1.83 0.77 0.13 0.44

RD80 1.15 1.84 1.13 0.30 0.62

RD27 1.28 2 1.27 0.31 0.69

For cancer cells θA θB θC σ2 trend

Dfull 1.15 1.60 0.70 0.26 0.50

MmD27 0.61 1.19 0.28 0.08 0.26

RD80 0.99 1.40 0.60 0.22 0.48

RD27 0.96 1.21 0.56 0.20 0.53

Furthermore, design MmD27 is robust in performance for all four types of models, and its

MSEs for both normal and cancer cells are consistently low. On the contrary, design RD80

is unstable for Hill-based model (we mark “*” for these values in the table) when trying 100

random designs, and we encountered numeric problems in estimations for two of them. We

excluded these results when calculating the average. Design RD27 is even more unstable for

the Hill-based model. Its average MSEs increase to 10−2 level, and we encountered more

estimation problems.
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Table 4.5: Estimations of parameters in Kriging models for normal cells

Min Q1 Q2 Q3 Max

RD27

θA 0.20 1.04 1.13 1.28 1.64

θB 0.60 1.78 1.53 2.00 2.00

θC 0.67 1.07 1.16 1.23 1.54

σ2 0.10 0.26 0.30 0.37 0.47

trend 0.46 0.59 0.62 0.67 0.80

RD80

θA 1.10 1.23 1.27 1.33 1.50

θB 1.90 2.00 2.00 2.00 2.00

θC 1.02 1.22 1.27 1.32 1.42

σ2 0.23 0.29 0.31 0.34 0.39

trend 0.56 0.64 0.69 0.74 0.84
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Table 4.6: Estimations of parameters in Kriging models for cancer cells

Min Q1 Q2 Q3 Max

RD27

θA 0.20 1.04 1.13 1.28 1.64

θB 0.60 1.78 1.53 2.00 2.00

θC 0.67 1.07 1.16 1.23 1.54

σ2 0.10 0.26 0.30 0.37 0.47

trend 0.46 0.59 0.62 0.67 0.80

RD80

θA 1.10 1.23 1.27 1.33 1.50

θB 1.90 2.00 2.00 2.00 2.00

θC 1.02 1.22 1.27 1.32 1.42

σ2 0.23 0.29 0.31 0.34 0.39

trend 0.56 0.64 0.69 0.74 0.84
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4.5 Conclusion

In this chapter, we focus on a 512-run combinatorial drug experiment by Al-Shyoukh et al.

(2011). We compare four types of designs under four major types of models. We find that

when using all 512 runs, the Kriging model outperforms others significantly, including the

models used in Al-Shyoukh et al. (2011) and Ning et al. (2014). If the cost of the experiment

is considered, it is the best to adopt space-filling designs, e.g., MmD27, and use Kriging

models in the follow-up study.

The space-filling three-level design MmD27 is not the overall best space-filling design.

In total, we have
(

512
27

)
possible 27-run sub-designs, which are impossible to enumerate.

There are very limited literature constructing space-filling designs with actual dosages. One

possible way is to adopt some global optimization searching algorithm to find space-filling

designs, but this requires a lot of time. For a future research, we want to give some algebraic

constructions of space-filling designs for combinatorial drug experiments.
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CHAPTER 5

Conclusion

Space-filling designs are widely used in computer experiments, combinatorial drug exper-

iments, complex integrals and simulations. There are quite a few literature on how to

construct space-filling designs, which can be classified as searching methods and algebraic

constructions. The searching methods can generate good designs with flexible sizes, but

require much computation and time, especially for large design cases. The algebraic con-

structions can give good designs using little or no computation, but the sizes of the generated

designs are always constrained. In this thesis, we not only propose an efficient searching al-

gorithm, but also give three new algebraic methods to construct space-filling designs. We

also show an application of space-filling designs in a combinatorial drug experiments on lung

cancer.

In Chapter 2, we propose a computer searching scheme, the MDLE method, to construct

maximin designs with flexible run and factor sizes. We justify the method geometrically

and prove its efficiency theoretically. We list examples to show that our method outperforms

current popular searching algorithms, including the SLHD package (Ba et al., 2015), OMLHD

algorithm (Joseph and Hung, 2008), and level permutation method (Zhou and Xu, 2014). In

Chapter 3, we propose to construct space-filling designs via Costas arrays. These algebraic

methods need very little computation to construct good space-filling Latin square designs

and related LHDs. We prove the lower bounds for the minimum L1-distances of the generated

designs and identify the isomorphic forms. In Chapter 4, we analyze the 512-run 8-level full

factorial combinatorial drug experiment by Al-Shyoukh et al. (2011). We show that only 27

runs are needed if we use space-filling designs to fit the Kriging model. The 512 predicted

values from the model are nearly the same as the actual values from the experiment, which
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can be verified via MSEs, correlations, 3-d plots and contour plots.

One key issue of the searching methods in constructing space-filling designs is how to

minimize the number of possible designs. As for a future research, we want to study the

geometric characteristics of space-filling designs and efficiently shrink the searching space.

Our algebraic constructions in Chapter 3 give q × q, (q − 1)× (q − 1) and (q − 2)× (q − 2)

space-filling Latin square designs where q is any prime power. For the future research, we

will continue to relax the constraints on the design sizes and give more space-filling designs.

Another interesting topic is how to construct space-filling designs with actual dosages or with

continuous values. These designs will be very useful in drug combinatorial experiments.
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